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Abstract In this paper, we study the following disc covering problem: Given a set of discs of6

various radii on the plane, find a subset of discs to maximize the area covered by exactly one7

disc. This problem originates from the application in digital halftoning, with the best known8

approximation factor being 5.83 (Asano et al., 2004). We show that if the maximum radius9

is no more than a constant times the minimum radius, then there exists a polynomial time10

approximation scheme. Our techniques are based on the width-bounded geometric separator11

recently developed in Fu and Wang (2004), Fu (2006).12

1. Introduction13

In real life we are always dealing with the problem of mixed technology; for instance14

maintaining COBOL and JAVA compilers at the same time. It is also not uncommon that15

sometimes we have to print some colored fancy images onto a black/white tone printer.16

Digital-halftoning is exactly such a technology, it converts a continuous, possibly colored17
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image into a binary image (Ostromoukhov, 1993; Ostromoukhov and Hersch, 1999). In the 18

cluster-dot halftoning, dots form clusters whose sizes are determined by their corresponding 19

intensity level. Given a continuous-tone image, one computes spatial frequency distribu- 20

tion by Laplacian. Each grid point is then assigned a disc of radius reflecting the Laplacian 21

value at the corresponding position. This results in a set of discs of different radii. The 22

problem is then to find a subset of discs to maximize the area that belongs to exactly one 23

disc. 24

We study the approximation algorithm for the above disc covering problem with appli- 25

cations in digital halftoning (Asano et al., 2000; Ostromoukhov, 1993; Ostromoukhov and 26

Hersch, 1999; Sasahara and Asano, 2003; Asano et al., 2004). Given a set of discs of various 27

radii, find a subset of discs from them to maximize the area covered by exactly one disc. This 28

seems computationally hard although there is not yet a proof about NP-hardness. We show 29

that if the maximum radius is no more than a constant times the minimum radius, there exists 30

a polynomial time approximation scheme. If the centers of the discs are at the grid points 31

and the radii are between two positive constants, there exists a constant factor approximation 32

which runs in almost linear time. 33

In Asano et al. (2004), a polynomial time approximation algorithm was designed with 34

approximation ratio 5.83. In their algorithm, no condition is specified that the maximum 35

radius is no more than a constant times the minimum radius. However, the empirical data 36

used in Asano et al. (2004) shows that not only such a constant stands, it is also always 37

relatively small (i.e., 3–5). We believe that this assumption is practically reasonable since 38

each disc reflects the intensity level of a local point. 39

Geometric separator has applications in many problems. It plays important role when we 40

develop divide and conquer algorithm for geometric problems. Lipton and Tarjan (1979) 41

presented the well known geometric separator for planar graphs. They proved that every 42

n-vertex planar graph has at most
√

8n vertices whose removal separates the graph into two 43

disconnected parts of size at most 2
3 n. Their 2

3 -separator was improved to
√

6n by Djidjev 44

(1982),
√

5n by Gazit (1986), and
√

4.5n by Alon et al. (1990). Spielman and Teng (1996) 45

showed a 3
4 -separator with size 1.82

√
n for planar graph. 46

Some other forms of the separators were studied in Miller et al. (1991), Smith and Wormald 47

(1998). They let each input point be covered by a regular geometric object such as circle, 48

rectangle, etc. If every point on the plane is covered by at most k objects, it is called k-thick. 49

Some separators of size c · √
k · n were proved in Miller et al. (1991), Smith and Wormald 50

(1998), where c is a constant. Fu and Wang (2004) developed a method for deriving sharper 51

upper bound separator for grid points via controlling the distance to the separator line. They 52

proved that for a set of n grid points on the plane, there is a separator that has ≤ 1.129
√

n 53

points and each side has ≤ 2
3 n points. Fu (2006) introduced the concept of width-bounded 54

geometric separator and applied it to a class of NP-complete geometric problems to improve 55

their computational time from nO(
√

n) to 2O(
√

n). In this paper we use the width-bounded 56

geometric separator to develop a polynomial time approximation scheme for the halftoning 57

problem. 58

Section 2 explains a simple width-bounded geometric separator that is used in our ap- 59

proximation algorithm. Section 3 describes the approximation algorithm based on the width- 60

bounded separator. Section 4 gives a randomized almost linear time algorithm for finding 61

the separator used in Section 3. The description of the randomized algorithm is almost self- 62

contained except the well known fact Lemma 12 for the existence of the center point. A linear 63

time algorithm for finding the width-bounded geometric separator is described in Section 5, 64

which depends on some non-trivial results from Fu (2006), Jadhar (1993). 65
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2. Separators on the plane66

