Sublinear time width-bounded separators and their application to the protein side-chain packing problem

Bin Fu \cdot Zhixiang Chen

Published online: 20 July 2007
© Springer Science+Business Media, LLC 2007

Abstract

Given $d>2$ and a set of n grid points Q in \Re^{d}, we design a randomized algorithm that finds a w-wide separator, which is determined by a hyper-plane, in $O\left(n^{\frac{2}{d}} \log n\right)$ sublinear time such that Q has at most $\left(\frac{d}{d+1}+o(1)\right) n$ points on either side of the hyper-plane, and at most $c_{d} w n^{\frac{d-1}{d}}$ points within $\frac{w}{2}$ distance to the hyper-plane, where c_{d} is a constant for fixed d. In particular, $c_{3}=1.209$. To our best knowledge, this is the first sublinear time algorithm for finding geometric separators. Our 3D separator is applied to derive an algorithm for the protein side-chain packing problem, which improves and simplifies the previous algorithm of Xu (Research in computational molecular biology, 9th annual international conference, pp. 408-422, 2005).

Keywords Sublinear time algorithm • Width-bounded separator • Random sampling

1 Introduction

The work in this paper aims for efficient identification of width-bounded separators for a given set of points in the d-dimensional Euclidean space and their applications to intractable practical problems. Intuitively, a width-bounded separator utilizes a simple structured hyper-plane to divide the set into two "balanced" subsets, while at

[^0]the same time maintaining a "low density" of the set within a given distance to the hyper-plane. This new notion of separators was initially introduced by Fu (2006), and it was shown that these separators are very suitable in solving a number of distancebounded geometric problems such as the protein folding problem in the HP model in (Fu and Wang 2004) and some other intractable problems in (Fu 2006; Chen et al. 2006). The main contributions of this paper are summarized as follows.

In Sect. 5, we present an $O\left(n^{\frac{2}{d}} \log n\right)$ sublinear time randomized algorithm for finding a width-bounded separator in the dimensional Euclidean space \Re^{d} for $d>2$. To our best knowledge, this is the first sublinear time algorithm for finding geometric separators. For many other geometric problems, a higher dimension brings higher computational complexity. However, it is interesting to notice that the exponent of our algorithm's computational complexity is reversely proportional to the dimension of the space.

In Sect. 6, we exhibit an application of our sublinear time separator to the protein side-chain packing problem. One of the most fundamental problems in the molecular biology is to predict a protein's 3D structure when given its 1D aminoacid sequence. Although much effort has been made for decades, this problem remains unsolved. An important component of the general protein structure prediction problem is the protein side-chain packing problem. It determines the side-chain positions onto the fixed backbone (Ponter and Richards 1987). This problem has been proved to be NP-complete (Akutsu 1997). Recently, a $r_{\text {ave }}^{O\left(n^{\frac{2}{3}} \log n\right)}$ time algorithm was shown by Xu (2005), where r_{ave} is the average number of side-chain rotamers in a protein. We apply width-bounded separators to the protein side-chain packing problem. The length of side-chain of each amino acid is small compared to the size of one protein. Two side-chains in a protein molecular do not interact with each other if their distance is slightly larger than the sum of their lengths according to models used in (e.g. Canutescu et al. 2003; Chazelle et al. 2004; Xu 2005). Using our width-bounded separators, we obtain an algorithm with computational time $r_{\max }^{O\left(n^{\frac{2}{3}}\right)}$, where $r_{\max }$ is the maximal number of side-chain rotamers among a protein. Since the number of rotamers is usually small, we assume both $r_{\text {ave }}$ and $r_{\text {max }}$ are constants, hence our new algorithm has a better complexity bound.

2 The related work

There have been extensive efforts on finding separators due to their critical roles in many issues of algorithm design and analysis. Because of space limit we cannot give a comprehensive review of the related work but list some representative results in this area. Lipton and Tarjan (1979) proved that every n vertex planar graph has at most $\sqrt{8 n}$ vertices whose removal separates the graph into two disconnected parts of size at most $\frac{2}{3} n$. Their $\frac{2}{3}$-separator has been improved by a series of papers (Djidjev 1982; Gazit 1986; Alon and Thomas 1990; Djidjev and Venkatesan 1997) with the best record $1.97 \sqrt{n}$ by Djidjev and Venkatesan (1997). Spielman and Teng (1996) showed a $\frac{3}{4}$-separator with size $1.82 \sqrt{n}$ for planar graphs. Separators for more general graphs were derived in (Gilbert et al. 1984; Alon et al. 1990; Plotkin et al. 1990). A planar graph can be induced by a set of non-overlapping discs on the plane such that
every vertex corresponds to a disc center and each edge corresponds to a tangent relationship between two discs. The separator developed by Miller et al. (1991) is a generalization of planar graph separators to the d-dimensional Euclidean space. Some $O(\sqrt{k \cdot n})$ size separators for k-thick systems and the related algorithms were derived in (Miller and Thurston 1990; Miller and Vavasis 1991; Miller et al. 1991; Smith and Wormald 1998).

The study of width-bounded separators were initiated by Fu (2006) and has yielded successful applications in (Fu and Wang 2004; Chen et al. 2006). Our widthbounded geometric separator has some interesting advantages over previous geometric separators such as the popular geometric separator by Miller et al. (1991). First, the width-bounded separator has a simple linear structure as the separator is determined by a hyper-plane and a width parameter w, but Miller et al.'s separator is a sphere, which can be also found in linear time (Eppstein et al. 1995). The linear structure is very crucial for us in deriving sublinear time algorithm in this paper. Second. the width-bounded separator has a smaller constant in its size upper bound factor than other separators. The constant factor was not clearly given in Miller et al.'s separator. Furthermore, their separator only has a balance condition bounded by $\frac{d+1}{d+2} n$ due to their transformation to a higher dimension, while the balance condition of the widthbounded separator is bounded by $\frac{d}{d+1} n$. Third, the width-bounded separator can be used to deal with an arbitrary set of points via using a set of grid points and weights to characterize the distribution of points from the input set.

3 Notations, definitions, and width-bounded separators

For any finite set $A,|A|$ denotes the number of elements in A. Let \Re be the set of all real numbers. For two points p_{1}, p_{2} in the d-dimensional Euclidean space \mathfrak{R}^{d}, $\operatorname{dist}\left(p_{1}, p_{2}\right)$ is the Euclidean distance between p_{1} and p_{2}. For a set $A \subseteq \Re^{d}, \operatorname{dist}\left(p_{1}, A\right)=\min _{q \in A} \operatorname{dist}\left(p_{1}, q\right)$. The diameter of any $P \subseteq \Re^{d}$ is $\max _{p_{1}, p_{2} \in P} \operatorname{dist}\left(p_{1}, p_{2}\right)$. For $a>0$ and a set A of points in \Re^{d}, if the distance between every two points in A is at least a, then A is called a-separated. For $\epsilon>0$ and a set Q of points in \Re^{d}, an ϵ-sketch of Q is another set P of points in \Re^{d} such that each point in Q has a distance $\leq \epsilon$ to some point in P. We say P is a sketch of Q if P is an ϵ-sketch of Q for some constant $\epsilon>0$ (that does not necessarily depend on the size of Q). A sketch set is usually a 1 -separated set such as a grid point set. A weight function $w: P \rightarrow[0, \infty)$ is often used to measure the density of Q near each point in P. Let $f: \mathfrak{R}^{d} \rightarrow \mathfrak{R}$ be a smooth function. Its surface is the set $L(f)=\left\{v \in \Re^{d} \mid f(v)=0\right\}$. A hyper-plane in \mathfrak{R}^{d} through a fixed point $p_{0} \in \mathfrak{R}^{d}$ is defined by the equation $\left(p-p_{0}\right) \cdot v=0$, where v is a normal vector of the plane and "." is the usual vector inner product. A hyper-plane in \mathfrak{R}^{d} is determined by $L(f)$ for some linear function $f: \mathfrak{R}^{d} \rightarrow \mathfrak{R}$.

Definition 1 Given any $Q \subseteq \mathfrak{R}^{d}$ with a sketch $P \subseteq \mathfrak{R}^{d}$, a constant $a>0$, and a weight function $w: P \rightarrow[0, \infty)$, an a-wide-separator is determined by the surface $L(f)$ for some linear function $f: \mathfrak{R}^{d} \rightarrow \mathfrak{R}$. The separator has two measurements for its quality of separation: (1) balance $(L(f), Q)=\frac{\max \left(\left|Q_{1}\right|,\left|Q_{2}\right|\right)}{|Q|}$, where $Q_{1}=$
$\{q \in Q \mid f(q)<0\}$ and $Q_{2}=\{q \in Q \mid f(q)>0\}$; and (2) density $\left(L(f), P, \frac{a}{2}, w\right)$, where in general density $(A, P, x, w)=\sum_{p \in P, \operatorname{dist}(p, A) \leq x} w(p)$ for any $A \subseteq \Re^{d}$ and $x>0$. When f is fixed or no confusion arises, we use balance (L, Q) and density $\left(L, P, \frac{a}{2}, w\right)$ to stand for balance $(L(f), Q)$ and density $\left(L(f), P, \frac{a}{2}, w\right)$, respectively.

Definition $2 \mathrm{~A}(b, c)$-partition of \Re^{d} divides the space into a disjoint union of regions P_{1}, P_{2}, \ldots, such that each P_{i}, called a regular region, has a volume of b and a diameter $\leq c$. A (b, c)-regular point set A is a set of points in \Re^{d} with a (b, c) partition P_{1}, P_{2}, \ldots, such that each P_{i} contains at most one point from A. For two regions A and B, if $A \subseteq B(A \cap B \neq \emptyset)$, we say B contains (intersects resp.) A.

For the case $b=1$ and $c=\sqrt{2}$, the plane can be partitioned into 1×1 squares, where each 1×1-square is a region $\{(x, y) \mid i \leq x<x+1$ and $j \leq y<j+1\}$ for some grid point (i, j) with two integers i and j. All grid points are $(1, \sqrt{2})$-regular points.

Let $B_{d}(r, o)$ be the d-dimensional ball of radius r at center o. Its volume is $V_{d}(r)=\frac{2^{(d+1) / 2} \pi^{(d-1) / 2}}{1 \cdot 3 \cdots(d-2) \cdot d} r^{d}$ if d is odd, or $\frac{2^{d / 2} \pi^{d / 2}}{2 \cdot 4 \cdots(d-2) \cdot d} r^{d}$ otherwise (see Trench 1978). Let $V_{d}(r)=v_{d} \cdot r^{d}$, where v_{d} is a constant for the fixed dimension d. In particular, $v_{1}=2, v_{2}=\pi$ and $v_{3}=\frac{4 \pi}{3}$. We will use the following well-known fact that can be easily derived from Helly Theorem (see Pach and Agarwal 1995).

Lemma 3 For an n-element set P in the d-dimensional space \Re^{d}, there is a point q with the property that any half-space that does not contain q, covers at most $\frac{d}{d+1} n$ elements of P. (Such a point q is called a centerpoint of P.)

Definition 4 Let $a>0, p$ and o be two points in \Re^{d}. Define $\operatorname{Pr}_{d}\left(a, p_{0}, p\right)$ to be the probability that the point p has $\leq a$ perpendicular distance to a random hyperplane L through the point p_{0}. Define function $f_{a, p, o}(L)=1$ if p has a distance $\leq a$ to the hyper-plane L through o, or 0 otherwise. The expectation of function $f_{a, p, o}(L)$ is $E\left(f_{a, p, o}(L)\right)=\operatorname{Pr}_{d}(a, o, p)$. Assume $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ is a set of n points in \mathfrak{R}^{d} and each p_{i} has weight $w\left(p_{i}\right) \geq 0$. Define function $F_{a, P, o}(L)=$ $\sum_{p \in P} w(p) f_{a, p, o}(L)$.

