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Abstract. Outlier detection is concerned with discovering exceptional behaviors of ob-
jects. Its theoretical principle and practical implementation lay a foundation for some
important applications such as credit card fraud detection, discovering criminal behav-
iors in e-commerce, discovering computer intrusion, etc. In this paper, we first present
a unified model for several existing outlier detection schemes, and propose a compati-
bility theory, which establishes a framework for describing the capabilities for various
outlier formulation schemes in terms of matching users’ intuitions. Under this frame-
work we show that the density-based scheme is more powerful than the distance-based
scheme when a dataset contains patterns with diverse characteristics. The density-
based scheme, however, is less effective when the patterns are of comparable densities
with the outliers. We then introduce a connectivity-based scheme that improves the
effectiveness of the density-based scheme when a pattern itself is of similar density as
an outlier. We compare density-based and connectivity-based schemes in terms of their
strengths and weaknesses, and demonstrate applications with different features where
each of them is more effective than the other. Finally, connectivity-based and density-
based schemes are comparatively evaluated on both real-life and synthetic datasets in
terms of recall, precision, rank power and implementation-free metrics.
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1. Introduction

Outlier detection is concerned with discovering exceptional behaviors of certain
objects. Revealing these behaviors is important since it signifies that something
out of the ordinary has happened and shall deserve people’s attention. In many
cases, such exceptional behaviors will cause damages to the users and must be
stopped. Therefore, in some sense detecting outliers is at least as significant
as discovering general patterns. Outlier detection schemes lay a foundation in
many applications, for instances, calling card fraud in telecommunications, credit
card fraud in banking and finance, computer intrusion in information systems
(Lazarevic et al 2003, Stolfo et al 2000, DuMouchel and Schonlau 1998, Fawcett
and Provost 1997), to name a few.

Harkins (1980) characterizes an outlier in a quite intuitive way as follows:
“An outlier is an observation that deviates so much from other observations as
to arouse suspicion that it was generated by a different mechanism.” Following
the spirit of this definition, researchers have proposed various schemes for out-
lier detection. A large amount of the work was done under the general topic of
clustering (Ester et al 1996, Ng and Han 1994, Sheikholeslami et al 1998, Guha
et al 1998, Zhang et al 1996), where clustering algorithms are used to detect
outliers as by-products of the clustering processes. The rational of using cluster-
ing algorithms to detect outliers is based on the understanding that outliers and
cluster objects are mutually complemental. That is, an outlier shall not be in
any cluster, and a cluster object shall not be an outlier. For example, the DB-
SCAN clustering algorithm in (Ester et al 1996) explicitly defines data objects
outside any density-based clusters as outliers (or noises). However, the outliers
discovered this way are highly dependent on the clustering algorithms used and
hence subject to the clusters generated. In (Chen et al 2003), we presented some
formal study about complementarity of outliers and cluster objects, focusing on
the well-established density-based clustering method DBSCAN. Interestingly, we
showed that in some restricted cases outliers and cluster objects are indeed com-
plemental, however, in general, they are not regardless of parameter settings used
in the clustering algorithm.

Most methods in the early work that detect outliers independently have been
developed in the field of statistics (Barnett and Lewis 1994, Harkins 1980). These
methods normally assume some knowledge about the underlying distribution of a
dataset. In reality, however, prior knowledge about the distribution of a dataset is
not always obtainable. Besides, these methods do not scale well for even modest
number of dimensions as the size of the dataset increases.

In the current literature, some outlier detection schemes have been proposed
that are not subject to any clustering algorithms, and do not require any prior
knowledge about the underlying distributions of the dataset. These can be basi-
cally categorized into distance-based schemes (Bay and Schwabacher 2003, Knorr
and Ng 1998, Knorr and Ng 1999, Ramaswamy et al 2000, Angiulli and Pizzuti
2002) and density-based schemes (Breuning et al 2000, Jin et al 2001)1. Distance-
based schemes are originated from the proposal in (Knorr and Ng 1998), called

1 These schemes can be generally viewed as unsupervised learning. There are also much work
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DB(n, v)-outliers, where n and v are parameters. Let D be the dataset. For
any p ∈ D and any positive value v, define Nv(p) = {o : dist(p, o) ≤ v & o 6=
p & o ∈ D} (called the v-neighborhood of p). If |Nv(p)| < n, then p is called
an outlier with respect to n and v, otherwise it is not. A prominent variation
of the distance-based scheme is proposed in (Ramaswamy et al 2000), called
(t, k)-nearest neighbor scheme. For each object, its k-distance is defined as the
distance to its k nearest neighbor(s). Among all the objects, the top t with the
maximum k-distances are outliers. As will be noted in later sections, this scheme
is actually a special case of DB(n, v)-outliers.

The work in (Breuning et al 2000) gives the framework for density-based
schemes. Let p, o ∈ D. The reachability distance of p with respect to o for k is
defined as:

reach-distk(p, o) = max{k-distance(o), dist(p, o)}.
The reachability distance smooths the fluctuation of the distances between p and
its “close” neighbors. The local reachability density of p for k is defined as:

lrdk(p) =

(

∑

o∈Nk-distance(p)
(p) reach-distk(p, o)

|Nk-distance(p)(p)|

)−1

.

That is, lrdk(p) is the inverse of the average reachability distance from p to the
objects in its k-distance neighborhood. The local outlier factor (LOF) of p is
defined as

LOFk(p) =

∑

o∈Nk-distance(p)
(p)

lrdk(o)

lrdk(p)

|Nk-distance(p)(p)| .

The value on the right side is the average fraction of the reachability densities
of p’s k-distance neighbors and that of p. Thus, as pointed out in (Breuning et
al 2000), the lower the density of p, or the higher the densities of p’s neighbors,
the larger the value of LOFk(p), which indicates that p has a higher degree of
being an outlier.

Note that the original version of the density-based scheme does not explicitly
categorize the objects into either outliers or non-outliers. The LOF value of
an object measures how strong it can be an outlier. However, when explicit
classification is desirable, we can choose a cut-off threshold to determine whether
or not an object is an outlier, depending on whether its LOF value is less than the
cut-off threshold or not. In the following, therefore, we assume that the cut-off
threshold is also a parameter.

In this paper, we study the modeling power of outlier detection schemes. We
first use a generic model to represent distance-based and density-based schemes,
and then propose a compatibility theory, which is a list of gradually relaxing
criteria for describing the capabilities of a scheme to match users’ intuitions.
We then introduce a new scheme, called the connectivity-based outlier factor
(COF) scheme, for outlier formulation. We compare COF and LOF schemes with
the criteria developed in the compatibility theory, and use empirical analysis
to demonstrate applications with different features where one scheme is more
effective than the other.

done on outlier detections for specific domains under the framework of supervised learning.
Supervised outlier detections are not the concern of this paper.
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The rest of this paper is organized as follows. In Section 2, we give a general
model for outlier detection and introduce the compatibility theory. In Section 3,
we use the compatibility theory to evaluate the capabilities of the distance-based
and the density-based schemes. In Section 4, we introduce the connectivity-
based COF scheme, and compare it with the density-based LOF scheme. In
Section 5, we introduce recall, precision, rank power and implementation-free
metrics for evaluating the performance of an outlier detection scheme. We report
evaluation results of the COF scheme in comparison with the LOF scheme, based
on experiments on both real-life and synthetic datasets. Execution time and
scalability results are also presented. Finally in Section 6, we conclude the paper
by summarizing the main results and introducing problems for future research.

2. A Framework for the Capabilities of Outlier Detection

Schemes

2.1. A Generic Model for Outlier Detection

All the outlier detection schemes mentioned in the previous section contain some
parameterized conditions applied to individual objects in a dataset. Let D be a
multi-dimensional dataset. In general, we define an outlier detection scheme on
D as a condition Cond(o; P), where o ∈ D and P is a parameter set. A given
assignment of values to the parameters in P is called a parameter setting. In the
subsequent discussions, we use sets of values to denote parameter settings. (For
example, for the parameter set {x, y}, the set {1, 2} is the parameter setting:
x = 1 and y = 2.) For a given parameter setting P ′, an object o ∈ D is an outlier
if Cond(o; P ′) = true, or is a non-outlier if Cond(o; P ′) = false. We call Cond(o;
P) an outlier detection scheme (or simply a scheme) for D.

Under this framework, we have the following:
• DB(n, v)-outlier scheme: Cond(o; {n, v}) ≡ | Nv(o) |< n.
• (t, k)-nearest neighbor scheme: Cond(o; {t, k}) ≡ | Nv(o) |< k, where

v =(k-distancet+ k-distancet+1)/2 and k-distancet is the t-th largest k-distance
in the dataset2.

• LOFk(o, u) scheme:

Cond(o; {k, u}) ≡
∑

p∈Nk-distance(o)
(o)

lrdk(p)

lrdk(o)

|Nk-distance(o)(o)|
≥ u

Note that the second formulation above implies that the (t, k)-nearest neigh-
bor scheme is a special case of the DB(n, v)-outlier scheme, thus we will not
discuss it separately.

2.2. Two Levels of Outlying Properties

Outliers are identified by their distinct properties. These properties may be con-
ceptual, e.g., unauthorized usage of credit cards, or physical, e.g., the amount in-
volved per transaction. Conceptual properties exist in users’ minds, while phys-
ical properties are described by input data. A programmable scheme can use

2 For simplicity, we assume that different objects have different k-distances here.
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physical properties for outlier detection. These are included as the operands in
the conditions in the above generic model. It is worth noting here that a user hav-
ing an expectation of outliers/non-outliers does not mean he/she knows where
they are in the dataset. It merely implies that according to the conceptual prop-
erties he/she has about the outliers, each object has a unique interpretation,
either an outlier or a non-outlier.

Definition 2.1. Let D be a finite dataset. An expectation of D is a partition
D = Do ∪ Dn, where Do and Dn denote the outlier set and the non-outlier set,
respectively.

In reality, the conceptual properties of outliers are not always described by
their physical properties. For example, whether the credit card usage is legal may
not be corresponding to any combination of the amount involved, the timing for
the transaction, the user account, etc. Thus the outliers detected by any specific
scheme may not always match what a user expects3.