Definition 1. For two points p1, p2 in the plane R2, dist(p1, p2) is the Euclidean distance67

between p1 and p2. For a set A ⊆ R2, dist(p1, A) = minq∈A dist(p1, q). Let P be a set of68

points on the plane, and w > 0 be a constant. A w-wide-separator is determined by a line69

L , called the center line of the separator, on the plane. It has two measurements for its70

quality of separation: (1) balance(L , P) = max(|P1|,|P2|)
|P| , where P1 and P2 are the two subsets71

of P on the two sides of L; and (2) measure(L , P, w
2 ), which is the number of elements of72

P with distance ≤ w
2 to L . The w-width separator area is all points with distance ≤ w

2 to73

L . For constants 0 < b0 < 1, z0 ≥ 0, w ≥ 0, and a set of n grid points P on the plane, a74

(b0, z0)-w-width-separator (for P) is a w-width separator L with balance(L , P) ≤ b0 and75

measure(L , P, w
2 ) ≤ z0w

2

√
n.76

From the definition of width-bounded separator, its quality is measured by two numbers.77

One measures the balance of the separation. A well balanced separator can reduce the problem78

size efficiently during the application to divide and conquer algorithm. This brings that the79

algorithm runs in a polynomial time. The other number measures the number of points inside80

the separator area. The small number of points in the separator area (O(
√

n)) is used to81

control the accuracy of our approximation algorithm.82

Theorem 2. Fu and Wang (2004), Fu (2006) Let constant w > 0 be a constant and δ > 083

be a small constant. Let P be a set of n grid points. Then there is an O(n3) time algorithm84

that finds a separator line L such that each side of L has ≤ 2
3 n points from P, and the number85

of points of P with distance ≤ w to L is ≤ ( 4√
π

+ δ)w · √
n for all large n.86

3. The approximation scheme87

Definition 3. For constant c > 0, the input is a set of discs D1, · · · , Dn on the plane with88

r (Di ) ≤ c · r (D j ) for all 1 ≤ i, j ≤ n, where r (Di ) is the radius of Di . The Hc problem89

P is to find a subset Q ⊆ P with the maximal area covered by exactly one disc in Q.90

Define opt(P) to be the subset of discs of P in an optimal solution. The H ′
c problem P is a91

special Hc problem such that the distance between every pair of disc centers in P is at least92

c′ × r (Di ) for any Di in the P , where c′ > 0 is a fixed constant. This problem studied by93

Asano et al. (2004) requires that every center is a grid point. If the radii are between two94

positive constants then it is covered by our definition. For a grid point p = (i, j) (i and j95

are integers) on the plane, define grid(p) = {(x, y)|i − 1
2 ≤ x < i + 1

2 , j − 1
2 < y ≤ j + 1

2 },96

which is a half close and half open 1 × 1 square. The net g(P) for a Hc problem P is a set of97

grid points such that (1) for each point p ∈ g(P), grid(p) contains the center for some disc98

in P; and (2) for each disc D of P , center(D) ∈ grid(p) for some point p in g(P), where99

center(D) is the center point of disc D. For a set of discs Q on the plane, define s(Q) to be100

the size of the area covered by exactly one disc in Q.101

In the theorem below, the function fP (e) controls the number of disc centers in the area102

with e grid points. The purpose of the function fP is to unify the algorithms for both Hc and H ′
c103

problems. For an Hc problem, fP (O(1)) is up to |P|, but for an H ′
c problem, fP (O(1)) = O(1).104

Our approximation scheme depends on the algorithm to find the width-bounded separator105

for a set of grid points on the plane. Theorem 2 gives O(n3) time algorithm for finding the106
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width-bounded separator. An O(n(log n)4) time randomized algorithm for finding separator 107

is presented at section 4. Our Theorem 4 shows how the time of our approximation algorithm 108

depends on the time for the separator detection. This is why it assumes there exists an 109

