
On Learning Counting Functions With Queries

Zhixiang Chen*
Boston University

Abstract

We investigate the problem of learning disjunc-
tions of counting functions, generalizations of
parity and modulo functions, with equivalence
and membership queries. We prove that, for
any prime number p, the class of disjunctions
of integer-weighted counting functions with mod-
ulus p over the domain Z; (or Zn) for any
given integer q ~ 2, is polynomial time learn-
able using at most n + 1 equivalence queries.
The hypotheses issued by the learner are dis-
junctions of at most n counting functions with
weights from 2P. In general a counting func-
tion may have a composite modulus. We prove
that, for any given integer q >2, over the do-
main 2$, the class of read-once disjunctions
of Boolean-weighted counting functions with
modulus q is polynomial time learnable with
only one equivalence query and O(n~) mem-
bership queries. And the CISSSof disjunctions
of log log n Boolean-weighted counting func-
tions with modulus q is polynomial time learn-
able.

1 Introduction

Recently, symmetric Boolean functions, especially par-
it y functions and modulo functions, have received much
attention in computational learning theory. It is known
that the class of single parity functions (see Helmbold,

*Department of Computer Science, Boston University,
Boston, MA 02215; zchen@xi.bu.edu. The author was sup-
ported by NSF grant CCR-9103055 and by a Boston Uni-
versity Presidential Graduate Fellowship.

tDePartment of Computer Science, Boston University,
Boston, MA 02215; homer@cs.bu.edu. The author was sup-
ported by NSF grant CCR-9103O55.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
COLT 94- 7/94 New Brunswick, N..J. USA
@ 1994 ACM 0-89791 -655-7/94/0007..$3.50

Steven Homert
Boston University

Sloan and Warmuth [HSW]) and the class of single mod-
U1Ofunctions with modulus p for any given prime num-
ber p (see, Blum, Chalasani and Jackson [BCJ]) are
pat-learnable. Fisher and Simon [FS] proved that parity
functions of monomials with at most k literals are pac-
learnable, while given the assumption that RP # iVP

parity functions of k monomials are not pat-learnable
with the same type of functions as hypotheses for any
fixed k ~ 2. Meanwhile, Blum and Singh [BS] showed
that, for any constant k, Boolean functions of k mono-
mials are pat-learnable by the more expressive hypoth-
esis class of general DNF formulas. They also proved
that, for any k > 2, for any fixed symmetric function
~ on k inputs, ~ consisting of k monomials is not pac-
learnable with the same type of functions as hypothesis
under the assumption that RP # NP.

In the on-line model with queries, Angluin, Hellerstein,
and Karpinski [AHK] have shown that read-once Boolean
functions over the basis (AND, OR, NOT) are polyno-
mial time learnable with equivalence and membership
queries. Hancock and Hellerstein [HH] extended this
result for Boolean functions to a larger basis including
arbitrary threshold functions and parity functions. Fur-
ther, Bshouty, Hancock, and Hellerstein [BHH] showed
that read-once functions over the bssis of arbitrary sym-
metric functions are polynomial time learnable with equiv-
alence and membership queries. However, they also
proved that read-twice functions over the same basis
are not, under standard cryptographic assumptions.

Our goal in this paper is to obtain further positive re-
sults for on-line learning of counting functions, which
include parity and modulo functions, with equivalence
and membership queries. Bshouty, Hancock and Heller-
stein’s negative result for read-twice Boolean functions
over the basis of arbitrary symmetric functions is very
strong. However, a key condition in their theorem is
that they require the basis to include the three-input
consensus function, i.e., a function outputs 1 if and
only if all its inputs get the same value. However, for
many specific symmetric functions, e.g., modulo func-
tions, counting functions, and threshold functions, this
condition does not hold, i.e., no one of those functions
is equivalent to a consensus function.

We observe that a disjunction of integer-weighted count-

218

ing functions over a field ZP for a given prime number
p corresponds to a linear system over the field 2P. We
prove that (1) the class of homogeneous linear systems
over an arbitrary field is polynomial time learnable with
at most n equivalence queries, and (2) the class of lin-
ear systems over an arbitrary field is polynomial time
learnable with at most n + 1 equivalence queries. Here n
is the number of input variables, the hypotheses issued
in (1) by the learner are homogeneous linear systems
of no more than n equations, and the hypotheses is-
sued in (2) by the learner are also linear systems of no
more than n equations. The first result implies that,
for any prime number p, the class of disjunctions of
integer-weighted modulo functions with modulus p over
the field 2P is polynomial time learnable with at most
n queries, where the hypotheses issued by the learner
are disjunctions of modulo functions with modulus p

and weights from ZP. The second result implies that,
for any prime number p, the class of disjunctions of
integer-weighted counting functions with modulus p is
polynomial time learnable with at most n+l equivalence
queries, where the hypotheses issued by the learner are
disjunctions of counting functions with modulus p and
weights from ZP. We also extend the above results to
disjunctions of integer-weighted modulo functions (or in
general integer-weighted counting functions) with differ-
ent prime moduli.

The above results rely on the facts that ZP is a field
for any prime number p. When p is a composite num-
ber, however, this is not true. Nevertheless, we prove
that, given any integer q ~ 2, the class of read-once dis-
junctions of Boolean-weighted counting functions over
the domain Z; is polynomial time learnable with only
one equivalence query and O(ng) membership queries,
where n is the number of input variables. This result
cannot be subsumed by Bshouty, Hancock and Heller-
stein’s result [BHH] on learning read-once functions over
the basis of arbitrary symmetric functions in the sense of
the equivalence query complexity, since their result re-
quires at most n3 equivalence queries. In general, based
on analyzing the “modulo-structure” of a disjunction of
Boolean-weighted counting functions, we prove that, for
any constant c, over the domain Z!j, the class of disjunc-
tions of no more than log log n’ many Boolean-weighted
counting functions with modulus q for a given integer
q ~ 2 is polynomial time learnable with equivalence and
membership queries.

2 Preliminaries

We assume that Z is the set of all integers. For any
integer n ~ 1, let V~ be the set of variables C1, Z*.
Let Z~ = {O,.. .,q – 1} for any integer q > 2, Z; =

{o , q – 1}*. Elements in Z& are thought of here as
n x 1 vectors. We consider counting functions that con-
sist of variables in V~. Our example space will be Z“
and Z; for q > 2. When q = 2, Z; is the n-bit Boolean
space, For any positive integer q, any k = Zq, and
any integer vector ii = (al, an)~ C Zn, an integer-

weighted counting function c~,k,~ with modulus q is de-
fined as

cq,~,~(q,.. .,xn) =
{

O if ~~=1 aizi = k (mod q),

1 otherwise.

Here we say that d is the integer-weight vector (or weight
for short) of Cg,k,z. When k = O, we say that C’q,o,dis
an integer-weighted modulo function, and denote it by
Mq,a. When Z ~ Z;, we say that c~,k,~ (or Mq,a) is a

Boolean-weighted counting (or modulo) function.

For an integer-weighted counting function c$,k,~, let
~a?’s(c~,k,~) denote the set of all relevant variables xi of
c~,k,~, i.e., variables xi such that a~ # O. A disjunction
F of integer-weighted counting functions C~, ,kl ,al,. . . .

