On Learning Counting Functions With Queries

Zhixiang Chen*
Boston University

Abstract

We investigate the problem of learning disjunc-
tions of counting functions, generalizations of
parity and modulo functions, with equivalence
and membership queries. We prove that, for
any prime number p, the class of disjunctions
of integer-weighted counting functions with mod-
ulus p over the domain Z}} (or Z") for any
given integer ¢ > 2, is polynomial time learn-
able using at most n + 1 equivalence queries.
The hypotheses issued by the learner are dis-
junctions of at most n counting functions with
weights from Z;. In general a counting func-
tion may have a composite modulus. We prove
that, for any given integer ¢ > 2, over the do-
main 73, the class of read-once disjunctions
of Boolean-weighted counting functions with
modulus ¢ is polynomial time learnable with
only one equivalence query and O(n?) mem-
bership queries. And the class of disjunctions
of loglogn Boolean-weighted counting func-
tions with modulus ¢ is polynomial time learn-
able.

1 Introduction

Recently, symmetric Boolean functions, especially par-
ity functions and modulo functions, have received much
attention in computational learning theory. It is known
that the class of single parity functions (see Helmbold,

*Department of Computer Science, Boston University,
Boston, MA 02215; zchen@cs.bu.edu. The author was sup-
ported by NSF grant CCR-9103055 and by a Boston Uni-
versity Presidential Graduate Fellowship.

"Department of Computer Science, Boston University,
Boston, MA 02215; homer@cs.bu.edu. The author was sup-
ported by NSF grant CCR-9103055.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

COLT 94 - 7/94 New Brunswick, N..J. USA

© 1994 ACM 0-89791-855-7/94/0007..$3.50

218

Steven Homer!
Boston University

Sloan and Warmuth [HSW]) and the class of single mod-
ulo functions with modulus p for any given prime num-
ber p (see, Blum, Chalasani and Jackson [BCJ]) are
pac-learnable. Fisher and Simon [FS] proved that parity
functions of monomials with at most k literals are pac-
learnable, while given the assumption that RP # NP
parity functions of k& monomials are not pac-learnable
with the same type of functions as hypotheses for any
fixed k > 2. Meanwhile, Blum and Singh [BS] showed
that, for any constant k, Boolean functions of k mono-
mials are pac-learnable by the more expressive hypoth-
esis class of general DNF formulas. They also proved
that, for any & > 2, for any fixed symmetric function
f on k inputs, f consisting of ¥ monomials is not pac-
learnable with the same type of functions as hypothesis
under the assumption that RP # NP.

In the on-line model with queries, Angluin, Hellerstein,
and Karpinski [AHK] have shown that read-once Boolean
functions over the basis (AN D, OR, NOT) are polyno-
mial time learnable with equivalence and membership
queries. Hancock and Hellerstein [HH] extended this
result for Boolean functions to a larger basis including
arbitrary threshold functions and parity functions. Fur-
ther, Bshouty, Hancock, and Hellerstein [BHH] showed
that read-once functions over the basis of arbitrary sym-
metric functions are polynomial time learnable with equiv-
alence and membership queries. However, they also
proved that read-twice functions over the same basis
are not, under standard cryptographic assumptions.

Our goal in this paper is to obtain further positive re-
sults for on-line learning of counting functions, which
include parity and modulo functions, with equivalence
and membership queries. Bshouty, Hancock and Heller-
stein’s negative result for read-twice Boolean functions
over the basis of arbitrary symmetric functions is very
strong. However, a key condition in their theorem is
that they require the basis to include the three-input
consensus function, i.e., a function outputs 1 if and
only if all its inputs get the same value. However, for
many specific symmetric functions, e.g., modulo func-
tions, counting functions, and threshold functions, this
condition does not hold, i.e., no one of those functions
Is equivalent to a consensus function.

‘We observe that a disjunction of integer-weighted count-

ing functions over a field Z, for a given prime number
p corresponds to a linear system over the field Z,. We
prove that (1) the class of homogeneous linear systems
over an arbitrary field is polynomial time learnable with
at most n equivalence queries, and (2) the class of lin-
ear systems over an arbitrary field is polynomial time
learnable with at most n41 equivalence queries. Here n
is the number of input variables, the hypotheses issued
in (1) by the learner are homogeneous linear systems
of no more than n equations, and the hypotheses is-
sued in (2) by the learner are also linear systems of no
more than n equations. The first result implies that,
for any prime number p, the class of disjunctions of
integer-weighted modulo functions with modulus p over
the field Z, is polynomial time learnable with at most
n queries, where the hypotheses issued by the learner
are disjunctions of modulo functions with modulus p
and weights from Z,. The second result implies that,
for any prime number p, the class of disjunctions of
integer-weighted counting functions with modulus p is
polynomial time learnable with at most n+1 equivalence
queries, where the hypotheses issued by the learner are
disjunctions of counting functions with modulus p and
weights from Z,. We also extend the above results to
disjunctions of integer-weighted modulo functions (or in
general integer-weighted counting functions) with differ-
ent prime moduli.

The above results rely on the facts that 7, is a field
for any prime number p. When p is a composite num-
ber, however, this is not true. Nevertheless, we prove
that, given any integer ¢ > 2, the class of read-once dis-
junctions of Boolean-weighted counting functions over
the domain Z% is polynomial time learnable with only
one equivalence query and O(n?) membership queries,
where n is the number of input variables. This result
cannot be subsumed by Bshouty, Hancock and Heller-
stein’s result [BHH] on learning read-once functions over
the basis of arbitrary symmetric functions in the sense of
the equivalence query complexity, since their result re-
quires at most n3 equivalence queries. In general, based
on analyzing the “modulo-structure” of a disjunction of
Boolean-weighted counting functions, we prove that, for
any constant ¢, over the domain Z%, the class of disjunc-
tions of no more than loglog n® many Boolean-weighted
counting functions with modulus ¢ for a given integer
¢ > 2 is polynomial time learnable with equivalence and
membership queries.

2 Preliminaries

We assume that Z is the set of all integers. For any
integer n > 1, let V,, be the set of variables z;, ..., zn.
Let Z, = {0,...,¢ — 1} for any integer ¢ > 2, Z =
{0,...,¢—1}". Elements in Z are thought of here as
n x 1 vectors We consider countmg functions that con-
sist of variables in V;,. Our example space will be Z”
and Z7 for ¢ > 2. When ¢ = 2, Z7 is the n-bit Boolean
space. For any posmve 1nteger q, any k € Z,, and
any integer vector @ = (a1,...,a,)? € Z", an integer-

219

weighted counting function Cy ; z with modulus ¢ is de-
fined as

iy szi=k d q),
Cq’k’a(xl"”’xn):{ 1 otl%xi'v_vlise.:c (mod g)

Here we say that @ is the integer-weight vector (or weight
for short) of Cy 5. When k = 0, we say that C gz is
an integer-weighted modulo function, and denote it by
M, z. When @ € Z%, we say that C, iz (or M, 3) is a
Boolean-weighted counting (or modulo) function.