O(na(log n)b) time algorithm for finding separator, where a, b are constants. 110

Theorem 4. Let 0 < b0 < 1, 0 ≤ z0, and 0 < ε be constants. Let P be an Hc problem 111

and fP be an non-decreasing function from N to N such that |Q| ≤ fP (|g(Q)|) for every 112

Q ⊆ P. Assume that there exists an O(na(log n)b) time algorithm for computing the (b0, z0)- 113

O(1)-width-bounded separator for some constants a ≥ 1 and b ≥ 0. Then there exists an 114

O( fP ( E1

ε
1

1−α

)
E2

ε
1

1−α na(log n)b+1) time approximation algorithm to output Q ⊆ P with s(Q) ≥
115

(1 − ε)s(opt(P)), where α = 0.6, E1 and E2 are constants. 116

Proof: We first give an overview about our method. Assume the minimum radius of the input 117

discs is 1. The radius of every disc of P is ≤ c. For a set of discs P = {D1, · · · , Dn} on the 118

plane, the net g(P) shows that the optimal solution of P has �(|g(P)|). Apply a separator 119

with width ≥ 2c. The discs on the different sides of the separator do not intersect each other. 120

The two sub-problems on the left and right sides of the separator can solved independently. 121

Our separator can control there are only O(
√|g(P)|) points from g(P) to stay in the separator 122

area. The discs on the separator area only affect the overall solution by O(
√|g(P)|), which 123

does not affect its total accuracy much. Our algorithm is based on such a divide and conquer 124

approach by using width-bounded geometric separator. 125

Let ε > 0 be a constant that determines the accuracy of our approximation algorithm.
Let P be the Hc problem, which consists of a set of discs on the plane. Select some
constants: w0 = c +

√
2

2 , δ = 0.01, b1 = 1 − b0, δ1 = min(0.08, b1
4 ), c2 = π (

√
2

2 + c)2 and
c3 = 1

π (2
√

2+2c+
√

2
2 )2

, α = 0.6, and e1 is a constant that satisfies the inequalities:

z0w0√
e1

≤ δ1, (1)

ε(c3(b1 − 2δ1)e1) > ((b1 − 2δ1)e1)α, and (2)

c2z0w0
√

e1 ≤ δ1eα
1 . (3)

We can choose constant E1 big enough and let e1 = E1

ε
1

1−α

. Then e1 satisfies the conditions 126

(1)–(3).
127

Algorithm 128

Input: a set of discs P = {D1, · · · , Dn} on the plane 129

Output: A subset A(P) ⊆ P with s(A(P)) ≥ (1 − ε)s(opt(P)). 130

If |g(P)| ≤ e1, then find A(P) = opt(P) using the brute-force method 131

and return A(P). 132

Find a 2w0-width separator center line L for g(P) such that 133

balance(L , g(P)) ≤ b0 and measure(L , g(P), w0) ≤ z0w0
√|g(P)| 134

(see Theorem 2). 135

Let P0 be all the discs D of P with dist(center(D), L) ≤ c. 136

Let P1 be all the discs D of centers on the one side of the separator 137

and dist(center(D), L) > c. 138

Let P2 be all the discs D of centers on the other side of the separator 139

and dist(center(D), L) > c. 140
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Solve P1 to get the approximate solution A(P1).141

Solve P2 to get the approximate solution A(P2).142

Merge the solutions for P1 and P2 to output A(P) = A(P1) ∪ A(P2).143

End of Algorithm144

Lemma 5. Every δ × δ-square has ≤ K disc centers from P in the optimal solution, where145

