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Abstract Given d > 2 and a set of n grid points Q in �d , we design a random-
ized algorithm that finds a w-wide separator, which is determined by a hyper-plane,

in O(n
2
d logn) sublinear time such that Q has at most ( d

d+1 + o(1))n points on ei-

ther side of the hyper-plane, and at most cdwn
d−1
d points within w

2 distance to the
hyper-plane, where cd is a constant for fixed d . In particular, c3 = 1.209. To our best
knowledge, this is the first sublinear time algorithm for finding geometric separators.
Our 3D separator is applied to derive an algorithm for the protein side-chain packing
problem, which improves and simplifies the previous algorithm of Xu (Research in
computational molecular biology, 9th annual international conference, pp. 408–422,
2005).

Keywords Sublinear time algorithm · Width-bounded separator · Random sampling

1 Introduction

The work in this paper aims for efficient identification of width-bounded separators
for a given set of points in the d-dimensional Euclidean space and their applications
to intractable practical problems. Intuitively, a width-bounded separator utilizes a
simple structured hyper-plane to divide the set into two “balanced” subsets, while at
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the same time maintaining a “low density” of the set within a given distance to the
hyper-plane. This new notion of separators was initially introduced by Fu (2006), and
it was shown that these separators are very suitable in solving a number of distance-
bounded geometric problems such as the protein folding problem in the HP model in
(Fu and Wang 2004) and some other intractable problems in (Fu 2006; Chen et al.
2006). The main contributions of this paper are summarized as follows.

In Sect. 5, we present an O(n
2
d logn) sublinear time randomized algorithm for

finding a width-bounded separator in the dimensional Euclidean space �d for d > 2.
To our best knowledge, this is the first sublinear time algorithm for finding geometric
separators. For many other geometric problems, a higher dimension brings higher
computational complexity. However, it is interesting to notice that the exponent of
our algorithm’s computational complexity is reversely proportional to the dimension
of the space.

In Sect. 6, we exhibit an application of our sublinear time separator to the pro-
tein side-chain packing problem. One of the most fundamental problems in the
molecular biology is to predict a protein’s 3D structure when given its 1D amino-
acid sequence. Although much effort has been made for decades, this problem re-
mains unsolved. An important component of the general protein structure predic-
tion problem is the protein side-chain packing problem. It determines the side-chain
positions onto the fixed backbone (Ponter and Richards 1987). This problem has

been proved to be NP-complete (Akutsu 1997). Recently, a r
O(n

2
3 logn)

ave time algo-
rithm was shown by Xu (2005), where rave is the average number of side-chain ro-
tamers in a protein. We apply width-bounded separators to the protein side-chain
packing problem. The length of side-chain of each amino acid is small compared
to the size of one protein. Two side-chains in a protein molecular do not inter-
act with each other if their distance is slightly larger than the sum of their lengths
according to models used in (e.g. Canutescu et al. 2003; Chazelle et al. 2004;
Xu 2005). Using our width-bounded separators, we obtain an algorithm with com-

putational time r
O(n

2
3 )

max , where rmax is the maximal number of side-chain rotamers
among a protein. Since the number of rotamers is usually small, we assume both rave
and rmax are constants, hence our new algorithm has a better complexity bound.

2 The related work

There have been extensive efforts on finding separators due to their critical roles in
many issues of algorithm design and analysis. Because of space limit we cannot give
a comprehensive review of the related work but list some representative results in this
area. Lipton and Tarjan (1979) proved that every n vertex planar graph has at most√

8n vertices whose removal separates the graph into two disconnected parts of size
at most 2

3n. Their 2
3 -separator has been improved by a series of papers (Djidjev 1982;

Gazit 1986; Alon and Thomas 1990; Djidjev and Venkatesan 1997) with the best
record 1.97

√
n by Djidjev and Venkatesan (1997). Spielman and Teng (1996) showed

a 3
4 -separator with size 1.82

√
n for planar graphs. Separators for more general graphs

were derived in (Gilbert et al. 1984; Alon et al. 1990; Plotkin et al. 1990). A pla-
nar graph can be induced by a set of non-overlapping discs on the plane such that
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every vertex corresponds to a disc center and each edge corresponds to a tangent
relationship between two discs. The separator developed by Miller et al. (1991) is
a generalization of planar graph separators to the d-dimensional Euclidean space.
Some O(

√
k · n) size separators for k-thick systems and the related algorithms were

derived in (Miller and Thurston 1990; Miller and Vavasis 1991; Miller et al. 1991;
Smith and Wormald 1998).

The study of width-bounded separators were initiated by Fu (2006) and has
yielded successful applications in (Fu and Wang 2004; Chen et al. 2006). Our width-
bounded geometric separator has some interesting advantages over previous geomet-
ric separators such as the popular geometric separator by Miller et al. (1991). First, the
width-bounded separator has a simple linear structure as the separator is determined
by a hyper-plane and a width parameter w, but Miller et al.’s separator is a sphere,
which can be also found in linear time (Eppstein et al. 1995). The linear structure
is very crucial for us in deriving sublinear time algorithm in this paper. Second. the
width-bounded separator has a smaller constant in its size upper bound factor than
other separators. The constant factor was not clearly given in Miller et al.’s separator.
Furthermore, their separator only has a balance condition bounded by d+1

d+2n due to
their transformation to a higher dimension, while the balance condition of the width-
bounded separator is bounded by d

d+1n. Third, the width-bounded separator can be
used to deal with an arbitrary set of points via using a set of grid points and weights
to characterize the distribution of points from the input set.

3 Notations, definitions, and width-bounded separators

For any finite set A, |A| denotes the number of elements in A. Let � be the
set of all real numbers. For two points p1,p2 in the d-dimensional Euclid-
ean space �d , dist(p1,p2) is the Euclidean distance between p1 and p2. For a
set A ⊆ �d , dist(p1,A) = minq∈A dist(p1, q). The diameter of any P ⊆ �d is
maxp1,p2∈P dist(p1,p2). For a > 0 and a set A of points in �d , if the distance be-
tween every two points in A is at least a, then A is called a-separated. For ε > 0
and a set Q of points in �d , an ε-sketch of Q is another set P of points in �d such
that each point in Q has a distance ≤ ε to some point in P . We say P is a sketch
of Q if P is an ε-sketch of Q for some constant ε > 0 (that does not necessarily
depend on the size of Q). A sketch set is usually a 1-separated set such as a grid
point set. A weight function w : P → [0,∞) is often used to measure the density of
Q near each point in P . Let f : �d → � be a smooth function. Its surface is the set
L(f ) = {v ∈ �d |f (v) = 0}. A hyper-plane in �d through a fixed point p0 ∈ �d is
defined by the equation (p − p0) · v = 0, where v is a normal vector of the plane and
“ ·” is the usual vector inner product. A hyper-plane in �d is determined by L(f ) for
some linear function f : �d → �.

Definition 1 Given any Q ⊆ �d with a sketch P ⊆ �d , a constant a > 0, and a
weight function w : P → [0,∞), an a-wide-separator is determined by the surface
L(f ) for some linear function f : �d → �. The separator has two measurements
for its quality of separation: (1) balance(L(f ),Q) = max(|Q1|,|Q2|)|Q| , where Q1 =
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{q ∈ Q|f (q) < 0} and Q2 = {q ∈ Q|f (q) > 0}; and (2) density(L(f ),P, a
2 ,w),

where in general density(A,P,x,w) = ∑
p∈P,dist(p,A)≤x w(p) for any A ⊆ �d

and x > 0. When f is fixed or no confusion arises, we use balance(L,Q) and
density(L,P, a

2 ,w) to stand for balance(L(f ),Q) and density(L(f ),P, a
2 ,w), re-

spectively.