Cgi,b,a, is cq~,k~,?i~ ~ -.. ~ Cq,,k,,a,. Let vars(F) be the
set of all relevant variables of F, i.e., the set vars(Cq, ,kl ,~1)

u... U ~ars(cqi,kt,ai). If foranyi, jell,..., i}, i#j
implies that vars(cq, ,ki,ai) fl vars(6’qj ,kj,aj) = ~, then
we say that F is read-once, i.e., each relevant variable
of F occurs in exactly one counting function in F.

For X E {Zq, Z}, an example a c X“ satisfies a count-
ing function C if and only if C(a) = 1. a is a positive
example for a disjunction F of counting functions if it
satisfies at least one counting function in F (we write
F(cx) = 1) and a negative example otherwise (we write
F(cr) = O). For an example CYE Z;, let a[i] denote the
i-th bit value of a, i.e., the value of the variable z; in
a. In general, for any literal y, a[y] denotes the value
of yina. Foric {l,..., n}, flip(a, i) stands for the
example obtained from a by flipping exactly the i-th
bit value in a. More generally, for a set 1 ~ {1,. . . . n},
let ~iip(cr, 1) be the example obtained from a by flip-
ping the i-th bit value in a for every i c 1. For con-
venience, we also extend flip to act on literals or sets
of literals in the following way, when 1 E {xi,%}, let
~lip(cr, 1) = flip(~, i), and similarly define flip(a, S)

for a set S of literals.

Our learning model is the standard model for on-line
learning with equivalence and membership queries (see,
[A]). A learning process for a clam C of Boolean-valued
functions over the domain X“ with the variable set V.

is viewed as a dialogue between a learner A and the
environment. The goal of the learner is to learn an un-
known target function f c C that has been fixed by the
environment. In order to gain information about .f the
learner proposes a hypothesis function h from a fixed
hypothesis space H with C ~ H. Whenever h # f for
the proposed hypothesis h, the environment responds
with a counterexample a E X“ such that h(cr) # f(a),

The learner may also ask membership queries for some
examples a E Xn, to which the environment responds
with “yes” if ~(rx) = 1 or “no” if otherwise. The learner
succeeds when he receives “yes” for an equivalence query
from the environment, or he can conclude that the cur-
rent hypothesis is logically equivalent to the target func-
tion ~. We assume that the time complexity of asking a
membership query for an example is the cost to write it
down, and the time complexity of asking an equivalence
query for hypothesis h is the cost to write h down. We

219

say that C is polynomial time learnable with equivalence
and membership queries, if there is an algorithm for
learning any target function ~ E C, using polynomially
in n and the size off many equivalence and membership
queries, while the time complexity of the algorithm is
polynomial in n, the size of ~, and the size of the largest
example that occurred during the learning process.

3 Counting Functions via Linear

Systems

In this section, we design algorithms for learning dis-
junctions of counting functions with a prime modulus.
Our algorithms are based on the folklore algorithm for
learning a vector space (see e.g. [HSW], [BCJ]). How-
ever, they are stronger than the folklore algorithm, be-
cause they make substantial improvement on the hy-
pothesis representation: The hypotheses issued by our
algorithms are disjunctions of no more n + 1 counting
functions, this is in contrast to the vector space hypothe-
ses used by the folklore algorithm.

We assume that K is an arbitrary field; addition and
mult implication of two elements in K, and inversion of a
nonzero element in K, are all of polynomial time com-
plexity. For any positive integer n, Kn is a vector space
of dimension n over the field K. Every ct c Kn denotes
an n x 1 vector, and aT is the 1 x n transposition of
cr. Let ~m,l be an rn x 1 zero-vector, X-n,l be an n x 1
vector of n variables xl, Zn, where Zi takes values
from K. For any m x n matrix Am,. and any m x 1

vector ~~,1 over K, a linear system L(Am,n, ~m,l) of m
linear equations over K is given as follows,

Am,n&,l = ~m,l,

+
a c Kn is a solution of the linear system L(A~,~, b~,l),

if
Am,n~ = im,l.

When ~m:l = dm,l, we say that L(A~,n, ~m,l) is ahomo-
geneous hnear system, or homogeneous system for short.
For convenience, we write L(A~,n) = L(Am,n, dm,l).

The following two general theorems are estabhshed.

Theorem A. The class of all homogeneous systems

over the domain I<n for any given field K is polyno-

mial time learnable with at most n equivalence querves.

Moreover, the hypotheses issued by the learner are also
homogeneous sgstems over K with no more than n lin-
ear equations.

Theorem B. The class of all linear systems over the

domain K“ for any given jield K is polynomial time

learnable with at most n + 1 equivalence queries. More-

over, the hypotheses issued by the learner are also linear

systems over the field K with no more than n equations.

For the rest of this section we assume that p is a given
prime number, and q ~ 2 is a given integer. We know
that 2P is a field with modulo p addition and multiplica-
tion. Note that addition and multiplication of any two

numbers in 2P, and inversion of any non-zero number
in 2P, are of poiy(log p) complexity, where the length
of any number in 2P is no more than log p. Before we
prove the above two general theorems, we first give sev-
eral corollaries.

Corollary Al. Assume q ~ 2. Given X C {-Zq, Z},

the class of all disjunctions of modulo functions MP,Z

with integer-weights ii E Zn over the doma~n Xn is

polynomial time learnable with at most n equivalence

queries, while the hypotheses issued by the learner are

disjunctions of at most n modulo functions MP,Z with

weights Z E Z;.

Corollary A.2. Given X c {Zq, Z} with q > 2. Let

P = {pl, pk} be a set of prime numbers. Then, the

class of all disjunctions of modulo functions MP,Z with

integer-weights Zi E Zn and p G P over the domain Xn

is polynomial time learnable with at most kn equivalence

queries, while the hypotheses issued by the learner are

disjunctions of at most kn modulo functions MP,Z with

weights ii E Z; and p E P.

Corollary B.1, Given X E {Zq, Z} with q ~ 2. The

class of ail disjunctions of counting functions c~,k,~ with

integer-weights Zi c Zn over the domatn Xn is poly-

nomial ttme learnable with at most n + 1 equivalence

queries, while the hypotheses issued by the learner are

disjunctions of at most n counting functions CP,h,d with

weights ii e Z:.

Corollary B.2. Gtven X c {Zq, Z} with g ~ 2. Let

P={P1, . . . ,Pk} be a set of prime numbers. Then, the
class of all disjunctions of counting functions c~,k,~ with

integer-weights ii E Zn and p E P over the domain Xn

is polynomial time learnable wtth at most k(n+ 1) equiv-

alence queries, while the hypotheses issued by the learner

are disjunctions of at most kn counting functions c~,k,,~

with weights Z s Z; and p ~ P.

We now prove our theorems.

Proof of Theorem A. Assume that L(Am,n) is the
target system. Let 11)1be the 1x 1identity matrix over K.
Let S, be the set of all solutions received during the first
r stages, the learning algorithm Learn-HS (where “HS”
stands for “homogeneous system”) is given aa follows.

Algorithm Learn-HS:

Stage 1. Set the first hypothesis HI = L(In,n). Ask
an equivalence query for HI. If the learner receives
“yes” then stop, otherwise he receives a non-zero
solution &l ~ l<n to L(Am,n). Let S1 = {al}.