For an integer-weighted counting function C, x z, let
vars(Cq k,a) denote the set of all relevant variables z; of
Cy k., 1.€., variables z; such that a; # 0. A disjunction
Fof 1nteger—we1ghted countmg functions Cy, &, a,,- -,
Cookya, 15 Cgp k2, V- -V Cy, k3, Let vars(F) be the
set of all relevant vanables of F',1.e., the set vars(Cy,, kl;al)
U---Uwvars(Cy, x,a,). Ifforany i,j € {1,...,t}, i #
1mplles that vars(C, Ekodi) N vars(CqJ,kJ,aJ) = ¢, then
we say that F' is read-once, i.e., each relevant variable
of F occurs in exactly one counting function in F.

For X € {Z;,Z}, an example o € X" satisfies a count-
ing function C if and only if C(a) = 1. « is a positive
example for a disjunction F of counting functions if it
satisfies at least one counting function in F (we write
F(a) = 1) and a negative example otherwise (we write
F(a)=0). For an example o € ZF, let afi] denote the
i-th bit value of a, i.e., the value of the variable z; in
a. In general, for any literal y, afy] denotes the value
ofyin a. For ¢ € {1,...,n}, flip(a,?) stands for the
example obtained from « by flipping exactly the i-th
bit value in . More generally, for a set I C {1,...,n},
let flip(a,I) be the example obtained from o by flip-
ping the i-th bit value in « for every i € I. For con-
venience, we also extend flip to act on literals or sets
of literals in the following way, when ! € {z;,%;}, let
flip(e,l) = flip(e,i), and similarly define flip(a, S)
for a set S of literals.

Our learning model is the standard model for on-line
learning with equivalence and membership queries (see,
[A]). A learning process for a class C of Boolean-valued
functions over the domain X" with the variable set V,
is viewed as a dialogue between a learner A and the
environment. The goal of the learner is to learn an un-
known target function f € C that has been fixed by the
environment. In order to gain information about f the
learner proposes a hypothesis function kA from a fixed
hypothesis space H with C C H. Whenever h # f for
the proposed hypothesis h, the environment responds
with a counterexample o € X" such that h(a) # f(w).
The learner may also ask membership queries for some
examples a € X", to which the environment responds
with “yes” if f(a) = 1 or “no” if otherwise. The learner
succeeds when he receives “yes” for an equivalence query
from the environment, or he can conclude that the cur-
rent hypothesis is logically equivalent to the target func-
tion f. We assume that the time complexity of asking a
membership query for an example is the cost to write it
down, and the time complexity of asking an equivalence
query for hypothesis b is the cost to write h down. We

say that C is polynomial time learnable with equivalence
and membership queries, if there is an algorithm for
learning any target function f € C, using polynomially
in n and the size of f many equivalence and membership
queries, while the time complexity of the algorithm is
polynomial in n, the size of f, and the size of the largest
example that occurred during the learning process.

3 Counting Functions via Linear
Systems

In this section, we design algorithms for learning dis-
junctions of counting functions with a prime modulus.
Our algorithms are based on the folklore algorithm for
learning a vector space (see e.g. [HSW], [BCJ]). How-
ever, they are stronger than the folklore algorithm, be-
cause they make substantial improvement on the hy-
pothesis representation: The hypotheses issued by our
algorithms are disjunctions of no more n + 1 counting
functions, this is in contrast to the vector space hypothe-
ses used by the folklore algorithm.

We assume that K is an arbitrary field; addition and
multiplication of two elements in K, and inversion of a
nonzero element in K, are all of polynomial time com-
plexity. For any positive integer n, K™ is a vector space
of dimension n over the field K. Every o € K™ denotes
an n x 1 vector, and o7 is the 1 x n transposition of
a. Let 6m,1 be an m x 1 zero-vector, X:,,,l beann x 1
vector of n variables xy,...,z,, where z; takes values
from K. For any m X n matrix Ay, and any m x 1
vector I-)‘m,l over K, a linear system L(Am,,,,i;m,l) of m
linear equations over K is given as follows,

Am,an,l = bm,l-

a € K™ is a solution of the linear system L(Anm ,, I-)‘m,l),
if

Am,na = bm,l-
When l_;m’l = 6m,1, we say that L(Am n, I_)‘myl) is a homo-
geneous linear system, or homogeneous system for short.

For convenience, we write L(Amn) = L(Amna,0m 1)
The following two general theorems are established.

Theorem A. The class of all homogeneous systems
over the domain K" for any given field K is polyno-
mial time learnable with at most n equivalence queries.
Moreover, the hypotheses issued by the learner are also
homogeneous systems over K with no more than n lin-
ear equations.

Theorem B. The class of all linear systems over the
domain K" for any given field K is polynomial lime
learnable with at most n + 1 equivalence queries. More-
over, the hypotheses tssued by the learner are also linear
systems over the field K with no more than n equations.

For the rest of this section we assume that p is a given
prime number, and ¢ > 2 is a given integer. We know
that Z, is a field with modulo p addition and multiplica-
tion. Note that addition and multiplication of any two

220

numbers in Zp, and inversion of any non-zero number
in Z,, are of poly(logp) complexity, where the length
of any number in Z, is no more than logp. Before we
prove the above two general theorems, we first give sev-
eral corollaries.

Corollary A.1. Assume ¢ > 2. Given X € {Z,,Z},
the class of all disjunctions of modulo functions M,
with integer-weights @ € Z"™ over the domain X" is
polynomial time learnable with at most n equivalence
queries, while the hypotheses issued by the learner are
disjunctions of at most n modulo functions M, ; with
weights @ € Z7 .

Corollary A.2. Given X € {Z,,Z} with q > 2. Let
P ={pi,...,pr} be a set of prime numbers. Then, the
class of all disjunctions of modulo functions M), 5 with
integer-weights @ € Z™ and p € P over the domain X"
is polynomial time learnable with at most kn equivalence
queries, while the hypotheses issued by the learner are
disjunctions of at most kn modulo functions M, z with
weights d € Z;) andp€ P.

Corollary B.1. Given X € {Z;,Z} with ¢ > 2. The
class of all disjunctions of counting functions C, ; 5 with
tnteger-weights @ € Z"™ over the domain X™ is poly-
nomial time learnable with at most n + 1 equivalence
quertes, while the hypotheses issued by the learner are
disjunctions of at most n counting functions Cp p 5 with
weights d € Z;;.

Corollary B.2. Gwen X € {Z,,Z} with ¢ > 2. Let
P ={p1,...,px} be a set of prime numbers. Then, the
class of all disjunctions of counting functions Cp i a with
integer-weights @ € Z™ and p € P over the domain X"
is polynomial time learnable with af most k(n+1) equiv-
alence queries, while the hypotheses issued by the learner
are disjunctions of al most kn counting functions Cp } 3
with weights d € Zy and p€ P.

‘We now prove our theorems.

Proof of Theorem A. Assume that L(A,, ,) is the
target system. Let I;; be the Ix[identity matrix over K.
Let S, be the set of all solutions received during the first
r stages, the learning algorithm Learn-HS (where “HS”
stands for “homogeneous system”) is given as follows.