The purpose of using parameters is to adapt a scheme to the environment in
which a user invokes that scheme. In the general case, different parameter settings
identify different sets of outliers in the dataset. Given a user’s expectation, if the
sets of outliers and non-outliers can be identified by some parameter setting of
a scheme, then we say that the scheme has the capability of detecting outliers as
expected by the users, otherwise, it does not. Consider a dataset that contains
two patterns, C1 and C2, and an outlier o from the user’s expectation. (Thus o
does not belong to either pattern.) Suppose o has a set of physical properties
P1 that distinguishes it from C1, and another set of physical properties P2 that
distinguishes it from C2. Ideally, a scheme has the ability to detect o if and only
if it can use a single parameter setting to describe both properties. This may
be not possible, however, if the scheme envisions some conflict between P1 and
P2, which cannot be resolved by any parameter setting. But in some cases, the
conflict may be resolved separately by two parameter settings. This implies that
the scheme has been weakened. This motivates the following framework.

2.3. Compatibility Requirements

Again, we let D be a dataset, and Do and Dn be an expectation for D.

Definition 2.2. An outlier detection scheme Cond(o; P ) for D is ON-compatible
with the expectation Do and Dn if there exists a parameter setting S, such that

(1) ∀p ∈ Do [Cond(p; S) = true], and

(2) ∀p ∈ Dn [Cond(p; S) = false].

ON-compatibility imposes the strongest requirement, and therefore charac-
terizes the ideal capability that any scheme can achieve, in terms of matching
the user’s expectation.

Definition 2.3. An outlier detection scheme Cond(o; P ) for D is O-compatible
with the expectation Do and Dn if there exist a sequence of parameter settings
< S1, · · · , Sm > where m ≥ 1, such that

3 It may also occur that a user does not have any conceptual property in mind, implying that
the result returned by any scheme is acceptable. In this paper, we do not consider this case.
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(1) ∀p ∈ Do ∀i ∈ {1, . . . , m} [Cond(p; Si) = true], and

(2) ∀p ∈ Dn ∃j ∈ {1, . . . , m} [Cond(p; Sj) = false].

O-compatibility uses a sequence of parameter settings. Each outlier is identi-
fied by all the settings, and each non-outlier is identified by at least one setting.
Thus different settings can be used to accommodate patterns with diverse char-
acteristics. O-compatibility has a dual, called N-compatibility, defined as follows.

Definition 2.4. An outlier detection scheme Cond(o; P ) for D is N-compatible
with the expectation Do and Dn if there exist a sequence of parameter settings
< S1, · · · , Sm > where m ≥ 1, such that

(1) ∀p ∈ Dn ∀i ∈ {1, . . . , m} [Cond(p; Si) = false], and

(2) ∀p ∈ Do ∃j ∈ {1, . . . , m} [Cond(p; Sj) = true].

That is, N-compatibility requires that each outlier is identified by at least
one parameter setting, and each non-outlier is identified by all the settings. In
a sense O- and N-compatibilities are symmetric. With O-compatibility, all the
outliers have compatible properties with respect to each pattern, whereas with
N-compatibility, each outlier has compatible properties with respect to all the
patterns. The results derived for one can be reformulated for the other. In the
following discussions, therefore, we will mainly consider O-compatibility.

Definition 2.5. An outlier detection scheme Cond(o; P ) for D is an O-cover
for the expectation Do and Dn if there exists a parameter setting S such that
∀p ∈ Do [Cond(p; S) = true]. It is an N-cover if there exists a parameter setting
S′ such that ∀p ∈ Dn [Cond(p; S′) = false].

The O-cover implies that a scheme will detect all outliers for a specific expec-
tation, but may have “false positives”. That is, the scheme may misclassify some
non-outliers as outliers. Similarly, the N-cover implies that a scheme will detect
all non-outliers for a specific expectation, but may have “false negatives”. That
is, the scheme may misclassify some outliers as non-outliers. “False positives” or
“false negatives” may occur when the conceptual properties of the outliers grossly
mis-match their physical properties. For example, if the credit card transaction
made by an illegal user turns out to be quite normal when the involved amount,
timing, frequency, etc, are viewed separately, then a scheme that examines these
properties in an isolated fashion may not detect the transaction made by the
illegal user.

The following lemma draws a three-layer hierarchy among the compatibilities
defined above.

Lemma 2.1. If an outlier detect scheme is ON-compatible, then it is both O-
compatible and N-compatible. If it is O-compatible (N-compatible), then it is an
O-cover (N-cover).

The proof of the above lemma follows directly from Definitions 2.2 to 2.5.
The above proposed compatibilities are based on perfect matching of a user’s

expectation, rather than error rate. Our intention is to untie the effects of any
parameter selection from the capability of a scheme. In the general case, error
rates depend on specific parameter values used by a scheme, and a high error rate
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may simply mean that the specific parameter values are not right, not necessarily
an indication of the quality of the underlying outlier detection scheme4.

In the following, we present two theorems that will be useful in proving that
a scheme is not compatible.

Theorem 2.1. An outlier detection scheme Cond(o; P ) for D is not ON-compatible
with any given expectation Do and Dn if for any parameter setting S, there exist
a ∈ Do and b ∈ Dn such that Cond(a; S) = true ⇒ Cond(b; S) = true.

Proof. Assume the contrary. Then there is a parameter setting S that satisfies
the two properties in Definition 2.2. For the setting S, the condition of the
theorem implied that there are a ∈ Do and b ∈ Dn such that Cond(a; S) = true
⇒ Cond(b; S) = true. Property one in Definition 2.2 indicates that Cond(a; S)
= true, hence Cond(b; S) = true, a contradiction to property two in Definition
2.2. 2

Theorem 2.2. Let S be the set of all the parameter settings for a given outlier
detection scheme Cond(o; P ) for D. Then

(1) Cond(o; P ) is not O-compatible with an expectation Do and Dn if
∃ a ∈ Dn ∀S ∈ S ∃ b ∈ Do [Cond(b; S) = true ⇒ Cond(a; S) = true].

(2) It is not N-compatible with the expectation Do and Dn if
∃ a ∈ Do ∀S ∈ S ∃ b ∈ Dn [Cond(a; S) = true ⇒ Cond(b; S) = true].

Proof. We prove part (1) only, since the proof for part (2) is similar. As-
sume the contrary. Then Cond(o; P ) is O-compatible with Do and Dn. Let
< S1, · · · , Sm > be the sequence of settings mentioned in Definition 2.3. Thus,
by property one of Definition 2.3, for any i with 1 ≤ i ≤ m and any p ∈ Do, we
have Cond(p; Si) = true. For the given object a ∈ Dn in the first condition of the
theorem, by property 2 of Definition 2.3, there is a j with 1 ≤ j ≤ m such that
Cond(a; Sj) = false. Since we have Cond(p; Sj) = true for every object p ∈ Do,
we have Cond(b; Sj) = true for the particular object b ∈ Do given in the first
condition of the theorem. Hence, by this condition, we have Cond(a; Sj) = true,
a contradiction to the fact Cond(a; Sj) = false devised above. 2

In the following two sections, we show how to use the above techniques to
evaluate the capabilities of various outlier detection schemes.

3. Evaluating Capabilities of Outlier Detection Schemes

We will use the following notations throughout the rest of the paper. For any
dataset C and any object o, distmax(o, C) and distmin(o, C) denote the largest
and smallest distances, respectively, from o to the points in C. (We will simply
write distmin(o, C) as dist(o, C).) For any dataset C, diam(C) denotes the diame-
ter of C, i.e, diam(C) = max{dist(p, q) : p, q ∈ C}. For any k, k-distancemax(C) =
max{k-distance(r) : r ∈ C}, and k-distancemin(C) = min{k-distance(r) : r ∈
C}. For any two datasets C1 and C2, dist(C1, C2) = min{dist(p, q) : p ∈ C1 & q ∈
C2}.

4 We will not address issues of possible parameter-free outlier detection schemes. To our best
knowledge, there is no parameter-free outlier detection scheme reported in literature.
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Fig. 1. DD-skewed dataset one

3.1. Distance and Density Skewed Datasets

As discussed before, the effectiveness of an outlier detection scheme depends
on the characteristics of datasets, the extent to which the physical properties
of data can match the conceptual properties, and the way the physical proper-
ties are used by the scheme. In most practical datasets, the distances between
objects, and the densities in the vicinities of objects are the two commonly avail-
able physical properties. For a given dataset, if at the conceptual level, both
distances and densities are used to feature an outlier, but at different times (i.e.,
for different patterns) they may not match the physical properties of the data,
then such a dataset is termed a DD-skewed dataset. (DD stands for Density and
Distance).

Consider the dataset shown in Figure 15. This dataset contains an outlier o,
a nearby dense pattern C1, and a more distant sparse pattern C2. Apparently,
what distinguishes o from C1 is the density, whereas what discriminates o from
C2 is the large distance between the two. This is because the local density of o is
not lower than C2, and hence is not a factor to disqualify o from being a member
of C2. DD-skewed datasets arise often in practices when data are generated from
populations with a mixture of distributions.

3.2. The Capability of the DB(n, v)-Outlier Scheme on
DD-Skewed Datasets

This scheme essentially uses a parameter setting to define a size for the neigh-
boring area for any object o, and an upper bound on the (average) density of the
area. Intuitively, it works best for outliers possessing low neighborhood densities,
but may be awkward for outliers with other properties. Thus, it is no surprising
that its capability is limited on DD-skewed datasets. To make the formal deriva-
tion possible, we quantify some values in the dataset in Figure 1, as described in
Dataset Example 1.

Dataset Example 1. We assume that the dataset in Figure 1 satisfies the
following three conditions.