Stage r ~ 2. Let S,. -l = {&l, &_l}. Construct
from vectors in S,-l a matrix 13n_(r_1),n such that
the set of all solutions of the homogeneous sys-
tem L(13n_(._~),n) is span(Sr_l) = {tlcl~ + . . . +

tr-l&-llti E K, 1< z’< r – 1}. Set the r-th hy-
pothesis If. = L(l?n-(, -l),n). If r = n + 1, the
learner concludes that H, is equivalent to L(Am,n)

so stop. When r s n, ask an equivalence query
for H., if ‘(yes” then stop, otherwise the learner re-

220

ceives a solution c?, which is outside span(Sr_l).
Set S, = Sr_l U{&r}.

End of Learn-HS.

Claim 3.1. At any stage r with 1 < r s n + 1, the
following holds: (I)vectors in S,_l are linearly indepen-

dent; (2)the matrix Bn_(r_l),n exists; ($,)span(S._l) is
the set of all solutions of H,; (d)every vector in span(

S,_l) is a solution of the target system.

Proof of Claim 3.1. By induction on r. When r = 2,
S1 contains exactly one nonzero solution &l of the target
system L(Am,n), so itis trivial that vectors in S1 are
linearly independent, and every vector in span(S1) is
a solution of L(Am,n). Since &l is nonzero, we may
assume without loss of generality that the first element
in it is not O. Let al = (all, azl, ..., anl) T. Since K

is a field, al 1 # O implies the inverse a~ll exists. Let
Dn. -.l,l = (azl, . . .,anl)T and define the matrix

Bn-,,n = (-~n-,,, (a;:) ,&-I,n-l).

Then, B.– l,. has rank n – 1. By simple calculation,

Bn_l,n&l = dn_l,l. Thus, span(S1) is exactly the set
of all solutions of the system L(l?n _ 1,n). Hence, our
claim holds for r = 2.

Assume our claim is true for any r with 1< r ~ k <

n + 1. At stage k + 1, by the induction assumption,
we know that vectors in Sk_ 1 are linearly independent,
vectors in span(Sk – 1) are solutions of the target sys-
tem, and span(sk- 1) is the set of all solutions of the
hypothesis Hk. Thus, when the learner receives a coun-
terexample dk for Hk, then dk is a solution of the tar-
get system outside span(s~- 1), this implies that dk is
linearly independent from vectors in Sk_l. Hence, vec-
tors in sk = Sk_ ~ U {&k} are linearly independent and
vectors in span(S~) are solutions of the target system.
Define the matrix Q~)k = (dl,. . . . dk). Since K is a
field, we may assume without loss of generality that the
submatrix Gk ,k consisting of elements in the first k rows

in Q~,k has an inverse G~,~. Let iV~_k,k be the subma-
trix consisting of elements m the last n – k rows in Qn,k.
Define the matrix

&_k,n =
()

–N~–k,kG~,~, En–k,n–k .

Then, B.-k,n hssrank n–k, and Bn-k,nQn,k = &_k,k.
Thusj span(Sk) is the set of all solutions of the system
L(&_k,n). Combining the above analysis, our claim
holds. ❑

By the above claim, at any stage r with 2 s r s n,

either the learner learns the target syst em, or receives a
solution of the target system which is linearly indepen-
dent from the solutions in S,_ 1. since the target system
has at most n linearly independent solutions, the learner
learns it with at most n equivalence queries.

Let N be the size of of the longest element in any coun-
terexamples received by the learner during the learning
process. By the assumption that addition and multipli-
cation of any two elements in K, and inversion of any

element in K, are of polynomial time complexity, one
can find at stage r the matrix Bn-(r - I),n in time poly-
nomial in n and N. So, the total time complexity of the
algorithm Learn-HS is polynomial in n and N. ❑

Proof of Theorem B. Assume that L(A fntnj En,l) is
the target system. Let 11,1be the 1 x 1 identity matrix
over K. The learning algorithm Learn-IHS works in
stages.

Algorithm Learn-IHS:

Stage O. Choose a matrix B., n and a vector ~.,l over
K such that the rank of Bn,n is different from that

.
of the matrix (Bn ,n, dn, 1), Ask an equivalence query

for the hypothesis Ho = L(Bn,n, ~n,l). Note that
Ho has no solutions. If the learner receives “yes”
then stop, otherwise he receives a solution do for
the target system. Set So = ~.

Stage 1. Set the hypothesis HI = L(In,n , &o). Ask
an equivalence query for HI. If “yes” then stop,
otherwise the learner receives a solution &l 6 Kn

to L(A~,n, ~~,1) other than do. Let S1 = {dI–c70}.

Stage r >2. Let S,_l = {&’l – c70,...,1-1 - do}.
Construct from vectors in S,_ 1 a matrix En_(,_ l)).

such that the set of all solutlons of the homogeneous
system L(13n-(.-lJ,n) is span(Sr_l) = {tl(&l –

do) +... + tr-l(&_l – &o)lt~EK,l~iSr-

1}. Set the r-th hypothesis H, = L(Bn-(r - l),n,
Bn_(r– lJ,n&o). If r = n + 1, the learner concludes
that H. is equivalent to L(Am,n), so stop. If r s n,
ask an equivalence query for H~, if ‘(yes” then stop,
otherwise the learner receives a solution &. Set
s. = sr_l U{&r –do}.

End of Learn-IHS,

Claim 3.2. At any stage r with 1< r ~ n + 1, the fol-

lowing holds: (l)vectors in S’v_ ~ are hnearly indepen-

dent; (2,)the matrix Bfi-(r-I),n exists; (3)wn(&-1)
is the set of all solutions of the homogeneous system

L(Bn-(r–l),n), and every vector ii E span(Sr_l) is a so-

lution of the homogeneous system L(Am,n); (d)fznallyj

Ispan(Sr_l) = {d+ CYol & c span(S,-l)} is the set

of all solutions of the hypothesis H~ = L(Bn–(r-l),n>
Bn_(r_l),n&o), and any & E Ispan(S’,) is a sohtion of

the target system L(Am,n, ~m,l).

Proof of Claim 3.2. By induction on r. When r = 2,
S1 contains exactly one nonzero solution &l – do of the
homogeneous system L(Am,n), since both 6!1 and do
are solutions to the target system. So it is trivial that
vectors in S1 are linearly independent, i ,e., (1) is true.

Since by (1) &l – do is linearly independent, we may
assume without loss of generality that the first element
in it is not O. Let &l – do = (all, azl, . . ., anl)T. Since
K is a field, al 1 # O implies the inverse a~~ exists.
Let Dn-l,l = (azl,anl)T. We can in fact write the

221

matrix Bm_ 1,n as follows

Bn-l,n = (–D~_l,l (a~~) ,1~-1,~-1) .

This implies (2).

Note that Bn _ 1,n has rank n – 1. By simple calculation,

B~_l,~(dl –6.) = &_l,l. Thus, sparz(S1) is exactly the
set of all solutions of the system L(Bn _ 1,n). Since each
vector in Sr - 1 is a solution to L(A~,n), so are vectors
in span(Sr_l). Thus, (3) is true.