Algorithm Learn-HS:

Stage 1. Set the first hypothesis Hy = L(I,,). Ask
an equivalence query for H;. If the learner receives
“yes” then stop, otherwise he receives a non-zero
solution @ € K™ to L(Ampn). Let $1 = {& }.

Stage r > 2. Let S,_1 = {@&1,...,8r-1}. Construct
from vectors in S, a matrix By, _(,_1),, such that
the set of all solutions of the homogeneous sys-
tem L(Bp_(r—1)n) is span(S,_1) = {t1&1 +--- +
tr_1&r_1|ti e 1<i<r~ 1}. Set the r-th hy-
pothesis H, = L(B,_(r—1)n). If » = n 41, the
learner concludes that H, is equivalent to L(Am)
so stop. When r < n, ask an equivalence query
for H,, if “yes” then stop, otherwise the learner re-

ceives a solution &, which is outside span(S,_,).

Set S, = Sp_1 U {@}.

End of Learn-HS.

Claim 3.1. At any stage r with 1 < r < n+1, the
following holds: (1)vectors in S,._; are linearly indepen-
dent; (2)the matriz Bp_(r_1)n exists; (3)span(Sr_1) is
the set of all solutions of H,; ({)every vector in span(
Sr—1) ts a solution of the target system.

Proof of Claim 3.1. By induction on r. When r = 2,
S1 contains exactly one nonzero solution &; of the target
system L(Am), so it is trivial that vectors in Sy are
linearly independent, and every vector in span(S;) is
a solution of L(Amn). Since &; is nonzero, we may
assume without loss of generality that the first element
in it is not 0. Let & = (a11,a21,-..,a41)7. Since K
is a field, a;; # 0 implies the inverse ‘11_11 exists. Let
Dypo11=(as,..., anl)T and define the matrix

Bn—l,n = (“Dn—l,l (al_ll) ,En—l,n-l) .
Then, B,_1, has rank n — 1. By simple calculation,
Bpoindy = (-)‘,,_1’1. Thus, span(S;) is exactly the set
of all solutions of the system L(B,_1,). Hence, our
claim holds for » = 2.

Assume our claim is true for any r with 1 < r < k <
n+ 1. At stage k + 1, by the induction assumption,
we know that vectors in Sj;.1 are linearly independent,
vectors in span(Sk_1) are solutions of the target sys-
tem, and span(Se—1) is the set of all solutions of the
hypothesis Hi. Thus, when the learner receives a coun-
terexample &, for Hg, then @ is a solution of the tar-
get system outside span(Sx—1), this implies that & is
linearly independent from vectors in Si.;. Hence, vec-
tors in Sy = Sk_1 U {&x} are linearly independent and
vectors in span(Sy) are solutions of the target system.
Define the matrix Qn; = (&1,...,d). Since K is a
field, we may assume without loss of generality that the
submatrix Gy i consisting of elements in the first k rows

in @n & has an inverse G;‘}c. Let Np_p & be the subma-
trix consisting of elements in the last n —k rows in @y, -
Define the matrix

-1
Bn—k,n = (_ n—k,ka,k;En—k,n—k> .

Then, By _k n hasrank n—k, and Bp_ g nQn i = 6n_k,k.
Thus, span(Sy) is the set of all solutions of the system
L(Bn-kn). Combining the above analysis, our claim
holds. O

By the above claim, at any stage r with 2 < » < n,
either the learner learns the target system, or receives a
solution of the target system which is linearly indepen-
dent from the solutions in S,..;. Since the target system
has at most n linearly independent solutions, the learner
learns it with at most n equivalence queries.

Let N be the size of of the longest element in any coun-
terexamples received by the learner during the learning
process. By the assumption that addition and multipli-
cation of any two elements in K, and inversion of any

221

element in K, are of polynomial time complexity, one
can find at stage r the matrix By, .(r~1),» in time poly-
nomial in 7 and N. So, the total time complexity of the
algorithm Learn-HS is polynomialin n and N. O

Proof of Theorem B. Assume that L(Am,,.,l-)'m,l) is
the target system. Let Ij; be the I x { identity matrix
over K. The learning algorithm Learn-IHS works in
stages.

Algorithm Learn-THS:

Stage 0. Choose a matrix By, , and a vector d-;;,l over
K such that the rank of B, , is different from that
of the matrix (Bn n,dn,1). Ask an equivalence query
for the hypothesis Hy = L(Bnn,dn,1). Note that
H, has no solutions. If the learner receives “yes”
then stop, otherwise he receives a solution &y for
the target system. Set Sp = ¢.

Stage 1. Set the hypothesis Hy = L(I,n,dp). Ask
an equivalence query for H;. If “yes” then stop,
otherwise the learner receives a solution a@; € K"

to L(Am,n,l.)‘m)l) other than @y. Let S; = {&1—ap}.

Stage r Z 2. Let Sr—l = {51 - 520, . o;&r-—l - 50}
Construct from vectors in S,_; a matrix By _(r_1)n
such that the set of all solutions of the homogeneous
system L(Bj_(r-1)n) is span(S,—1) = {ti(a; —
Gp) + o+ t—1(@rog — o)t € K,1 <1< 7 —
1}. Set the r-th hypothesis H, = L(B,,__(,._l)l,.,
By, _(r—1),n@0). If » = n + 1, the learner concludes
that H, is equivalent to L(Am), so stop. If r < n,
ask an equivalence query for H,., if “yes” then stop,
otherwise the learner recelves a solution &,. Set
Sy = Sp—1 U{&r — &}

End of Learn-IHS.

Claim 3.2. At any stage r with1 < r < n + 1, the fol-
lowing holds: (1)vectors in S,_, are linearly indepen-
dent; (2)the matriz B,_(;_1)n exists; (3)span(S,_1)
is the set of all solutions of the homogeneous system
L(Bn—(r-1),n), and every vector @ € span(S,_1) is a so-
lution of the homogeneous system L(Amn); (4)finally,
Ispan(S,—1) = {d@ + &| & € span(S,—1)} is the set
of all solutions of the hypothesis Hy = L(Bp_(r_1)n,
By _(r-1),n00), and any @ € Ispan(S;) is a solution of

the target system L(Am,,,,gm,l).

Proof of Claim 3.2. By induction on r. When r = 2,
S1 contains exactly one nonzero solution &; — &g of the
homogeneous system L(Aym), since both & and &
are solutions to the target system. So it is trivial that
vectors in Sp are linearly independent, i.e., (1) is true.

Since by (1) & — & is linearly independent, we may
assume without loss of generality that the first element

in it is not 0. Let & — @ = (a11, @21, - ., @n1)7 . Since
K is a field, a1; # 0 implies the inverse aj] exists.
Let Dp_11 = (a21, .. .ya,1)T. We can in fact write the

matrix Bp_1 , as follows

Bn—l,n = (—Dn—l,l (a1_11) ,In—l,n—l) .
This implies (2).
Note that B, _1,, has rank n—1. By simple calculation,
Bpoya(d1—@g) = 6,,_1,1. Thus, span(S;) is exactly the
set of all solutions of the system L(Bn_1,,). Since each

vector in S,_1 is a solution to L(A,), so are vectors
in span(Sy_1). Thus, (3) is true.