1. 1-distancemax(C1) < 1
2dist(o, C1)

5 This is a slightly modified version of the dataset used in (Breuning et al 2000).
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2. ∀d, 0 < d ≤ distmax(o, C1), ∀r ∈ C2, | Nd(r) | ≤ | Nd(o) |
3. ∀d, d > distmax(o, C1), ∃t ∈ C1, | Nd(t) | ≤ | Nd(o) |

Condition 1 means that the distance between any two objects in C1 is less
than half of the distance between o and C1. Condition 2 specifies a range for the
radius for which o has a higher density than that of C2’s members. Condition
3 describes what happens in large neighboring areas. That is, the neighborhood
density of o will exceed that for some members of C1. This is because the distance
between o and C2 is smaller than that between C1 and C2. Thus for areas with
the radius in the specified range in Condition 3, o will always get at least as
many neighbors as the points in C1 can get.

Let Do = {o} and Dn = C1 ∪ C2 be the interpretation for D. We have the
following results.

Result 3.1. For the DD-skewed dataset described in Dataset Example 1, the
DB(n, v)-outlier scheme is not ON-compatible with the above interpretation Do

and Dn
6.

Proof. Let (n, v) be an arbitrary parameter setting for the DB(n, v)-outlier
scheme. First consider the case of 0 < v ≤ distmax(o, C1). By condition 2 of
Dataset Example 1, for any r ∈ C2, it is true that | Nv(o) | < n ⇒ | Nv(r) | < n.
Now consider the case of v > distmax(o, C1). By condition 3 of Dataset Example
1, there is t ∈ C1, such that | Nv(o) | < n ⇒ | Nv(t) | < n. It follows from the
above two cases that for any parameter setting (n, v), there are o ∈ Do and b (r
or t) ∈ Dn such that | Nv(o) | < n is true ⇒ | Nv(b) | < n is true. Thus, Result
3.1 follows from Theorem 2.1. 2

For the above dataset, the DB(n,v)-outlier scheme can be O-compatible if,
compared with the dense pattern, the sparse pattern is sufficiently large and far
away from o, as described in the following result.

Result 3.2. For the DD-skewed dataset in Dataset Example 1, if in addition
| C2 | ≥ | C1 | +2 and dist(o, C2) > diam(C2) > distmax(o, C1), then the
DB(n, v)-outlier scheme is O-compatible with the interpretation Do and Dn.

Proof. Let v1 = 1
2dist(o, C1) and n1 = 1. By condition 1 in Dataset Example

1, | Nv1(o) | = 0 < n1, and for all r ∈ C1, | Nv1(r) | ≥ n1 = 1. Since dist(o, C2)
> diam(C2) > distmax(o, C1), we can choose v2 such that dist(o, C2) > v2 >
diam(C2) > distmax(o, C1). We let n2 =| C1 | +1. By the given condition, |
Nv2(o) | = | C1 | < n2 ≤ | C2 |, and for all r ∈ C2, | Nv2(r) | ≥ | C2 | −1 ≥
n2. Thus, the settings (v1, n1) and (v2, n2) constitute the required sequence in
Definition 2.3, hence Result 3.2 follows. 2

Intuitively, the DB(n, v)-outlier scheme is O-compatible in a DD-skewed
dataset if, with respect to each non-outlier pattern, all the outliers possess lower
densities for at least one radius. In Figure 1, for example, if there is another out-
lier near C1, and far away from C2, then O-compatibility would still hold, since
they both would have lower densities with respect to C1 in small radius, and
also have lower densities with respect to C2 in a larger distance (i.e., v2 in the
above proof). In cases where this condition is not true, the results become unpre-
dictable. In the following, we present a dataset example where the dataset does

6 Since there is only one outlier in the interpretation, ON-compatibility is the same as N-
compatibility. Thus DB(n, v)-outlier scheme is not N-compatible either.
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Fig. 2. DD-skewed dataset two

not meet this criterion, and the DB(n, v)-outlier scheme is not O-compatible.
Consider the dataset in Figure 2. Its description is given in Dataset Example 2.

Dataset Example 2. The dataset in Figure 2 contains two dense patterns
C1 and C2, and a sparse pattern C3, all being uniformly distributed, and two
outliers o1 and o2. The dataset meets the following conditions.

1. 3
4 | C3 |≤| C1 |<| C3 |<| C2 |

2. 4× 1-distancemax(C1) < dist(o1, C1)

3. ∀d, 0 < d ≤ distmax(o1, C1), ∀o ∈ C3, | Nd(o) | ≤ | Nd(o1) |
4. 4 × 1-distancemax(C2) < dist(o2, C2)

5. diam({o1} ∪ C1) < diam({o2} ∪ C2) < 1
2diam(C3)

6. ∀o ∈ C3, | N 1
2 diam(C3)(o) |< 3

4 | C3 |
7. ∀o ∈ C3, dist(o, o2) < dist(o, C2)

8. max{diam({o1} ∪ C1), diam({o2} ∪ C2)} < dist({o1} ∪ C1, {o2} ∪ C2)

9. diam({o1} ∪ C1 ∪ {o2} ∪ C2) < dist({o1} ∪ C1 ∪ {o2} ∪ C2, C3)

The conditions can essentially be categorized into two groups. The first group,
conditions 2, 3, 4, 6 and 7, constrain the relative densities of the neighboring areas
of the specified objects. For instance, condition 3 states that with the specified
range of radius, the neighboring area of o1 is denser than that of any point in
C3. Condition 6 requires that the sphere with a radius of 1

2diam(C3) centered
at any point in C3 may not contain three quarter or more of the total points in
C3. The second group, conditions 1, 5, 8 and 9, exert group-based constraints.
For example, condition 1 describes the relative sizes of groups, while the others
constrain the diameters and inter-group distances. These conditions reflect the
geometric structures depicted in Figure 2.

Let Do = {o1} ∪ {o2} and Dn = C1 ∪ C2 ∪ C3 be the interpretation for the
dataset D in Dataset Example 2. We have the following assertion.

Result 3.3. The DB(n, v)-outlier scheme for the dataset described in Dataset
Example 2 is not O-compatible.

Informally, although o1 and o2 both have lower densities than C1 and C2 in a
small radius (i.e., the smaller of dist(o1, C1) and dist(o2, C2)), they do not show
lower densities simultaneously than C3 for any single radius. This is because for
small to medium radius, the neighborhood of o1 is denser than C3, and for large
radius the neighborhood of o1 may be likely sparser than C3, and all the points
in C2 will fall into the neighborhood of o2, making it denser than C3.
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Proof. See Appendix I.

3.3. The Capability of Density-Based Schemes on DD-Skewed
Datasets

The cardinality of the neighboring area of an object, as used by the DB(n, v)-
outlier scheme, can be thought as the ‘absolute’ density of the object. Density-
based schemes, on the other hand, use the relative density of an object, i.e., the
comparison of its own density with the densities of its neighbors in a locality. The
properties of any points or a group of points beyond this locality will not affect
its relative density. This makes it more resilient to the skewness than the DB(n,
v)-outlier scheme. We shall use Dataset Example 2 to exhibit our evaluation of
the LOF scheme.

In order to simplify the formal analysis, we give two more conditions as
stated in the following result. The first condition is just a quantification of the
assumption of the uniform distribution for Ci for i = 1, 2, 3. The second is
reasonable with respect to the geometric structure of the dataset in Figure 2.
(Note that these two additional conditions do not conflict with those specified
in Dataset Example 2.)

Result 3.4. Assume that the dataset in Dataset Example 2 satisfies two addi-
tional conditions:

(a) 1-distancemin(Ci)

1-distancemax(Ci)
≥ 4

5 , where 1 ≤ i ≤ 3; and (b) |N1(oj)| = 1 for j = 1, 2.

Then, the LOF scheme is ON-compatible.

To simplify the presentation, we can let k = 1. Choosing a larger value for k
will not change the proof in a fundamental way, but will nonetheless make the
analysis more tedious. The idea is that, first, the nearest neighbor of o1 must
belong to C1. Then, since the distance between o1 and C1 is much larger than
the 1-distance of any point in C1, the value of LOF1(o1) will be larger. On the
other hand, since the 1-distances of points in Ci, for i = 1, 2, 3, are roughly the
same, the LOF values of these points will be small. Based on this observation,
we can set a lower bound for LOF1(o1) and an upper bound for the LOF value
for any point in C1 (C2 or C3) and show that the former is larger than the latter.
Similar arguments can be applied to o2.

Proof. See Appendix II.

3.4. Limitation of the Density-Based Scheme

One weakness of the density-based scheme is that it may rule out outliers that
are shifting from a low density pattern. To understand the problem, let us first
take a closer look at the concept of pattern. According to the Concise Oxford
Dictionary, a pattern is “a regular or logical form, order or arrangement of
parts ...” We observe that although a high density can reflect such a logical
form, order or arrangement, it nonetheless is not a necessary condition, at least
in the form defined in the current literature. As a result, an outlier does not
always have to be of a lower density than the pattern it deviates.

For example, consider the dataset D = C1∪C2∪{o} of two-dimensional points
as shown in Figure 3, where Do = {o} ∪ C2. The pattern, C1, is a straight line,
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Fig. 3. A low density pattern

which is of low density in a two dimensional space. Since the outlier o shifts away
from a low density pattern, the density-based scheme will not be very effective
to identify it, unless we use a small k. On the other hand, using too small a k
will rule out the outliers in C2, which can only be identified using a value for k
larger than its cardinality. In Subsection 4.3.2, we will show the ineffectiveness
of the LOF scheme in handling a similar case.

In the next section, we will introduce a new scheme that can handle low
density patterns such as the line of points in Figure 3, while at the same time
does not compromise detecting a group of staying-together outliers like those in
C2 in Figure 3.

4. Connectivity-Based Outlier Detection

4.1. Motivation

To cope with outliers with respect to low density patterns, we differentiate “low
density” from “isolativity”. While low density normally refers to the fact that the
number of points in the “close” neighborhood of an object is (relatively) small,
isolativity refers to the degree that an object is “connected” to other objects. As
a result, isolation can imply low density, but the other direction is not always
true. For example, in Figure 3 point o is isolated, while any point p in C1 is
not. But both of them are of roughly equally low density. In the general case a
low density outlier results from deviating from a high density pattern, and an
isolated outlier results from deviating from a connected pattern.