Note that do is a solution to L(Bn-I,n, Bn-l,~~o). BY

(3), Ispan(Sl) is the set of all solutions of Hz =
L(Bn_l,n, Bn_l,n&o), and every vector in lspan(Sl) is
a solution to the target system. Hence, (4) is true.

Assume our claim is true for any r with 1< r ~ k <
n + 1. At stage k + 1, by the induction assumption,
we know that vectors in Sk-1 are linearly independent,
span(Sk _ 1) is the set of all solutions of the hypothe-
sis Hk, and vectors in lspan(S~- 1) are solutions of the
target system. Thus, when the learner receives a coun-
terexample Gk for H~, then G~ is a solution of the target
system outside Ispan(S~- 1). This implies that ~k – do

is linearly independent from vectors in .$k_1. Hence,
vectors in sk = sk - I U {dk — &CI} are linearly indepen-
dent, i.e., (1) is true.

Let the matrix Q~,~ = ((all – do), . . ., (dk – do)). Since

K is a field, we may assume without loss of generality
that the submatrix Gkyk consisting of elements in the

first k rows in Qn,k hzw an inverse G~,~. Let Nn-k,k be

the submatrix consisting of elements m the last n – k

rows in Qm,h. The matrix Bn–.-k,n exists and in fact we
can write it as

&_k,. =
()

–Nn-~,kG~,~, I&,n.-k .

Hence, (2) is true.

Bn_k,. has rank n–k, and B~-h,~Q~,~ = &-k,k. Thus,
by (1), sPan(Sh) is the set of all solutions of the homo-
geneous system ~(~n-k,n), and each vector in sPa~(Sk)

is a solution to L(Am,n). This implies that (3) is true.

Note that dO is a solution to ~(~n-k,n, Bn-k,n~o). BY
(3), Ispan(sl) is the set of all solutions of Hk+l =
L(Bn_$,n, Bn_k,n&O), and every vector in ~span(s~) is
a solutlon to the target system. Hence, (4) is true. ❑

By Claim 3.2, at any stage r with 1 < r s n, either
the learner learns the target system, or receives a solu-
tion ~. of the target system such that &r – ZO is lin-
early independent from the solutions in St.. Since the
homogeneous system .L(A~,n) of the target system has
at most n linearly independent solutions, so the learner
learns L(A~,~) (and hence L(A~,~, ~~,1)) with at most

n + 1 equivalence queries. Since addition and multipli-
cation of any two elements in K, and inversion of any
nonzero element in K, are of polynomial time complex-
ity, at any stage r, one can find the matrix Bn_tr_ lyn
in time polynomially in n and the size of the longest el-
ement in any vectors received during the first r stages.

Thus, the time complexity of the algorithm Learn-IHS
is polynomial in n and the size of the longest element
in vectors received during the learning process. ❑

Proof of Corollary Al. Assume F = ~p,al V “”” V
M ~,a, is the target function. For the integer-weight di =

(ail,..., ai~~~ of ikfP,a,, let ii = (ail mod p, a~~ mod

p)~. Then, bi E Z;, and F is equivalent to the function

F* = MP,Z1 V ..- V Mp,;, .

Hence, in order to learn F, one only needs to learn F*.

Define a matrix

()

(J,)l’

At,n = { .

(;*)T

Then, F* (and hence F) is equivalent to the homoge-
neous system over the domain Z;

At,n~n,l = d~,l

in the sense that, for any vector E E Z;, F*(2) = O if
and only if; is a solution of the above system, Note also

that for a vector ~~ Z;, a linear equation (~)T . i%,l s
O (mod p) is equivalent to the modulo function lfP,~

Therefore, our corollary follows from Theorem A and
Lemma 3.3 and 3.4. ❑

Lemma 3.3. Assume q ~ p. Let L(B$,n) be a given

homogeneous system over the domain Z; with modulo p

addition and multiplication. Assume that S = {&l, &t.}

is a set of linearly independent vectors in Z; such that

sPan(S) = {kl~l + . . . +kr~.lki E Zp, l S i <r} is
the set of all solutions of L(B.,n) over the domam Z;.

Then, the set of all solutions of L(B~,n) over the domain

Z; 2s Rspan(S) = span(S) n Z;.

Proof. It is obvious that any vector in Rspan(S) is a

solution of L(B, ,n) over Z?. Suppose that ~ is a solution
of L(B, ,n) over Z;, then it is also a solution of L(B, ,~)

over Z;, since Z; C Z:. Hence, ~ c Rspan(S). ❑

Lemma 3.4. Given X G {Zg, Z} with q > p. Let

L(B,,n) be a homogeneous system over the domain Xn
with moduio p addition and muttip!icaiion, Assume that

s= {&,..., tir} is a set of linearly independent vec-

tors in Z; such that span(S) = {kl~l + . . .+ kt.~rlki E
Zp, 1 < i < r} is the set of all solutions of L(B:,n)
over the domain Z;. Then, the set of all solutzons

of L(B.,n) over the domain X“ is Espan(S) = {~ +

(!71P,. ..> wJ)Tl~CSPU4S);W C x} 1 S ~ 5 ~} nxn -

Proof. It is obvious that any vector in Espan(S) is a so-

lution of L(BsJ~) over Xn. Suppose that ~ = (bl, b~)T E

Xn is a solutlon of L(B~,n). Let bj = dj + qj~, Wh:re

dj E Zp, qj E x. Let ~= (all,dn)T. then d ~

Z;, and ~ is a solution of L(B.,~) because ~ is. Since
span(S) is the set of all solutions of L(B,,~) over Zn

-P’

there exist ki E 2P for 1 s i ~ r such that d =

222

kldl + . . . + kr(zr. Thus, ; = kldl + . . . + k,dr +

(91P, . . ~, q.P)~ < Espan(S). ❑

Proof of Corollary A.2. Assume that

F = IkfPl,~ll V. . .Vh4P,,~,,l V. . .ViWPh,d,, V. . .Vh4Pk,a,t,

is a target function. For the integer-weight
iiij = (bijl, ..., b~jn)~ of i14P,,~,,, let

‘~j = (bijl mod Pa,..., bijn mod Pi)T.a

Then, ~j ~ Z;,, and F is equivalent to the function

F*=h4 ~,,~;lV. . WhIPl,a;,l V. . .VMP~,a;l V. . .VMP~,zz,~ .

Hence, in order to learn F, one only needs to learn F*.

Define the matrices,

()

(d:,)T

A;,,n = : , i=l,k.

(d;;,)T

Then, F* (and hence F) is equivalent to the “conjunc-
tion” of the homogeneous systems

A~,,n~n,l = dt,,l, i= 1,. ... k,

over the domain Xn with modulo pi addition and mul-
tiplication in the sense that, for any vector Z E Xn,
F*(d) = O if and only if d is a solution for each of the
above systems. Note also that for a vector ii c Z“, a
linear equation (d)T . ~n,l ~ O (mod pi) is equivalent
to the modulo function MPi ,C with the integer-weight ii.

One then learns F* (hence F) through learning L(A~,,n),

fori= l,..., k, simultaneously. At each stage, let Hi
be the hypothesis for L(A;,,n), i = 1,..., k. In other
word, Hi is a hypothesis for

MP,,a;, V . . . V MP,,aa, .
s,

One sets H = HIV. -. V Hk to be the hypothesis for F*.