We give an upper bound for the expectation $E\left(F_{a, P, o}(L)\right)$ for $F_{a, P, o}(L)$ in the lemma below.

Lemma 5 (Fu 2006) Let $d \geq 2$. Let o be a point in $\mathfrak{R}^{d}, a, b, c>0$ be constants and $\epsilon, \delta>0$ be small constants. Assume that P_{1}, P_{2}, \ldots, form $a(b, c)$-partition for \Re^{d}, and the weights $w_{1}>\cdots>w_{k}>0$ satisfy $k \cdot \max _{i=1}^{k}\left\{w_{i}\right\}=O\left(n^{\epsilon}\right)$. Let P be a set of n weighted (b, c)-regular points in a d-dimensional plane with $w(p) \in\left\{w_{1}, \ldots, w_{k}\right\}$ for each $p \in P$. Let n_{j} be the number of points $p \in P$ with $w(p)=w_{j}$ for $j=$ $1, \ldots, k$. We have $E\left(F_{a, P, o}(L)\right) \leq\left(k_{d} \cdot\left(\frac{1}{b}\right)^{\frac{1}{d}}+\delta\right) \cdot a \cdot \sum_{j=1}^{k} w_{j} \cdot n_{j}^{\frac{d-1}{d}}+O\left(n^{\frac{d-2}{d}+\epsilon}\right)$, where $k_{d}=\frac{d \cdot h_{d}}{d-1} \cdot v_{d}^{\frac{1}{d}}$ with $h_{d}=\frac{2(d-1) v_{d-1}}{d \cdot v_{d}}$. In particular, $k_{2}=\frac{4}{\sqrt{\pi}}$ and $k_{3}=\frac{3}{2}\left(\frac{4 \pi}{3}\right)^{\frac{1}{3}}$.

Definition 6 Let $a_{1}, \ldots, a_{d}>0$ be positive constants. A $\left(a_{1}, \ldots, a_{d}\right)$-grid regular partition divides \Re^{d} into a disjoint union of $a_{1} \times \cdots \times a_{d}$ rectangular regions. A $\left(a_{1}, \ldots, a_{d}\right)$-grid (regular) point is a corner point of a rectangular region. Under certain translation and rotation, each $\left(a_{1}, \ldots, a_{d}\right)$-grid regular point is represented as $\left(a_{1} t_{1}, \ldots, a_{d} t_{d}\right)$ for some integers t_{1}, \ldots, t_{d}. For a point $p=\left(x_{1}, \ldots, x_{d}\right) \in \Re^{d}$, if x_{1}, \ldots, x_{d} are all integers, then p is simply called a grid point (it is a $(1, \ldots, 1)$-grid regular point). For each point q and a hyper-plane L in \mathfrak{R}^{d}, define $\operatorname{sd}(q, L)$ to be the signed distance from q to L, which is $\operatorname{sd}(q, L)=\left(q-q_{0}\right) \cdot v_{L}$, where q_{0} is a point on L, and v_{L} is the normal vector of the plane L with the first nonzero coordinate to be positive.

Definition 7 For a hyper-plane L in \mathfrak{R}^{d}, if L is through a point q_{0} and has the normal vector v, then it has linear equation $\left(u-q_{0}\right) \cdot v=0$. If $q \in \mathfrak{R}^{d}$ and $d=s d(q, L)$, then the hyper-plane L^{\prime} through q and parallel to L has equation $\left(u-\left(q_{0}+d v\right)\right) \cdot v=0$. We use $L(d)$ to represent such a hyper-plane L^{\prime}.

For an interval $I \subseteq R,\|I\|$ is the length of I. For example, $\|[a, b)\|=b-a$. We often use $\operatorname{Pr}(E)$ to represent the probability of an event E. For a real number x, $\lfloor x\rfloor$ is the largest integer $y \leq x$, and $\lceil x\rceil$ are the least integer $z \geq x$. For an interval $[a, b] \subseteq R$, define center $([a, b])$ to be $\frac{a+b}{2}$.

Lemma 8 Let P be a finite set of points in \Re^{d} and q_{0} be a fixed point in \Re^{d}. Then for a random hyper-plane L through $q_{0}, \operatorname{Pr}\left(s d\left(p_{1}, L\right)=\operatorname{sd}\left(p_{2}, L\right)\right.$ for $p_{1}, p_{2} \in P$ with $\left.p_{1} \neq p_{2}\right)=0$.

Proof A random hyper-plane L through a fixed point q_{0} can be characterized by the equation $\left(q-q_{0}\right) \cdot v_{L}=0$, where v_{L} is the normal vector of L. Each unit vector can be considered as a point of the surface of the unit ball $B_{d}(1, o)$, where $o=(0, \ldots, 0)$ is the origin point. The surface area size of $B_{d}(r, o)$ can be computed by the derivative $\frac{\partial V_{d}(r)}{\partial r}=d v_{d} r^{d-1}$. The surface area of $B_{d}(r, o)$ is of dimension $d-1$.

For two fixed points p_{1} and p_{2}, if $s d\left(p_{1}, L\right)=s d\left(p_{2}, L\right)$, then $\left(p_{1}-q_{0}\right) \cdot v_{L}=$ $\left(p_{2}-q_{0}\right) \cdot v_{L}$. It implies that $\left(p_{1}-p_{2}\right) \cdot v_{L}=0$. Consider the sub-area on the surface of $B(1, o):\left\{v \mid\left(p_{1}-p_{2}\right) \cdot v=0\right.$ and $\left.v \cdot v=1\right\}$, which is the intersection between a plane $\left(p_{1}-p_{2}\right) \cdot v=0$ and $B_{d}(1, o)$, and is of dimension $d-2$. It is easy to see that it has area size 0 in the d-dimensional space. The lemma follows since the union of a finite number of areas of area size 0 still has 0 area size.

4 An overview of our techniques

Given any set Q of points in \Re^{d} with a sketch P, the idea of our techniques for finding an a-width-bound separator is to transform the problem from the d-dimensional space to the 1 -dimensional space. By Lemma 3 and Lemma 5, we can see the existence of a hyper-plane that satisfies both the balance and the density conditions. Lemma 5 gives an upper bound on the expectation of $F_{a, P, o}(L)$. By Markov's inequality, $\operatorname{Pr}\left(F_{a, P, o}(L)>(1+\alpha) E\left(F_{a, P, o}(L)\right)\right) \leq \frac{1}{1+\alpha}$. Thus, with probability \geq
$1-\frac{1}{1+\alpha}=\frac{\alpha}{1+\alpha}$, a random hyper-plane L has that $F_{a, P, o}(L) \leq(1+\alpha) E\left(F_{a, P, o}(L)\right)$. The chance is amplified if we repeat the random selection of the hyper-plane L multiple times.

Let $n_{P}=|P|$ and $n_{Q}=|Q|$. After a hyper-plane L is fixed, we try to find another hyper-plane L^{\prime} that is parallel to L. We want L^{\prime} to guarantee the desired balance and density conditions. To do so, we compute signed distances for all the points in Q and P to the hyper-plane L. Those signed distances are all different for the points in Q and, respectively, for the points in P (by Lemma 8). These signed distances are all in the 1 -dimensional real axis, and finding L^{\prime} can be done via finding a "right position" among these distances, hence this transforms the problem from the d-dimensional space into to the 1 -dimensional space as follows: Find the interval [$D_{1, d+1}, D_{d, d+1}$] such that both the left side $\left(-\infty, D_{1, d+1}\right)$ and the right side $\left(D_{d, d+1},+\infty\right)$ have roughly $\frac{n_{Q}}{d+1}$ signed distances from Q to L. So, every hyper-plane L^{\prime} (parallel to L) with a signed distance in $\left[D_{1, d+1}, D_{d, d+1}\right]$ to L guarantees the balance condition. For an interval I, we compute its weight as the sum of the weights of the points of P with their signed distances in I. We then look for an interval $[x-a, x+a]$ that has $x \in\left[D_{1, d+1}, D_{d, d+1}\right]$ and the smallest weight. Finally, we let L^{\prime} be a hyper-plane with a signed distance x to L. The balance boundaries $D_{1, d+1}$ and $D_{d, d+1}$ can be detected by sampling a small number of points from Q. Using the Chernoff bound, we have a high probability that there is a small fraction difference from the exact boundaries. Similarly, the desired interval can be also detected by sampling a small number of points from P.

5 The sublinear time randomized algorithm

We use the following well-known Chernoff bound (see Motwani and Raghavan 2000 for a proof) and simpled version in Lemma 10.

Theorem 9 (Motwani and Raghavan 2000) Let X_{1}, \ldots, X_{n} be n independent random 0,1 variables, where X_{i} takes 1 with probability p_{i}. Let $X=\sum_{i=1}^{n} X_{i}$, and $\mu=E[X]$. Then for any $\delta>0$, (1) $\operatorname{Pr}(X<(1-\delta) \mu)<e^{-\frac{1}{2} \mu \delta^{2}}$, and (2) $\operatorname{Pr}(X>$ $(1+\delta) \mu)<\left[\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right]^{\mu}$.

Lemma 10 (Li et al. 2002) Let X_{1}, \ldots, X_{n} be n independent random 0,1 variables, where X_{i} takes 1 with probability p. Let $X=\sum_{i=1}^{n} X_{i}$. Then for any $\frac{1}{3}>\epsilon>0$, (1) $\operatorname{Pr}(X<p n-\epsilon n)<e^{-\frac{1}{2} n \epsilon^{2}}$, and (2) $\operatorname{Pr}(X>p n+\epsilon n)<e^{-\frac{1}{3} n \epsilon^{2}}$.

Proof For $X=\sum_{i=1}^{n}, \mu=E(X)=\sum_{i=1}^{n} E\left(X_{i}\right)=p n$. Let $\delta=\frac{\epsilon}{p}$. (1) follows from Theorem 9. By Taylor theorem, $\ln (1+\epsilon) \geq \epsilon-\frac{\epsilon^{2}}{2}$. We have that $\left(1+\frac{1}{\epsilon}\right) \ln (1+$ $\epsilon) \geq\left(1+\frac{1}{\epsilon}\right)\left(\epsilon-\frac{\epsilon^{2}}{2}\right)=1+\frac{\epsilon}{2}-\frac{\epsilon^{2}}{2}>1+\frac{\epsilon}{3}$. Thus, $(1+\epsilon)^{\frac{1}{\epsilon}}>e^{1+\frac{\epsilon}{3}}$ that implies $\frac{e}{(1+\epsilon)^{\left(1+\frac{1}{\epsilon}\right)}}<e^{-\frac{\epsilon}{3}}$. Since $p n+\epsilon n=(1+\delta) \mu$ and the function $(1+y)^{1+\frac{1}{y}}$ is in$(1+\epsilon)^{\left(1+\frac{\epsilon}{\epsilon}\right)}$
creasing for $y>0$,
$\operatorname{Pr}(X>p n+\epsilon n)=\operatorname{Pr}(X>(1+\delta) \mu)<\left[\frac{e^{\frac{\epsilon}{p}}}{\left(1+\frac{\epsilon}{p}\right)^{\left(1+\frac{\epsilon}{p}\right.}}\right]^{p n}=, ~=~$ $\left[\frac{e}{\left(1+\frac{\epsilon}{p}\right)^{\left(1+\frac{p}{\epsilon}\right)}}\right]^{\epsilon n} \leq\left[\frac{e}{(1+\epsilon)^{\left(1+\frac{1}{\epsilon}\right)}}\right]^{\epsilon n} \leq e^{-\frac{\epsilon^{2} n}{3}}$. Thus (2) is proved.