Note that & is a solution to L(Bp-1,n, Bn-1,nd0). By
(8), Ispan(S1) is the set of all solutions of Hy =
L(Bp-11, Bn-1,n0), and every vector in Ispan(Sy) is
a solution to the target system. Hence, (4) is true.

Assume our claim is true for any r with 1 < r < k& <
n+ 1. At stage k + 1, by the induction assumption,
we know that vectors in Sy—; are linearly independent,
span(Sk-1) is the set of all solutions of the hypothe-
sis Hy, and vectors in Ispan(Sk-1) are solutions of the
target system. Thus, when the learner receives a coun-
terexample @ for Hy, then &}, is a solution of the target
system outside Ispan(Sk~1). This implies that & — &
is linearly independent from vectors in Si..1. Hence,
vectors in Sy = Sk_1 U {& — @} are linearly indepen-
dent, i.e., (1) is true.

Let the matrix Qn x = ((@1 — &), . . ., (& — &o)). Since
K is a field, we may assume without loss of generality
that the submatrix Gj ; consisting of elements in the
first k rows in @y, i has an inverse G;,}c. Let Ny i be
the submatrix consisting of elements in the last n — k
rows in @y . The matrix By, _j , exists and in fact we
can write it as

Bn-kn = (— k4G ks In—k,n—-k) -
Hence, (2) is true.

Bp_kn hasrank n—k, and By—; n@n x = 6n_k,k. Thus,
by (1), span(Sk) is the set of all solutions of the homo-
geneous system L(Bpn_k,»), and each vector in span(S)
is a solution to L(Am). This implies that (3) is true.

Note that & is a solution to L(Bp—k,n, Bn—k,ndo). By
(3), Ispan(Sy) is the set of all solutions of Hiy1
L(Bn—k n, Bn-k,nf0), and every vector in Ispan{Sk) is
a solution to the target system. Hence, (4) is true. O

By Claim 3.2, at any stage » with 1 < r < n, either
the learner learns the target system, or receives a solu-
tion &, of the target system such that & — &g is lin-
early independent from the solutions in S,. Since the
homogeneous system L(Amn) of the target system has
at most n linearly independent solutions, so the learner
learns L(Am ») (and hence L(Am n, b 1)) With at most
n + 1 equivalence queries. Since addition and multipli-
cation of any two elements in K, and inversion of any
nonzero element in K, are of polynomial time complex-
ity, at any stage r, one can find the matrix B,_(r—1),n
in time polynomially in n and the size of the longest el-
ement in any vectors received during the first r stages.

222

Thus, the time complexity of the algorithm Learn-THS
is polynomial in n and the size of the longest element
in vectors received during the learning process. O

Proof of Corollary A.1. Assume F = Mp 3, V---V
M, 3, is the target function. For the integer-weight d;

(ai1,- -, agan of M, 3,, let 5,- = (a;1 mod p, ..., @, mod
p)T. Then, b; € Z7, and F is equivalent to the function
Fr=Mg V---VM5,.

Hence, in order to learn F', one only needs to learn F™*.
Define a matrix

(b1)”
A =

()"

Then, F* (and hence F') is equivalent to the homoge-
neous system over the domain Z3

At,an,l = Ot,l

in the sense that, for any vector £ € Z7, F*(Z) = 0 if
and only if ¥ is a solution of the above system. Note also
that for a vector d € Zy, a linear equation (J)T Xnp =
0 (mod p) is equivalent to the modulo function Mp F2

Therefore, our corollary follows from Theorem A and
Lemma 3.3 and 3.4. O

Lemma 3.3. Assume ¢ < p. Let L(B,) be a given
homogeneous system over the domain Z7 with modulo p
addition and multiplication. Assume that S = {&,...,a,}
is a set of linearly independent vectors in Z7 such thal
span(S) = {k1@1 + ...+ ked,|k; € Zp,1 < i < r}ois
the set of all solutions of L(B,) over the domain Z}.
Then, the set of all solutions of L(B, »,) over the domain
Z7 is Rspan(S) = span(S) N Z7.

Proof. It is obvious that any vector in Rspan(S) is a
solution of L(B; n) over z3. Suppose that b is a solution
of L(Bs n) over Z}, then it is also a solution of L(Bs,n)

over Zp, since Z3 C Z. Hence, be Rspan(S). O

Lemma 3.4. Gwen X € {Z,,Z} with ¢ > p. Let
L(By,n) be a homogeneous system over the domain X"
with modulo p addition and multiplication. Assume that
S = {@1,...,8,} is a set of linearly independent vec-
tors in Z; such that span(S) = {k1@1+ ...+ kpd,|k; €
Zp,1 < i < 1} is the set of all solutions of L(Bsn)
over the domain Z7. Then, the set of all solutions
of L(Bs) over the domain X" is Espan(S) = {& +
(@1p,...,9.p)T1@ € span(S);¢; € X,1 < j<npO X"

Proof. It is obvious that any vector in Espan(S) is a so-

lution of L(B;,,) over X™. Suppose that b= (b1, .., bn)T €

X" is a solution of L(B,). Let b; = d; + q;p, where
dj € Zp,qj € X. Let d = (dy,...,dn)T, then d €
Zy, and d is a solution of L(B,) because b is. Since
span(S) is the set of all solutions of L(B;,,) over Zp,
there exist k; € Z, for 1 < ¢ < r such that d =

-

kidi + -+ + k. d,. Thus, b= ki@ + - + kp@p +
(01p,---,4np)T € Espan(S). O

Proof of Corollary A.2. Assume that
F= Mpl’a“ Ve .VMphaltx Ve 'VMPkyakx V.- 'VMpk,aktk

is a target function. For the integer-weight
@ij = (bij1, .- -, bijn)T of M, let

nax]’
6;‘]- = (bijl mod Pi,-. -y b,’j” mod p,')T.

Then, @; € Z , and F is equivalent to the function
F* = Mpx,ﬁ';lv' . -VMpha;'1 V.. 'VMpk,azlv‘ . ‘VMpk,a;'k .

Hence, in order to learn F', one only needs to learn F'™*.
Define the matrices,

| (@)
7
()"

Then, F* (and hence F') is equivalent to the “conjunc-
tion” of the homogeneous systems

i ¢ _ R .
AtonXn1 =01, i=1,...

i=1...,k.

)k)

over the domain X" with modulo p; addition and mul-
tiplication in the sense that, for any vector 7 € X%,
F*(i) = 0 if and only if @ is a solution for each of the
above systems. Note also that for a vector & € Z", a
linear equation (&)T - X:,.,l =0 (mod p;) is equivalent
to the modulo function M, z with the integer-weight 4.