According to Corollary A. 1 one can learn each of the sys-
tems L(A~,,n) with at most n equivalence queries, and
the hypotheses issued by the learner are homogeneous
systems with weights from ZP,. When one receives a
counterexample for the hypothesis H, one can derive
from this counterexample a new linearly independent
vector (i.e., solution) for at least one of the systems
L(Aj,,~). Thus, with at most kn equivalence queries
one can learn F*. Since by Corollary A. 1 the time com-
plexity for learning each of the systems L(A\i,n) is poly-
nomial in n and the largest size of elements in vectors
received by the learner during the learning process, so
the time complexity for learning F* is k~(n, N), where
P is a polynomial and IV is the size of the largest ele-
ment in any vectors received by the learner. Cl

Proof of Corollary B.1. Assume F = 6’~,k, ,~1 V
. . . V cp,k,,~, is the target function. Our proof is sim-
ilar to that of Corollary A. 1. But, instead of modulo
functions MP,a,, we consider counting functions CP,k,,a,,
i=l ,t.In the same manner as we did for Corollary
Al, we obtain a matrix A~,~. Let R~,l = (kl, kt)T.

Then, F is equivalent to the linear system over the do-
main Z;

A@fn,l = I?t,l.

Therefore, our corollary follows from Theorem B and
Lemma 3.5 and 3.6 ❑

Lemma 3.5. Assume g s p. Let L(l?. ., l?~,n~,,l) be a
given linear system over the domain Z:. Assume that

S={iil,. ... dr } is a set of linearly independent vectors

in Z; such that span(S) = {kl&l + . . . + krdflki e

2P, 1 ~ i < r} is the set of all solutions of L(B,,n)

over the domain Z;. Then, the set of all solutions of

L(B3,n) over the domain Z: is Rsparz(s) = span(S) n

Z$, and the set of all solutions of L(B$,n, B.,n~.,l) over

the domain Z; is 7.Rspan(S) = Ispan(S) n Z?, where

lspan(S) = {Cl+ ;$,~ld c span(S)}.

Proof. It is obvious that any vector in Rspan(S) is a so-
lution of L(B$,n) over Z:, and any vector in IRspan(S)

is a solution of L(13$,n, ~,,1) over Z:. Suppose that ~is
a solution of L(BS ,n) over Z;, then it is also a solution of

L(Bs,n) over Z;, since Z: ~ Z;. Hence, ? E Rspan(S).

When ~ is a solution of L(B$,n, B,,n~,,l) over Z;, then

~ – ~,,1 is a solution of L(Am,n) over the domain Z:.

Thus, ~ – ~s,I E span(S), which implies ~ E Ispan(S).

Hence, ~ c lRspan(S). ❑

Lemma 3.6. Given X c {Zq, Z} with q > p. Let

L(B3,n, B~,n~.,l) be a linear system system over the do-

main Xn with modulo p addition and multiplication.

Assume S = {&l, ..., &r} is a set of linearly indepen-

dent vectors in Z; such that span(S) = {klci!l + ... +

kr~rlki G ZP, 1 < i < r} is the set of all solutions of
L(B$,n) over the domain Z:. Then, the set of all solu-

tions of L(B,,n) over the domain X“ is Espan(S) = {cl

+(!71P, w)Tl~ C wan(s); % C x, 1 < ~ < n} n
Xn, and the set of all solutions of L(B,,n, B$,nb$,l) is

IEspan(S) = {~+ ~,11~ E Espan(S)}. Here, b.,l =

(bl, b.)~, b~,l = (bl modp,b. modp)T.

Proof. It is obvious that any vector in Espan(S) is a so-
lution of L(B.,n) over Xn, and any vector in IEspan(S)

is a solution of L(I?$,n, B, ,n~$,l) over Xn. Suppose that

7 = (fl ~n)~ E Xn is a solution of L(Bs,n), Let

fj = dj + qjp, where dj E -%, qj c X. Let ~ =
(dI, d~)T, then ~~ Z;, and ~is a solution of L(B.,~)

because ~ is. Since span(S) is the set of all solutions of
L(B$,n) over Z:, there exist ki G 2P for 1< i ~ r such

that ~= kldl+. . .+kr&r. Thus, ~= kldl+. . .+k,&+

(qlp,. -., q~p)T ~ Espan(~) SimilEWIY) when S7~ x“ is

a solution of L(Bs,~, Bs,~bs,l), J c lEspan(S). U

Proof of Corollary B.2. Assume that

F = 6’~,,kl,,&l V ..- V CPl,k,,l,~l,l V ,.. V

cp~,k,l,~.l V ..- V (+,,k,,,,~,t,

223

is a target function. Instead of modulo functions MP, ,~,j
in the proof of Corollary A.2, we now consider counting
functions CP,,k,, ,a,j. Thus, we obtain matrices A~,,n in
the same manner. Define

it,,l=(kll,kitt)T .i=l, s.., s.

Then, F is equivalent to the “conjunction” of the linear
systems,

A:i,n~n,I = ~t,,l, i = 1,.. .,s,

over the domain Xn with modulo pi addition and mul-
tiplication in the sense that, for any vector ii G Xn,
F* (ii) = O if and only if ii is a solution to each of
the above systems. Hence, our corollary follows from
Corollaries B.1, with a similar analysis to the proof of
Corollary A.2. Cl

4 Read-Once Disjunctions of Counting

Functions

As argued in [BGHM], it is reasonable to believe that
an equivalence query is more expensive than a member-
ship query. A practically ideal learning algorithm will
use as few equivalence queries as possible. We will de-
sign a learning algorithm for the class of read-once dis-
junctions of Boolean-weighted counting functions over
the domain Z; that requires only one (it is not hard
to see that this is also the lower bound) equivalence
query. Previous work ([BHH]) shows that this class can
be learned using equivalence and membership queries,
but the bound on the number of equivalence queries is
n3. In the following, we assume that q ~ 2 is a given
integer, F = Cq,kl, til V “ “ “ v Cq,k, ,d, k a disjunction
of counting functions with Boolean-weights d~ G Z;,
i= l,. . . . t. We also assume that a is a negative coun-
terexample for F.

Lemma 4.1. For any variable x E vars(cq,~,,z,),

F(Mcx, z)) = cq,~,,cit(fh(~, z)) = 1, i = 1,. . . ,t,

Proof. Since a is a negative example for F, Cq,~,,a, (Q) =

O. This implies that

s= E
a[z] z ki (mod q).

~evQ~~(cg,k,,t,)

Hence, for any z E var.s(Cq,k,,a,), after flipping z in a,
the original sum S modulo q then becomes either ki + 1
or k~ – 1, so F(f/ip(cz, z)) = Cg,~i,di(.flip(cx, x)) = 1. ❑

Lemma 4.2. vars(F) = {x C VnIf ’(flip(a, z)) =
1}.