Definition 2 A (b, c)-partition of �d divides the space into a disjoint union of re-
gions P1,P2, . . . , such that each Pi , called a regular region, has a volume of b and
a diameter ≤ c. A (b, c)-regular point set A is a set of points in �d with a (b, c)-
partition P1,P2, . . . , such that each Pi contains at most one point from A. For two
regions A and B , if A ⊆ B (A ∩ B 
= ∅), we say B contains (intersects resp.) A.

For the case b = 1 and c = √
2, the plane can be partitioned into 1 × 1 squares,

where each 1 × 1-square is a region {(x, y)|i ≤ x < x + 1 and j ≤ y < j + 1} for
some grid point (i, j) with two integers i and j . All grid points are (1,

√
2)-regular

points.
Let Bd(r, o) be the d-dimensional ball of radius r at center o. Its volume is

Vd(r) = 2(d+1)/2π(d−1)/2

1·3···(d−2)·d rd if d is odd, or 2d/2πd/2

2·4···(d−2)·d rd otherwise (see Trench 1978).

Let Vd(r) = vd · rd , where vd is a constant for the fixed dimension d . In particular,
v1 = 2, v2 = π and v3 = 4π

3 . We will use the following well-known fact that can be
easily derived from Helly Theorem (see Pach and Agarwal 1995).

Lemma 3 For an n-element set P in the d-dimensional space �d , there is a point q

with the property that any half-space that does not contain q , covers at most d
d+1n

elements of P . (Such a point q is called a centerpoint of P .)

Definition 4 Let a > 0, p and o be two points in �d . Define Prd(a,p0,p) to be
the probability that the point p has ≤ a perpendicular distance to a random hyper-
plane L through the point p0. Define function fa,p,o(L) = 1 if p has a distance
≤ a to the hyper-plane L through o, or 0 otherwise. The expectation of function
fa,p,o(L) is E(fa,p,o(L)) = Prd(a, o,p). Assume P = {p1,p2, . . . , pn} is a set of
n points in �d and each pi has weight w(pi) ≥ 0. Define function Fa,P,o(L) =∑

p∈P w(p)fa,p,o(L).

We give an upper bound for the expectation E(Fa,P,o(L)) for Fa,P,o(L) in the
lemma below.

Lemma 5 (Fu 2006) Let d ≥ 2. Let o be a point in �d , a, b, c > 0 be constants and
ε, δ > 0 be small constants. Assume that P1,P2, . . . , form a (b, c)-partition for �d ,
and the weights w1 > · · · > wk > 0 satisfy k · maxk

i=1{wi} = O(nε). Let P be a set of
n weighted (b, c)-regular points in a d-dimensional plane with w(p) ∈ {w1, . . . ,wk}
for each p ∈ P . Let nj be the number of points p ∈ P with w(p) = wj for j =
1, . . . , k. We have E(Fa,P,o(L)) ≤ (kd · ( 1

b
)

1
d + δ) · a ·∑k

j=1 wj · n
d−1
d

j +O(n
d−2
d

+ε),

where kd = d·hd

d−1 · v
1
d

d with hd = 2(d−1)vd−1
d·vd

. In particular, k2 = 4√
π

and k3 = 3
2 ( 4π

3 )
1
3 .



J Comb Optim (2008) 15: 387–407 391

Definition 6 Let a1, . . . , ad > 0 be positive constants. A (a1, . . . , ad)-grid regu-
lar partition divides �d into a disjoint union of a1 × · · · × ad rectangular regions.
A (a1, . . . , ad)-grid (regular) point is a corner point of a rectangular region. Under
certain translation and rotation, each (a1, . . . , ad)-grid regular point is represented as
(a1t1, . . . , ad td) for some integers t1, . . . , td . For a point p = (x1, . . . , xd) ∈ �d , if
x1, . . . , xd are all integers, then p is simply called a grid point (it is a (1, . . . ,1)-grid
regular point). For each point q and a hyper-plane L in �d , define sd(q,L) to be the
signed distance from q to L, which is sd(q,L) = (q − q0) · vL, where q0 is a point
on L, and vL is the normal vector of the plane L with the first nonzero coordinate to
be positive.

Definition 7 For a hyper-plane L in �d , if L is through a point q0 and has the normal
vector v, then it has linear equation (u−q0) ·v = 0. If q ∈ �d and d = sd(q,L), then
the hyper-plane L′ through q and parallel to L has equation (u − (q0 + dv)) · v = 0.
We use L(d) to represent such a hyper-plane L′.

For an interval I ⊆ R, ‖I‖ is the length of I . For example, ‖[a, b)‖ = b − a. We
often use Pr(E) to represent the probability of an event E. For a real number x,
�x� is the largest integer y ≤ x, and �x� are the least integer z ≥ x. For an interval
[a, b] ⊆ R, define center([a, b]) to be a+b

2 .

Lemma 8 Let P be a finite set of points in �d and q0 be a fixed point in �d . Then
for a random hyper-plane L through q0, Pr(sd(p1,L) = sd(p2,L) for p1,p2 ∈ P

with p1 
= p2) = 0.

Proof A random hyper-plane L through a fixed point q0 can be characterized by the
equation (q − q0) · vL = 0, where vL is the normal vector of L. Each unit vector can
be considered as a point of the surface of the unit ball Bd(1, o), where o = (0, . . . ,0)

is the origin point. The surface area size of Bd(r, o) can be computed by the derivative
∂Vd(r)

∂r
= dvdrd−1. The surface area of Bd(r, o) is of dimension d − 1.

For two fixed points p1 and p2, if sd(p1,L) = sd(p2,L), then (p1 − q0) · vL =
(p2 −q0) · vL. It implies that (p1 −p2) · vL = 0. Consider the sub-area on the surface
of B(1, o): {v|(p1 − p2) · v = 0 and v · v = 1}, which is the intersection between a
plane (p1 − p2) · v = 0 and Bd(1, o), and is of dimension d − 2. It is easy to see that
it has area size 0 in the d-dimensional space. The lemma follows since the union of a
finite number of areas of area size 0 still has 0 area size. �

4 An overview of our techniques

Given any set Q of points in �d with a sketch P , the idea of our techniques for find-
ing an a-width-bound separator is to transform the problem from the d-dimensional
space to the 1-dimensional space. By Lemma 3 and Lemma 5, we can see the ex-
istence of a hyper-plane that satisfies both the balance and the density conditions.
Lemma 5 gives an upper bound on the expectation of Fa,P,o(L). By Markov’s in-
equality, Pr(Fa,P,o(L) > (1 + α)E(Fa,P,o(L))) ≤ 1

1+α
. Thus, with probability ≥
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1 − 1
1+α

= α
1+α

, a random hyper-plane L has that Fa,P,o(L) ≤ (1 + α)E(Fa,P,o(L)).
The chance is amplified if we repeat the random selection of the hyper-plane L mul-
tiple times.