One then learns F* (hence F) through learning L4},),
for 1 = 1,...,k, simultaneously. At each stage, let H;
be the hypothesis for L(4} ,), i = 1,...,k. In other
word, H; is a hypothesis for

Mp”a:1 VeV Mp”a:" .

One sets H = Hy V- --V Hy to be the hypothesis for F'*.
According to Corollary A.1 one can learn each of the sys-
tems L(Aj, ,) with at most n equivalence queries, and
the hypotheses issued by the learner are homogeneous
systems with weights from Z,,. When one receives a
counterexample for the hypothesis H, one can derive
from this counterexample a new linearly independent
vector (i.e., solution) for at least one of the systems
L(4;,). Thus, with at most kn equivalence queries
one can learn F*. Since by Corollary A.1 the time com-
plexity for learning each of the systems L(A;".’n) is poly-
nomial in n and the largest size of elements in vectors
received by the learner during the learning process, so
the time complexity for learning F* is kP(n, N'), where
P is a polynomial and N is the size of the largest ele-
ment in any vectors received by the learner. O

Proof of Corollary B.1. Assume F = Cpt,.4, V
-+ V Cp i, 4, is the target function. Our proof is sim-
ilar to that of Corollary A.1. But, instead of modulo
functions M, z,, we consider counting functions Cjp 4, z,,
¢ =1,...,t. In the same manner as we did for Corollary
A.1, we obtain a matrix A;,. Let Re 1= (k1,...,k)7.

223

Then, F is equivalent to the linear system over the do-
main Z;
At,an,l = Rt,l-

Therefore, our corollary follows from Theorem B and
Lemma 3.5 and 3.6 O

Lemma 3.5. Assume ¢ < p. Let L(B;n, B,,,,I_;,,l) be a
given linear system over the domain Z7. Assume that
S ={&1,...,d8,} is a sel of linearly independent vectors
in Z7 such that span(S) = {kid@1 + ... + ke @,lk; €
Zp,1 < i < r} is the set of all solutions of L(Bs,p)
over the domain Z7. Then, the set of all solutions of
L(Bs,n) over the domain Z} is Rspan(S) = span(S) N
Z3, and the set of all solutions of L(B, n, B,,,,I-;,,l) over
the domain Z is IRspan(S) = Ispan(S) N Z}}, where
Ispan(S) = {d + b, .1|&@ € span(S)}.

Proof. It is obvious that any vector in Rspan(S) is a so-
lution of L(Bs,s) over Z7, and any vector in I Rspan(S)
is a solution of L(B, n, 5,,1) over Z3. Suppose that fis
a solution of L(B;) over Z7, then it is also a solution of
L(B;,n) over Z7, since Z; C Z;'. Hence, fe Rspan(S).
When g is a solution of L(B, ,, B_,,,,g,,l) over Z;‘, then
J— I—;,,l is a solution of L(An) over the domain Zy.
Thus, §— 5,,1 € span(S), which implies § € Ispan(S).
Hence, § € IRspan(S). O

Lemma 3.6. Given X € {Z,,Z} with ¢ > p. Let

L(B; n, B,,nl-)‘,,l) be a linear system system over the do-
main X" with modulo p addition and multiplication.
Assume S = {&1,...,&,} is a set of linearly indepen-
dent vectors in Z; such that span(S) = {k1d; + ...+
krdylk; € Zp,1 < i < v} is the set of all solutions of
L(B, n) over the domain Z3. Then, the set of all solu-
tions of L(B,) over the domain X" is Espan(S) = {&
+ap, - -, 9np)7|@ € span(S); ¢; € X,1 < j < n}N
X", and the set of all solutions of L(B,,n,B,,nl;,,l) 15
IEspan(S) = {f + 5:,1|f6 Espan(S)}. Here, b,y =
(b1,...,b:)T, b} 1 = (by mod p,..., b, mod p)T.

Proof. It is obvious that any vector in Espan(S) is a so-
lution of L(B, ,) over X”, and any vector in I Espan(S)
is a solution of L(B; n, B,,ng,,l) over X™. Suppose that
f=,...,fa)T € X" is a solution of L(B,). Let
fi = d; + ¢;p, where d; € Z,,q; € X. Let d =
(d1,--.,dn)T, then de Z},and dis a solution of L(B; 5)
because f is. Since span(S) is the set of all solutions of
L(B, n) over 2y, there exist k; € Zp for 1 < i < r such

that d = k1@ +- - —+kr@r. Thus, f = k1G1+- - +keGrt
(q1p, - - -, 4nP)T € Espan(S). Similarly, when § € X" is

a solution of L(B; ,, B,,,,B‘,,l), g € IEspan(S). O
Proof of Corollary B.2. Assume that
F= CPl,kn,an V-V CPl,kul,aul

(VY.

Cpnku;an VeV Cpnkn,'an,

is a target function. Instead of modulo functions M, 3,
in the proof of Corollary A.2, we now consider counting
functions Cy, r,,,a,;- Thus, we obtain matrices A}, in
the same manner. Define

Rt.,l —_—(ku,...,k;t‘)T,i: 1,...,8.

Then, F is equivalent to the “conjunction” of the linear
systems,

i - _ B .
t'v,an,l - Rt.,la 1= la vy S,

over the domain X" with modulo p; addition and mul-
tiplication in the sense that, for any vector @ € X",
F*(if) = 0 if and only if @ is a solution to each of
the above systems. Hence, our corollary follows from
Corollaries B.1, with a similar analysis to the proof of
Corollary A.2. O

4 Read-Once Disjunctions of Counting
Functions

As argued in [BGHM], it is reasonable to believe that
an equivalence query is more expensive than a member-
ship query. A practically ideal learning algorithm will
use as few equivalence queries as possible. We will de-
sign a learning algorithm for the class of read-once dis-
junctions of Boolean-weighted counting functions over
the domain Z7 that requires only ome (it is not hard
to see that this is also the lower bound) equivalence
query. Previous work ([BHH]) shows that this class can
be learned using equivalence and membership queries,
but the bound on the number of equivalence queries is
n3. In the following, we assume that ¢ > 2 is a given
integer, F = Cyt,a, V-V Cyk,a, is a disjunction
of counting functions with Boolean-weights @; € Z7,
i=1,...,t. We also assume that « is a negative coun-
terexample for F'.

Lemma 4.1. For any variable z € vars(Cyp, 3,),
F(flip(a,z)) = Cy g, 5, (flipla,2)) =1, 1=1,... 1.

Proof. Since a is a negative example for F', C, i, z.(a) =
0. This implies that

S = E alz] = k;

zevars(Cq,x,,q,)

(mod q).

Hence, for any 2 € vars(Cy; a,), after flipping z in «,
the original sum S modulo ¢ then becomes either k; +1
or ki — 1, so F(flip(er,2)) = Cyr, 5, (flip(er,2)) =1. 0

Lemma 4.2. vars(F) = {z € V,|F(flip(a,z)) =

1}.