We observe that patterns that possess low densities usually exhibit low di-
mensional structures. For example, a pattern shown in Figure 3 is a line in the
two dimensional space. The isolativity of an object, on the other hand, can be
described by the distance to its nearest neighbor. In the general case we can also
talk about the isolativity of a group of objects, which is the distance from the
group to its nearest neighbor.

4.2. Concepts and Definitions

In the following definitions, the function dist() has the same meaning as that
defined in the previous sections, and G = {p1, p2, . . . , pr} is a subset of dataset
D.
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Definition 4.1. Let P, Q ⊆ D, P ∩ Q = ∅ and P, Q 6= ∅. For any given q ∈ Q,
we say that q is the nearest neighbor of P in Q if dist(q, P ) = dist(Q, P ).

Definition 4.2. A set-based nearest path, or SBN-path, from p1 on G is a
sequence 〈p1, p2, . . . , pr〉 of all the elements in G such that for all 1 ≤ i ≤
r − 1, pi+1 is a nearest neighbor of set {p1, . . . , pi} in {pi+1, . . . , pr}.

Imagine that a set initially contains object p1 only. Then it goes into an
iterative expansion process. In each iteration, it picks up its nearest neighbor
among the remaining objects. If its nearest neighbor is not unique, we can impose
a pre-defined order among its neighbors to break the tie. Thus an SBN-path is
uniquely determined. An SBN-path indicates the order in which the nearest
objects are presented.

Definition 4.3. Let s = 〈p1, p2, . . . , pr〉 be an SBN-path from p1 on G. A set-
based nearest trail, or SBN-trail, with respect to s is a sequence 〈e1, . . . , er−1〉
such that for all 1 ≤ i ≤ r − 1, ei = (oi, pi+1) where oi ∈ {p1, . . . , pi}, and
dist(ei) = dist(oi, pi+1) = dist({p1, . . . , pi}, {pi+1, . . . , pr}). We call each ei an
edge and the sequence 〈dist(e1), . . . , dist(er−1)〉 the cost description of 〈e1, . . . , er−1〉.

Again, if oi is not unique, we should break the tie by a pre-defined order.
Thus the SBN-trail is unique for any SBN-path.

Definition 4.4. Let s = 〈p1, p2, . . . , pr〉 be an SBN-path from p1 on G, and
e = 〈e1, . . . , er−1〉 be the SBN-trail with respect to s. The average chaining
distance from p1 on G, denoted by ac-distG(p1), is defined as

ac-distG(p1) =

r−1
∑

i=1

2(r − i)

r(r − 1)
· dist(ei).

The average chaining distance from p1 on G is the weighted sum of the cost
description of the SBN-trail for the SBN-path from p1 on G. Since this cost
description is unique for p1, our definition is well defined. Rewriting

ac-distG(p1) =
1

r − 1
·

r−1
∑

i=1

2(r − i)

r
· dist(ei),

and viewing the fraction following the summation sign as the weight, this value
can then be viewed as the average of the weighted distances in the cost description
of the SBN-trail. Note that larger weights are assigned to the earlier terms in
the SBN-trail. Thus the edges closer to p1 contribute more to ac-distG(p1) than
the ones farther away. As a result, a point shifting away more from a pattern is
likely to have a greater ac-dist. It is easy to see that, when all the dist(ei) are
equal, ac-distG(p) = dist(ei) for all p ∈ G.

Note that by definition, for any object p, the k-nearest neighborhood Nk(p)
does not contain the object itself. The average chaining distance from p to its
k-nearest neighbors is ac-distNk(p)∪{p}(p). In the following, in order to simply
notations, we let ac-distk(p) = ac-distNk(p)∪{p}(p).

Definition 4.5. Let p ∈ D and k be a positive integer. The connectivity-based
outlier factor (COF) at p with respect to its k-nearest neighborhood is defined
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as

COFk(p) =
|Nk(p)| · ac-distk(p)
∑

o∈Nk(p) ac-distk(o)
.

We define the connectivity-based outlier detection scheme (or simply the COF
scheme) under the generic outlier detection model as Cond(p; {k, u}) ≡ COFk(p)
≥ u. That is, p is an outlier with respect to parameters k and u if and only if
Cond(p; {k, u}) is true.

The connectivity-based outlier factor at p is the ratio of the average chaining
distance from p on Nk(p) and the average of the average chaining distances from
p’s k-distance neighbors to their own k-distance neighbors. It indicates how far
away a point shifts from a pattern. We now use an example to highlight the
motivation behind it.

Dataset Example 3. Consider the dataset in Figure 4. The pattern is a
single line and two points shift away from it. Suppose dist(1, 2) = 5, dist(2, 7) =
3, and the distance between any two adjacent points in the line is 1. Let k = 10.
We now calculate the average chaining distances for three sample points to show
how the COF values of those sample points reflect “shifting from pattern” in an
appropriate way.

For point 1: Nk(1) = {2, 9, 10, 8, 11, 7, 12, 6, 13, 5}. The SBN-path from 1 on
Nk(1) is

s1 = 〈1, 2, 7, 6, 5, 8, 9, 10, 11, 12, 13〉.
The SBN-trail for s1 is

tr1 = 〈(1, 2), (2, 7), (7, 6), (6, 5), (7, 8), (8, 9), (9, 10), (10, 11), (11, 12), (12, 13)〉.
The cost description of tr1 is c1 = 〈5, 3, 1, 1, 1, 1, 1, 1, 1, 1〉, and ac-distk(1) = 2.05.

For point 2: Nk(2) = {7, 6, 8, 5, 9, 4, 10, 3, 11, 1}. The SBN-path from 2 on
Nk(2) is

s2 = 〈2, 7, 6, 5, 4, 3, 8, 9, 10, 11, 1〉.
The SBN-trail for s2 is

tr2 = 〈(2, 7), (7, 6), (6, 5), (5, 4), (4, 3), (7, 8), (8, 9), (9, 10), (10, 11), (2, 1)〉.
The cost description of tr2 is c2 = 〈3, 1, 1, 1, 1, 1, 1, 1, 1, 5〉, and ac-distk(2) = 1.46.

For point 7: Nk(7) = {6, 8, 5, 9, 4, 10, 2, 3, 11, 12}. The SBN-path from 7 on
Nk(7) is

s3 = 〈7, 6, 5, 4, 3, 8, 9, 10, 11, 12, 2〉.
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The SBN-trail for s3 is

tr3 = 〈(7, 6), (6, 5), (5, 4), (4, 3), (7, 8), (8, 9), (9, 10), (10, 11), (11, 12), (7, 2)〉.
The cost description of tr3 is c3 = 〈1, 1, 1, 1, 1, 1, 1, 1, 1, 3〉, and ac-distk(7) = 0.98.

The average chaining distances for the other points on the line can be calcu-
lated similarly. The above results show that for points that shift more from the
pattern, such as points 1 and 2, the first few items in their cost description lists
(or SBN-trails) tend to be larger than those for points that shift less, such as
point 7. Since earlier items in a cost description list are assigned larger weights,
they contribute more to the corresponding average chaining distance, which is
the weighted sum of the values in the cost description. Thus, strongly shifted
points will have larger average chaining distances than weakly shifted ones.
In the general case, most points in the k-nearest neighborhood of a strongly
shifted point should have small average chaining distances. This results in a
larger connectivity-based outlier factor for such a strongly shifted point. On the
other hand, for a weakly shifted point, most points in its k-nearest neighborhood
should have comparable average chaining distance values, resulting in a smaller
connectivity-based outlier factor for such a point. The weakest shifted points
are those that belong to the pattern itself. Their connectivity-based outlier fac-
tors should be close to 1. For the three sample points in the above example, for
k = 10, we have the following:

COFk(1) = 2.1, COFk(2) = 1.35 and COFk(7) = 0.96.

4.3. Capabilities of the COF Scheme vs. the LOF Scheme

We first show that, like the LOF scheme, the COF scheme is resilient to DD-
skewed datasets. We then show that the COF scheme is more robust than the
LOF scheme in detecting outliers with respect to low density patterns. Finally
we use experimental results to show the strengths and weaknesses of both COF
and LOF schemes.

4.3.1. Detecting Outliers in DD-Skewed Datasets

Again, we use the dataset in Figure 2 to illustrate an example of DD-skewed
datasets. Our result is given in the following assertion.

Result 4.1. Under the same conditions given in Result 3.4, the COF scheme is
ON-compatible.

The basic idea of the proof is similar to that for the LOF scheme in Result
3.4. It differs only in the details of calculation.

Proof. See Appendix III.

4.3.2. Detecting Outliers with Respect to Low Density Patterns

We have used the dataset in Figure 3 as a typical example of outliers shifting
away from low density patterns. In order to simplify the analysis, we reshape the
dataset but still retain its basic characteristics. The resulting dataset is shown
in Figure 5.

Dataset Example 4. In Figure 5, C2 contains 8 points lying on the circle
with its center at (1, 0) and a radius of 1. Distances between any adjacent points
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on the circle are the same. C1 contains 91 points lying on two straight lines l1
and l2. The two lines meet at the point p = (20, 0). Line l1 and the x-axis form an
angle of π

2 , and so do line l2 and the x-axis. C1 contains p and 45 points on each
of the lines l1 and l2. Moreover, the distance between any two adjacent points on
each line is

√
2. Finally, o = (23, 0). According to Hawkins’ definition, it is easy

to understand that point o and the points in C2 are outliers while others are not.
Thus, the expectation is D = Do ∪ Dn, where Do = {o} ∪ C2 and Dn = C1.
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Fig. 5. Low density patterns
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Result 4.2. For the dataset given in Dataset Example 4, the LOF scheme is
not ON-compatible for the expectation Do and Dn.