Let nP = |P | and nQ = |Q|. After a hyper-plane L is fixed, we try to find another
hyper-plane L′ that is parallel to L. We want L′ to guarantee the desired balance and
density conditions. To do so, we compute signed distances for all the points in Q and
P to the hyper-plane L. Those signed distances are all different for the points in Q

and, respectively, for the points in P (by Lemma 8). These signed distances are all in
the 1-dimensional real axis, and finding L′ can be done via finding a “right position”
among these distances, hence this transforms the problem from the d-dimensional
space into to the 1-dimensional space as follows: Find the interval [D1,d+1,Dd,d+1]
such that both the left side (−∞,D1,d+1) and the right side (Dd,d+1,+∞) have
roughly nQ

d+1 signed distances from Q to L. So, every hyper-plane L′ (parallel to L)
with a signed distance in [D1,d+1,Dd,d+1] to L guarantees the balance condition.
For an interval I , we compute its weight as the sum of the weights of the points of
P with their signed distances in I . We then look for an interval [x − a, x + a] that
has x ∈ [D1,d+1,Dd,d+1] and the smallest weight. Finally, we let L′ be a hyper-plane
with a signed distance x to L. The balance boundaries D1,d+1 and Dd,d+1 can be
detected by sampling a small number of points from Q. Using the Chernoff bound,
we have a high probability that there is a small fraction difference from the exact
boundaries. Similarly, the desired interval can be also detected by sampling a small
number of points from P .

5 The sublinear time randomized algorithm

We use the following well-known Chernoff bound (see Motwani and Raghavan 2000
for a proof) and simpled version in Lemma 10.

Theorem 9 (Motwani and Raghavan 2000) Let X1, . . . ,Xn be n independent ran-
dom 0,1 variables, where Xi takes 1 with probability pi . Let X = ∑n

i=1 Xi , and

μ = E[X]. Then for any δ > 0, (1) Pr(X < (1 − δ)μ) < e− 1
2 μδ2

, and (2) Pr(X >

(1 + δ)μ) < [ eδ

(1+δ)(1+δ) ]μ.

Lemma 10 (Li et al. 2002) Let X1, . . . ,Xn be n independent random 0,1 variables,
where Xi takes 1 with probability p. Let X = ∑n

i=1 Xi . Then for any 1
3 > ε > 0, (1)

Pr(X < pn − εn) < e− 1
2 nε2

, and (2) Pr(X > pn + εn) < e− 1
3 nε2

.

Proof For X = ∑n
i=1, μ = E(X) = ∑n

i=1 E(Xi) = pn. Let δ = ε
p

. (1) follows from

Theorem 9. By Taylor theorem, ln(1 + ε) ≥ ε − ε2

2 . We have that (1 + 1
ε
) ln(1 +

ε) ≥ (1 + 1
ε
)(ε − ε2

2 ) = 1 + ε
2 − ε2

2 > 1 + ε
3 . Thus, (1 + ε)

1
ε > e1+ ε

3 that implies
e

(1+ε)(1+ 1
ε )

< e− ε
3 . Since pn + εn = (1 + δ)μ and the function (1 + y)

1+ 1
y is in-

creasing for y > 0, Pr(X > pn + εn) = Pr(X > (1 + δ)μ) < [ e
ε
p

(1+ ε
p

)
(1+ ε

p )
]pn =

[ e

(1+ ε
p

)(1+ p
ε )

]εn ≤ [ e

(1+ε)(1+ 1
ε )

]εn ≤ e− ε2n
3 . Thus (2) is proved. �
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Theorem 11 Let d ≥ 2 be the fixed dimension number and v be a positive pa-
rameter. Let a, b, c > 0 be constants and δ, s1, s2 > 0 be small constants. Let Q

be another set of nQ points in �d , and P be a set of nP (b, c)-regular points,
which form a sketch for Q. Let w1 > w2 > · · · > wk > 0 be positive weights with

k · w1 = O(n
s1
P ), w1

wk
= o(n

1
d

P ), k
wk

= O(n
s2
P ), and w be a mapping from P to

{w1, . . . ,wk}. There exists an O(v2 · (n
2
d
+2(s1+s2)

P · lognP + lognQ)) time random-
ized algorithm to find a hyper plane M with probability ≥ 1 − 1

2v such that (1) each
half space has ≤ ( d

d+1 + δ)nQ points from Q, and (2)
∑

p∈P and dist(p,M)≤a w(p) ≤
(kd · b −1

d + δ) · a · ∑k
j=1 wjn

d−1
d

j + O(n
d−2
d

+s1

P ) for all large nP , where nj ≥ 1 is the
number of points p ∈ P with w(p) = wj (j = 1, . . . , k).

Before proving Theorem 11, we give the following corollary, which is easier to
understand than Theorem 11, but is not as general as Theorem 11. Corollary 12 will
be applied to the protein side chain packing problem in Sect. 6.

Corollary 12 Let d ≥ 2 be the dimension number and the parameter v > 0. Let
a > 0 be a constant and δ > 0 be a small constant. There exists a randomized
O(v2n

2
d logn) time such that given a set Q of n grid points in �d , the algorithm

finds a hyper-plane L with probability at least 1 − 1
2v such that each side of L has at

most ( d
d+1 + δ)n points of Q, and the number of points of Q with distance ≤ a to L

is ≤ (kd + δ)an
d−1
d + O(n

d−2
d ).

Proof We convert the conditions of this corollary into the conditions of Theorem 11
so that we can use Theorem 11. The space �d is partitioned into 1 × 1 · · · × 1 unit
cubes with grid points in the corners of all unit cubes. Clearly, the distance of two
points in the same unit cube is at most

√
d . Let the two sets P and Q be the same.

The weights of all points of P are equal to 1. This makes that s1 = s2 = 0, b = 1,
c = √

d , and k = 1. Then the corollary follows from Theorem 11. �

Proof of Theorem 11 We use two phases to find the separator hyper-plane. The first
phase determines the orientation of the hyper-plane by selecting a random hyper-
plane, and finds the region of the separator hyper-plane for a balanced partition. The
second phase finds the position of the separator plane with a small sum of weights
for the points of the set P close to it. Without loss of generality, we assume that
0 < δ < 1. Since nj ≥ 1 (j = 1, . . . , k) and

∑k
j=1 nj = nP , we have k ≤ nP . Select

constant c0 > 0 and let δ1 = c0δ so that

(kd · b −1
d + 3δ1)(1 + δ1)

2 ≤
(

kd · b −1
d + δ

2

)

. (1)

Let

a1 = a(1 + δ1) and α = δ1. (2)
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With the conditions of the theorem, let c1 be a constant such that

k · w1 ≤ c1n
s1
P and

k

wk

≤ c1n
s2
P . (3)

Let o be the center point from Lemma 3 (our algorithm does not need to find such
a center point o, but will use its existence). By Lemma 5,

E(Fa1,P ,o) ≤ (kd · b −1
d + δ1) · a1 ·

k∑

j=1

wjn
d−1
d

j + O(n
d−2
d

+s1

P ). (4)

By the well known Markov inequality and (4),

Pr(Fa1,P ,o(L) ≥ (1 + α)E(Fa1,P ,o)) ≤ 1

1 + α
. (5)

This tells us that for a random hyper-plane L, the probability is at least 1 − 1
1+α

such that there exists a separator hyper-plane L′ (it may be through o) that satisfies
the conditions of the theorem and is parallel to L. The hyper-plane L′ is determined
by the signed distance from a point in L′ to the hyper-plane L since L′ and L are
parallel. We assign the values to some parameters:

r = c4v, where c4 is a constant to be fixed later, (6)

δ2 = δ1 · a
c1

, (7)

ε = δ2

3c1n
1
d
+s1+s2

P

, (8)

ε0 = δ

7
, (9)

ε1 = 5ε0, (10)

m1 = 3(ln 100 + r + lognQ)

ε2
0

, (11)

m2 = 3(ln 100 + 2 lognP + r)

ε2
. (12)

Algorithm: find separator in d-dimension
Input:

P (a set of weighted (b, c)-regular points in �d ),
Q (a set of points in �d ),
nP = |P | (the number of elements of set P ), and
nQ = |Q| (the number of elements of set Q).