Proof. On the one hand, by Lemma 4.1, vars(F) =

Ufvars(Cyx, a)li =1,...,t} C {z € Vi |F(flip(a, 2)) =
1}. On the other hand, for any variable y € {z € V|

F(flip(a,z)) = 1}, we have Cyx, a, (flip(a,y)) = 1 for

some j € {1,...,t}. Note again that C,;, a,(a) = 0,

since « is a negative example. Thus, y € vars(Cy, a,)

and, vars(F) = {z € V4|F(flip(a,z))=1}. O

Lemma 4.3. For any two distinct variables u,v €
vars(Cy x,,a,), for any w & vars(Cyr,a,), 1 <i <t

224

we have (1)F(flip(a, {u,w})) =1 and,

(2)F (flip(a, {u,0))) = 0 if afu] # afo]

Proof. It follows from F(a) = 0 that Cyx, a,(a) = 0,
1.e.,

S = Z a[z'] = k;‘

z€vars(Cqx 2,)

(mod g).

For u € vars(Cyx,a) and w € vars(Cypk, a,), after
flipping v and w in @, the above sum § is changed to
ki — 1 mod q or k; + 1 mod ¢, thus F(flip(a, {u,w})) =
Cy ki3, (flip(e, {u,w})) = 1. For two distinct variables
u,v € vars(Cyy, a.), if afu] # «afv], after flipping u
and v in «, the above sum $ is still k; mod ¢, thus

F(flip(a, {u’ w})) = Cq,ki.aa(flip(av {u, U})) =0.0

Lemma 4.4. Assume that F' is read-once. Then, for
any set S of exactly p variables such that they all have
the same value in o, F(flip(a,S)) = 0 if and only if
S Cvars(Cy x, a,) for some Cy, 3, in F.

Proof. The sufficient condition is trivial, since F is
read-once. Assume F'(flip(a,S)) = 0 and suppose by
contradiction that S € vars(Cy, 3,) for any Cyg, a,
in F, this implies that there are Cy, 3, and Cy; a,
with 7 # j such that SN vars(Cyr, s,) # ¢, and SN
vars(Cyx,.a,) # ¢- Thus, F(flip(a,S)) = Cyr,.a,(flip
(o, 8)) = Cy, 3. (flip(, S)) = 1, a contradiction. So,
there must be some C, i, 7, in F' such that S C vars(

CQ:hi,ai)' o

Lemma 4.5. Assume vars(Cyg,a,) = {u1,...,um}
andm < q. Then, (1)C, ¢, a, is equivalent to [Cy o z,(u1)
V. VG o,a,(um)] f[afu] = - - = alum] = 0]; (2)Cy 4, 2,
is equivalent to [Cy 1 2,(1) V- -V, 1 a,(um)] if [a[w] =
coo= afum] = 1

Proof. Note that C,;, a,(a) = 0. When afy;] = -+ =
afum] = 0, afur] + - + afum] = 0 = ki (mod ¢).

When afu;] = -+ = afuy] = 1, efui] + -+ + afun) =
m = k; (modg). In the first case, we have k; =
0. Since m < ¢, Cy 0,3, (i, ..., un) is equivalent to
Ceo0,a,(u1) V-V Cioa,(um). In the latter case, we
have k; = m < ¢, thus Cy ,, 3, (ui, . .., um) is equivalent
to qulya'.(ul) V-V qul,a‘(um). 0

Theorem 4.1. The class of all read-once disjunctions
of Boolean-weighted counting functions with modulus q
over the domain Z% is polynomial time learnable us-
ing only one equivalence query and O(n?) membership
queries.

Proof. Assume F' = Cy, 3, V---VCy 3, a, is the target
function. We construct the learning algorithm Learn-
RODC (where “RODC” stands for “read-once disjunc-
tions of counting functions”) that runs in stages.

Algorithm Learn-RODC:
Stage 0. Ask an equivalence query for the “TRUE”

function. If “yes” then stop; otherwise the learner
receives a negative counterexample a.

Stage 1. For each z € V,, , ask a membership query

for flip(a, z). Let vars(F) be the set of all those =
such that the learner receives “yes” for flip(a, z).

Stage 2. Fix any u € vars(F). For any v € vars(F) —
{u} such that afu] # a[v], ask a membership query
for flip(a,{u,v}). Let Gy be the set of all those v
such that the learner receives “no” for flip(«, {u,v}).
Let P, be the set of all those z such that G, =
Gu # ¢, and afz] = afu]. Set PG = {(Py,Gu)lu €
vars(F), Gy # ¢}.

Stage 3. Let Rvars(F') be the set of all variables in
vars(F) but not in any set in PG. Fix any u €
Rvars(F). For any subset S of Rvars(F) — {u}
with exactly ¢ — 1 variables such that all those
variables and u have the same value in ¢, ask a
membership query for flip(e, {u} U S). Let S, be
the union of all those subsets S and {u} such that
the learner receives “no” for flip(a, {u} U S). Set
RS = {Su|u € Rvars(F), S, # ¢}.

Stage 4. Let Evars(F) be the set of all variables in
vars(F) but not in any sets in PG or RS. For any
set A C V,, let @(A) be the characteristic vector
of A, and k(A) = 3, 4 @[] mod g. The learner
concludes that the target function F' is equivalent
to H = \/{Cyq.x(Pug),a(puc)l(P, G) € PG}V
VA{Cor(s),a5)|S € RS}V
VA{Cq,afsl,ai=1)|z € Evars(F)}.

End of Learn-RODC.

We now analyze the algorithm Learn-RODC. We may
assume without loss of generality that F' # “TRUE”.
Thus, at stage 0, the learner receives a negative coun-
terexample a for F'. It follows from Lemma 4.2 that one
finds vars(F) at stage 1 with n membership queries. At
stage 2, by Lemma 4.3, one finds all those vars(Cy k; ;)
such that there are two variables in vars(Cy, a,) wit
different values in . Thus, \/{C, r(Puc),a(puc)|(P, G) €
PG} is the disjunction of all those counting functions
in F such that each of them has two relevant variables
with different values in «. The number of membership
queries required at this stage is at most 2n%. At stage
3, by Lemma 4.4, one finds all those vars(Cy,,3,) such
that vars(Cy,,a,) consists of at least p variables that
have the same value in . Thus, \/{C, x(s),a(s)|S € RS}
is the disjunction of all those counting functions in F
such that each of them has at least p relevant variables
with the same value in «. The number of membership
queries required at this stage is at most n?. By Lemma
4.5, V{Cy o[zl aqe) |2 € Evars(F)} is equivalent to the
disjunction otl a“ those counting functions C, , z, in F
such that vars(Cy,,a,) consists of less than p relevant
variables that have the same value in @. No membership
queries are required at this stage. With the above anal-
ysis, F is equivalent to H. Learn-RODC needs only one
equivalence query and n+2n24nf membership queries.
The time complexity is O(n? + 2n3 + n9+!) = O(n?t1).
m}

225

5 Disjunctions of a Non-Constant
Number of Counting Functions

A typical strategy for learning k-term DNF formulas
with equivalence and membership queries is that at each
stage the learner tries to learn only one term in the tar-
get formulas while turning all the other terms off. The
difficulty involved in this strategy is how the learner
can turn all terms off except one. When & = O(logn),
it was overcome by Blum and Rudich’s derandomiza-
tion technique [BR]. However, unlike a monomial which
turns on if and only if all its literals turn on, a count-
ing function depends on the modulo p value of the sum
of its variables. Thus, it is not hard to see that Blum
and Rudich’s technique are not suitable for learning a
disjunction of a non-constant number of counting func-
tions. Nevertheless, based on analyzing the “modulo-
structure” of counting functions, we prove that for any
constant ¢, any disjunction with no more than loglogn°®
many Boolean-weighted counting functions over the do-
main Z3 is polynomial time learnable.