We support the above assertion by the experimental data. We chose two
non-outlier points p = (20, 0) and q = (65, 45) from Dn and two outlier points
w = (0, 0) and o = (23, 0) from Do. The four points are illustrated in Figure 5.
Note that q is the end point of C1 on line l1. Note also that the total number
of points in the dataset is 100. We calculated the LOF values for all those four
points for k = 1, 2, . . . , 99. The calculation was done by a C++ program with
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a precision of 10 decimal digits. The computing environment is a Dell Inspiron
8100 Pentium 1GHz laptop with 512 MB RAM and 20 GB HD. The LOF values
of the four points are shown in Figure 6. For 1 ≤ k ≤ 7, we have LOFk(q) >
LOFk(w). Thus, for any value u, LOFk(w) ≥ u ⇒ LOFk(q) ≥ u. For 8 ≤ k ≤ 98,
we have LOFk(q) > LOFk(o). This means LOFk(o) ≥ u ⇒ LOFk(q) ≥ u. For
k = 99, we have LOFk(p) = 1.0013753983 > LOFk(w) = 0.9992365171, meaning
LOFk(w) ≥ u ⇒ LOFk(p) ≥ u. Because p and q are non-outliers and o and w
are outliers, by Theorem 2.1, the LOF scheme is not ON-compatible with the
given expectation.

Fig. 7. COF values of all points
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Fig. 8. LOF is O- and N-compatible

Result 4.3. For the dataset in Dataset Example 4, the COF scheme is ON-
compatible with the expectation Do and Dn as defined in the example.

This assertion is supported by the experimental result shown in Figure 7.
We chose k = 13 and calculate COF values for all points in the dataset. The
calculation was done by a C++ program with a precision of 10 decimal digits.
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The computing environment is the same as that for Result 4.2. All the eight
outliers in C2 have the same COF value 1.1518705044 and the other outlier o
has a COF value 1.0761474038. On the other hand, the first 15 points, starting
from p on each of the two lines `1 and `2, have COF values between 0.9941766178
and 0.9995440551; and the rest of the points in C1 have COF value of 1. Thus,
we can set a threshold of 1.076 to distinguish the outliers from the non-outliers.
Hence, by Definition 2.2, COF is ON-compatible with the expectation as defined
in Dataset Example 4.

At this point, we would like to know if the LOF scheme is O- and/or N-
compatible for the given dataset. The following assertion answers this question.

Result 4.4. For the dataset and the expectation defined in Dataset Example 4,
the LOF scheme is both O-compatible and N-compatible.

We support this assertion by experiments. For each k starting from 1, we
find the floor of outliers, which is the minimum of the LOF values for all the
outliers. We then identify the maximal set of non-outliers, called covered set of
non-outliers, whose LOF values are below the floor of outliers. If before k reaches
the maximum (i.e., the size of the dataset D), the the union of all the covered
sets identified so far is the entire set of non-outliers, then the LOF scheme is
O-compatible, otherwise it is not. A similar procedure is used to determine if the
LOF scheme is N-compatible, where we consider the ceiling of non-outliers and
covered set of outliers.

seq. no. 1 2

k values 9 18 26 45 99 16 18 26 45 99

floor of 0.9978 0.9774 0.9758 0.9887 0.9992 0.9800 0.9774 0.9758 0.9887 0.9992
outliers

non- 19 16 14 28 14 19 6 14 28 24
outliers
covered

Table 1. k values for LOF O-compatibility

seq. no. 1 2 3

k values 1 8 30 99 9 99

ceiling of non-outliers 1.0000 1.2572 1.2818 1.0014 1.1847 1.0014

outliers 3 6 8 1 8 1
covered

Table 2. k values for LOF N-compatibility

Plotted in Figure 8 is the experimental result. Each curve shows how the size
of the union of the covered outliers/non-outliers increases as k increases. The
figure shows that the entire set of ninety one non-outliers is covered completely
when k reaches the maximum, making the LOF scheme O-compatible, while the
set of nine outliers is covered when k reaches ten, implying N-compatibility of
the LOF scheme.

In Table 1 and Table 2 we give some sequences of k values for the O- and
N-compatibilities for the LOF scheme. Please note that each number on the
bottom row in each table indicates the number of outliers (non-outliers) that are
covered by the current k value but not by any of the preceding ones. Thus the
numbers of the covered outliers (non-outliers) in the same sequence sum up to
the total number of outliers (non-outliers) in the dataset.

4.3.3. Detecting Connected Outliers

Although the connectivity-based COF scheme is more effective than the density-
based scheme in detecting isolated outliers, it is not as effective in detecting “con-
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nected” outliers as the LOF scheme. Consider the dataset described in Dataset
Example 5.

Dataset Example 5. The dataset shown in Figure 9 contains a disk-shaped
pattern C and a line pattern L, where | C | = 180 and | L | = 20. Assume the
points in C are uniformly distributed, and so are the points in L. In addition,
the average of the distances between adjacent points in L is roughly the same as
the average of the 1-distance(p) for all p ∈ C. Let the expectation be D = Do ∪
Dn, where Do = L and Dn = C. We have the following result.

Result 4.5. For the dataset described in Dataset Example 5, the LOF scheme
is not ON-compatible, but is both O-compatible and N-compatible with the
expectation Do and Dn. However, the COF scheme is neither O-compatible nor
N-compatible with the expectation.
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Fig. 9. Connected outliers
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Fig. 10. LOF is not ON-compatible

We again use the experimental result to justify the above assertion. The result
is shown in Figure 10. The x-axis indicates k values, and the y-axis denotes the
number of non-outliers that are not covered (i.e., their LOF values are not lower
than the floor of the outliers for the corresponding k). It can be seen from Figure
10 that for each k, the curve never touches zero. Thus there is not a single value
for k such that all the non-outliers are covered. This means that the LOF scheme
is not ON-compatible. (The minimum number of non-outliers that escapes from
being covered is 10. This occurs when k = 183.) The LOF scheme is, however,
both O and N-compatible. This is shown in Figure 11. Some sequences of k values
for O-/N-compatibility are given in Tables 3 and 4.



20 J. Tang et al

seq. no. 1 2

k values 2 22 181 184 188 198

floor of 0.9287 1.1020 1.010 1.0056 1.0040 0.9982
outliers

no. of 23 142 15 178 1 1
non-outliers covered

Table 3. k values for LOF O-compatibility

seq. no. 1 2

k values 1 8 30 99

ceiling of 1.0359 1.0015 1.0165 1.0015
non-outliers

no. of 18 2 18 2
outliers covered

Table 4. k values for LOF N-compatibility

For the COF scheme, Figure 12 shows that it is neither O nor N-compatible.
From the figure, when k reaches the maximum (the size of the dataset), 157 out
of 180 non-outliers are covered, making COF not O-compatible, while 11 out 20
outliers are covered, making it not N-compatible.

The above results are consistent with intuition. Since all the points in the
dataset are evenly apart from their neighbors, they have the same connectivity.
So the COF scheme cannot distinguish the outliers from non-outliers, but the
LOF scheme can do better since the line pattern has a lower density than the
disk-shaped pattern.

4.3.4. Time Complexity

Although algorithmic aspects for finding the COF values is not the main concern
of the present paper, we include a brief discussion about the complexity for
completeness.

Suppose that the database D has n d-dimensional objects. Like the LOF
algorithm in (Breuning et al 2000), we can compute COF values for objects in
D in two major steps. The first step is preprocessing. In this step, we find all
k-nearest neighborhoods and all average chain distances. Precisely, we finds, for
any object p ∈ D, the k-nearest neighbors and then uses the Prim’s algorithm
(Cormen et al 2002) to find the average chain distance of p. The result of this
step is saved in an intermediate dataset M. We know that the number of k-
nearest neighbors of an object may be more than k, and in the worst case may
be as large as n − 1. But in average it is reasonable to assume that the number
of k-nearest neighbors of an object is O(k). Hence, the number of objects in the
intermediate dataset M is nk. As in the LOF algorithm, the number of objects
in M is independent of the dimensionality of the original dataset D. Since each
object have d many components, the size of M is O(nkd). The time complexity
for this step is O(n2d + nk2d) because we need to consider every object in D,
and for each object we first need to search D to find its k-nearest neighbors,
and then use the Prim’s algorithm to find its average chain distance from those
k-nearest neighbors.

In the second step, we computes, for any object p ∈ D, the value of COFk(p)
with the help of the intermediate dataset M. The original dataset is not needed at
this step, since M contains sufficient information. We scan the dataset M twice.
In the first scan, we find the average chain distance ac-distk(p) and the k-nearest
neighbors of p. In the second scan, we search for the average chain distances of
those k-nearest neighbors. The time complexity is O(|M|+k|M|+k) = O(nk2d).
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Combining the above two steps, the time complexity of computing COF
values of all objects in the dataset D is O(n2d + nk2d). This time complexity is
more efficient than that of the LOF algorithm in (Breuning et al 2000), because
one can show that the LOF algorithm has O(n2k3d) complexity.
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5. Experimental Results

We conducted performance experiments on both real-life and synthetic datasets
to evaluate our proposed COF scheme. Since it is shown in (Breuning et al
2000) that the LOF scheme is more effective than the distance-based schemes,
we will focus on comparing the COF scheme with the LOF scheme. The real-life
datasets were obtained from the UCI Machine Learning Repository (Blake and
Merz 1998). Algorithms were implemented in C++. The computing environment
is a Dell Inspiron 8100 Pentium 1GHz laptop with 512 MB RAM and 20 GB
HD.

As suggested in (Aggarwal and Yu 2001), one way to evaluate the performance
of an outlier detection scheme is to test the scheme on datasets to discover rare
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classes. The performance of the scheme is then measured by the percentage of
data, which are from the rare classes, discovered by the scheme. This approach
was adopted by (Harkins et al 2002, He et al 2003, Hu and Sung 2003), and was
used in our evaluation experiments.

In the following, we will introduce four metrics, namely, precision, recall,
rank power and implementation-free metric, for measuring the performance of
an outlier scheme.

5.1. Performance Metrics

Precision and Recall. These are the two traditional performance metrics of
the quality of an information system (Baeza-Yates and Ribeiro-Neto 1999, Salton
1989), and can be tailored to measure the performance of an outlier detection
scheme. Assume that a dataset D = Do∪Dn with Do being the set of all outliers
and Dn being the set of all non-outliers. Given any integer m ≥ 1, let Om denote
the set of outliers among the objects in the top m positions returned by an
outlier detection scheme. Then, we define precision and recall with respect to m
as follows:

Precision =
|Om|
m

, Recall =
|Om|
|Do|

.