Phase 1:
begin

Select a fixed point o∗ ∈ �d and a random hyper-plane L through o∗.
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Randomly select a list m1 points Q′ = 〈q1, . . . , qm1〉 from Q.
For each qj ∈ Q′, compute its signed distance to L dqi

= sd(qi,L).
Find the �( 1

d+1 − ε1)m1�-th least point D∗
1,d+1 = dq∗

1
among dq1 , . . . , dqm1

.
Find the �( d

d+1 + ε1)m1�-th least point D∗
d,d+1 = dq∗

2
among dq1, . . . , dqm1

.
Randomly select a list of m2 points P ′ = 〈p1, . . . , pm2〉 from P .
For each pi ∈ P ′, compute dpi

= sd(pi,L).
end (Phase 1)
Phase 2:
begin

if (|D∗
1,d+1 − D∗

d,d+1| ≥ 3an
2
d

P ) then (Case 1)
begin

Let u = n
2
d

P .
Partition [D∗

1,d+1,D
∗
d,d+1] into equal length intervals [l1, l2), [l2, l3), . . . ,

[lu−1, lu), [lu, lu+1].
Compute W(P ′,L, [li , li+1]) for i = 1, . . . , u.
Select [li , li+1] with the minimal sum of weights W(P ′,L, [li , li+1]).

end (Case 1)
if (|D∗

1,d+1 − D∗
d,d+1| ≤ δ1a) then (Case 2: Subcase 2.1)

begin
Select J = [D∗

1,d+1 − a,D∗
1,d+1 + a].

end (Case 2: Subcase 2.1)
if (δ1a < |D∗

1,d+1 − D∗
d,d+1| < 3anP ) then (Case 2: Subcase 2.2)

begin

Select the least integer v ≥ 2 such that
|D∗

d,d+1−D∗
1,d+1|+2a

v
≤ δ1a

3 .

Let s = |D∗
d,d+1−D∗

1,d+1|+2a

v
.

Partition [D∗
1,d+1 − a,D∗

d,d+1 + a] into [r1, r2) ∪ [r2, r3) ∪ · · ·
∪ [rv−1, rv) ∪ [rv, rv+1] of length s.
Compute W(P ′,L, Ii) with Ii = [ri , ri+1) for i = 1, . . . , v − 1 and Iv =
[rv, rv+1].
Select an integer h with 2a < h · s < 2a + 2s.
Let J ∗

i = [ri , ri+h) = Ii ∪ Ii+1 ∪ · · · ∪ Ii+h−1 (i = 1,2, . . . , v − h) and
J ∗

v−h+1 = [rv−h+1, rv+1] = Iv−h+1 ∪ Iv−h+2 ∪ · · · ∪ Iv+1.
Compute W(P ′,L,J ∗

i ) via W(P ′,L,J ∗
i ) = W(P ′,L,J ∗

i−1) −
W(P ′,L, Ii−1) + W(P ′,L, Ii+h)

(i = 1, . . . , v − h + 1).
Select J = J ∗

i with the minimal sum of weights W(P ′,L,J ∗
i ).

end (Case 2: Subcase 2.2)
Output L(center(J )) (see Definition 7) as the separator hyper-plane.

end (Phase 2)
End of the Algorithm

Phase 1 of the algorithm: The input of our algorithm is P,Q,nQ = |Q|, and
nP = |P |. Each input point p ∈ P has the format 〈(x1, . . . , xd),w(p)〉, where p =
(x1, . . . , xd) and w(p) is the weight of p. The algorithm starts with the following
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steps: Select a fixed point o∗ ∈ �d and a random plane L through o∗ (random hyper-
plane can be selected via selecting a random normal vector). Randomly select m1
points q1, . . . , qm1 from Q and let Q′ = 〈q1, . . . , qm1〉 represent the list of these points
just selected from Q (One point may appear multiple times. This is why we use list
instead of set). For each qj ∈ Q′, compute its signed distance dqi

= sd(qi,L) to L.
Find the �( 1

d+1 − ε1)m1�-th least point D∗
1,d+1 = sd(q∗

1 ,L) for dq1, . . . , dqm1
. Find

the �( d
d+1 + ε1)m1�-th least point D∗

d,d+1 = sd(q∗
2 ,L) for dq1, . . . , dqm1

. Randomly
select m2 points p1, . . . , pm2 from P and let P ′ = 〈p1, . . . , pm2〉 represent the list
of these points just selected. For each pi ∈ P ′, compute dpi

= sd(pi,L). It is well-
known that finding the i-th element from a list takes linear steps (see Cormen et al.
2001). The computation above takes (m1 + m2) steps. In the rest of the algorithm,
we locate the position of the separator hyper-plane parallel to L by finding its signed
distance to L. Its position will be at the center of an interval of size 2a. In the rest of
the proof, we treat both P and Q as lists of points from �d . Each point appears only

at most once on both P and Q. Let td = kd · b −1
d + δ. For q ∈ �d and A ⊆ �d , define

Pr(A,L,← q) = |{q ′|q ′ ∈ A and sd(q ′,L) ≤ sd(q,L)}|
|A| .

For a list of points B = 〈x1, . . . , xm〉 from �d and a point q ∈ �d , define XB,L,q(i) =
1 if sd(xi,L) ≤ sd(q,L), or 0 otherwise. We also define

Y(B,L,q) =
m∑

i=1

XB,L,q(i).

Lemma 13 With probability ≥ 1 − e−r

50 , Pr(Q,L,← q∗
1 ) ∈ [ 1

d+1 − δ, 1
d+1 − δ

6 ] and

Pr(Q,L,← q∗
2 ) ∈ [ d

d+1 + δ
6 , d

d+1 + δ] for all large nQ.

Proof By Lemma 8, with probability 0, we have that sd(qi,L) = sd(qj ,L) for some
qi 
= qj from Q or sd(pi,L) = sd(pj ,L) for some pi 
= pj from P .

For a fixed q ∈ Q, by Lemma 10, we have probability ≤ e− m1ε2
0

3 such that
Y(Q′,L, q) 
∈ [Pr(Q,L,← q)m1 − ε0m1,Pr(Q,L,← q)m1 + ε0m1]. There are nQ

points in the set Q. This implies that the probability is at most nQe− m1ε2
0

3 < e−r

100
(see the assignment (11) for m1) such that Y(Q′,L, q) 
∈ [Pr(Q,L,← q)m1 −
ε0m1,Pr(Q,L,← q)m1 + ε0m1] for some q ∈ Q.