Assume that ¢ > 2 is a given integer number, F =
Cqky,a, V-V Gy, a, is a disjunction of counting func-
tions over the domain Z7 with Boolean-weights a@; €
Z%. Assume also that o is a negative counterexample
for F. For any S C vars(F), define Cs = {Cyx, a,
|S C vars(Cyx,a,),1 <i<t} Wesaythat S#£¢isa
“modulo-block” of F if, S = ncq,,“,,'ecs vars(Cy,x,,a,),
and for any Cyx,a;, € Cs, SNwvars(Cyx;a;) = &
Let MBp (“MB” stands for “modulo-blocks”) denote
the set of all modulo-blocks of F'. Note that For any
two modulo-blocks B,D € MBp, either B = D, or
BnNnD=¢.

Lemma 5.1. For any modulo-block B € M Bp, for any
two distinct variables x,y € B and, for any variable
u € vars(F) — B, we have (1)F(flip(a,{z,u})) =0
and, (2)F(flip(a, {z,y})) = 0 if a[z] # ofy].

Proof. By the definition, z,y € B implies 2,y €
vars(Cq i, a,) for any Cy1,a, € Cp and z,y ¢ vars(
Cq,kj,ajq) for any Cyx,a, € CB. Cy;a,(@) = 0 means

that
Z a[v] = k,‘

vevars(Cq_,,v;')

(mod q).

If a[z] # «fy], the above sum will not change after
flipping both and y in a. So, F(flip(a, {z,y})) =
Cq k.3, (flip(e, {z,y})) = 0. On the other hand, it
is easy to see that Cy, a,(flip(a, {z})) = 1 for any
Cq .4, € Cp. Since u ¢ B, there is a Cyx; 3, € Cp
such that u & vars(C,x; a,). Hence, F(flip(a, {z,w}))
Co,k;,3;(flip(e, {z, u})) = Cyk, a,(flip(e, {z})) = 1. O

Lemma 5.2. For any S C vars(F) with ezactly p
variables such that they all have the same value in «,
F(flip(a, 8)) = 0 if and only if S C B for some modulo-
block B € M Bp.

Proof. The sufficient condition is trivial by the defini-
tion of modulo-blocks. Assume F(flip(a,S)) = 0 and

i

suppose by contradiction that S is not a subset of any
modulo-blocks of F'. This implies that there are two
distinct modulo-blocks B; and B; in M Bp such that
SNB; # ¢ and SN By # ¢. Hence, by the definition
of modulo-blocks, there is one counting function in Cp,
and another in Cp, such that each of them has at least
one but less than p variables of S. So, after flipping all
variables in S in «, those two counting functions (thus
F) will have value 1, a contradiction to the earlier as-
sumption. O

Lemma 5.3. For any counting function Cyx, 5, in F,
there are modulo-blocks By, ...,B,, € M Bp such that
d; s the characteristic vector of B = B1U---UBy,, ki =

> zep @[z] mod g.

Proof. We first show that there are modulo-blocks
Bi,...,Bm € MBp such that vars(Cy, 3,) = B1 U
---U Bp,. Fix a variable 2; € vars(Cyx, a,)- Let

Ql = n{vars(c :kJ»aJ)lzl e vars(cqlkha])}'

Then, 1 € Q1. Define By = {y c Ql!ch,kj,&j ¢
Q1,y € vars(Cyr;,a,)}. It is easy to see that, z €
By, and B; is a modulo-block of F'. Note that By C
vars(Cyr,,a,). If B1 = vars(Cy x, a,), then we are done.
Otherwise, fix a variable z3 € vars(Cy, 5,) — B1. We
define @2 and Bj in the same manner, thus we obtain a
new modulo-block By with 25 € By C vars(Cyy, 3,). If
B1 U By = vars(Cy i, 1,), then we are done. Otherwise,
repeat the above process to obtain a new modulo-block.
Note that vars(Cy, a,) contains at most n variables.
We eliminate at least one variable from vars(Cy, a,)
when we obtain a new modulo-block. Thus, we have
m modulo-blocks By, ..., By, m < n, such that vars(
Cqk.,a,) = B1U---UBpy, m < n. It then follows that
d; is the characteristic vector of B = By U --- U By,.
Cyk,,a.(a) = Oimpliesthat k; = 3 5, p. a[z]mod
p. O

Lemma 5.4. ||MBr|| < 2'. In other words, F has at
most 2¢ modulo-blocks.

Proof. According to Lemma 5.3, given a negative coun-
terexample for F', each C, i, z, in F is determined by the
modulo-blocks that consist of vars(Cy x; a,). Thus, we
can represent F with a matrix M, M has { rows and m
columns. The i-th row of M stands for the the function
Cyk,,a,- Each column contains a modulo-block, and no
two columns have the same modulo-block. Let e; ; de-
note the entry of M at the i-th row and the j-th column.
Assume that the j-th column contains the modulo-block
Bj. Then ¢;; = B; if B; C vars(Cy, ,), otherwise let
e;,; = “blank”. We now estimate how large t can be.
For column a and column b, @ # b, by the definition
of modulo-blocks, there exists at least one i such that
e;q differs from e; 3, i.e., either e;, = B, but ¢;; =
“blank”, or €; o = “blank” but e; ; = By. This implies
that m < 2!, since there are at most 2 many possi-
ble ways to place a modulo-block in a column. Thus,

\MBp| < 2. O

Theorem 5.1. There is an algorithm for learning the
class of disjunctions of no more than loglogn® many

226

Boolean-weighted counting functions with modulus q over
the domain Z%, using O(n? + n°Ur)) many queries.
The time complezity of the algorithm is bounded by O(n°+!
+n2°(q+1)+1). So for constant ¢, the algorithm is poly-
nomial.

Proof. Assume that F = Cj 1, 2, V-V Cyp, 3, is the
target function. The learning algorithm runs in stages.

At stage 0, the learner issues the initial hypothesis H; =
“TRUFE” to ask an equivalence query. If he receives
“yes” then stop. Otherwise, he receives a negative ex-
ample o for F'. One query is used at this stage, the time
complexity is constant.

At stage 1, for any z € V,,, the learner asks a member-
ship query for flip{a,z). By Lemma 4.2, the learner
finds vars(F), i.e., the set of all those variables such
that flipping any one of them in « will cause F' to out-
put 1. The number of queries used at this stage is n,
the time complexity is O(n?).