Theorem 11 Let $d \geq 2$ be the fixed dimension number and v be a positive parameter. Let $a, b, c>0$ be constants and $\delta, s_{1}, s_{2}>0$ be small constants. Let Q be another set of n_{Q} points in \mathfrak{R}^{d}, and P be a set of $n_{P}(b, c)$-regular points, which form a sketch for Q. Let $w_{1}>w_{2}>\cdots>w_{k}>0$ be positive weights with $k \cdot w_{1}=O\left(n_{P}^{s_{1}}\right), \frac{w_{1}}{w_{k}}=o\left(n_{P}^{\frac{1}{d}}\right), \frac{k}{w_{k}}=O\left(n_{P}^{s_{2}}\right)$, and w be a mapping from P to $\left\{w_{1}, \ldots, w_{k}\right\}$. There exists an $O\left(v^{2} \cdot\left(n_{P}^{\frac{2}{d}+2\left(s_{1}+s_{2}\right)} \cdot \log n_{P}+\log n_{Q}\right)\right)$ time randomized algorithm to find a hyper plane M with probability $\geq 1-\frac{1}{2^{v}}$ such that (1) each half space has $\leq\left(\frac{d}{d+1}+\delta\right) n_{Q}$ points from Q, and (2) $\sum_{p \in P}$ and $\operatorname{dist}(p, M) \leq a, ~ w(p) \leq$ $\left(k_{d} \cdot b^{\frac{-1}{d}}+\delta\right) \cdot a \cdot \sum_{j=1}^{k} w_{j} n_{j}^{\frac{d-1}{d}}+O\left(n_{P}^{\frac{d-2}{d}+s_{1}}\right)$ for all large n_{P}, where $n_{j} \geq 1$ is the number of points $p \in P$ with $w(p)=w_{j}(j=1, \ldots, k)$.

Before proving Theorem 11, we give the following corollary, which is easier to understand than Theorem 11, but is not as general as Theorem 11. Corollary 12 will be applied to the protein side chain packing problem in Sect. 6.

Corollary 12 Let $d \geq 2$ be the dimension number and the parameter $v>0$. Let $a>0$ be a constant and $\delta>0$ be a small constant. There exists a randomized $O\left(v^{2} n^{\frac{2}{d}} \log n\right)$ time such that given a set Q of n grid points in \Re^{d}, the algorithm finds a hyper-plane L with probability at least $1-\frac{1}{2^{v}}$ such that each side of L has at most $\left(\frac{d}{d+1}+\delta\right) n$ points of Q, and the number of points of Q with distance $\leq a$ to L is $\leq\left(k_{d}+\delta\right) a n^{\frac{d-1}{d}}+O\left(n^{\frac{d-2}{d}}\right)$.

Proof We convert the conditions of this corollary into the conditions of Theorem 11 so that we can use Theorem 11. The space \Re^{d} is partitioned into $1 \times 1 \cdots \times 1$ unit cubes with grid points in the corners of all unit cubes. Clearly, the distance of two points in the same unit cube is at most \sqrt{d}. Let the two sets P and Q be the same. The weights of all points of P are equal to 1 . This makes that $s_{1}=s_{2}=0, b=1$, $c=\sqrt{d}$, and $k=1$. Then the corollary follows from Theorem 11 .

Proof of Theorem 11 We use two phases to find the separator hyper-plane. The first phase determines the orientation of the hyper-plane by selecting a random hyperplane, and finds the region of the separator hyper-plane for a balanced partition. The second phase finds the position of the separator plane with a small sum of weights for the points of the set P close to it. Without loss of generality, we assume that $0<\delta<1$. Since $n_{j} \geq 1(j=1, \ldots, k)$ and $\sum_{j=1}^{k} n_{j}=n_{P}$, we have $k \leq n_{P}$. Select constant $c_{0}>0$ and let $\delta_{1}=c_{0} \delta$ so that

$$
\begin{equation*}
\left(k_{d} \cdot b^{\frac{-1}{d}}+3 \delta_{1}\right)\left(1+\delta_{1}\right)^{2} \leq\left(k_{d} \cdot b^{\frac{-1}{d}}+\frac{\delta}{2}\right) . \tag{1}
\end{equation*}
$$

Let

$$
\begin{equation*}
a_{1}=a\left(1+\delta_{1}\right) \quad \text { and } \quad \alpha=\delta_{1} . \tag{2}
\end{equation*}
$$

With the conditions of the theorem, let c_{1} be a constant such that

$$
\begin{equation*}
k \cdot w_{1} \leq c_{1} n_{P}^{s_{1}} \quad \text { and } \quad \frac{k}{w_{k}} \leq c_{1} n_{P}^{s_{2}} \tag{3}
\end{equation*}
$$

Let o be the center point from Lemma 3 (our algorithm does not need to find such a center point o, but will use its existence). By Lemma 5,

$$
\begin{equation*}
E\left(F_{a_{1}, P, o}\right) \leq\left(k_{d} \cdot b^{\frac{-1}{d}}+\delta_{1}\right) \cdot a_{1} \cdot \sum_{j=1}^{k} w_{j} n_{j}^{\frac{d-1}{d}}+O\left(n_{P}^{\frac{d-2}{d}+s_{1}}\right) . \tag{4}
\end{equation*}
$$

By the well known Markov inequality and (4),

$$
\begin{equation*}
\operatorname{Pr}\left(F_{a_{1}, P, o}(L) \geq(1+\alpha) E\left(F_{a_{1}, P, o}\right)\right) \leq \frac{1}{1+\alpha} \tag{5}
\end{equation*}
$$

This tells us that for a random hyper-plane L, the probability is at least $1-\frac{1}{1+\alpha}$ such that there exists a separator hyper-plane L^{\prime} (it may be through o) that satisfies the conditions of the theorem and is parallel to L. The hyper-plane L^{\prime} is determined by the signed distance from a point in L^{\prime} to the hyper-plane L since L^{\prime} and L are parallel. We assign the values to some parameters:

$$
\begin{align*}
r & =c_{4} v, \text { where } c_{4} \text { is a constant to be fixed later, } \tag{6}\\
\delta_{2} & =\frac{\delta_{1} \cdot a}{c_{1}}, \tag{7}\\
\epsilon & =\frac{\delta_{2}}{3 c_{1} n_{P}^{\frac{1}{d}+s_{1}+s_{2}}}, \tag{8}\\
\epsilon_{0} & =\frac{\delta}{7} \tag{9}\\
\epsilon_{1} & =5 \epsilon_{0}, \tag{10}\\
m_{1} & =\frac{3\left(\ln 100+r+\log n_{Q}\right)}{\epsilon_{0}^{2}}, \tag{11}\\
m_{2} & =\frac{3\left(\ln 100+2 \log n_{P}+r\right)}{\epsilon^{2}} . \tag{12}
\end{align*}
$$

Algorithm: find separator in d-dimension

 Input:P (a set of weighted (b, c)-regular points in $\left.\mathfrak{R}^{d}\right)$,
Q (a set of points in \Re^{d}),
$n_{P}=|P|$ (the number of elements of set P), and
$n_{Q}=|Q|$ (the number of elements of set Q).

Phase 1:

begin
Select a fixed point $o^{*} \in \mathfrak{R}^{d}$ and a random hyper-plane L through o^{*}.

Randomly select a list m_{1} points $Q^{\prime}=\left\langle q_{1}, \ldots, q_{m_{1}}\right\rangle$ from Q.
For each $q_{j} \in Q^{\prime}$, compute its signed distance to $L d_{q_{i}}=\operatorname{sd}\left(q_{i}, L\right)$.
Find the $\left\lfloor\left(\frac{1}{d+1}-\epsilon_{1}\right) m_{1}\right\rfloor$-th least point $D_{1, d+1}^{*}=d_{q_{1}^{*}}$ among $d_{q_{1}}, \ldots, d_{q_{m_{1}}}$.
Find the $\left\lceil\left(\frac{d}{d+1}+\epsilon_{1}\right) m_{1}\right\rceil$-th least point $D_{d, d+1}^{*}=d_{q_{2}^{*}}$ among $d_{q_{1}}, \ldots, d_{q_{m_{1}}}$.
Randomly select a list of m_{2} points $P^{\prime}=\left\langle p_{1}, \ldots, p_{m_{2}}\right\rangle$ from P.
For each $p_{i} \in P^{\prime}$, compute $d_{p_{i}}=\operatorname{sd}\left(p_{i}, L\right)$.
end (Phase 1)
Phase 2:
begin
if $\left(\left|D_{1, d+1}^{*}-D_{d, d+1}^{*}\right| \geq 3 a n_{P}^{\frac{2}{d}}\right)$ then (Case 1)
begin
Let $u=n_{P}^{\frac{2}{d}}$.
Partition $\left[D_{1, d+1}^{*}, D_{d, d+1}^{*}\right]$ into equal length intervals $\left[l_{1}, l_{2}\right),\left[l_{2}, l_{3}\right), \ldots$, $\left[l_{u-1}, l_{u}\right),\left[l_{u}, l_{u+1}\right]$.
Compute $W\left(P^{\prime}, L,\left[l_{i}, l_{i+1}\right]\right)$ for $i=1, \ldots, u$.
Select $\left[l_{i}, l_{i+1}\right]$ with the minimal sum of weights $W\left(P^{\prime}, L,\left[l_{i}, l_{i+1}\right]\right)$.
end (Case 1)
if $\left(\left|D_{1, d+1}^{*}-D_{d, d+1}^{*}\right| \leq \delta_{1} a\right)$ then (Case 2: Subcase 2.1)
begin
Select $J=\left[D_{1, d+1}^{*}-a, D_{1, d+1}^{*}+a\right]$.
end (Case 2: Subcase 2.1)
if $\left(\delta_{1} a<\left|D_{1, d+1}^{*}-D_{d, d+1}^{*}\right|<3 a n_{P}\right)$ then (Case 2: Subcase 2.2)
begin
Select the least integer $v \geq 2$ such that $\frac{\left|D_{d, d+1}^{*}-D_{1, d+1}^{*}\right|+2 a}{v} \leq \frac{\delta_{1} a}{3}$.
Let $s=\frac{\left|D_{d, d+1}^{*}-D_{1, d+1}^{*}\right|+2 a}{v}$.
Partition $\left[D_{1, d+1}^{*}-a, D_{d, d+1}^{*}+a\right]$ into $\left[r_{1}, r_{2}\right) \cup\left[r_{2}, r_{3}\right) \cup \cdots$ $\cup\left[r_{v-1}, r_{v}\right) \cup\left[r_{v}, r_{v+1}\right]$ of length s.
Compute $W\left(P^{\prime}, L, I_{i}\right)$ with $I_{i}=\left[r_{i}, r_{i+1}\right)$ for $i=1, \ldots, v-1$ and $I_{v}=$ $\left[r_{v}, r_{v+1}\right]$.
Select an integer h with $2 a<h \cdot s<2 a+2 s$.
Let $J_{i}^{*}=\left[r_{i}, r_{i+h}\right)=I_{i} \cup I_{i+1} \cup \cdots \cup I_{i+h-1}(i=1,2, \ldots, v-h)$ and $J_{v-h+1}^{*}=\left[r_{v-h+1}, r_{v+1}\right]=I_{v-h+1} \cup I_{v-h+2} \cup \cdots \cup I_{v+1}$.
Compute $\quad W\left(P^{\prime}, L, J_{i}^{*}\right) \quad$ via $\quad W\left(P^{\prime}, L, J_{i}^{*}\right)=W\left(P^{\prime}, L, J_{i-1}^{*}\right)-$
$W\left(P^{\prime}, L, I_{i-1}\right)+W\left(P^{\prime}, L, I_{i+h}\right)$ $(i=1, \ldots, v-h+1)$.
Select $J=J_{i}^{*}$ with the minimal sum of weights $W\left(P^{\prime}, L, J_{i}^{*}\right)$.
end (Case 2: Subcase 2.2)
Output $L($ center (J)) (see Definition 7) as the separator hyper-plane.
end (Phase 2)