That is, precision measures the percentage of outliers among the top m ranked
objects returned by the scheme, while recall measures the percentage of the total
outlier set included within the top m ranked objects. These relative precision
and recall measures have been used in evaluating performances of Web search
algorithms (see, f.g., (Chen et al 2001)). Note that the LOF (COF) scheme
ranks objects according to the LOF (COF) values of the objects. Objects with
larger LOF (COF) values are ranked higher than these with smaller values. The
distance-based scheme can also rank objects according to the sparseness of these
objects within a given distance. The coverage rate metric used in (Aggarwal and
Yu 2001, He et al 2003, Hu and Sung 2003) is essentially the recall measure.

Rank Power. Precision and recall metrics certainly measure the accuracy
of a scheme, but do not reflect the satisfaction level of the users, because both
metrics ignore the importance of the placements of the outliers returned by the
scheme. For example, placing three outliers in the top 3 positions is considered
by both metrics the same as placing in the bottom 3 positions among m objects
returned. In reality, users are mostly interested in top ranked results. That is,
not only how many results being returned is important, but also where they are
placed is critical. Rank power is a metric proposed in (Meng and Chen 2004) that
considers both the placements and the number of results returned by a scheme,
and is bounded from below by 1

2 . A survey of other performance metrics can also
be found in (Meng and Chen 2004). Here, we give a slightly revised definition
of rank power with values ranging from 0 to 1 so that a value of 1 indicates the
best performance and 0 indicates the worst. Consider that a scheme returns m
objects, placing from position 1 to position m. Assume that there are n outliers
among these m objects. For 1 ≤ i ≤ n, let Li denotes the position of the i-th
outlier, define the rank power of the scheme with respect to m as

RankPower(m) =
n(n + 1)

2
∑n

i=1 Li

.
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As can be seen from the above definition, rank power weighs the placements of
the returned outliers heavily. An outlier placed earlier in the returned list adds
less to the denominator of the rank power (and thus contributes more to the
rank power metric) than placed later in the list.

Implementation-Free Metric. When evaluating the time performance of
a proposed approach vs. the competing approaches, the evaluation results may
depend on data structures and indexing methods and other concrete techniques
used in implementation. It is stated in (Keogh and Kasetty 2003) that Imple-
mentation bias is the conscious or unconscious disparity in the quality of im-
plementation of a proposed approach, vs. the quality of implementation of the
competing approaches.” It is pointed out in (Keogh and Kasetty 2003) that one
possibility to avoid implementation bias is to design experiments that are free
from the possibility of implementation bias. For example, in artificial intelligence,
researchers often compare search algorithms by reporting the number of nodes
expanded, rather than the CPU time. To evaluate the time performance of the
COF scheme vs. the LOF scheme, we introduce an implementation-free metric.
Given any parameter k ≥ 1, for any object p in the dataset, the time needed to
compute COFk(p) is proportional to the size of Nk(p)

⋃∪o∈Nk(p)Nk(o), and the
time needed to compute LOFk(p) is propositional to the size of

Nk(p)
⋃

∪o∈Nk(p)(Nk(o)
⋃

∪q∈Nk(o)Nk(q)).

Denote the first size as C(k, p) and the second as L(k, p). These two sizes
are independent of implementation techniques, and hence we can use them as
implementation-free metrics to measure the time performance of COF and LOF
schemes.

5.2. Wisconsin Breast Cancer Data

The first dataset used is Wisconsin Breast Cancer Dataset, which has 699 records
with nine attributes. Each record is labeled as benign or malignant. We found
that there are many records occurring more than once in the dataset. In order to
avoid data bias, another important issue advocated in (Keogh and Kasetty 2003)
in performance evaluation, we removed all the duplicated records and records
with missing attribute values, and obtained a dataset with 213 records labeled
as benign and 236 as malignant. We then follow the experimental technique used
in (Aggarwal and Yu 2001, He et al 2003, Hu and Sung 2003) to remove some
of the malignant records to form a very unbalanced distribution. The resulting
dataset, as shown in Table 5, has 213 (91.4%) benign records and 20 (8.6%)
malignant records.

We ran both COF and LOF schemes on this dataset to find the rare cases
with different values of the parameter k. Table 6 shows the performance results
of the COF scheme in comparison with the LOF scheme. Here, the performance
is measured with the three metrics of recall, precision and rank power. The value
of the parameter k is 12, which is 5% of the number of records in the dataset. For
other values of k, the performance results are consistent with Table 6. The value
of m indicates top m ranked records returned by the COF (or LOF) scheme.
The ratio of these top m ranked records to the size of the dataset is also given
in column 1. Column 2 indicates the number of rare cases among top m ranked
records returned by the COF scheme, while column 6 indicates the number of
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Case Class Code Percentage of records

Commonly Occurring Classes 2 (benign) 91.4%

Rare Classes 4 (malignant) 8.6%

Table 5. The case distribution of Wisconsin Breast Cancer Dataset

m the COF Scheme the LOF Scheme
(top ratio) Malignant Recall Precision Rank Malignant Recall Precision Rank

Records Power Records Power

5(2%) 3 15% 60% 0.60 1 5% 20% 0.25

10(4.3%) 5 25% 50% 0.58 5 25% 50% 0.44

15(6.4%) 8 40% 53% 0.56 8 40% 53% 0.49

20(8.6%) 12 60% 60% 0.57 10 50% 50% 0.47

25(10.7%) 13 65% 52% 0.57 11 55% 44% 0.43

30(12.9%) 15 75% 50% 0.54 11 55% 34% 0.43

35(15%) 17 85% 49% 0.51 14 70% 40% 0.44

40(17%) 18 90% 45% 0.47 15 75% 36% 0.43

45(19%) 19 95% 42% 0.46 15 75% 33% 0.43

56(24%) 20 100% 36% 0.45 18 90% 32% 0.39

Table 6. Detected rare cases in Wisconsin Breast Cancer Dataset

rare cases among top m ranked records returned by the LOF scheme. The other
six columns show values of recall, precision and rank power for both COF and
LOF schemes. For example, among top 25 ranked records returned by the COF
scheme, 13 are rare cases, with 65% recall, 52% precision and 0.57 rank power;
while among top 25 ranked records returned by the LOF scheme, 11 are rare
cases, with 55% recall, 44% precision and 0.43 rank power. Among top 15 ranked
records returned by the two schemes, both schemes detect 8 rare cases, with the
same 40% recall and the same 53% precision. However, the COF scheme has
0.56 rank power which is larger than the 0.49 rank power of the LOF scheme.
This implies that the COF scheme places these rare cases higher than the LOF
scheme, hence performs better than the LOF scheme when placements of the
results are considered. The last row indicates that the COF finds all the 20 rare
cases among top 56 ranked records, while the LOF scheme still misses two. The
recall and precision measurements exhibit that the COF scheme outperforms
the LOF scheme except for the two cases of top 10 and top 15 ranked records.
For these two cases, both schemes performs equally well in terms of recall and
precision, however the COF scheme performs better in terms of rank power.

5.3. Image Segmentation Data

This dataset contains 210 records with 19 attributes. These records form seven
equally-sized classes labeled respectively as brickface, sky, foliage, cement, win-
dow, path and grass. There are no duplicated records nor records with missing at-
tributes values. Following the similar approach as in (Aggarwal and Yu 2001, He
et al 2003, Hu and Sung 2003), we removed some records from the dataset to
generate rare cases. Precisely, we removed 27 records from each of the brickface,
grass and path classes. The resulting dataset has 129 records with 9 records as
rare cases (3 for each of the brickface, grass and path classes). Table 7 shows the
class distribution of the dataset.

As for the first dataset, we ran both COF and LOF schemes on the second
dataset to find the rare cases with different values of the parameter k. Table 8
shows the performance results measured with recall, precision and rank power.
The value of the parameter k is 7, which is 5% of the size of the dataset. Consis-
tent performance results are obtained for other values of k. Again, the value of m
indicates top-m ranked records (or top-ratio of records) returned by the COF (or
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Case Class Code Percentage of records

Commonly Occurring Classes sky, foliage, cement, window 93%

Rare Classes brickface, path, grass 7%

Table 7. The case distribution of Image Segmentation Dataset

m the COF Scheme the LOF Scheme
(top ratio) Brickface Recall Precision RankPower Brickface Recall Precision RankPower

Grass Grass
Path Path

Records Records

5(3.9%) 1 11% 20% 0.25 1 11% 20% 0.25

10(7.8%) 3 33% 30% 0.27 2 22% 20% 0.25

15(11.6%) 4 44% 27% 0.29 2 22% 13% 0.25

20(15.5%) 5 56% 25% 0.27 4 44% 20% 0.21

25(19%) 7 78% 28% 0.27 4 44% 16% 0.21

30(23%) 7 78% 28% 0.27 4 44% 13% 0.21

35(27%) 8 89% 23% 0.26 5 56% 14% 0.12

40(31%) 8 89% 23% 0.26 6 67% 15% 0.18

45(35%) 9 100% 23% 0.25 6 67% 13% 0.48

Table 8. Detected rare cases in Image Segmentation Dataset

LOF) scheme. Column 2 indicates the number of rare cases among top-m ranked
records returned by the COF scheme, while column 6 does the same for the LOF
scheme. The other six columns assess recall, precision and rank power for both
COF and LOF schemes. For example, among top 15 ranked records returned
by both schemes, the COF scheme detects 4 rare cases, with 44% recall, 30%
precision and 0.29 rank power, while the LOF scheme detects 2 rare cases, with
22% recall, 13% precision and 0.25 rank power. Among top 45 ranked records,
the COF scheme detects all the 9 rare cases, while the LOF scheme still misses
3. Results in Table 8 shows that the COF scheme outperforms the LOF scheme
except for the case of top 5 ranked records, where both schemes perform equally
well in terms of three metrics.