Proof. On the one hand, by Lemma 4.1, vars(F) =

U{vadcq,k,,ii,)k= 1,..., t} ~ {X C VnlF(f@(CY, X)) =

1}. On the other hand, for any variable y c {z c Vn I

F(flip(cY, z)) = 1}, we have cq,k,)~j(fiip(cr,y)) = 1 for
some j E {1 ,... ,t}. Note again that cq,k,,~j(~) = O,
since a is a negative example. Thus, y E vars(Cq,~,,al)
and, vars(F) = {Z G VnlF(f/ip(~, x)) = 1}, ❑

Lemma 4.3. For any two distinct vamables u, v c

Vars(cq,k,, d,), for any w @ vars(cq,k,,at), 1< i < t,

we have (l) F(f/ip(a, {u, w})) = 1 and,

(2)F(f@(cx, {u, V}))= O if(Y[u] # CY[V].

Proof. It follows from F(a) = O that 6’g,k,,~, (a) = O,
i.e.,

s= z a[z] s ki (mod q),

zc~a~s(cq,k,,tt)

For u E vars(Cq!k,,a,) and w # vars(c~)~,,a,), after
flipping u and w m a, the above sum S IS changed to
ki – 1 mod q or ki + 1 mod q, thus F(f/ip(~, {u, w}))=

Cq,fii,a, (f /ip(cx, {u, w})) = 1. For two distinct variables
~, ~ e vars(c~,~,,a,), if ~[u] # CY[v], after flipping u
and v in a, the above sum S is still ki mod q, thus

f’(.f~iP(@, {~, w}))= cgjkijdi(.f~~P(~> {~, v})) =0. ❑

Lemma 4.4. Assume ihat F is read-once. Then, for

any set S of exactly p variables such that they all have

the same value in a, F(flip(a, S)) = O if and only if

S G vars(Cq,~,,a,) for some Cq,k,,a, in F.

Proof. The sufficient condition is trivial, since F is
read-once. Assume F(flip(a, S)) = O and suppose by
contradiction that S ~ VUTS(cg,k,,d,) for any Cq,k,,d,
in F, this implies that there are Cq,k,,;iand c~yfij ,aj
with i # j such that S n var$(cg,ki,~i) # ~, and S fl

vars(cq,~j,aj) # & Thus, F(~~ip(~, S))= ~q,k,,~,(flip

(~, S)) = cq,k,,ii,(f~iP(a, S)) = 1, a contradiction, So,
there must be some cq,k,,~, in F such that S ~ vars(

Cq,k,,a,). n

Lemma 4.5. Assume va?’s(cq,kt,a,) = {u1, Um}

and m < q. Then, (~)cq,fi,,a, is equivalent to [Cq,o,~i(ul)

V. - .V6’g,o,~,(tJ~)] if [~[~~] = ..- = ct[~~] = ()]; (’2)Cg k,,&

is equivalent to [Cg,l,~, (ul)V. . .VC4,~,~,(u~)] ij[a[u~] =
. ..= a[um] = 1].

Proof. Note that cq,k,,~,(a) = O. When a[u;] = . . . =
a[um] = 0, a[ul] + . . + a[u~] = O R k~ (mod q).
When a[ui] = . . . = a[u~] = 1, a[ul] + . ..+ a[u~] =
m = ki (mod q). In the first case, we have ki =

0. Since m < q, Cq,o,~,(u~, u~) is equivalent to
Cq,qa,(ul) v . . . v Cg,o,a,(%). In the latter case, we
have ki = m < g, thus Cg,m,a, (ui, u~) is equivalent
to Cq,l,ai(ul) v -- -v Cg,l,a, (urn). ❑

Theorem 4.1. The class of all read-once disjunctions

of Boolean-weighted counting functions with modulus q

over the domain Z; is polynomial time learnable us-
ing only one equivalence query and O(nq) membership

queries.

proof. Assume F = Cq,k,,;, V. . .Vcq,k,,a, is the target
function. We construct the learning algorithm Learn-
RODC (where “RODC” stands for “read-once disjunc-
tions of counting functions”) that runs in stages.

Algorithm Learn-RODC:

Stage O. Ask an equivalence query for the “TRUE”
function. If “yes” then stop; otherwise the learner
receives a negative counterexample a,

Stage 1. For each z E V. , ask a membership query

224

for ~lip(a, z). Let vars(F) be the set of all those z
such that the learner receives “yes” for jlip(cr, z).

Stage 2. Fix any u c vars(F’). For any v c vars(~) –
{u} such that a[u] # cr[v], risk a membership query
for .fIip(cr, {u, v}). Let GU be the set of all those v
such that the learner receives “no” for ~lip(a, {u, v}).
Let P. be the set of all those z such that G= =
G. #4, and a[z] = a[u]. Set PG = {(P~, G.)lu c
vars(F), G. # ~}.

Stage 3. Let Rvars(I’) be the set of all variables in
vars(l’) but not in any set in PG. Fix any u E
Rvars(F). For any subset S of Rvars(F) – {u}

with exactly q – 1 variables such that all those
variables and u have the same value in a, ask a
membership query for ~lip(cx, {u} U S). Let S“ be
the union of all those subsets S and {u} such that
the learner receives “no” for ~lip(a, {u} U S). Set
RS = {Sulu 6 Rvars(F), S’u # ~}.

Stage 4. Let Evars(I’) be the set of all variables in
vars(F) but not in any sets in PG or RS. For any
set A G V~, let 6(A) be the characteristic vector
of A, and k(A) = ~ze~ a[x] mod q. The learner
concludes that the target function F is equivalent
to ~ = V{Cq,~(PUG),.(PUG)l(P,G)GPG}V
v{cq>k(S),d(s)ls G RS}V
V{Cg,aPI,a(t~I)IZc ~var4F)}.

End of Learn-RODC.

We now analyze the algorithm Learn-RODC. We may
assume without loss of generality that F $ “TRUE”.

Thus, at stage O, the learner receives a negative coun-
terexample a for F. It follows from Lemma 4.2 that one
finds vars(F) at stage 1 with n membership queries. At
stage 2, by Lemma 4,3, one finds all those vam(C’~,~i,z;)
such that there are two variables in ~ars(cq,k, ,~,) with
different values in a. Thus, V{C’q,k(pUG),.(PUG)l(P,G)●

PG} is the disjunction of all those counting functions
in I’ such that each of them has two relevant variables
with different values in a. The number of membership
queries required at this stage is at most 2n2. At stage
3, by Lemma 4,4, one finds all those vars(C~!~,,a,) such
that vars(Cg,~,,a,) consists of at least p variables that
have the same value in CY.Thus, V{Cq)~(s),a(s)lS’ E RS}
is the disjunction of all those counting functions in F

such that each of them has at least p relevant variables
with the same value in a. The number of membership
queries required at this stage is at most nq. By Lemma

4.5, V{cg,c+,ii ~I)lxEEvars(F)}isequivalent to the
i\\disjunction o a those counting functions c~,k, ,z, m F

such that ~a?’s(6’~,k,,~,) consists of less than p relevant
variables that have the same value in a. No membership
queries are required at this stage. With the above anal-
ysis, F is equivalent to H. Learn-RODC needs only one
equivalence query and n + 2n2 + nq membership queries.
The time complexity is 0(n2 + 2n3 + n’J+l) = O(ng+l).

o

5 Disjunctions of a Non-Constant

Number of Counting Functions

A typical strategy for learning k-term DNF formulas
with equivalence and membership queries is that at each
stage the learner tries to learn only one term in the tar-
get formulas while turning all the other terms off. The
difficulty involved in this strategy is how the learner
can turn all terms off except one. When k = O(log n),
it was overcome by Blum and Rudich’s derandomiza-
tion technique [BR]. However, unlike a monomial which
turns on if and only if all its literals turn on, a count-
ing function depends on the modulo p value of the sum
of its variables. Thus, it is not hard to see that Blum
and Rudich’s technique are not suitable for learning a
disjunction of a non-constant number of counting func-
tions. Nevertheless, based on analyzing the “modulo-
structure” of counting functions, we prove that for any
constant c, any disjunction with no more than log log n’

many Boolean-weighted counting functions over the do-
main Z!j is polynomial time learnable.