End of the Algorithm

Phase 1 of the algorithm: The input of our algorithm is $P, Q, n_{Q}=|Q|$, and $n_{P}=|P|$. Each input point $p \in P$ has the format $\left\langle\left(x_{1}, \ldots, x_{d}\right), w(p)\right\rangle$, where $p=$ $\left(x_{1}, \ldots, x_{d}\right)$ and $w(p)$ is the weight of p. The algorithm starts with the following
steps: Select a fixed point $o^{*} \in \mathfrak{R}^{d}$ and a random plane L through o^{*} (random hyperplane can be selected via selecting a random normal vector). Randomly select m_{1} points $q_{1}, \ldots, q_{m_{1}}$ from Q and let $Q^{\prime}=\left\langle q_{1}, \ldots, q_{m_{1}}\right\rangle$ represent the list of these points just selected from Q (One point may appear multiple times. This is why we use list instead of set). For each $q_{j} \in Q^{\prime}$, compute its signed distance $d_{q_{i}}=\operatorname{sd}\left(q_{i}, L\right)$ to L. Find the $\left\lfloor\left(\frac{1}{d+1}-\epsilon_{1}\right) m_{1}\right\rfloor$-th least point $D_{1, d+1}^{*}=s d\left(q_{1}^{*}, L\right)$ for $d_{q_{1}}, \ldots, d_{q_{m_{1}}}$. Find the $\left\lceil\left(\frac{d}{d+1}+\epsilon_{1}\right) m_{1}\right\rceil$-th least point $D_{d, d+1}^{*}=s d\left(q_{2}^{*}, L\right)$ for $d_{q_{1}}, \ldots, d_{q_{m_{1}}}$. Randomly select m_{2} points $p_{1}, \ldots, p_{m_{2}}$ from P and let $P^{\prime}=\left\langle p_{1}, \ldots, p_{m_{2}}\right\rangle$ represent the list of these points just selected. For each $p_{i} \in P^{\prime}$, compute $d_{p_{i}}=\operatorname{sd}\left(p_{i}, L\right)$. It is wellknown that finding the i-th element from a list takes linear steps (see Cormen et al. 2001). The computation above takes $\left(m_{1}+m_{2}\right)$ steps. In the rest of the algorithm, we locate the position of the separator hyper-plane parallel to L by finding its signed distance to L. Its position will be at the center of an interval of size $2 a$. In the rest of the proof, we treat both P and Q as lists of points from \Re^{d}. Each point appears only at most once on both P and Q. Let $t_{d}=k_{d} \cdot b^{\frac{-1}{d}}+\delta$. For $q \in \Re^{d}$ and $A \subseteq \Re^{d}$, define

$$
\operatorname{Pr}(A, L, \leftarrow q)=\frac{\mid\left\{q^{\prime} \mid q^{\prime} \in A \text { and } s d\left(q^{\prime}, L\right) \leq \operatorname{sd}(q, L)\right\} \mid}{|A|}
$$

For a list of points $B=\left\langle x_{1}, \ldots, x_{m}\right\rangle$ from \mathfrak{R}^{d} and a point $q \in \mathfrak{R}^{d}$, define $X_{B, L, q}(i)=$ 1 if $\operatorname{sd}\left(x_{i}, L\right) \leq \operatorname{sd}(q, L)$, or 0 otherwise. We also define

$$
Y(B, L, q)=\sum_{i=1}^{m} X_{B, L, q}(i)
$$

Lemma 13 With probability $\geq 1-\frac{e^{-r}}{50}, \operatorname{Pr}\left(Q, L, \leftarrow q_{1}^{*}\right) \in\left[\frac{1}{d+1}-\delta, \frac{1}{d+1}-\frac{\delta}{6}\right]$ and $\operatorname{Pr}\left(Q, L, \leftarrow q_{2}^{*}\right) \in\left[\frac{d}{d+1}+\frac{\delta}{6}, \frac{d}{d+1}+\delta\right]$ for all large n_{Q}.

Proof By Lemma 8, with probability 0 , we have that $\operatorname{sd}\left(q_{i}, L\right)=\operatorname{sd}\left(q_{j}, L\right)$ for some $q_{i} \neq q_{j}$ from Q or $\operatorname{sd}\left(p_{i}, L\right)=\operatorname{sd}\left(p_{j}, L\right)$ for some $p_{i} \neq p_{j}$ from P.

For a fixed $q \in Q$, by Lemma 10 , we have probability $\leq e^{-\frac{m_{1} \epsilon_{0}^{2}}{3}}$ such that $Y\left(Q^{\prime}, L, q\right) \notin\left[\operatorname{Pr}(Q, L, \leftarrow q) m_{1}-\epsilon_{0} m_{1}, \operatorname{Pr}(Q, L, \leftarrow q) m_{1}+\epsilon_{0} m_{1}\right]$. There are n_{Q} points in the set Q. This implies that the probability is at most $n_{Q} e^{-\frac{m_{1} \epsilon_{0}^{2}}{3}}<\frac{e^{-r}}{100}$ (see the assignment (11) for $\left.m_{1}\right)$ such that $Y\left(Q^{\prime}, L, q\right) \notin\left[\operatorname{Pr}(Q, L, \leftarrow q) m_{1}-\right.$ $\left.\epsilon_{0} m_{1}, \operatorname{Pr}(Q, L, \leftarrow q) m_{1}+\epsilon_{0} m_{1}\right]$ for some $q \in Q$.

For each $q \in Q$, define $V_{q}(i)$ to be the random variable such that $V_{q}(i)=1$ if $q=$ q_{i} or 0 otherwise. With probability $\frac{1}{n_{Q}}, V_{q}(i)$ is 1 . When n_{Q} is large and m_{1} elements are selected from Q, the probability is $\leq e^{\frac{-1}{3} \epsilon_{0}^{2} m_{1}}$ that at least $2 \epsilon_{0} m_{1}>\frac{m_{1}}{n_{Q}}+\epsilon_{0} m_{1}$ elements are equal to q (by Lemma 10). The probability is at most $n_{Q} e^{\frac{-1}{3} \epsilon_{0}^{2} m_{1}}<\frac{e^{-r}}{100}$ that at least one element of Q is selected more than $2 \epsilon_{0} m_{1}$ times.

From the analysis above, the probability is $\geq 1-\left(0+\frac{e^{-r}}{100}+\frac{e^{-r}}{100}\right)=1-\frac{e^{-r}}{50}$ such that (a) $\operatorname{sd}\left(q_{i}, L\right) \neq \operatorname{sd}\left(q_{j}, L\right)$ for $q_{i} \neq q_{j}$ from Q, and $\operatorname{sd}\left(p_{i}, L\right) \neq \operatorname{sd}\left(p_{j}, L\right)$ for $p_{i} \neq p_{j}$ from $P ;\left(\right.$ b) $Y\left(Q^{\prime}, L, q\right) \in\left[\operatorname{Pr}(Q, L, \leftarrow q) m_{1}-\epsilon_{0} m_{1}, \operatorname{Pr}(Q, L, \leftarrow q) m_{1}+\right.$
$\left.\epsilon_{0} m_{1}\right]$ for all $q \in Q$; and (c) no element of Q is selected more than $2 \epsilon_{0} m_{1}$ times into the list Q^{\prime}.

Assume (a), (b) and (c) above are all true. Since $s d\left(q_{1}^{*}, L\right)$ is the $\left\lfloor\left(\frac{1}{d+1}-\epsilon_{1}\right) m_{1}\right\rfloor-$ th least element among $d_{q_{1}}, d_{q_{2}}, \ldots, d_{q_{m_{1}}}$ and both (a) and (c) hold, the point q_{1}^{*} appears in the list Q^{\prime} no more than $2 \epsilon_{0} m_{1}$ times and we also have

$$
\begin{equation*}
\left(\frac{1}{d+1}-\epsilon_{1}\right) m_{1}+2 \epsilon_{0} m_{1}+1 \geq Y\left(Q^{\prime}, L, q_{1}^{*}\right) \tag{13}
\end{equation*}
$$

By (b), we conclude that

$$
\begin{equation*}
Y\left(Q^{\prime}, L, q_{1}^{*}\right) \geq \operatorname{Pr}\left(Q, L, \leftarrow q_{1}^{*}\right) m_{1}-\epsilon_{0} m_{1} . \tag{14}
\end{equation*}
$$

By (13) and (14), $\left(\frac{1}{d+1}-\epsilon_{1}\right) m_{1}+2 \epsilon_{0} m_{1}+1 \geq \operatorname{Pr}\left(Q, L, \leftarrow q_{1}^{*}\right) m_{1}-\epsilon_{0} m_{1}$. Hence, $\frac{1}{d+1}-\epsilon_{1}+3 \epsilon_{0}+\frac{1}{m_{1}} \geq \operatorname{Pr}\left(Q, L, \leftarrow q_{1}^{*}\right)$. Since $\operatorname{sd}\left(q_{1}^{*}, L\right)$ is the $\left\lfloor\left(\frac{1}{d+1}-\epsilon_{1}\right) m_{1}\right\rfloor$-th least element among $d_{q_{1}}, d_{q_{2}}, \ldots, d_{q_{m_{1}}}$,

$$
\begin{equation*}
\left(\frac{1}{d+1}-\epsilon_{1}\right) m_{1}-1 \leq Y\left(Q^{\prime}, L, q_{1}^{*}\right) \tag{15}
\end{equation*}
$$

By (b),

$$
\begin{equation*}
Y\left(Q^{\prime}, L, q_{1}^{*}\right) \leq \operatorname{Pr}\left(Q, L, \leftarrow q_{1}^{*}\right) m_{1}+\epsilon_{0} m_{1} . \tag{16}
\end{equation*}
$$

By (15) and (16), $\operatorname{Pr}\left(Q, L, \leftarrow q_{1}^{*}\right) \geq \frac{1}{d+1}-\epsilon_{1}-\epsilon_{0}-\frac{1}{m_{1}}$. Thus, $\operatorname{Pr}(Q, L, \leftarrow$ $\left.q_{1}^{*}\right) \in\left[\frac{1}{d+1}-\epsilon_{1}-\epsilon_{0}-\frac{1}{m_{1}}, \frac{1}{d+1}-\epsilon_{1}+3 \epsilon_{0}+\frac{1}{m_{1}}\right] \subseteq\left[\frac{1}{d+1}-\delta, \frac{1}{d+1}-\frac{\delta}{6}\right]$. Similarly, $\operatorname{Pr}\left(Q, L, \leftarrow q_{2}^{*}\right) \in\left[\frac{d}{d+1}+\frac{\delta}{6}, \frac{d}{d+1}+\delta\right]$.

Phase 2 of the algorithm: In this phase, we will find a position of the hyperplane L^{\prime} (parallel to the hyperplane L) with the signed distance to L in the range [$D_{1, d+1}^{*}, D_{d, d+1}^{*}$]. Lemma 13 guarantees (with high probability) that each position in the interval $\left[D_{1, d+1}^{*}, D_{d, d+1}^{*}\right.$] gives a balance partition. We look for the position that has the small sum of weights for the points of P close to L^{\prime}.