For each q ∈ Q, define Vq(i) to be the random variable such that Vq(i) = 1 if q =
qi or 0 otherwise. With probability 1

nQ
, Vq(i) is 1. When nQ is large and m1 elements

are selected from Q, the probability is ≤ e
−1
3 ε2

0m1 that at least 2ε0m1 > m1
nQ

+ ε0m1

elements are equal to q (by Lemma 10). The probability is at most nQe
−1
3 ε2

0m1 < e−r

100
that at least one element of Q is selected more than 2ε0m1 times.

From the analysis above, the probability is ≥ 1 − (0 + e−r

100 + e−r

100 ) = 1 − e−r

50 such
that (a) sd(qi,L) 
= sd(qj ,L) for qi 
= qj from Q, and sd(pi,L) 
= sd(pj ,L) for
pi 
= pj from P ; (b) Y(Q′,L, q) ∈ [Pr(Q,L,← q)m1 − ε0m1,Pr(Q,L,← q)m1 +
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ε0m1] for all q ∈ Q; and (c) no element of Q is selected more than 2ε0m1 times into
the list Q′.

Assume (a), (b) and (c) above are all true. Since sd(q∗
1 ,L) is the �( 1

d+1 − ε1)m1�-
th least element among dq1, dq2 , . . . , dqm1

and both (a) and (c) hold, the point q∗
1

appears in the list Q′ no more than 2ε0m1 times and we also have
(

1

d + 1
− ε1

)

m1 + 2ε0m1 + 1 ≥ Y(Q′,L, q∗
1 ). (13)

By (b), we conclude that

Y(Q′,L, q∗
1 ) ≥ Pr(Q,L,← q∗

1 )m1 − ε0m1. (14)

By (13) and (14), ( 1
d+1 − ε1)m1 + 2ε0m1 + 1 ≥ Pr(Q,L,← q∗

1 )m1 − ε0m1.

Hence, 1
d+1 − ε1 + 3ε0 + 1

m1
≥ Pr(Q,L,← q∗

1 ). Since sd(q∗
1 ,L) is the

�( 1
d+1 − ε1)m1�-th least element among dq1 , dq2, . . . , dqm1

,

(
1

d + 1
− ε1

)

m1 − 1 ≤ Y(Q′,L, q∗
1 ). (15)

By (b),

Y(Q′,L, q∗
1 ) ≤ Pr(Q,L,← q∗

1 )m1 + ε0m1. (16)

By (15) and (16), Pr(Q,L,← q∗
1 ) ≥ 1

d+1 − ε1 − ε0 − 1
m1

. Thus, Pr(Q,L,←
q∗

1 ) ∈ [ 1
d+1 − ε1 − ε0 − 1

m1
, 1

d+1 − ε1 + 3ε0 + 1
m1

] ⊆ [ 1
d+1 − δ, 1

d+1 − δ
6 ]. Similarly,

Pr(Q,L,← q∗
2 ) ∈ [ d

d+1 + δ
6 , d

d+1 + δ]. �

Phase 2 of the algorithm: In this phase, we will find a position of the hyper-
plane L′ (parallel to the hyperplane L) with the signed distance to L in the range
[D∗

1,d+1,D
∗
d,d+1]. Lemma 13 guarantees (with high probability) that each position in

the interval [D∗
1,d+1,D

∗
d,d+1] gives a balance partition. We look for the position that

has the small sum of weights for the points of P close to L′.
For a list A = 〈x1, . . . , xm〉, |A| = m is denoted to be the length of A and x ∈ A

means that x is one of the elements in A (x = xi for some 1 ≤ i ≤ m). For a real
number subset J ⊆ � and a list A of finite points in �d , define

Pr∗(A,L,J,wj ) = |{p|p ∈ A and w(p) = wj and sd(p,L) ∈ J }|
|A| , (17)

and

Z(A,L,J,wj ) =
∑

p∈A

X∗
L,p,J,wj

, (18)

where X∗
L,p,J,wj

= 1 if sd(p,L) ∈ J and w(p) = wj , or 0 otherwise. We also define

W(A,L,J ) =
∑

p∈A and sd(p,L)∈J

w(p). (19)
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By the definitions (17–19), it is easy to see that

W(A,L,J ) =
k∑

j=1

wjZ(A,L,J,wj ) =
k∑

j=1

wj Pr∗(A,L,J,wj )|A|. (20)

Since
∑k

j=1 nj = nP , we have that

nj ≥ nP

k
(21)

for some 1 ≤ j ≤ k. By (3) and the theorem condition wk ≤ wj for j = 1, . . . , k, we
have that

n
s2
P ≥ k

c1wk

≥ k
d−1
d

c1wj

. (22)

By (21) and (22),

n
d−1
d

−s2

P = n
d−1
d

P

n
s2
p

≤ c1wj

(
nP

k

) d−1
d ≤ c1wjn

d−1
d

j for some 1 ≤ j ≤ k. (23)

By (7) and (23), for some 1 ≤ j ≤ k,

δ2 · n
d−1
d

−s2

P ≤ δ1 · a · wjn
d−1
d

j . (24)

Lemma 14 Let f ≤ nP be an integer and H1,H2, . . . ,Hf ⊆ R be f real inter-
vals. With probability ≥ 1− 1

100e−r , we have that W(P,L,Hi) ∈ [W(P ′,L,Hi)
nP

m2
−

δ2n
d−1
d

−s2

P ,W(P ′,L,Hi)
nP

m2
+ δ2n

d−1
d

−s2

P ]) for 1 ≤ i ≤ f .

Proof For fixed interval Hi and weight wj , by Lemma 10, the probability is ≤ e− m2ε2

3

such that Z(P ′,L,Hi,wj ) 
∈ [Pr∗(P,L,Hi,wj )m2 − εm2,Pr∗(P,L,Hi,wj )m2 +
εm2]. Thus, the probability is ≤ k · f e− m2ε2

3 ≤ n2
P e− m2ε2

3 < 1
100e−r such that

Z(P ′,L,Hi,wj ) 
∈ [Pr∗(P,L,Hi,wj )m2 − εm2,Pr∗(P,L,Hi,wj )m2 + εm2] for
some i ≤ f and j ≤ k. In other words, with probability ≥ 1 − 1

100e−r , we have
Z(P ′,L,Hi,wj ) ∈ [Pr∗(P,L,Hi,wj )m2 − εm2,Pr∗(P,L,Hi,wj )m2 + εm2] for
all i ≤ f and j ≤ k. We assume that for all i ≤ f and j ≤ k,

Z(P ′,L,Hi,wj )

∈ [Pr∗(P,L,Hi,wj )m2 − εm2,Pr∗(P,L,Hi,wj )m2 + εm2]. (25)

By (8) and (3),

εkw1 ≤ δ2

3c1n
1
d
+s1+s2

P

· c1n
s1
P = δ2

3n
1
d
+s2

P

≤ δ2

n
1
d
+s2

P

. (26)
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By (20), (26) and (25),

W(P ′,L,Hi) =
k∑

j=1

wjZ(P ′,L,Hi,wj ) (27)

≥
k∑

j=1

wj(Pr∗(P,L,Hi,wj )m2 − εm2) (28)

≥
k∑

j=1

wj Pr∗(P,L,Hi,wj )m2 − εkw1m2 (29)

≥
k∑

j=1

wj Pr∗(P,L,Hi,wj )m2 − δ2m2

n
(1/d)+s2
P

. (30)