K = 20.146

Proof: Assume that opt(P) has more than K centers in a δ × δ square. Let η = c−1
K . All of147

the K radii are in the range [1, c], which can be partitioned into the union of K intervals of148

format [1 + (i − 1)η, 1 + iη] for i = 1, 2, · · · , K . At least two discs in opt(P) have radii in149

an interval [1 + (i − 1)η, 1 + iη] for some i ∈ {1, 2, · · · , K }.150

Let C1 and C2 be the two discs (in opt(P)) whose centers are in the same δ × δ-square and151

radii are in the same interval [1 + (i − 1)η, 1 + iη]. For a region R, let v(R) be the area size152

of R. The two centers of discs C1 and C2 are close. So are their radii. It is easy to verify that153

v(C1 − C2) ≤ 0.2 · v(C1) and v(C2 − C1) ≤ 0.2 · v(C1). Let R0 ⊆ C1 be the maximal sub-154

region of C1 such that every point in R0 is covered by exactly one disc in opt(P) − {C1, C2}.155

We check the following two cases:156

Case I v(R0) ≥ 0.6 · v(C1). Since C1 and C2 are in opt(P), every point in C1 ∩ C2 is covered157

by at least two discs in opt(P). We have that s(opt(P) − {C1, C2}) ≥ s(opt(P))158

+ v(R0) − v(C1 − C2) − v(C2 − C1) ≥ s(opt(P)) + 0.6v(C1) − 0.2v(C1) − 0.2v159

(C1) > s(opt(P)). This contradicts that opt(P) is the optimal solution.160

Case II v(R0) < 0.6 · v(C1). We have that s(opt(P) − {C2}) ≥ s(opt(P)) + (v(C1) −161

v(R0)) − v(C2 − C1) ≥ s(opt(P)) + 0.4v(C1) − 0.2v(C1) > s(opt(P)). This is162

also a contradiction.163

�164

Lemma 6. Let P be a Hc problem. Then (1) s(opt(P)) ≤ c2|g(P)|, and (2) c3|g(P)| ≤165

s(opt(P)).166

Proof: (1) For every point q in a disc of P , there is a grid point p ∈ g(P) with dist(p, q) ≤167 √
2

2 + c. Therefore, s(opt(P)) ≤ |g(P)|π (
√

2
2 + c)2. (2) We prove this by induction. It is168

clearly true when |g(P)| ≤ 1. Assume it is true for |g(P)| < k. Let k = |g(P)|. Select a169

grid point p ∈ g(P). Let M1 be the set of all discs D in P such that center(D) ∈ grid(p).170

Let M2 be the set of all discs D′ in P such that D′ ∩ D �= ∅ for some D ∈ M1. Let P ′ =171

P − M1 ∪ M2. The problem P is adjusted to the problem P ′. For every point p′ ∈ g(P) −172

g(P ′), dist(p, p′) ≤ 2(
√

2
2 + c). The number of grid points with distance ≤ 2(

√
2

2 + c) to p is173

≤ π (2
√

2 + 2c +
√

2
2 )2 = 1

c3
. So, we have |g(P ′)| ≥ |g(P)| − 1

c3
. For D ∈ M1, s(opt(P)) ≥174

s({D} ∪ opt(P ′)) ≥ s(opt(P ′)) + π ≥ c3|g(P ′)| + π ≥ c3(|g(P)| − 1
c3

) + π ≥ c3|g(P)|.175 �176

Lemma 7. The algorithm has solution with s(A(P)) ≥ (1 − ε)s(opt(P)) + (|g(P)|)α if177

|g(P)| ≥ (b1 − 2δ1)e1.178

Proof: We prove by induction. If (b1 − 2δ1)e1 ≤ |g(P)| ≤ e1, s(A(P)) = s(opt(P)) ≥ (1 −179

ε)s(opt(P)) + (g(|P|))α by the inequality (2) and part (2) of Lemma 6. Assume that |g(P)| ≥180

e1 and let L be the center line of the 2w0-width separator for g(P). Let P0, P1 and P2 are the181

sub-problems derived from P in the algorithm.182
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It is easy to see that s(opt(P)) ≤ s(opt(P1)) + s(opt(P2)) + s(opt(P0)). Therefore, 183

s(opt(P1)) + s(opt(P2)) ≥ s(opt(P)) − s(opt(P0)). Clearly, g(P0) is the subset of g(P) 184

with distance ≤ (c +
√

2
2 ) ≤ w0 to L . Therefore, |g(P0)| ≤ z0w0

√|g(P)|. By Lemma 6, 185

s(opt(P0)) ≤ c2|g(P0)| ≤ c2 · z0w0
√|g(P)|. 186

Let G1 (G2) be the set of grid points of g(P) on the left (right resp.) of the center line L of 187

the separator. Let S be the set of grid points of g(P) inside the separator area (with distance 188