For a list $A=\left\langle x_{1}, \ldots, x_{m}\right\rangle,|A|=m$ is denoted to be the length of A and $x \in A$ means that x is one of the elements in $A\left(x=x_{i}\right.$ for some $\left.1 \leq i \leq m\right)$. For a real number subset $J \subseteq \mathfrak{R}$ and a list A of finite points in \mathfrak{R}^{d}, define

$$
\begin{equation*}
\operatorname{Pr}_{*}\left(A, L, J, w_{j}\right)=\frac{\mid\left\{p \mid p \in A \text { and } w(p)=w_{j} \text { and } s d(p, L) \in J\right\} \mid}{|A|} \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
Z\left(A, L, J, w_{j}\right)=\sum_{p \in A} X_{L, p, J, w_{j}}^{*} \tag{18}
\end{equation*}
$$

where $X_{L, p, J, w_{j}}^{*}=1$ if $s d(p, L) \in J$ and $w(p)=w_{j}$, or 0 otherwise. We also define

$$
\begin{equation*}
W(A, L, J)=\sum_{p \in A \text { and } \operatorname{sd}(p, L) \in J} w(p) . \tag{19}
\end{equation*}
$$

By the definitions (17-19), it is easy to see that

$$
\begin{equation*}
W(A, L, J)=\sum_{j=1}^{k} w_{j} Z\left(A, L, J, w_{j}\right)=\sum_{j=1}^{k} w_{j} \operatorname{Pr}_{*}\left(A, L, J, w_{j}\right)|A| . \tag{20}
\end{equation*}
$$

Since $\sum_{j=1}^{k} n_{j}=n_{P}$, we have that

$$
\begin{equation*}
n_{j} \geq \frac{n_{P}}{k} \tag{21}
\end{equation*}
$$

for some $1 \leq j \leq k$. By (3) and the theorem condition $w_{k} \leq w_{j}$ for $j=1, \ldots, k$, we have that

$$
\begin{equation*}
n_{P}^{s_{2}} \geq \frac{k}{c_{1} w_{k}} \geq \frac{k^{\frac{d-1}{d}}}{c_{1} w_{j}} \tag{22}
\end{equation*}
$$

By (21) and (22),

$$
\begin{equation*}
n_{P}^{\frac{d-1}{d}-s_{2}}=\frac{n_{P}^{\frac{d-1}{d}}}{n_{p}^{s_{2}}} \leq c_{1} w_{j}\left(\frac{n_{P}}{k}\right)^{\frac{d-1}{d}} \leq c_{1} w_{j} n_{j}^{\frac{d-1}{d}} \quad \text { for some } 1 \leq j \leq k \tag{23}
\end{equation*}
$$

By (7) and (23), for some $1 \leq j \leq k$,

$$
\begin{equation*}
\delta_{2} \cdot n_{P}^{\frac{d-1}{d}-s_{2}} \leq \delta_{1} \cdot a \cdot w_{j} n_{j}^{\frac{d-1}{d}} . \tag{24}
\end{equation*}
$$

Lemma 14 Let $f \leq n_{P}$ be an integer and $H_{1}, H_{2}, \ldots, H_{f} \subseteq R$ be f real intervals. With probability $\geq 1-\frac{1}{100} e^{-r}$, we have that $W\left(P, L, H_{i}\right) \in\left[W\left(P^{\prime}, L, H_{i}\right) \frac{n_{P}}{m_{2}}-\right.$ $\left.\left.\delta_{2} n_{P}^{\frac{d-1}{d}-s_{2}}, W\left(P^{\prime}, L, H_{i}\right) \frac{n_{P}}{m_{2}}+\delta_{2} n_{P}^{\frac{d-1}{d}-s_{2}}\right]\right)$ for $1 \leq i \leq f$.

Proof For fixed interval H_{i} and weight w_{j}, by Lemma 10, the probability is $\leq e^{-\frac{m_{2} \epsilon^{2}}{3}}$ such that $Z\left(P^{\prime}, L, H_{i}, w_{j}\right) \notin\left[\operatorname{Pr}_{*}\left(P, L, H_{i}, w_{j}\right) m_{2}-\epsilon m_{2}, \operatorname{Pr}_{*}\left(P, L, H_{i}, w_{j}\right) m_{2}+\right.$ ϵm_{2}]. Thus, the probability is $\leq k \cdot f e^{-\frac{m_{2} \epsilon^{2}}{3}} \leq n_{P}^{2} e^{-\frac{m_{2} \epsilon^{2}}{3}}<\frac{1}{100} e^{-r}$ such that $Z\left(P^{\prime}, L, H_{i}, w_{j}\right) \notin\left[\operatorname{Pr}_{*}\left(P, L, H_{i}, w_{j}\right) m_{2}-\epsilon m_{2}, \operatorname{Pr}_{*}\left(P, L, H_{i}, w_{j}\right) m_{2}+\epsilon m_{2}\right]$ for some $i \leq f$ and $j \leq k$. In other words, with probability $\geq 1-\frac{1}{100} e^{-r}$, we have $Z\left(P^{\prime}, L, H_{i}, w_{j}\right) \in\left[\operatorname{Pr}_{*}\left(P, L, H_{i}, w_{j}\right) m_{2}-\epsilon m_{2}, P r_{*}\left(P, L, H_{i}, w_{j}\right) m_{2}+\epsilon m_{2}\right]$ for all $i \leq f$ and $j \leq k$. We assume that for all $i \leq f$ and $j \leq k$,

$$
\begin{align*}
& Z\left(P^{\prime}, L, H_{i}, w_{j}\right) \\
& \quad \in\left[\operatorname{Pr}_{*}\left(P, L, H_{i}, w_{j}\right) m_{2}-\epsilon m_{2}, \operatorname{Pr}_{*}\left(P, L, H_{i}, w_{j}\right) m_{2}+\epsilon m_{2}\right] . \tag{25}
\end{align*}
$$

By (8) and (3),

$$
\begin{equation*}
\epsilon k w_{1} \leq \frac{\delta_{2}}{3 c_{1} n_{P}^{\frac{1}{d}+s_{1}+s_{2}}} \cdot c_{1} n_{P}^{s_{1}}=\frac{\delta_{2}}{3 n_{P}^{\frac{1}{d}+s_{2}}} \leq \frac{\delta_{2}}{n_{P}^{\frac{1}{d}+s_{2}}} . \tag{26}
\end{equation*}
$$

By (20), (26) and (25),

$$
\begin{align*}
W\left(P^{\prime}, L, H_{i}\right) & =\sum_{j=1}^{k} w_{j} Z\left(P^{\prime}, L, H_{i}, w_{j}\right) \tag{27}\\
& \geq \sum_{j=1}^{k} w_{j}\left(P r_{*}\left(P, L, H_{i}, w_{j}\right) m_{2}-\epsilon m_{2}\right) \tag{28}\\
& \geq \sum_{j=1}^{k} w_{j} P r_{*}\left(P, L, H_{i}, w_{j}\right) m_{2}-\epsilon k w_{1} m_{2} \tag{29}\\
& \geq \sum_{j=1}^{k} w_{j} P_{*}\left(P, L, H_{i}, w_{j}\right) m_{2}-\frac{\delta_{2} m_{2}}{n_{P}^{(1 / d)+s_{2}}} . \tag{30}
\end{align*}
$$

Similarly, we also have

$$
\begin{equation*}
W\left(P^{\prime}, L, H_{i}\right) \leq \sum_{j=1}^{k} w_{j} P r_{*}\left(P, L, H_{i}, w_{j}\right) m_{2}+\frac{\delta_{2} m_{2}}{n_{P}^{(1 / d)+s_{2}}} . \tag{31}
\end{equation*}
$$

By (30) and (31),

$$
\begin{align*}
W\left(P^{\prime}, L, H_{i}\right) \in[& \sum_{j=1}^{k} w_{j} \cdot \operatorname{Pr}_{*}\left(P, L, H_{i}, w_{j}\right) m_{2}-\frac{\delta_{2} m_{2}}{n_{P}^{(1 / d)+s_{2}}}, \\
& \left.\sum_{j=1}^{k} w_{j} \cdot \operatorname{Pr}_{*}\left(P, L, H_{i}, w_{j}\right) m_{2}+\frac{\delta_{2} m_{2}}{n_{P}^{(1 / d)+s_{2}}}\right] . \tag{32}
\end{align*}
$$

Since $W\left(P, L, H_{i}\right)=\sum_{j=1}^{k} w_{j} P r_{*}\left(P, L, H_{i}, w_{j}\right) n_{P}\left(\right.$ by (20)) and $W\left(P^{\prime}, L, H_{i}\right)$ is in the interval $\left[\sum_{j=1}^{k} w_{j} \operatorname{Pr}_{*}\left(P, L, H_{i}, w_{j}\right) m_{2}-\frac{\delta_{2} m_{2}}{n_{P}^{(1 / d)+s_{2}}}, \sum_{j=1}^{k} w_{j} \operatorname{Pr}_{*}(P, L\right.$, $\left.\left.H_{i}, w_{j}\right) m_{2}+\frac{\delta_{2} m_{2}}{n_{P}^{(1 / d)+s_{2}}}\right]$ (by (32)), we have $W\left(P, L, H_{i}\right) \leq W\left(P^{\prime}, L, H_{i}\right) \frac{n_{P}}{m_{2}}+$ $\delta_{2} n_{P}^{\frac{d-1}{d}-s_{2}}$ and $W\left(P, L, H_{i}\right) \geq W\left(P^{\prime}, L, H_{i}\right) \frac{n_{P}}{m_{2}}-\delta_{2} n_{P}^{\frac{d-1}{d}-s_{2}}$. We have proved the lemma.

Case 1: $\left|D_{1, d+1}^{*}-D_{d, d+1}^{*}\right| \geq 3 a n_{P}^{\frac{2}{d}}$. Partition $\left[D_{1, d+1}^{*}, D_{d, d+1}^{*}\right]$ into disjoint intervals $\left[l_{1}, l_{2}\right),\left[l_{2}, l_{3}\right), \ldots,\left[l_{u-1}, l_{u}\right),\left[l_{u}, l_{u+1}\right]$ such that each $l_{i+1}-l_{i}(i=1, \cdots, u)$ is equal to $\frac{\left|D_{1, d+1}^{*}-D_{d, d+1}^{*}\right|}{g_{1}\left(n_{P}\right)} \geq 3 a$, where

$$
\begin{equation*}
g_{1}\left(n_{P}\right)=u=n_{P}^{\frac{2}{d}} \tag{33}
\end{equation*}
$$

Let $J_{i}=\left[l_{i}, l_{i+1}\right)$ if $i<u$, and $J_{u}=\left[l_{u}, l_{u+1}\right]$. Compute $W\left(P^{\prime}, L, J_{i}\right)$ for $i=$ $1, \cdots, u$, which takes $O\left(m_{2}+g_{1}\left(n_{P}\right)\right)=O\left(m_{2}\right)$ steps. The algorithm selects $J=J_{i_{0}}$ that has the least $W\left(P^{\prime}, L, J_{i_{0}}\right)$ and let $L^{\prime}=L\left(\operatorname{center}\left(J_{i_{0}}\right)\right)$ (see Definition 7), which
takes $O\left(g_{1}\left(n_{P}\right)\right)=O\left(m_{2}\right)$ steps. Assume that $J_{i_{1}}$ is the interval with the least $W\left(P, L, J_{i_{1}}\right)$.

Lemma 15 Assume Case 1 condition is true. With probability $\geq 1-\frac{1}{50} e^{-r}$, $W\left(P, L, J_{i_{0}}\right) \leq\left(k_{d} \cdot b^{\frac{-1}{d}}+\delta\right) \cdot a \cdot \sum_{j=1}^{k} w_{j} \cdot n^{\frac{d-1}{d}}$ for all large n_{P}.
Proof For a fixed interval J_{i}, by Lemma 10, the probability is $\leq e^{-\frac{m_{2} \epsilon^{2}}{3}}$ that $Z\left(P^{\prime}, L, J_{i}, w_{j}\right) \notin\left[\operatorname{Pr}_{*}\left(P, L, J_{i}, w_{j}\right) m_{2}-\epsilon m_{2}, \operatorname{Pr}_{*}\left(P, L, J_{i}, w_{j}\right) m_{2}+\epsilon m_{2}\right]$. Thus, the probability is $\leq g_{1}\left(n_{P}\right) e^{-\frac{m_{2} \epsilon^{2}}{3}}<\frac{1}{100} e^{-r}$ that $Z\left(P^{\prime}, L, J_{i}, w_{j}\right) \notin\left[\operatorname{Pr}_{*}(P, L\right.$, $\left.J_{i}, w_{j}\right) m_{2}-\epsilon m_{2}, \operatorname{Pr}_{*}\left(P, L, J_{i}, w_{j}\right) m_{2}+\epsilon m_{2}$] for some $i \leq g_{1}\left(n_{P}\right)$ and $j \leq k$.