Assume that q ~ 2 is a given integer number, F =

~q,k,,;, V “ “ . V cq,k,,& is a disjunction of counting func-
tions over the domain Z; with Boolean-weights di c
Z;. Assume also that a is a negative counterexample
for F. For any S & vars(F), define CS = {C’~,k,,a,
IS c vars(Cq,~,,a,), 1< i s t}. We say that S # # w a
“modulo-block” of F if, S = flC,,~,,a, ~C~ vars(Cg,~i,ai),

and for any c~,kj,~j $ Cs, S fI vars(cq,kj,~j) = d.

Let lfBF (“MB” stands for “modulo-blocks”) denote
the set of all modulo-blocks of F. Note that For any
two modulo-blocks B, D E MBF, either B = D, or
BnD=gi

Lemma 5.1. For any modulo-block B c MBF, for any

two distinct variables x, y E B and, for any variable

u E vars(F) – 1?, we have (l)F(flip(a, {z, u})) = O

and, (2)F(f/ip(cr, {z, y})) = O if o[x] # cr[y].

Proof. By the definition, z, y E B implies z, Y E
vars(c ,k,,~,) for any cq,k,,& C CB and x, Y @’ Vars(

1Cq,kj,ajfor any Cq,kj,a, @CB. Cq,~i,~i(a) = O means
that

E a[v] z ka (mod q).

If cr[x] # ct[y], the above sum will not change after
flipping both x and y in a. So, F(flip(@, {z, y})) =

cg,k,,~,(f~ip(~, {z, y})) = O. On the other hand, it
is easy to see that Cq,k,,a, (f/ip(@, {z})) = 1 for any
cq,k,,~,G CB. Since u @ B, there k a cq,kj,~j G CB

such that u @Vars(cq,kj,ij,).Hence, F(fiip(a, {z, w})) =

cq,kj,~j(.f~~p(~! {z! u})) = cq,k,r~j (f~~P(a, {z}))= 1. ❑

Lemma 5.2. For any S ~ vars(F) with exactly p

variables such that they all have the same value in cr,

F(flip(a, S)) = O if and only if S C B for some moduJo-

block B E iWBF.

Proof. The sufficient condition is trivial by the defini-
tion of modulo-blocks. Assume F(flip(cr, S)) = O and

225

suppose by contradiction that S is not a subset of any
modulo-blocks of F. This implies that there are two
distinct modulo-blocks B1 and B2 in MBF such that
S n BI # d and S n Bz # $. Hence, by the definition
of modulo-blocks, there is one counting function in CBI
and another in CB2 such that each of them has at least
one but less than p variables of S. So, after flipping all
variables in S in a, those two counting functions (thus
F) will have value 1, a contradiction to the earlier as-
sumption. ❑

Lemma 5.3. For any counting function Cq,k,,ai in F,

there are modulo-blocks BI, Bm G MBF such that

& is the characteristic vector of B = B1 U. . .UBm, k~ =

~cc~ +1 mod~.
Proof. We first show that there are modulo-blocks
Bl,. ... Bm E MB~ such that vars(C~,~t,a,) = B1 U

. ..u Bm. Fix a variable xl E ~a~s(c~,k,,d,). Let

QI = n{ws(cg,~,,aj)lzl c ~ars(cg,~,,a,)}.
Then, Z1 E Q1. Define B1 = {Y c Qllvcq,~j,~j @
QI, u @vars(Cq,~j,aa)}. It is easy to see that, z E
B1, and B1 is a mo ulo-block of F. Note that BI ~

vars(Cq k,,a,), If B1 = vars(Cql~,,a,), then we are done.
Otherw(se, fix a variable X2 c vars(Cq,~,,d,) – B1. We
define Q2 and B2 in the same manner, thus we obtain a
new module-block B2 with X2 E B2 c ~ars(cg,k,)a,). If
B1 U B2 = vars(Cq,~, ,~,), then we are done. Otherwise,
repeat the above process to obtain a new modulo-block.
Note that ~ars(c~,k, ,a,) contains at most n variables.
We eliminate at least one variable from vars(Cg,k,,a,)

when we obtain a new modulo-block. Thus, we have
m modulo-blocks B1, Bm, m ~ n, such that vars(
~g,k,,~t) = B1 U . . . U B~, m ~ n. It then follows that
a~ is the characteristic vector of B = B1 U . . . U Bm.

Cq,k,,6, (CY) = O implies that ki = ~ze~lu,u~~ cr[z] mod
p. El

Lemma 5.4. [[MBF\/ < 2t. In other words, F has at

most 2t modulo-blocks.

Proof. According to Lemma 5.3, given a negative coun-
terexample for F, each C~,~,,z, in F is determined by the
modulo-blocks that consist of ~ar$(cg,ki ,a,). Thus, we
can represent F with a matrix M, M has t rows and m
columns. The i-th row of M stands for the the function
cq,k,,~,. Each column contains a modulo-block, and no
two columns have the same modulo-block. Let ei)j de-
note the entry of M at the i-th row and the j-th column.
Assume that the j-th column contains the modulo-block
Bj . Then ei,j = Bj if Bj ~ vars(Cq,k, ,6,), otherwise let
ei, j = “blank”. We now estimate how large t can be.
For column a and column b, a # b, by the definition
of modulo-blocks, there exists at least one i such that
ei,a differs from ei,b, i.e., either ei,a = Ba but e~,h =
“blank”, or ei,a = “blank” but ei,b = Bb. This implies
that m < 2t, since there are at most 2* many possi-
ble ways to place a modulo-block in a column. Thus,
llMB~ll s 2’. ❑

Theorem 5.1. There is an algorithm for learning the

class of disjunctions of no more than log log nc many

Boolean-weighted counting functions with modulus q over

the domain Z;, using O(n’J + nc(’J+lJ) many queries.

The time complexity of the algorithm is bounded by O(nc+l

~;~~~~l)+l). So for constant c, the algorithm is poly-

Proof. Assume that F = 6’q,kl,~, V . . . V Cq,k,,;, is the
target function. The learning algorithm runs in stages.

At stage O, the learner issues the initial hypothesis 111=
“TRUE” to ask an equivalence query. If he receives
“yes” then stop. Otherwise, he receives a negative ex-
ample a for F. One query is used at this stage, the time
complexity is constant.

At stage 1, for any z E V., the learner asks a member-
ship query for ~iip(cr, z). By Lemma 4.2, the learner
finds vars(~), i.e., the set of all those variables such
that flipping any one of them in a will cause F to out-
put 1. The number of queries used at this stage is n,
the time complexity is 0(n2).