Similarly, we also have

W(P ′,L,Hi) ≤
k∑

j=1

wj Pr∗(P,L,Hi,wj )m2 + δ2m2

n
(1/d)+s2
P

. (31)

By (30) and (31),

W(P ′,L,Hi) ∈
[

k∑

j=1

wj · Pr∗(P,L,Hi,wj )m2 − δ2m2

n
(1/d)+s2
P

,

k∑

j=1

wj · Pr∗(P,L,Hi,wj )m2 + δ2m2

n
(1/d)+s2
P

]

. (32)

Since W(P,L,Hi) = ∑k
j=1 wj Pr∗(P,L,Hi,wj )nP (by (20)) and W(P ′,L,Hi)

is in the interval [∑k
j=1 wj Pr∗(P,L,Hi,wj )m2 − δ2m2

n
(1/d)+s2
P

,
∑k

j=1 wj Pr∗(P,L,

Hi,wj )m2 + δ2m2

n
(1/d)+s2
P

] (by (32)), we have W(P,L,Hi) ≤ W(P ′,L,Hi)
nP

m2
+

δ2n
d−1
d

−s2

P and W(P,L,Hi) ≥ W(P ′,L,Hi)
nP

m2
− δ2n

d−1
d

−s2

P . We have proved the
lemma. �

Case 1: |D∗
1,d+1 −D∗

d,d+1| ≥ 3an
2
d

P . Partition [D∗
1,d+1,D

∗
d,d+1] into disjoint inter-

vals [l1, l2), [l2, l3), . . . , [lu−1, lu), [lu, lu+1] such that each li+1 − li (i = 1, · · · , u) is

equal to
|D∗

1,d+1−D∗
d,d+1|

g1(nP )
≥ 3a, where

g1(nP ) = u = n
2
d

P . (33)

Let Ji = [li , li+1) if i < u, and Ju = [lu, lu+1]. Compute W(P ′,L,Ji) for i =
1, · · · , u, which takes O(m2 +g1(nP )) = O(m2) steps. The algorithm selects J = Ji0

that has the least W(P ′,L,Ji0) and let L′ = L(center(Ji0)) (see Definition 7), which
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takes O(g1(nP )) = O(m2) steps. Assume that Ji1 is the interval with the least
W(P,L,Ji1).

Lemma 15 Assume Case 1 condition is true. With probability ≥ 1 − 1
50e−r ,

W(P,L,Ji0) ≤ (kd · b −1
d + δ) · a · ∑k

j=1 wj · n
d−1
d

j for all large nP .

Proof For a fixed interval Ji , by Lemma 10, the probability is ≤ e− m2ε2

3 that
Z(P ′,L,Ji,wj ) 
∈ [Pr∗(P,L,Ji,wj )m2 − εm2,Pr∗(P,L,Ji,wj )m2 + εm2]. Thus,

the probability is ≤ g1(nP )e− m2ε2

3 < 1
100e−r that Z(P ′,L,Ji,wj ) 
∈ [Pr∗(P,L,

Ji,wj )m2 − εm2,Pr∗(P,L,Ji,wj )m2 + εm2] for some i ≤ g1(nP ) and j ≤ k.
Since

k∑

j=1

nj = nP , (34)

and w1 > w2 > · · · > wk , the sum of weights of all points in P is

W(P,L, (−∞,+∞)) ≤ w1 · nP . (35)

Because J1, J2, . . . , Ju are disjoint intervals,

g1(nP )∑

i=1

W(P,L,Ji) ≤ W(P,L, (−∞,+∞)). (36)

There is Ji for some i ≤ u such that

W(P,L,Ji) ≤ w1nP

n
2
d

P

(37)

=
k∑

j=1

w1
nj

n
2
d

P

(38)

≤
k∑

j=1

w1

n
1
d

P

n
d−1
d

j (39)

≤ (kd · b −1
d + δ1) · a ·

k∑

j=1

wk · n
d−1
d

j (40)

≤ (kd · b −1
d + δ1) · a ·

k∑

j=1

wj · n
d−1
d

j . (41)

The inequality (37) is from (35), (36), and (33). The transition from (37) to (38)
is by (34). The transition from (38) to (39) is because nj ≤ nP . The transition from

(39) to (40) is because nP is large, (kd · b −1
d + δ1) · a is a constant and we have the

condition w1
wk

= o(n
1
d

P ) from the theorem. Therefore (by (37–41)),
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W(P,L,Ji1) ≤ W(P,L,Ji) ≤ (kd · b −1
d + δ1) · a ·

k∑

j=1

wj · n
d−1
d

j . (42)

By Lemma 14, with probability ≥ 1 − 1
100e−r , we have

W(P,L,Ji) ∈
[

W(P ′,L,Ji)
nP

m2
− δ2n

d−1
d

−s2

P ,W(P ′,L,Ji)
nP

m2
+ δ2n

d−1
d

−s2

P

]

for all i ≤ u. (43)

Assume (43) holds. Thus, W(P ′,L,Ji1)
nP

m2
− δ2n

d−1
d

−s2

P ≤ W(P,L,Ji1), which

implies the following:

W(P ′,L,Ji1) ≤ W(P,L,Ji1)
m2

nP

+ δ2m2

n
(1/d)+s2
P

. (44)

Since the algorithm selects the interval Ji0 with the least W(P ′,L,Ji0), we have that

W(P ′,L,Ji0) ≤ W(P ′,L,Ji1). (45)

Thus, we conclude that

W(P,L,Ji0) ≤ W(P ′,L,Ji0)
nP

m2
+ δ2n

d−1
d

−s2

P (46)

≤ W(P ′,L,Ji1)
nP

m2
+ δ2n

d−1
d

−s2

P (47)

≤
(

W(P,L,Ji1)
m2

nP

+ δ2m2

n
(1/d)+s2
P

)
nP

m2
+ δ2n

d−1
d

−s2

P (48)

= W(P,L,Ji1) + 2δ2n
d−1
d

−s2

P (49)

≤ W(P,L,Ji1) + 2δ1 · awjn
d−1
d

j for some j ≤ k. (50)

The inequality (46) is due to (43). The transition from (46) to (47) is due to (45).

The transition from (47) to (48) is due to (44). The transition from (49) to (50) is due

to (24).

By (42) and (46–50),

W(P,L,Ji0) ≤ (kd · b −1
d + δ1) · a ·

k∑

j=1

wj · n
d−1
d

j + 2δ1 · awjn
d−1
d

j (51)

≤ (kd · b −1
d + 3δ1) · a ·

k∑

j=1

wj · n
d−1
d

j (52)

≤ (kd · b −1
d + δ) · a ·

k∑

j=1

wj · n
d−1
d

j . (53)

The transition from (52) to (53) is due to (1). �
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Case 2: |D∗
1,d+1 − D∗

d,d+1| < 3an
2
d

P . Let J ∗ be interval such that center(J ∗) ∈
[D∗

1,d+1,D
∗
d,d+1] and |J ∗| = 2a1 = 2a(1 + δ1) and W(P,L,J ∗) is the least.

Subcase 2.1: |D∗
1,d+1 − D∗

d,d+1| ≤ δ1a. Let J = [D∗
1,d+1 − a,D∗

1,d+1 + a] and
let L′ = L(D∗

1,d+1) (In other words, L′ = L(center(J ))) (see Definition 7). Clearly,
J ⊆ J ∗ and W(P,L,J ) ≤ W(P,L,J ∗).