Since

$$
\begin{equation*}
\sum_{j=1}^{k} n_{j}=n_{P} \tag{34}
\end{equation*}
$$

and $w_{1}>w_{2}>\cdots>w_{k}$, the sum of weights of all points in P is

$$
\begin{equation*}
W(P, L,(-\infty,+\infty)) \leq w_{1} \cdot n_{P} \tag{35}
\end{equation*}
$$

Because $J_{1}, J_{2}, \ldots, J_{u}$ are disjoint intervals,

$$
\begin{equation*}
\sum_{i=1}^{g_{1}\left(n_{P}\right)} W\left(P, L, J_{i}\right) \leq W(P, L,(-\infty,+\infty)) \tag{36}
\end{equation*}
$$

There is J_{i} for some $i \leq u$ such that

$$
\begin{align*}
W\left(P, L, J_{i}\right) & \leq \frac{w_{1} n_{P}}{n_{P}^{\frac{2}{d}}} \tag{37}\\
& =\sum_{j=1}^{k} w_{1} \frac{n_{j}}{n_{P}^{\frac{2}{d}}} \tag{38}\\
& \leq \sum_{j=1}^{k} \frac{w_{1}}{n_{P}^{\frac{1}{d}}} n^{\frac{d-1}{d}} \tag{39}\\
& \leq\left(k_{d} \cdot b^{\frac{-1}{d}}+\delta_{1}\right) \cdot a \cdot \sum_{j=1}^{k} w_{k} \cdot n_{j}^{\frac{d-1}{d}} \tag{40}\\
& \leq\left(k_{d} \cdot b^{\frac{-1}{d}}+\delta_{1}\right) \cdot a \cdot \sum_{j=1}^{k} w_{j} \cdot n_{j}^{\frac{d-1}{d}} . \tag{41}
\end{align*}
$$

The inequality (37) is from (35), (36), and (33). The transition from (37) to (38) is by (34). The transition from (38) to (39) is because $n_{j} \leq n_{P}$. The transition from (39) to (40) is because n_{P} is large, $\left(k_{d} \cdot b^{\frac{-1}{d}}+\delta_{1}\right) \cdot a$ is a constant and we have the condition $\frac{w_{1}}{w_{k}}=o\left(n_{P}^{\frac{1}{d}}\right)$ from the theorem. Therefore (by (37-41)),

$$
\begin{equation*}
W\left(P, L, J_{i_{1}}\right) \leq W\left(P, L, J_{i}\right) \leq\left(k_{d} \cdot b^{\frac{-1}{d}}+\delta_{1}\right) \cdot a \cdot \sum_{j=1}^{k} w_{j} \cdot n_{j}^{\frac{d-1}{d}} . \tag{42}
\end{equation*}
$$

By Lemma 14 , with probability $\geq 1-\frac{1}{100} e^{-r}$, we have

$$
W\left(P, L, J_{i}\right) \in\left[W\left(P^{\prime}, L, J_{i}\right) \frac{n_{P}}{m_{2}}-\delta_{2} n_{P}^{\frac{d-1}{d}-s_{2}}, W\left(P^{\prime}, L, J_{i}\right) \frac{n_{P}}{m_{2}}+\delta_{2} n_{P}^{\frac{d-1}{d}-s_{2}}\right]
$$

$$
\begin{equation*}
\text { for all } i \leq u \tag{43}
\end{equation*}
$$

Assume (43) holds. Thus, $W\left(P^{\prime}, L, J_{i_{1}}\right) \frac{n_{P}}{m_{2}}-\delta_{2} n^{\frac{d-1}{d}-s_{2}} \leq W\left(P, L, J_{i_{1}}\right)$, which implies the following:

$$
\begin{equation*}
W\left(P^{\prime}, L, J_{i_{1}}\right) \leq W\left(P, L, J_{i_{1}}\right) \frac{m_{2}}{n_{P}}+\frac{\delta_{2} m_{2}}{n_{P}^{(1 / d)+s_{2}}} . \tag{44}
\end{equation*}
$$

Since the algorithm selects the interval $J_{i_{0}}$ with the least $W\left(P^{\prime}, L, J_{i_{0}}\right)$, we have that

$$
\begin{equation*}
W\left(P^{\prime}, L, J_{i_{0}}\right) \leq W\left(P^{\prime}, L, J_{i_{1}}\right) . \tag{45}
\end{equation*}
$$

Thus, we conclude that

$$
\begin{align*}
W\left(P, L, J_{i_{0}}\right) & \leq W\left(P^{\prime}, L, J_{i_{0}}\right) \frac{n_{P}}{m_{2}}+\delta_{2} n_{P}^{\frac{d-1}{d}-s_{2}} \tag{46}\\
& \leq W\left(P^{\prime}, L, J_{i_{1}}\right) \frac{n_{P}}{m_{2}}+\delta_{2} n_{P}^{\frac{d-1}{d}-s_{2}} \tag{47}\\
& \leq\left(W\left(P, L, J_{i_{1}}\right) \frac{m_{2}}{n_{P}}+\frac{\delta_{2} m_{2}}{n_{P}^{(1 / d)+s_{2}}}\right) \frac{n_{P}}{m_{2}}+\delta_{2} n_{P}^{\frac{d-1}{d}-s_{2}} \tag{48}\\
& =W\left(P, L, J_{i_{1}}\right)+2 \delta_{2} n_{P}^{\frac{d-1}{d}-s_{2}} \tag{49}\\
& \leq W\left(P, L, J_{i_{1}}\right)+2 \delta_{1} \cdot a w_{j} n_{j}^{\frac{d-1}{d}} \text { for some } j \leq k . \tag{50}
\end{align*}
$$

The inequality (46) is due to (43). The transition from (46) to (47) is due to (45). The transition from (47) to (48) is due to (44). The transition from (49) to (50) is due to (24).

By (42) and (46-50),

$$
\begin{align*}
W\left(P, L, J_{i_{0}}\right) & \leq\left(k_{d} \cdot b^{\frac{-1}{d}}+\delta_{1}\right) \cdot a \cdot \sum_{j=1}^{k} w_{j} \cdot n_{j}^{\frac{d-1}{d}}+2 \delta_{1} \cdot a w_{j} n_{j}^{\frac{d-1}{d}} \tag{51}\\
& \leq\left(k_{d} \cdot b^{\frac{-1}{d}}+3 \delta_{1}\right) \cdot a \cdot \sum_{j=1}^{k} w_{j} \cdot n_{j}^{\frac{d-1}{d}} \tag{52}\\
& \leq\left(k_{d} \cdot b^{\frac{-1}{d}}+\delta\right) \cdot a \cdot \sum_{j=1}^{k} w_{j} \cdot n_{j}^{\frac{d-1}{d}} \tag{53}
\end{align*}
$$

The transition from (52) to (53) is due to (1).

Case 2: $\left|D_{1, d+1}^{*}-D_{d, d+1}^{*}\right|<3 a n_{P}^{\frac{2}{d}}$. Let J^{*} be interval such that $\operatorname{center}\left(J^{*}\right) \in$ $\left[D_{1, d+1}^{*}, D_{d, d+1}^{*}\right]$ and $\left|J^{*}\right|=2 a_{1}=2 a\left(1+\delta_{1}\right)$ and $W\left(P, L, J^{*}\right)$ is the least.

Subcase 2.1: $\left|D_{1, d+1}^{*}-D_{d, d+1}^{*}\right| \leq \delta_{1} a$. Let $J=\left[D_{1, d+1}^{*}-a, D_{1, d+1}^{*}+a\right]$ and let $L^{\prime}=L\left(D_{1, d+1}^{*}\right)$ (In other words, $\left.L^{\prime}=L(\operatorname{center}(J))\right)$ (see Definition 7). Clearly, $J \subseteq J^{*}$ and $W(P, L, J) \leq W\left(P, L, J^{*}\right)$.

Subcase 2.2: $\delta_{1} a<\left|D_{1, d+1}^{*}-D_{d, d+1}^{*}\right|<3 a n_{P}$. Let $g_{2}\left(n_{P}\right)$ be the least integer $v \geq 2$ such that $\frac{\left|D_{d, d+1}^{*}-D_{1, d+1}^{*}\right|+2 a}{v} \leq \frac{\delta_{1} a}{3}$. Since $v \geq 2$ and $\frac{\left|D_{d, d+1}^{*}-D_{1, d+1}^{*}\right|+2 a}{v-1}>\frac{\delta_{1} a}{3}$, we have $\frac{\left|D_{d, d+1}^{*}-D_{1, d+1}^{*}\right|+2 a}{v}=\frac{v-1}{v} \frac{\left|D_{d, d+1}^{*}-D_{1, d+1}^{*}\right|+2 a}{v-1}>\frac{v-1}{v} \frac{\delta_{1} a}{3} \geq \frac{\delta_{1} a}{6}$. Therefore,

$$
\begin{aligned}
v & \leq \frac{\left|D_{d, d+1}^{*}-D_{1, d+1}^{*}\right|+2 a}{\frac{\delta_{1} a}{6}} \\
& \leq \frac{3 a n_{P}^{\frac{2}{d}}+2 a}{\frac{\delta_{1} a}{6}} \\
& =\frac{6\left(3 n_{P}^{\frac{2}{d}}+2\right)}{\delta_{1}}=O\left(n_{P}^{\frac{2}{d}}\right)
\end{aligned}
$$

Let $s=\frac{\left|D_{d, d+1}^{*}-D_{1, d+1}^{*}\right|+2 a}{g_{2}\left(n_{P}\right)} \in\left[\frac{\delta_{1} a}{6}, \frac{\delta_{1} a}{3}\right]$. Partition $\left[D_{1, d+1}^{*}-a, D_{d, d+1}^{*}+a\right]$ into the union of $g_{2}\left(n_{P}\right)$ disjoint intervals of size $s:\left[r_{1}, r_{2}\right) \cup\left[r_{2}, r_{3}\right) \cup \cdots \cup\left[r_{v-1}, r_{v}\right) \cup$ $\left[r_{v}, r_{v+1}\right]$, where $v=g_{2}\left(n_{P}\right)$ and $r_{i+1}=r_{i}+s$ for $i=1, \ldots, v$. Let $I_{i}=\left[r_{i}, r_{i+1}\right)$ for $i=1, \ldots, v-1$ and $I_{v}=\left[r_{v}, r_{v+1}\right]$. Let $J_{i}^{*}=I_{i} \cup I_{i+1} \cup \cdots \cup I_{i+h-1}$ for $i=$ $1, \ldots, v-h+1$, where h is an integer with $2 a<h \cdot s \leq 2 a+s$. The algorithm selects the interval $J=J_{i_{2}}^{*}$ that has the least $W\left(P^{\prime}, L, J_{i_{2}}^{*}\right)$. Finally, the algorithm outputs $L^{\prime}=L(\operatorname{center}(J))$ (see Definition 7) for the separator hyper-plane. We analyze the algorithm for the case 2 .