At stage 2, using Lemma 5.1, the learner finds all those
modulo-blocks such that each of them has two distinct
variables with different valuesin e: For any u € vars(F)
and v € vars(F) — {u} such that u and v have different
values in o, ask a membership query for flip(e, {u,v}).
Let A(u) be the set of all those v such that the learner
receives “no”. Let E(u) be the set of all those w such
that A(w) = A(u) # ¢ and afw] = afu]. Set B, =
Ay U Ey, then By i1s a modulo-block. At this stage at
most n?2 membership queries are required and the time
complexity is O(n3).

At stage 3, using Lemma 5.2, the learner finds all those
modulo-blocks such that each of them has at least ¢q vari-
ables and all of the variables in it have the same value in
a: For any u € vars(F), for any set S C vars(F) — {u}
with exactly ¢ — 1 variables such that u and variables
in S have the same value in o, ask a membership query
for flip(er, {u} U S). Let S(u) be the union of all those
subsets S and {u} such that the learner receives “no”
for flip(a,{u}U.S), then S(u) is a modulo-block if it is
not empty. The number of queries used at this stage is
at most n?, and the time complexity is O(n?t?),

At stage 4, the learner finds all possible modulo-blocks
such that each of them has at most ¢ — 1 variables and
all variables in it have the same value in a: Let F'B be
the set of all modulo-blocks found at the above stages 2
and 3 and RB be the set of all variables in vars(F) but
not in any modulo-blocks in ' B. Then, each modulo-
block B € M By — FB has less than ¢ variables and
all variables in it have the same value in «. It is trivial
that B is a subset of RB. By Lemma 5.4, ||RB|| <
¢2'. Actually, one finds RB as a by-product of stage 2
and stage 3, i.e., whenever one finds a modulo-block at
those two stages one eliminates all variables in it from
vars(F). The remaining variables in vars(F) is RB.
Thus, the number of queries required at this stage is 0,
the time complexity is O(n3 + n?t1).

At stage 5, the learner constructs all possible counting

functions using modulo-blocks in FB and subsets in RB:
For any modulo-blocks By,..., B, € FB, for any sub-
set R of RB,set W = B, U- - -UB,, UR. Define a count-
ing function H(By,...,Bm, R) as C, 1 3, where @ is the

characteristic vector of W, and I =) . a[z] modgq.
Finally, the learner sets the hypothesis
Hy = V H(B,...,Bm,R).

Bi,...Bm€MB,RCMR

With Lemma 5.3, every counting function in F' is con-
tained in Hy. The number of queries required at this

stage is 0, the time complexity is O(n22°292").

At stage 6, the learner asks equivalence queries for the
hypothesis Hy. If the answer is “yes” then stop. Other-
wise one receives a negative counterexample 3, since Ho
contains all counting functions in F. Thus, one elimi-
nates every counting functions in Hg that outputs 1 for
B. One still uses Hy to denote the disjunction of the
remaining counting functions in Hs. Repeat the above
process until one receives “yes”. The number of queries
used at this stage is at most 22°292 since H, origi-
nally contains at most 22°292" counting functions. For
each equivalence query one needs to write down the hy-
pothesis, so the time complexity of this stage is at most
O(n22""202'%),

Combining the above analysis, the learner needs O(n?+
22‘2‘12') many queries to learn F, and the time com-
plexity is bounded by O(n?+! + n227'2¢2") When
t < loglog n® the number of queries is bounded by
O(n? + n° ‘”’13), and the time complexity is bounded
by O(ndt! 4 p2e(a+1)+1) o

6 Concluding Remarks

Negations. We don’t know whether disjunctions of

integer-weighted counting functions with a prime mod-

ulus are still polynomial time learnable when some func-

tions are negated. In particular, we don’t know whether

disjunctions of negations of integer-weighted counting

functions are polynomial time learnable. Currently, we

prove that disjunctions of integer-weighted counting func-
tions are still polynomial time learnable if they contain

constant number of negated counting functions.

Composite Moduli. We don’t know whether disjunc-
tions of integer-weighted counting functions with a com-
posite modulus are polynomial time learnable. In par-
ticular, we don’t know whether disjunctions of Boolean-
weighted counting functions over the Boolean domain
are polynomial time learnable. Very recently, Jeffrey
Jackson [J] observed from Fourier analysis that the class
of disjunctions of O(logn) parities is polynomial time
learnable. It might be possible to extend his result to
the class of disjunctions of O(logn) counting functions
with a composite modulus.

Acknowledgments. We are very grateful to Robert
Schapire for valuable discussions on this topic, and es-
pecially for providing us with his algorithm for learning

227

disjunctions of parities with equivalence queries. The
algorithms Learn-HS and Learn-IHS are motivated by
Schapire’s parity-learning algorithm and by the algo-
rithm V developed by Helmbold, Sloan and Warmuth

[HSW].

References

[A]

[AHK]

(BR]

[BCI]

(BS]

[BGHM]

[BHH]

[FS]

(HH]

[HSW)

(8]

D. Angluin, “Queries and concept learning”,
Machine Learning, 2, 1988, pages 319-342.

D. Angluin, L. Hellerstein, M. Karpinsky,
“Learning learning read-once formulas with
queries”, J. ACM, 1, 1993, pages 185-210.

A. Blum, S. Rudich, “Fast learning of k-term
DNF formulas with queries”, Proc of the 24th
Annual ACM Symposium on Theory of Com-
puting, May 1992, pages 382-389.

A. Blum, P. Chalasani, J. Jackson, “On
learning embedded symmetric concepts”,
Proc of the Sizth Annual ACM Confer-
ence on Computational Learning Theory,
pages 337-346, Morgan Kaufmann Publish-
ers, Inc.,San Mateo, CA, 1993.

A. Blum, M. Singh, “Learning functions of
k terms”, Proc of the Third Annual Work-
shop on Computational Learning Theory,
pages 144-153, Morgan Kaufmann Publish-
ers, Inc.,San Mateo, CA, 1990,

N. Bshouty, S. Goldman, T. Hancock, S.
Matar, “Asking queries to minimize errors”,
Proc of the 6th Annual ACM Conference on
Computational Learning Theory, pages 41-
50, 1993,

N. Bshouty, T. Hancock, L. Hellerstein,
“Learning boolean read-once formulas with
arbitrary symmetric and constant fan-in
gates”, Proc of the 5th Annual Workshop on
Computational Learning Theory, pages 1-15,
Morgan Kaufmann Publishers, Inc.,San Ma-
teo, CA, 1992.

P. Fisher, H. Simon, “On learning ring-sum-
expansions”, SIAM J. Comput., 1992, pages
181-192.

T. Hancock, L. Hellerstein, “Learning read-
once formulas over fields and extended
bases”, Proc of the Sth Annual Workshop on
Computational Learning Theory, pages 326-
336, 1991.

D. Helmbold, R. Sloan, M. Warmuth,
“Learning integer lattices”, SIAM J. Com-
put., 1992, pages 240-266.

J. Jackson, Personal communications.

R. Schapire, Personal communications.