Subcase 2.2: δ1a < |D∗
1,d+1 − D∗

d,d+1| < 3anP . Let g2(nP ) be the least integer

v ≥ 2 such that
|D∗

d,d+1−D∗
1,d+1|+2a

v
≤ δ1a

3 . Since v ≥ 2 and
|D∗

d,d+1−D∗
1,d+1|+2a

v−1 > δ1a
3 ,

we have
|D∗

d,d+1−D∗
1,d+1|+2a

v
= v−1

v

|D∗
d,d+1−D∗

1,d+1|+2a

v−1 > v−1
v

δ1a
3 ≥ δ1a

6 . Therefore,

v ≤ |D∗
d,d+1 − D∗

1,d+1| + 2a

δ1a
6

≤ 3an
2
d

P + 2a

δ1a
6

= 6(3n
2
d

P + 2)

δ1
= O(n

2
d

P ).

Let s = |D∗
d,d+1−D∗

1,d+1|+2a

g2(nP )
∈ [ δ1a

6 , δ1a
3 ]. Partition [D∗

1,d+1 − a,D∗
d,d+1 + a] into the

union of g2(nP ) disjoint intervals of size s: [r1, r2) ∪ [r2, r3) ∪ · · · ∪ [rv−1, rv) ∪
[rv, rv+1], where v = g2(nP ) and ri+1 = ri + s for i = 1, . . . , v. Let Ii = [ri , ri+1)

for i = 1, . . . , v − 1 and Iv = [rv, rv+1]. Let J ∗
i = Ii ∪ Ii+1 ∪ · · · ∪ Ii+h−1 for i =

1, . . . , v −h+1, where h is an integer with 2a < h · s ≤ 2a + s. The algorithm selects
the interval J = J ∗

i2
that has the least W(P ′,L,J ∗

i2
). Finally, the algorithm outputs

L′ = L(center(J )) (see Definition 7) for the separator hyper-plane. We analyze the
algorithm for the case 2.

Lemma 16 Assume that J is the interval output from the case 2 (either subcase
2.1 or subcase 2.2). With probability ≥ 1 − 1

100e−r , we have that W(P,L,J ) ≤
W(P,L,J ∗) + 2δ1 · awjn

d−1
d

j for some j ≤ k.

Proof The subcase 2.1 is trivial since the small size of the interval implies that J ⊆
J ∗. We only discuss the subcase 2.2. Let It , It+1, . . . , It+m be the intervals such that
J ∗ ∩ Jt+i 
= ∅ (i = 0, . . . ,m). Then It+1, It+2, . . . , It+m−1 are all subsets of J ∗. Let
K∗ be the interval from the union It+1 ∪ It+2 ∪ · · · ∪ It+m−1. Since ‖Ii‖ = s ≤ δ1a

3 ,

‖J ∗‖ = 2(1+δ1)a ≥ ‖K∗‖ ≥ ‖J ∗‖−‖It‖−‖It+m‖ ≥ 2(1+δ1)a− 2δ1a
3 ≥ 2a+ 4δ1a

3
(Remember that we use ‖[a, b)‖ to represent the length b − a of the interval [a, b)).
We have the interval J ∗

t+1 with ‖J ∗
t+1‖ ≥ 2a and J ∗

t+1 ⊆ K∗ ⊆ J ∗. This implies that

W(P,L,J ∗
t+1) ≤ W(P,L,J ∗). (54)

By Lemma 14, the probability is ≥ 1 − 1
100e−r that W(P,L,J ∗

i ) ∈ [W(P ′,L,J ∗
i )×

nP

m2
− δ2n

d−1
d

−s2

P ,W(P ′,L,J ∗
i ) nP

m2
+ δ2n

d−1
d

−s2

P ] for all i ≤ g(nP ) − h + 1. Thus,
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W(P ′,L,J ∗
t+1)

nP

m2
− δ2n

d−1
d

−s2 ≤ W(P,L,J ∗
t+1) ≤ W(P,L,J ∗). We assume that

W(P,L,J ∗
i ) ∈

[

W(P ′,L,J ∗
i )

nP

m2
− δ2n

d−1
d

−s2

P ,W(P ′,L,J ∗
i )

nP

m2
+ δ2n

d−1
d

−s2

P

]

for every 1 ≤ i ≤ g(nP ) − h + 1. (55)

Thus, W(P ′,L,J ∗
t+1)

nP

m2
− δ2n

d−1
d

−s2 ≤ W(P,L,J ∗
t+1) ≤ W(P,L,J ∗). Hence,

W(P ′,L,J ∗
t+1) ≤ W(P,L,J ∗)m2

nP

+ δ2m2

n(1/d)+s2
. (56)

Since the algorithm selects the interval J ∗
i2

with the least W(P ′,L,J ∗
i2
),

W(P ′,L,J ∗
i2
) ≤ W(P ′,L,J ∗

t+1). (57)

We have that

W(P,L,J ∗
i2
) ≤ W(P ′,L,J ∗

i2
)
nP

m2
+ δ2n

d−1
d

−s2

P (58)

≤ W(P ′,L,J ∗
t+1)

nP

m2
+ δ2n

d−1
d

−s2

P (59)

≤
(

W(P,L,J ∗
t+1)

m2

nP

+ δ2m2

n
(1/d)+s2
P

)
nP

m2
+ δ2n

d−1
d

−s2

P (60)

= W(P,L,J ∗
t+1) + 2δ2n

d−1
d

−s2

P (61)

≤ W(P,L,J ∗) + 2δ2n
d−1
d

−s2

P (62)

≤ W(P,L,J ∗) + 2δ1 · awjn
d−1
d

j for some j ≤ k (by (24)). (63)

The inequality (58) follows from (55). The transition from (58) to (59) is due to
(57). The transition from (59) to (60) is due to (56). The transition from (61) to (62)
is due to (54). �

For a list A of finite points in �d and a hyper-plane M1, define F1(M1, a,A) =∑
pi∈A and dist(pi,M1) ≤ aw(pi). If M1 and M2 are two parallel hyper-planes

with signed distance dM1,M2 = sd(p,M1) for some point p in the M2, then F1(M2,

a,A) = W(A,M1, [dM1,M2,−a, dM1,M2 + a]). The hyper-plane L(center(J ∗
i2
))

(see Definition 7) output by the algorithm has that F1(L(center(J )), a,P ) ≤
F1(L(center(J ∗)), a1,P ) + 2δ1 · awjn

d−1
d

j for some j ≤ k by Lemma 16.