Lemma 16 Assume that J is the interval output from the case 2 (either subcase 2.1 or subcase 2.2). With probability $\geq 1-\frac{1}{100} e^{-r}$, we have that $W(P, L, J) \leq$ $W\left(P, L, J^{*}\right)+2 \delta_{1} \cdot a w_{j} n_{j}^{\frac{d-1}{d}}$ for some $j \leq k$.

Proof The subcase 2.1 is trivial since the small size of the interval implies that $J \subseteq$ J^{*}. We only discuss the subcase 2.2 . Let $I_{t}, I_{t+1}, \ldots, I_{t+m}$ be the intervals such that $J^{*} \cap J_{t+i} \neq \emptyset(i=0, \ldots, m)$. Then $I_{t+1}, I_{t+2}, \ldots, I_{t+m-1}$ are all subsets of J^{*}. Let K^{*} be the interval from the union $I_{t+1} \cup I_{t+2} \cup \cdots \cup I_{t+m-1}$. Since $\left\|I_{i}\right\|=s \leq \frac{\delta_{1} a}{3}$, $\left\|J^{*}\right\|=2\left(1+\delta_{1}\right) a \geq\left\|K^{*}\right\| \geq\left\|J^{*}\right\|-\left\|I_{t}\right\|-\left\|I_{t+m}\right\| \geq 2\left(1+\delta_{1}\right) a-\frac{2 \delta_{1} a}{3} \geq 2 a+\frac{4 \delta_{1} a}{3}$ (Remember that we use $\|[a, b)\|$ to represent the length $b-a$ of the interval $[a, b)$). We have the interval J_{t+1}^{*} with $\left\|J_{t+1}^{*}\right\| \geq 2 a$ and $J_{t+1}^{*} \subseteq K^{*} \subseteq J^{*}$. This implies that

$$
\begin{equation*}
W\left(P, L, J_{t+1}^{*}\right) \leq W\left(P, L, J^{*}\right) \tag{54}
\end{equation*}
$$

By Lemma 14 , the probability is $\geq 1-\frac{1}{100} e^{-r}$ that $W\left(P, L, J_{i}^{*}\right) \in\left[W\left(P^{\prime}, L, J_{i}^{*}\right) \times\right.$ $\frac{n_{P}}{m_{2}}-\delta_{2} n_{P}^{\frac{d-1}{d}-s_{2}}, W\left(P^{\prime}, L, J_{i}^{*}\right) \frac{n_{P}}{m_{2}}+\delta_{2} n_{P}^{\frac{d-1}{d}-s_{2}}$] for all $i \leq g\left(n_{P}\right)-h+1$. Thus,
$W\left(P^{\prime}, L, J_{t+1}^{*}\right) \frac{n_{P}}{m_{2}}-\delta_{2} n^{\frac{d-1}{d}-s_{2}} \leq W\left(P, L, J_{t+1}^{*}\right) \leq W\left(P, L, J^{*}\right)$. We assume that

$$
W\left(P, L, J_{i}^{*}\right) \in\left[W\left(P^{\prime}, L, J_{i}^{*}\right) \frac{n_{P}}{m_{2}}-\delta_{2} n_{P}^{\frac{d-1}{d}-s_{2}}, W\left(P^{\prime}, L, J_{i}^{*}\right) \frac{n_{P}}{m_{2}}+\delta_{2} n_{P}^{\frac{d-1}{d}-s_{2}}\right]
$$

$$
\begin{equation*}
\text { for every } 1 \leq i \leq g\left(n_{P}\right)-h+1 \tag{55}
\end{equation*}
$$

Thus, $W\left(P^{\prime}, L, J_{t+1}^{*}\right) \frac{n_{P}}{m_{2}}-\delta_{2} n^{\frac{d-1}{d}-s_{2}} \leq W\left(P, L, J_{t+1}^{*}\right) \leq W\left(P, L, J^{*}\right)$. Hence,

$$
\begin{equation*}
W\left(P^{\prime}, L, J_{t+1}^{*}\right) \leq W\left(P, L, J^{*}\right) \frac{m_{2}}{n_{P}}+\frac{\delta_{2} m_{2}}{n^{(1 / d)+s_{2}}} . \tag{56}
\end{equation*}
$$

Since the algorithm selects the interval $J_{i_{2}}^{*}$ with the least $W\left(P^{\prime}, L, J_{i_{2}}^{*}\right)$,

$$
\begin{equation*}
W\left(P^{\prime}, L, J_{i_{2}}^{*}\right) \leq W\left(P^{\prime}, L, J_{t+1}^{*}\right) \tag{57}
\end{equation*}
$$

We have that

$$
\begin{align*}
W\left(P, L, J_{i_{2}}^{*}\right) & \leq W\left(P^{\prime}, L, J_{i_{2}}^{*}\right) \frac{n_{P}}{m_{2}}+\delta_{2} n_{P}^{\frac{d-1}{d}-s_{2}} \tag{58}\\
& \leq W\left(P^{\prime}, L, J_{t+1}^{*}\right) \frac{n_{P}}{m_{2}}+\delta_{2} n_{P}^{\frac{d-1}{d}-s_{2}} \tag{59}\\
& \leq\left(W\left(P, L, J_{t+1}^{*}\right) \frac{m_{2}}{n_{P}}+\frac{\delta_{2} m_{2}}{n_{P}^{(1 / d)+s_{2}}}\right) \frac{n_{P}}{m_{2}}+\delta_{2} n_{P}^{\frac{d-1}{d}-s_{2}} \tag{60}\\
& =W\left(P, L, J_{t+1}^{*}\right)+2 \delta_{2} n_{P}^{\frac{d-1}{d}-s_{2}} \tag{61}\\
& \leq W\left(P, L, J^{*}\right)+2 \delta_{2} n_{P}^{\frac{d-1}{d}-s_{2}} \tag{62}\\
& \leq W\left(P, L, J^{*}\right)+2 \delta_{1} \cdot a w_{j} n_{j}^{\frac{d-1}{d}} \text { for some } j \leq k(\text { by }(24)) . \tag{63}
\end{align*}
$$

The inequality (58) follows from (55). The transition from (58) to (59) is due to (57). The transition from (59) to (60) is due to (56). The transition from (61) to (62) is due to (54).

For a list A of finite points in \Re^{d} and a hyper-plane M_{1}, define $F_{1}\left(M_{1}, a, A\right)=$ $\sum_{p_{i} \in A}$ and $\operatorname{dist}\left(p_{i}, M_{1}\right) \leq a w\left(p_{i}\right)$. If M_{1} and M_{2} are two parallel hyper-planes with signed distance $d_{M_{1}, M_{2}}=s d\left(p, M_{1}\right)$ for some point p in the M_{2}, then $F_{1}\left(M_{2}\right.$, $a, A)=W\left(A, M_{1},\left[d_{M_{1}, M_{2}},-a, d_{M_{1}, M_{2}}+a\right]\right)$. The hyper-plane $L\left(\operatorname{center}\left(J_{i_{2}}^{*}\right)\right)$ (see Definition 7) output by the algorithm has that $F_{1}(L(\operatorname{center}(J)), a, P) \leq$ $F_{1}\left(L\left(\operatorname{center}\left(J^{*}\right)\right), a_{1}, P\right)+2 \delta_{1} \cdot a w_{j} n_{j}^{\frac{d-1}{d}}$ for some $j \leq k$ by Lemma 16.

Lemma 17 With probability at least $1-e^{-r}$, one can output an hyperplane L^{\prime} in $O\left(v^{2} \cdot\left(n_{P}^{\frac{2}{d}+2\left(s_{1}+s_{2}\right)} \cdot \log n_{P}+\log n_{Q}\right)\right)$ steps such that $F_{1}\left(L^{\prime}, a, P\right) \leq\left(k_{d} \cdot b^{\frac{-1}{d}}+\delta\right)$. $a \cdot \sum_{j=1}^{k} w_{j} n_{j}^{\frac{d-1}{d}}+O\left(n_{P}^{\frac{d-2}{d}+s_{1}}\right)$.

Proof After the hyper-plane L is selected in phase one, by Lemma 13, the probability is at least $1-e^{-r}$ that both $\operatorname{Pr}\left(Q, L, \leftarrow q_{1}^{*}\right) \in\left[\frac{1}{d+1}-\delta, \frac{1}{d+1}-\frac{\delta}{6}\right]$ and $\operatorname{Pr}\left(Q, L, \leftarrow q_{2}^{*}\right) \in\left[\frac{d}{d+1}+\frac{\delta}{6}, \frac{d}{d+1}+\delta\right]$. This means every L^{\prime} (parallel to L) with the signed distance (to L) in the interval $\left[D_{1, d+1}^{*}, D_{d, d+1}^{*}\right]$, it has at most $\left(\frac{d}{d+1}+\delta\right) n_{Q}$ points of Q in each of the half spaces. In phase 2, we have probability at least $1-e^{-r}$ to output the separator L^{\prime} (the signed distance to L is in $\left[D_{1, d+1}^{*}, D_{d, d+1}^{*}\right]$) such that $F_{1}\left(L^{\prime}, a, P\right) \leq\left(k_{d} \cdot b^{\frac{-1}{d}}+\delta\right) \cdot a \cdot \sum_{j=1}^{k} w_{j} \cdot n_{j}^{\frac{d-1}{d}}$ (Case 1 of Phase 2, see Lemma 15) or $F_{1}\left(L^{\prime}, a, P\right) \leq F_{1}\left(L\left(J^{*}\right), a_{1}, P\right)+2 \delta_{2} w_{j} n_{j}^{\frac{d-1}{d}}$ (Case 2 of Phase 2, see Lemma 16), where J^{*} is the interval of length $2 a_{1}$ with the least $F_{1}\left(L\left(J^{*}\right), a_{1}, P\right)$ and center between $D_{1, d+1}^{*}$ and $D_{d, d+1}^{*}$.

Assume that L is a fixed hyper-plane and L^{*} is a another hyper-plane that is parallel to L and $F_{1}\left(L^{*}, a_{1}, P\right)$ is the least. By Lemma 15 and Lemma 16, the probability is $\geq\left(1-e^{-r}\right)^{2}$ such that we can get another L^{\prime} (parallel to L) such that $F_{1}\left(L^{\prime}, a, P\right) \leq F_{1}\left(L^{*}, a_{1}, P\right)+2 \delta_{1} w_{j} n_{j}^{\frac{d-1}{d}}$ for some $j \leq k$ or $F_{1}\left(L^{\prime}, a, P\right) \leq$ $\left(k_{d} \cdot b^{\frac{-1}{d}}+\delta\right) \cdot a \cdot \sum_{j=1}^{k} w_{j} \cdot n_{j}^{\frac{d-1}{d}}$. The number of points in Q in each side of L^{\prime} is $\leq\left(\frac{d}{d+1}+\delta\right) n_{Q}$.

With probability at most $\frac{1}{1+\alpha}, F_{a_{1}, P, o}(L) \geq(1+\alpha) E\left(F_{a_{1}, P, o}\right)$ (by (5)). If the algorithm repeats z times, let L_{1}, \ldots, L_{z} be the random hyper planes selected for L. With probability $\geq\left(1-\left(\frac{1}{1+\alpha}\right)^{z}\right)$, one of those L_{i} s has another hyper-plane L_{i}^{*} such that L_{i}^{*} is parallel to L_{i} and has $F_{a_{1}, P, o}\left(L_{i}^{*}\right) \leq(1+\alpha) E\left(F_{a_{1}, P, o}\right)$. Therefore, we have probability at least $\left(1-\left(\frac{1}{\alpha+1}\right)^{z}\right)\left(1-e^{-r}\right)^{2 z}$ to find out such a hyper-plane L^{\prime} with

$$
\begin{equation*}
F_{1}\left(L^{\prime}, a, P\right) \leq(1+\alpha) E\left(F_{a_{1}, P, o}\right)+2 \delta_{1} w_{j} n_{j}^{\frac{d-1}{d}} \quad \text { for some } j \leq k \tag{64}
\end{equation*}
$$

or

$$
\begin{equation*}
F_{1}\left(L^{\prime}, a, P\right) \leq\left(k_{d} \cdot b^{\frac{-1}{d}}+\delta\right) \cdot a \cdot \sum_{j=1}^{k} w_{j} \cdot n_{j}^{\frac{d-1}{d}} \tag{65}
\end{equation*}
$$

By (64), (65), (1), (2), and (4), we have $F_{1}\left(L^{\prime}, a, P\right) \leq\left(k_{d} \cdot b^{\frac{-1}{d}}+\delta\right) \cdot a \cdot$ $\sum_{j=1}^{k} w_{j} n_{j}^{\frac{d-1}{d}}+O\left(n_{P}^{\frac{d-2}{d}+s_{1}}\right)$.