5.4. Johns Hopkins University Ionosphere Data

This dataset has 351 records with 34 attributes. These records form two classes
labeled respectively as good and bad. There are no duplicated records nor records
with missing attributes values. Following the similar experimental method as in
(Aggarwal and Yu 2001, He et al 2003, Hu and Sung 2003), we removed some
records from the dataset to generate rare cases. The resulting dataset has 235
records with 215 records labeled as good and 10 labeled as bad. Table 9 shows
the class distribution of the dataset.

Again, we ran both COF and LOF schemes on the third dataset to test the
performance of the COF scheme vs. the LOF scheme in terms of recall, precision
and rank power. The results are given in Table 10, where the parameter k is
set to 12, which is 5% of the size of the dataset. Consistent performance results
are obtained for other values of k. Once again, the value of m indicates top m
ranked records (or top-ratio of records) returned by the COF (or LOF) scheme.
Columns 2 and 6 indicate respectively the number of rare cases among top m
ranked records returned by COF and LOF schemes. The other six columns assess
recall, precision and rank power for both schemes. For example, among top 5

Case Class Code Percentage of records

Commonly Occurring Classes Good 95.7%

Rare Classes Bad 4.3%

Table 9. The case distribution of Johns Hopkins University Ionosphere Dataset
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m the COF Scheme the LOF Scheme
(top ratio) Bad Recall Precision RankPower Bad Recall Precision RankPower

Records Records

5(2.1%) 5 50% 100% 1.00 4 40% 80% 0.83

10(4.3%) 7 70% 70% 0.85 6 60% 60% 0.75

15(6.4%) 9 90% 60% 0.76 8 80% 53% 0.71

20(8.5%) 10 100% 50% 0.69 9 90% 45% 0.67

Table 10. Detected rare cases in Johns Hopkins University Ionosphere Dataset

ranked records returned by both schemes, the COF scheme detects 5 rare cases,
with 50% recall, 100% precision and 1.00 rank power, while the LOF scheme
detects 4 rare cases, with 40% recall, 80% precision and 0.83 rank power. Among
the top 20 ranked records, the COF scheme detects all the 10 rare cases, while
the LOF scheme still misses 1. Results in Table 10 shows that the COF scheme
outperforms the LOF scheme in terms of recall, precision and recall.
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Fig. 13. Isolation evidences of Wisconsin Breast Cancer Dataset

5.5. COF Scheme Performance vs. Outlier Isolativity

In the previous subsection, experimental results on three real-life datasets show
that the COF scheme outperforms the LOF scheme in terms of recall, preci-
sion and rank power. As addressed in section 4, one major motivation for us to
introduce the COF scheme is to deal with “isolativity” of outliers. Isolativity
implies low density, but the latter does not always imply the former. We show
in Section 4 that the COF scheme can perform well in detecting isolated outliers
that deviate from connected patterns, but the LOF scheme cannot do so well.
Here, we examine why the COF scheme outperforms the LOF scheme on these
three datasets via analyzing isolativity of outliers. Since the three datasets have
respectively dimensions of 9, 19 and 34, it is impossible to generate some direct
visualization of the possible isolativity of the outliers. However, for an isolated
outlier o, it is easy to see that the cost description of the SBN-path of o on Nk(o)
will reflect the isolativity of o. Therefore, we will analyze the cost descriptions of
outliers in the datasets. To simplify the illustration, we chose top 3 ranked out-
liers returned by the COF scheme for each of the three datasets, and plotted the
related cost descriptions in Figures 13, 14 and 15, respectively. In these figures,
the x-axis indicates the indexes of the cost description of the SBN-path on the
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k-nearest neighborhood of the outlier, and the y-axis indicates the corresponding
costs (i.e., the distances as defined in Definition 4.3), where k = 12 in Figures 13
and 15, and k = 7 in Figure 14. Recall from Definition 4.3 that, given an outlier
o, the first cost in the cost description is the distance from o to its closest object
in the dataset. In general, the i-th cost is the distance from o and its (i−1) closest
objects to the rest of the objects in the dataset. For example, in Figure 14, for
the top 1 ranked outlier returned by the COF scheme, the first cost is 111.317,
meaning that this outlier is 111.37 distance away from the rest of the objects in
the dataset. The second cost is 47.546, meaning that this outlier and its closest
neighbor is 47.546 distance away from the rest of objects in the dataset. These
costs in the three figures provide good evidences that the top 3 ranked outliers
are isolated from the non-outliers. Similar isolations also exist for other outliers.
These isolation properties of the outliers somehow provide evident support to
the better performance of the COF scheme.
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5.6. Implementation-Free Performance

In subsection 5.1, we introduced an implementation-free metric to evaluate the
time performance of both COF and LOF scheme. Given any parameter k ≥ 1 and
any object p in the dataset, the time needed to compute COFk(p) is proportional
to

C(k, p) = |Nkp
⋃

∪o∈Nk(p)Nk(o)|,
and the time needed to compute LOFk(p) is propositional to

L(k, p) = |Nkp
⋃

∪o∈Nk(p)(Nk(o)
⋃

∪q∈Nk(o)Nk(q))|.
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Fig. 16. C(k, p) and L(k, p) of Wisconsin Breast Cancer Dataset
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Fig. 17. C(k, p) and L(k, p) of Image Dataset

These two metrics measure the number of objects involved in computing re-
spectively COFk(p) and LOFk(p), and are independent of implementation tech-
niques. Figures 16, 17 and 18 show the results of these two metrics for Wisconsin
Breast Cancer, Image and Ionosphere Datasets. In these three figures, the x-
axis indicates the index of object p in the dataset, y-axis indicates the values of
C(k, p) and L(k, p), and k is set to 5% of the size of the dataset. In Figure 16,
k = 12, and L(12, p) is on the average 109 times larger than C(12, p). In Figure
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17, k = 7, and L(7, p) is on the average 7 times larger than C(7, p). In Figure 18,
k = 12, and L(12, p) is on the average 12 times larger than C(7, p). Consistent
results are obtained for other values of k. It is clearly that the COF scheme out-
performs the LOF scheme based on the given implementation-free metrics. It is
interesting to note that both C(k, p) and L(k, p) fluctuate dramatically for Wis-
consin Breast Cancer Dataset, while remaining almost stable for the other two
datasets. It is also interesting to note that both C(k, p) and L(k, p) (in particular
the latter) can be larger than the size of the dataset, implying that numerous
overlappings occur among the neighborhoods of p and p’s nearest neighbors.
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5.7. Time Performance and Scalability

Here, we report execution time performance and scalability of the COF and
LOF schemes. Figure 19 shows execution times of the two schemes on Wisconsin
Breast Cancer (k = 12), Image (k = 7) and Ionosphere Datasets (k = 12). As
before, the parameter k is set to 5% of the dataset size. Note that both COF
and LOF schemes need, for any object in the dataset, to find its k-nearest neigh-
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bors. and there are many different methods (see, for example, (Roussopoulos
et al 1995)) with variable time performances depending on the underlying data
structures and indexing methods. In order to avoid implementation-bias, we use
the same method to find k-nearest neighbors in both schemes. It is clear that
the COF scheme has better scalability than the LOF scheme with respect to k.
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Fig. 20. Scalability of the parameter k
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Fig. 21. Scalability of dataset sizes (k = 50)

To evaluate the scalability of the two schemes about various parameter k
values, we prepared a synthetic, 20-dimensional dataset with 5,000 objects. We
ran both schemes for k from 10 to 250 with an increment of 10, and report
the results in Figure 20. The COF scheme has a very steady performance with
respect to k, while the LOF has some rapid growth in time as k increases. We also
prepared five synthetic, 20-dimensional datasets with respectively 1,000, 2,000,
3,000, 4,000 and 5,000 records. We first ran both schemes on these datasets with
k = 50, and then repeated the experiments with k = 100. Figure 21 shows the
scalability of both schemes for k = 50, while Figure 22 shows the scalability
for k = 100. In both experiments, the COF scheme has a slower growth in time
than the LOF scheme as k increases, hence the COF scheme has better scalability
about dataset sizes.
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6. Conclusions

The existing outlier detection schemes are either distance-based or density-based.
The evaluations of their capabilities are mostly ad-hoc, and lack theoretical
framework for effective analysis and synthesis. We propose a theoretical frame-
work based on which the capabilities of various kinds of schemes can be an-
alyzed. Based on this framework, we study the capabilities of these schemes
on datasets with different characteristics. We find that both the density-based
and the connectivity-based schemes are more capable than the distance-based
schemes. In comparing the former two schemes, we see that the density-based
schemes are effective in an environment where patterns possess sufficiently higher
densities than outliers, while the connectivity-based scheme works better for iso-
lated outliers that possess comparable densities with the patterns.
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Fig. 22. Scalability of Dataset Sizes (k = 100)

Our study on the capabilities of density-based and connectivity-based schemes
shows that we should not view one scheme as being superior to the other in all
aspects. To enhance the effectiveness, therefore, one scheme should be used as
a compliment, not a replacement, of the other in applications with different re-
quirements. Thus, it is interesting to develop an effective and efficient method
by which the two schemes can be seamlessly integrated. Please note that sim-
ply wrapping them into one package does not work. This is because their views
toward outlier formulations do not match, and sometime are conflicting. Thus
a naive approach may produce contradictory results, and incurs needlessly high
overhead.

Another interesting issue has to do with the refinement of the framework. Our
compatibility theory is based on the precise matching between the outlier for-
mulation schemes and users’ intuitions. In reality, however, it is usually difficult
to detect all the outliers that fit users’ intuitions. Thus it is probably meaning-
ful to incorporate such a factor as the percentage of the outliers that a scheme
can return into the framework. Furthermore, from our experimental results, we
observe that for some datasets, for a small number of k values a majority of the
covered points can be found. (This is evidenced by Figures 8, 11 and 12, where
the sharp slopes of the curves end at a small value of k, and then followed by
more flat slopes that span the rest of the k values). Thus by considering only
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a portion of the outliers, there is a high potential to enhance the performance
substantially.

We have shown that there are respective cases where the distance-based,
density-based, and connectivity-based outlier detection schemes are not ON-
compatible. It is interesting to know whether there exists a case for which all the
schemes are not ON-compatible.