Lemma 17 With probability at least 1 − e−r , one can output an hyperplane L′ in

O(v2 · (n
2
d
+2(s1+s2)

P · lognP + lognQ)) steps such that F1(L
′, a,P ) ≤ (kd · b −1

d + δ) ·
a · ∑k

j=1 wjn
d−1
d

j + O(n
d−2
d

+s1

P ).
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Proof After the hyper-plane L is selected in phase one, by Lemma 13, the prob-
ability is at least 1 − e−r that both Pr(Q,L,← q∗

1 ) ∈ [ 1
d+1 − δ, 1

d+1 − δ
6 ] and

Pr(Q,L,← q∗
2 ) ∈ [ d

d+1 + δ
6 , d

d+1 + δ]. This means every L′ (parallel to L) with the

signed distance (to L) in the interval [D∗
1,d+1,D

∗
d,d+1], it has at most ( d

d+1 + δ)nQ

points of Q in each of the half spaces. In phase 2, we have probability at least
1 − e−r to output the separator L′ (the signed distance to L is in [D∗

1,d+1,D
∗
d,d+1])

such that F1(L
′, a,P ) ≤ (kd · b −1

d + δ) · a · ∑k
j=1 wj · n

d−1
d

j (Case 1 of Phase 2, see

Lemma 15) or F1(L
′, a,P ) ≤ F1(L(J ∗), a1,P )+2δ2wjn

d−1
d

j (Case 2 of Phase 2, see
Lemma 16), where J ∗ is the interval of length 2a1 with the least F1(L(J ∗), a1,P )

and center between D∗
1,d+1 and D∗

d,d+1.
Assume that L is a fixed hyper-plane and L∗ is a another hyper-plane that is

parallel to L and F1(L
∗, a1,P ) is the least. By Lemma 15 and Lemma 16, the

probability is ≥ (1 − e−r )2 such that we can get another L′ (parallel to L) such

that F1(L
′, a,P ) ≤ F1(L

∗, a1,P ) + 2δ1wjn
d−1
d

j for some j ≤ k or F1(L
′, a,P ) ≤

(kd · b −1
d + δ) · a · ∑k

j=1 wj · n
d−1
d

j . The number of points in Q in each side of L′ is

≤ ( d
d+1 + δ)nQ.

With probability at most 1
1+α

, Fa1,P ,o(L) ≥ (1 + α)E(Fa1,P ,o) (by (5)). If the
algorithm repeats z times, let L1, . . . ,Lz be the random hyper planes selected for L.
With probability ≥ (1 − ( 1

1+α
)z), one of those Lis has another hyper-plane L∗

i such
that L∗

i is parallel to Li and has Fa1,P ,o(L
∗
i ) ≤ (1 + α)E(Fa1,P ,o). Therefore, we

have probability at least (1 − ( 1
α+1 )z)(1 − e−r )2z to find out such a hyper-plane L′

with

F1(L
′, a,P ) ≤ (1 + α)E(Fa1,P ,o) + 2δ1wjn

d−1
d

j for some j ≤ k (64)

or

F1(L
′, a,P ) ≤ (kd · b −1

d + δ) · a ·
k∑

j=1

wj · n
d−1
d

j . (65)

By (64), (65), (1), (2), and (4), we have F1(L
′, a,P ) ≤ (kd · b

−1
d + δ) · a ·

∑k
j=1 wjn

d−1
d

j + O(n
d−2
d

+s1

P ).

Now we give a bound for the probability. Let z = 2r
ln(1+α)

= O(v) (by (6)). Then

1 − ( 1
1+α

)z > 1 − e−r .

(

1 −
(

1

1 + α

)z)

(1 − e−r )2z > (1 − e−r )2z+1 > 1 − (2z + 1)e−r > 1 − 1

2v
,

where we let r = c4v for some constant c4 large enough.
The phase 1 of the algorithm takes O(m1 +m2) steps. The case 1 of phase 2 takes

O(m2) steps. The case 2 of phase 2 takes O(m2) steps. Totally, it takes O(z(m1 +
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m2)) = O(v · (n
2
d
+2(s1+s2)

P · (lognP +v)+v lognQ)) = O(v2 · (n
2
d
+2(s1+s2)

P · lognP +
lognQ)) steps. �

Applying Lemma 17, we finish the proof of the Theorem. �

6 An application to protein side-chain packing problem

We follow the description of Xu (2005) for the model of protein side chain packing.
The side-chain prediction problem can be formulated as follows. We use a reside
interaction graph G = (V ,E) to represent a protein resides and their interactions.
Each vertex in V represents a residue of the protein. For each reside i ∈ V , D(i) is
the set of all possible rotamers of side chain i. There is an interaction edge (i, j) ∈ E

if and only if there are l ∈ D(i) and k ∈ D(j) such that there exist an atom in the
rotamer l conflicts with another atom in the rotamer k. Two atoms conflict each other
iff their distance is less than the sum of their radii. For each two rotamers l ∈ D(i)

and k ∈ D(j) (i 
= j), there is an associated score Pi,j (l, k) if residue i interacts
with residue j . For each rotamer l ∈ D(i), there is a score Si(l), which characterizes
the interaction energy between l and the backbone of the protein. The prediction
problem is to give A(i) ∈ D(i) to residues i ∈ V so that the following energy value
is minimized. E(G) = ∑

i∈V Si(A(i)) + ∑
i 
=j,(i,j)∈E Pi,j (A(i),A(j)).

For more detailed description about the protein side chain packing, see (e.g. Ponter
and Richards 1987; Canutescu et al. 2003; Xu 2005; Chazelle et al. 2004). Let d∗

u

be distance such that there is no interaction between two resides if their distance is
≥ d∗

u . Let d∗
l be the minimal distance between two amino acids. Both d∗

u and d∗
l are

constants.

Theorem 18 There exists a r
O(n

2
3 )

max -time algorithm to find the optimal solution for the
protein side chain packing problem, where rmax is the maximal number of rotamers
of one amino acid. In other words, rmax = maxi |D(i)|.

Proof Our algorithm is based on the divide and conquer method. Let d0 = d∗
l

√
2

2 be
the unit distance. Since d∗

l = √
2d0, we consider that the minimal distance between

two amino acids is dl = √
2 and the minimal distance for the interaction between

two side chains is du = d∗
u

d0
. For a grid point p = (x, y, z) (x, y, z are integers), define

cube(p) = {(u, v,w) ∈ �3|x − 1
2 ≤ u < x + 1

2 and y − 1
2 ≤ v < y + 1

2 and z − 1
2 ≤

w < z + 1
2 }. The 3D space �3 is partitioned into many cubes: �3 = cube(p0) ∪

cube(p1)∪· · ·. For different grid points p 
= p′, cube(p)∩cube(p′) = ∅. Each amino
acid is represented by the position of its Cα . Therefore, no two amino acids can stay
at the same cube(p) for any grid point p. Let P be the set of all grid points p such
that cube(p) contains the Cα for an amino acid.

Let w = du + 2
√

2. By Corollary 12, there exists a w-wide separator L plane such
that each side has at most ( 3

4 + δ)n contain amino acid, and the number of grid points

(with amino acids in its cube) is bounded by 1.209wn
2
3 , where δ > 0 is an arbitrary
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small constant. The w-wide separator partitions the problem into P1, S and P2, where
S is the separator area. Clearly, a side chain whose amino acid Cα is in cube(p) with
p ∈ P1 does not interact another side chain in P2 because of the w-wide separator
between P1 and P2.

The number of ways to arrange the side chains in the separator area S is bounded

by r1.209wn
2
3

max . We only need O(n) time for computing the separator. We assume that
rmax ≥ 2 (otherwise, it is trivial). Let T (n) is the computational time for the protein
side chain packing problem with n resides. Solving each sub-problem Pi (i = 1,2)

takes T (( 3
4 + δ)n) steps. We have the recursive T (n) ≤ 2(r1.209wn

2
3

max + O(n))T (( 3
4 +

δ)n). This gives that T (n) = r
O(n

2
3 )

max . �
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