Now we give a bound for the probability. Let $z=\frac{2 r}{\ln (1+\alpha)}=O(v)$ (by (6)). Then $1-\left(\frac{1}{1+\alpha}\right)^{z}>1-e^{-r}$.

$$
\left(1-\left(\frac{1}{1+\alpha}\right)^{z}\right)\left(1-e^{-r}\right)^{2 z}>\left(1-e^{-r}\right)^{2 z+1}>1-(2 z+1) e^{-r}>1-\frac{1}{2^{v}},
$$

where we let $r=c_{4} v$ for some constant c_{4} large enough.
The phase 1 of the algorithm takes $O\left(m_{1}+m_{2}\right)$ steps. The case 1 of phase 2 takes $O\left(m_{2}\right)$ steps. The case 2 of phase 2 takes $O\left(m_{2}\right)$ steps. Totally, it takes $O\left(z\left(m_{1}+\right.\right.$

$$
\left.\left.m_{2}\right)\right)=O\left(v \cdot\left(n_{P}^{\frac{2}{d}+2\left(s_{1}+s_{2}\right)} \cdot\left(\log n_{P}+v\right)+v \log n_{Q}\right)\right)=O\left(v ^ { 2 } \cdot \left(n_{P}^{\frac{2}{d}+2\left(s_{1}+s_{2}\right)} \cdot \log n_{P}+\right.\right.
$$ $\left.\log n_{Q}\right)$) steps.

Applying Lemma 17, we finish the proof of the Theorem.

6 An application to protein side-chain packing problem

We follow the description of Xu (2005) for the model of protein side chain packing. The side-chain prediction problem can be formulated as follows. We use a reside interaction graph $G=(V, E)$ to represent a protein resides and their interactions. Each vertex in V represents a residue of the protein. For each reside $i \in V, D(i)$ is the set of all possible rotamers of side chain i. There is an interaction edge $(i, j) \in E$ if and only if there are $l \in D(i)$ and $k \in D(j)$ such that there exist an atom in the rotamer l conflicts with another atom in the rotamer k. Two atoms conflict each other iff their distance is less than the sum of their radii. For each two rotamers $l \in D(i)$ and $k \in D(j)(i \neq j)$, there is an associated score $P_{i, j}(l, k)$ if residue i interacts with residue j. For each rotamer $l \in D(i)$, there is a score $S_{i}(l)$, which characterizes the interaction energy between l and the backbone of the protein. The prediction problem is to give $A(i) \in D(i)$ to residues $i \in V$ so that the following energy value is minimized. $E(G)=\sum_{i \in V} S_{i}(A(i))+\sum_{i \neq j,(i, j) \in E} P_{i, j}(A(i), A(j))$.

For more detailed description about the protein side chain packing, see (e.g. Ponter and Richards 1987; Canutescu et al. 2003; Xu 2005; Chazelle et al. 2004). Let d_{u}^{*} be distance such that there is no interaction between two resides if their distance is $\geq d_{u}^{*}$. Let d_{l}^{*} be the minimal distance between two amino acids. Both d_{u}^{*} and d_{l}^{*} are constants.

Theorem 18 There exists a $r_{\max }^{O\left(n^{\left.\frac{2}{3}\right)}\right.}$-time algorithm to find the optimal solution for the protein side chain packing problem, where $r_{\max }$ is the maximal number of rotamers of one amino acid. In other words, $r_{\max }=\max _{i}|D(i)|$.

Proof Our algorithm is based on the divide and conquer method. Let $d_{0}=d_{l}^{*} \frac{\sqrt{2}}{2}$ be the unit distance. Since $d_{l}^{*}=\sqrt{2} d_{0}$, we consider that the minimal distance between two amino acids is $d_{l}=\sqrt{2}$ and the minimal distance for the interaction between two side chains is $d_{u}=\frac{d_{u}^{*}}{d_{0}}$. For a grid point $p=(x, y, z)(x, y, z$ are integers $)$, define $\operatorname{cube}(p)=\left\{(u, v, w) \in \mathfrak{R}^{3} \left\lvert\, x-\frac{1}{2} \leq u<x+\frac{1}{2}\right.\right.$ and $y-\frac{1}{2} \leq v<y+\frac{1}{2}$ and $z-\frac{1}{2} \leq$ $\left.w<z+\frac{1}{2}\right\}$. The 3D space \mathfrak{R}^{3} is partitioned into many cubes: $\mathfrak{R}^{3}=\operatorname{cube}\left(p_{0}\right) \cup$ cube $\left(p_{1}\right) \cup \cdots$. For different grid points $p \neq p^{\prime}, \operatorname{cube}(p) \cap \operatorname{cube}\left(p^{\prime}\right)=\emptyset$. Each amino acid is represented by the position of its C_{α}. Therefore, no two amino acids can stay at the same $\operatorname{cube}(p)$ for any grid point p. Let P be the set of all grid points p such that $\operatorname{cube}(p)$ contains the C_{α} for an amino acid.

Let $w=d_{u}+2 \sqrt{2}$. By Corollary 12 , there exists a w-wide separator L plane such that each side has at most $\left(\frac{3}{4}+\delta\right) n$ contain amino acid, and the number of grid points (with amino acids in its cube) is bounded by $1.209 \mathrm{wn}^{\frac{2}{3}}$, where $\delta>0$ is an arbitrary
small constant. The w-wide separator partitions the problem into P_{1}, S and P_{2}, where S is the separator area. Clearly, a side chain whose amino acid C_{α} is in cube (p) with $p \in P_{1}$ does not interact another side chain in P_{2} because of the w-wide separator between P_{1} and P_{2}.

The number of ways to arrange the side chains in the separator area S is bounded by $r_{\max }^{1.209 w^{2}}{ }^{\frac{2}{3}}$. We only need $O(n)$ time for computing the separator. We assume that $r_{\max } \geq 2$ (otherwise, it is trivial). Let $T(n)$ is the computational time for the protein side chain packing problem with n resides. Solving each sub-problem $P_{i}(i=1,2)$ takes $T\left(\left(\frac{3}{4}+\delta\right) n\right)$ steps. We have the recursive $T(n) \leq 2\left(r_{\max }^{1.209 w n^{\frac{2}{3}}}+O(n)\right) T\left(\left(\frac{3}{4}+\right.\right.$ $\delta) n$). This gives that $T(n)=r_{\max }^{O\left(n^{\frac{2}{3}}\right)}$.

Acknowledgement We thank the anonymous referees for their helpful comments.

References

Akutsu T (1997) NP-hardness results for protein side-chain packing. In: Miyano S, Takagi T (eds) Genome informatics, vol 9, pp 180-186
Alon PN, Thomas R (1990) Planar separator. SIAM J Discret Math 7,2:184-193
Alon N, Seymour P, Thomas R (1990) A separator theorem for graphs with an excluded minor and its applications. In: Proceedings of the 22 nd annual ACM symposium on theory of computing. ACM, New York, pp 293-299
Canutescu AA, Shelenkov AA, Dunbrack RL Jr (2003) A graph-theory algorithm for rapid protein sidechain prediction. Protein Sci 12:2001-2014
Chazelle B, Kingsford C, Singh M (2004) A semidefinite programming approach to side-chain positioning with new rounding strategies. INFORMS J Comput 16:86-94
Chen Z, Fu B, Tang Y, Zhu B (2006) A PTAS for a disc covering problem using width-bounded separators. J Comb Optim 11(2):203-217
Cormen TH, Leiserson CE, Rivest RL, Stein C (2001) Introduction to algorithms, 2nd edn. MIT Press, Cambridge
Djidjev HN (1982) On the problem of partitioning planar graphs. SIAM J Discret Math 3(2):229-240
Djidjev HN, Venkatesan SM (1997) Reduced constants for simple cycle graph separation. Acta Inform 34:231-234
Eppstein D, Miller GL, Teng S-H (1995) A deterministic linear time algorithm for geometric separators and its applications. Fundam Inform 22(4):309-329
Fu B (2006) Theory and application of width bounded geometric separator. In: Proceedings of the 23rd international symposium on theoretical aspects of computer science (STACS'06). Lecture notes in computer science, vol 3884. Springer, Berlin, pp 277-288
Fu B, Wang W (2004) A $2^{O\left(n^{1-1 / d} \log n\right)}$ time algorithm for d-dimensional protein folding in the hpmodel. In: Proceedings of 31st international colloquium on automata, languages and programming. Lecture notes in computer science, vol 3142. Springer, Berlin, pp 630-644
Gazit H (1986) An improved algorithm for separating a planar graph. Manuscript, USC
Gilbert JR, Hutchinson JP, Tarjan RE (1984) A separation theorem for graphs of bounded genus. J Algorithm 5:391-407
Li M, Ma B, Wang L (2002) On the closest string and substring problems. J ACM 49(2):157-171
Lipton RJ, Tarjan R (1979) A separator theorem for planar graph. SIAM J Appl Math 36:177-189
Miller GL, Thurston W (1990) Separators in two and three dimensions. In: 22nd annual ACM symposium on theory of computing. ACM, New York, pp 300-309
Miller GL, Vavasis SA (1991) Density graphs and separators. In: The second annual ACM-SIAM symposium on Discrete algorithms, pp 331-336
Miller GL, Teng S-H, Vavasis SA (1991) An unified geometric approach to graph separators. In: 32nd annual symposium on foundation of computer science. IEEE, New York, pp 538-547

Motwani R, Raghavan P (2000) Randomized algorithms. Cambridge
Pach J, Agarwal P (1995) Combinatorial geometry. Wiley-Interscience, New York
Plotkin S, Rao S, Smith WD (1990) Shallow excluded minors and improved graph decomposition. In: 5th symposium on discrete algorithms. SIAM, Philadelphia, pp 462-470
Ponter JW, Richards FM (1987) Tertiary templates for proteins: use of packing criteria and the enumeration of allowed sequences for different structural classes. J Mol Biol 193:775-791
Smith WD, Wormald NC (1998) Application of geometric separator theorems. In FOCS, pp 232-243
Spielman DA, Teng SH (1996) Disk packings and planar separators. In: The 12th annual ACM symposium on computational geometry, pp 349-358
Trench WF (1978) Advanced calculus. Harper \& Row, New York
Xu J (2005) Rapid protein side-chain packing via tree decomposition. In: Research in computational molecular biology, 9th annual international conference, pp 408-422

[^0]: This research is supported by Louisiana Board of Regents fund under contract number LEQSF(2004-07)-RD-A-35.
 The part of this research was done while Bin Fu was associated with the Department of Computer Science, University of New Orleans, LA 70148, USA and the Research Institute for Children, 200 Henry Clay Avenue, New Orleans, LA 70118, USA.
 B. Fu (\boxtimes) • Z. Chen

 Department of Computer Science, University of Texas, Pan American, TX 78541, USA
 e-mail: binfu@cs.panam.edu
 Z. Chen
 e-mail: chen@cs.panam.edu