Acknowledgements. The authors thank the anonymous referees for their valuable
comments that help us to revise the early draft of the paper. The last problem in
Section 6 was suggested to us by one of the referees. The authors also thank Ms. Yin
Ling Cheung for her assistance in experiments reported in subsection 4.3.3. Part of the
second author’s work was done while he was visiting the Chinese University of Hong
Kong.

References

Aggarwal C, Yu P (2001) Outlier detection for high dimensional data. In Walid G. Aref (eds).
Proceedings of the 2001 ACM-SIGMOD International Conference on Management of Data,
Santa Barbara, CA, USA, May 2001, ACM, pp 37-46.

Angiulli F, Pizzuti C (2002) Fast outlier detection in high dimensional spaces. In Tapio Elo-
maa, Heikki Mannila, Hannu Toivonen (eds). Principles of Data Mining and Knowledge
Discovery, Proceedings of the 6th European PKDD Conference, Helsinki, Finland, August
2002. Lecture Notes in Computer Science 2431 Springer 2002, pp 15-26.

Arning A, Aggarwal R, Raghavan P(1996) A linear method for deviation detection in large
databases. In Evangelos Simoudis, Jiawei Han, Usama M. Fayyad (eds). Proceedings of
the Second International Conference on Knowledge Discovery and Data Mining (KDD96),
Portland, Oregon, USA, 1996, AAAI Press, pp 164-169.

Baeza-Yates R, Ribeiro-Neto B (1999) Modern Information Retrieval. Addison Wesley.
Bay SD, Schwabacher M (2003) Mining distance-based outliers in near linear time with ran-

domization and a simple pruning rule. In Lise Getoor, Ted E. Senator, Pedro Domingos,
Christos Faloutsos (eds). Proceedings of the Ninth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, Washington, DC, USA, August 2003, ACM pp
29-38.

Barnett V, Lewis T (1994) Outliers in Statistical Data. John Wiley.
Blake CL, Merz CJ (1998) UCI Repository of machine learning databases.

http://www.ics.uci.edu/ mlearn/MLRepository.html. Department of Information and
Computer Science. University of California Irvine, CA.

Breuning M, Kriegel H, Ng R, Sander J (2000) LOF: Identifying density-based Local Outliers.
In Weidong Chen, Jeffrey F. Naughton, Philip A. Bernstein (eds). Proceedings of the 2000
ACM SIGMOD International Conference on Management of Data, Dallas, Texas, USA,
May 2000, ACM, pp 427-438.

Chen Z, Fu A, Tang J (2003) On complementarity of cluster and outlier detection schemes.
In Yahiko Kambayashi, Mukesh K. Mohania, Wolfram Wó (eds). Data Warehousing and
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Appendix I: Proof of Result 3.3

Result 3.3. The DB(n, v)-outlier scheme for the dataset in Dataset Example 2
is not O-compatible.

Proof. Let p ∈ C3 be the point satisfying the condition:

dist(o2, p) = distmax(o2, C3).

Let n > 0 be any value. We consider the following cases for the ranges of radius
v.

Case 1: 0 < v ≤ distmax(o1, C1). By Condition 3, | Nv(o1) | < n ⇒ | Nv(p) |
< n.

Case 2: distmax(o1, C1) < v ≤ diam({o2} ∪ C2). We have | Nv(o1) | ≥
| C1 | and, by Condition 5, | Nv(p) | < | N 1

2 diam(C3)(p) |. Thus, by Condition

6, | Nv(p) | < 3
4 | C3 |. By condition 1, | Nv(p) | < | C1 |. Thus | Nv(p) | <

| Nv(o1) |, meaning | Nv(o1) | < n ⇒ | Nv(p) | < n.
Case 3: diam({o2} ∪ C2) < v ≤ diam({o1} ∪ C1 ∪ {o2} ∪ C2). We have

| C2 | ≤ | Nv(o2) | by the first inequality. On the other hand, by Condition
9, v < dist({o1} ∪ C1 ∪ {o2} ∪ C2, C3) ≤ dist(p, {o1} ∪ C1 ∪ {o2} ∪ C2). Thus
Nv(p) ∩ ({o1} ∪ C1 ∪ {o2} ∪ C2) = φ, implying Nv(p) ⊆ C3. Thus, | Nv(p) | ≤
| C3 |. By Condition 1 and the inequality derived earlier in this case, | Nv(p) | <
| Nv(o2) |. This implies | Nv(o2) | < n ⇒ | Nv(p) | < n.

Case 4: diam({o1} ∪ C1 ∪ {o2} ∪ C2) < v ≤ dist(o2, p). The first inequality
implies {o1} ∪ C1 ∪ {o2} ∪ C2 ⊆ Nv(o2). This means | {o1} ∪ C1 ∪ {o2} ∪ C2 |
≤ | Nv(o2) |. The second inequality and Condition imply v < dist(p, C2), which
in turn implies Nv(p) ∩ C2 = φ. Thus, Nv(p) ⊆ {o1} ∪ C1 ∪ {o2} ∪ C3. This
means | Nv(p) | ≤ | {o1} ∪ C1 ∪ {o2} ∪ C3 |. Since C2 ∩ ({o1} ∪ C1 ∪ {o2}) =
φ, C3 ∩ ({o1} ∪ C1 ∪ {o2}) = φ, and by Condition 1, | C3 | < | C2 |, we have
| {o1}∪C1 ∪{o2}∪C3 | < | {o1}∪C1 ∪{o2}∪C2 |. Hence, | Nv(p) | < | Nv(o2) |,
implying | Nv(o2) | < n ⇒ | Nv(p) | < n.

Case 5: dist(o2, p) < v. By the definition of the distance between two set of
objects, we have dist(o2, p) ≥ dist({o1} ∪ C1 ∪ {o2} ∪ C2, C3). Thus, it follows
from Condition 9 that diam({o1} ∪ C1 ∪ {o2} ∪ C2) < v. This, together with
the fact that dist(o2, p) = distmax(o2, C3), implies Nv(o2) contains the entire
dataset, except o2 itself. Thus, | Nv(o2) | ≥ Nv(p), implying | Nv(o2) | < n ⇒
| Nv(p) | < n.

Putting all the five cases together, by Theorem 2.2, the DB(n, v)-outlier
scheme is not O-compatible. 2
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Appendix II: Proof of Result 3.4

Result 3.4. Assume that the dataset in Dataset Example 2 satisfies two addi-
tional conditions:

(a) 1-distancemin(Ci)

1-distancemax(Ci)
≥ 4

5 , where 1 ≤ i ≤ 3; and (b) |N1(oj)| = 1 for j = 1, 2.

Then, the LOF scheme is ON-compatible.
Proof. Consider k = 1. We first estimate LOF1(o1). By Conditions 2, 8

and 9, N1(o1) ⊆ C1. By Condition 2, for any p ∈ N1(o1), reach-dist1(o1, p) =
dist(o1, p) > dist(o1, C1). Hence,

lrd1(o1) =
|N1(o1)|

∑

p∈N1(o1) reach-dist1(o1, p)
≤ 1

dist(o1, C1)
.

For any p ∈ N1(o1) and any q ∈ N1(p), by Condition 2, reach-dist1(p, q) ≤
dist(o1, C1)/4. Thus,

lrd1(p) =
|N1(p)|

∑

q∈N1(p) reach-dist1(p, q)
≥ 4

dist(o1, C1)
.

Therefore,

LOF1(o1) =

∑

p∈N1(o1)
lrd1(p)

lrd1(o1) · |N1(o1)|
≥ 4.

Similarly, by Conditions 4, 8 and 9, we have LOF1(o2) ≥ 4.
For any p ∈ Ci, i = 1, 2, 3, and for any q ∈ N1(p), by the definition of

reachability distance we have 1-distancemin ≤ reach-dist1(p, q) ≤ 1-distancemax.
Hence, 1

1-distancemax

≤ reach-dist1(p, q) ≤ 1

1-distancemin

. Thus,

1

1-distancemax

≤ lrd1(p) =
|N1(p)|

∑

q∈N1(p) reach-dist1(p, q)
≤ 1

1-distancemin

.

This implies

LOF1(p) =

∑

q∈N1(p) lrd1(q)

lrd1(p) · |N1(p)| ≤ 1-distancemax

1-distancemin

≤ 5

4
= 1.25.

The last part of the above expression was derived from the given additional
condition (a).

Combining the above analysis together, the LOF scheme detects outliers o1

and o2 from the non-outliers with the parameter setting (k, u) = (1, 2). 2

Appendix III: Proof of Result 4.1

Result 4.1. Under the same conditions given in Result 3.4, the COF scheme is
ON-compatible.

Proof. Consider k = 1. We first estimate COF1(o1). By Conditions 2, 8
and 9, N1(o1) ⊆ C1. By Condition 2 and the given additional condition (b) as
stated in Result 3.4, N1(o1) has only one p such that dist(o1, p) = dist(o1, C1) ≥
4 × 1-distancemax(C1). Thus, it follows from the definition of average chaining
distance that ac-dist1(o1) = dist(o1, p) ≥ 4 × 1-distancemax(C1).

For any q ∈ C1, by Conditions 2, 8 and 9, N1(q) ⊆ C1. We have by the
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definition of average chaining distance that 1-distancemin(C1) ≤ ac-dist1(p) ≤
1-distancemax(C1). Hence, by the additional condition (a) as stated in Result
3.4,

COF1(o1) =
dist(o1, p)

ac-dist1(p)
≥ 4 × 1-distancemax(C1)

1-distancemax(C1)
≥ 4,

COF1(q) =
|N1(q)| · ac-dist1(q)
∑

x∈N1(q)
ac-dist1(x)

≤ 1-distancemax(C1)

1-distancemin(C1)
≤ 1.25.

Similarly, by Conditions 4, 8 and 9, and the additional conditions (a) and
(b), we have COF1(o2) ≥ 4 and for any q ∈ Ci, i = 2, 3, COF1(q) ≤ 1.25.

Combining the above analysis together, the parameter setting of (k, u) =
(1, 2) enables the COF scheme to detect the two outliers o1 and o2 from non-
outliers. 2
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