At stage 2, using Lemma 5.1, the learner finds all those
modulo-blocks such that each of them has two distinct
variables with different values in a: For any u E var-s(~)
and v c vars(F) — {u} such that u and v have different
values in a, ask a membership query for f /ip(cx, {u, v}),

Let A(u) be the set of all those v such that the learner
receives “no”. Let E(u) be the set of all those w such
that A(w) = A(u) # @ and a[w] = a[u]. set Bu =
AU U Eu, then Bu is a modulo-block. At this stage at
most n2 membership queries are required and the time
complexity is 0(n3).

At stage 3, using Lemma 5.2, the learner finds all those
modulo-blocks such that each of them has at least q vari-
ables and all of the variables in it have the same value in
a: For any u E vars(F), for any set S ~ vars(F) – {u}

with exactly q — 1 variables such that u and variables
in S have the same value in a, ask a membership query
for f /ip(cr, {u} U S). Let S(u) be the union of all those
subsets S and {u} such that the learner receives “no”
for flip(a, {u} U S), then S(u) is a modulo-block if it is
not empty. The number of queries used at this stage is
at most nq, and the time complexity is 0(n9+1).

At stage 4, the learner finds all possdde modulo-blocks
such that each of them has at most q – 1 variables and
all variables in it have the same value in a: Let FB be
the set of all modulo-blocks found at the above stages 2
and 3 and RB be the set of all variables in vars(F) but
not in any modulo-blocks in FB. Then, each modulo-
block B 6 MB~ – FB has less than q variables and
all variables in it have the same value in cr. It is trivial
that B is a subset of RB. By Lemma 5.4, IIRBII <
q2t. Actually, one finds RB as a by-product of stage 2
and stage 3, i.e., whenever one finds a modulo-block at
those two stages one eliminates all variables in it from
vars(F). The remaining variables in vars(F) is RB.
Thus, the number of queries required at this stage is 0,
the time complexity is O(n3 + n’J+l).

At stage 5, the learner constructs all possible counting

functions using modulo-blocks in FB and subsets in RB:
I?or any modulo-blocks 111,.,., & G Fl?, for any sub-
set R of RB, set W = 131U, . .U l?m U R. Define a count-
ing function H(B1, Bm, R) w c~la, where iiis the
characteristic vector of W, and 1 = ~~~w Q[Z] mod q.
Finally, the learner sets the hypothesis

Hz =
v

H(Bl,..,, Brn, R).

B,,,.., B~eMB,R~MR

With Lemma 5.3, every counting function in F is con-
tained in H2. The number of queries required at this

stage is O, the time complexity is 0(n22t 292’).

At stage 6, the learner asks equivalence queries for the
hypothesis H2. If the answer is “yes” then stop. Other-
wise one receives a negative counterexample ~, since H2
cent ains all counting functions in F. Thus, one elimi-
nates every counting functions in Hz that outputs 1 for
~. One still uses Hz to denote the disjunction of the
remaining counting functions in Hz. Repeat the above
process until one receives “yes”. The number of queries

used at this stage is at most 22f2q2i, since H2 origi-
nally contains at most 22:242* counting functions. For
each equivalence query one needs to write down the hy-
pothesis, so the time complexity of this stage is at most
o(n22’+’2g2’+’).

Combining the above analysis, the learner needs O(ng +

22’2g2’) many queries to learn F, and the time com-

plexity is bounded by O(ng+l + n22‘+ ’292’+’). When

t < log 10 n’ the number of queries is bounded by
fO(nq + n’ 9+1)), and the time complexity is bounded

by O(nq+l + ~zC(9+l)+l), ❑

6 Concluding Remarks

Negations. We don’t know whether disjunctions of
integer-weighted counting functions with a prime mod-
ulus are still polynomial time learnable when some func-
tions are negated. In particular, we don’t know whether
disjunctions of negations of integer-weighted counting
functions are polynomial time learnable. Currently, we
prove that disjunctions of integer-weighted counting func-
tions are still polynomial time learnable if they contain
constant number of negated counting functions.

Composite Moduli. We don’t know whether disjunc-
tions of integer-weighted counting functions with a com-
posite modulus are polynomial time learnable. In par-
ticular, we don’t know whether disjunctions of Boolean-
weighted counting functions over the Boolean domain
are polynomial time learnable. Very recently, Jeffrey
Jackson [J] observed from Fourier analysis that the class
of disjunctions of O(log n) parities is polynomial time
learnable. It might be possible to extend his result to
the class of disjunctions of O(log n) counting functions
with a composite modulus.

disjunctions of parities with equivalence queries. The
algorithms Learn-HS and Learn-IHS are motivated by
Schapire’s parity-learning algorithm and by the algo-
rithm V developed by Helmbold, Sloan and Warmuth
[HSW].

References

[A]

[AHK]

[BR]

[BCJ]

[BS]

[BGHM]

[BHH]

[FS]

[HH]

[HSW]

[J]

[s]

D. Angluin, “Queries and concept learning”,
Machine Learning, 2, 1988, pages 319-342.

D. Angluin, L. Hellerstein, M. Karpinsky,
“Learning learning read-once formulas with
queries”, J. ACM, 1, 1993, pages 185-210.

A. Blum, S. Rudich, “Fast learning of k-term

DNF formulw with queries”, Proc of the 24th
Annual ACM Symposium on Theory of Com-
puting, May 1992, pages 382-389.

A. Blum, P. Chalasani, J. Jackson, “On
learning embedded symmetric concepts”,

Proc of the Sixth Annual ACM Confer-
ence on Computational Learning Theory,

pages 337-346, Morgan Kaufmann Publish-
ers, Inc., San Mateo, CA, 1993.

A. Blum, M. Singh, “Learning functions of
k terms”, Proc of the Third Annual Work-
shop on Computational Learning Theory,
pages 144-153, Morgan Kaufmann Publish-

ers, Inc., San Mateo, CA, 1990.

N. Bshouty, S. Goldman, T. Hancock, S.

Matar, “Asking queries to minimize errors”,
Proc of the 6th Annual ACM Conference on
Computational Learning Theor~, pages 41-

50, 1993.

N. Bshouty, T. Hancock, L. Hellerstein,
“Learning boolean read-once formulas with

arbitrary symmetric and constant fan-in
gates”, Proc of the 5th Annual Workshop on

Computational Learning Theory, pages 1-15,

Morgan Kaufmann Publishers, Inc., San Ma-
teo, CA, 1992.

P. Fisher, H. Simon, “On learning ring-sum-

expansions”, SIAM J. Comput., 1992, pages
181-192.

T. Hancock, L. Hellerstein, “Learning read-
once formulas over fields and extended
bases”, Proc of the 9th Annual Workshop on

Computational Learning Theory, pages 326-
336, 1991.

D. Helmbold, R. Sloan, M. Warmuth,
“Learning integer lattices”, SIAM J. Com-
put., 1992, pages 240-266.

J. Jackson, Personal communications.

R. Schapire, Personal communications.

Acknowledgments. We are very grateful to Robert
Schapire for valuable discussions on this topic, and es-
pecially for providing us with his algorithm for learning