≤ w0 to L). Thus, |S| ≤ z0w0
√|g(P)|. We have |G1|, |G2| ≤ b0|g(P)| (Notice that b0 is the 189

balance upper bound for the separator). 190

For each p ∈ g(P1), there exists a disc D ∈ P1 with dist(p, center(D)) ≤
√

2
2 . Since 191

center(D) is on one side of L , p can not stay on the other side of L and has distance 192

more than
√

2
2 (≤ w0) to L . Thus, p ∈ G1 ∪ S. Therefore, g(P1) ⊆ G1 ∪ S. For a grid point 193

q ∈ G1 − S, there exists D ∈ P such that center(D) ∈ grid(q). Since q has distance > w0 194

to L , center(D) has distance > w0 −
√

2
2 = c to L . So, D �∈ P0 ∪ P2, which implies D ∈ P1. 195

We have G1 − S ⊆ g(P1). We have proven that G1 − S ⊆ g(P1) ⊆ G1 ∪ S. Similarly, 196

G2 − S ⊆ g(P2) ⊆ G2 ∪ S. The set G1 ∪ G2 contains all of the grid points in g(P) except 197

those in the line L . So, g(P) ⊆ G1 ∪ G2 ∪ S. 198

Thus, we have the following inequalities: |g(P)| ≤ |G1| + |G2| + |S|; |G1| ≤ b0|g(P)|;
|G2| ≤ b0|g(P)|; |G1| − |S| ≤ |g(P1)| ≤ |G1| + |S|; and |G2| − |S| ≤ |g(P2)| ≤ |G2| +
|S|. Since |S|

|g(P)| ≤ z0w0
√|g(P)|

|g(P)| ≤ z0w0√|g(P)| ≤ z0w0√
e1

≤ δ1 (by (1)), we have

|g(P1)| ≥ (b1 − 2δ1)|g(P)| (4)

|g(P2)| ≥ (b1 − 2δ1)|g(P)| (5)

|g(P1)| + |g(P2)| ≥ (1 − 3δ1)|g(P)| (6)

By our inductive assumption, (4) and (5), s(A(P1)) ≥ (1 − ε)s(opt(P1)) + (|g(P2)|)α , and 199

s(A(P2)) ≥ (1 − ε)s(opt(P2)) + (|g(P2)|)α. Let g(P1)| = β1|g(P)| and |g(P2)| = β2|g(P)|. 200

We have β1 + β2 ≥ 1 − 3δ1 and β1, β2 ≥ b1 − 2δ1. By the standard method in calculus, 201

βα
1 + βα

2 is minimal when β1 = β2 = 1−3δ1
2 . So, βα

1 + βα
2 ≥ 2( 1−3δ1

2 )α = 21−α(1 − 3δ1)α > 202

21−α(1 − 3δ1α) > 1.12 > 1 + δ1. So, |g(P1)|α + |g(P2)|α > (1 + δ1)|g(P)|α . Since 203

|g(P)| ≥ e1, |g(P1)|α + |g(P2)|α − c2z0w0
√|g(P)| > |g(P)|α by inequality (3). 204

Therefore, s(A(P)) ≥ s(A(P1)) + s(A(P2)) ≥ (1 − ε)(s(opt(P1)) + s(opt(P2)) + (|g(P1)|)α 205

+ (|g(P2)|)α ≥ (1 − ε)(s(opt(P)) − s(opt(P0)) + (|g(P1)|)α + (|g(P2)|)α ≥ (1 − ε)s(opt 206

(P)) − c2 · z0 · w0
√|g(P)| + (|g(P1)|)α + (|g(P2)|)α ≥ (1 − ε)s(opt(P)) + (|g(P)|)α. 207� 208

Lemma 8. The optimal solution opt(P) can be computed in O(|P| 2|g(P)|K
δ2 ) time by the brute 209

force method. 210

Proof: For each disc D in P , center(D) ∈ grid(q) for some q ∈ g(P). All centers of discs 211

in P stay in the area of size ≤ |g(P)|. By Lemma 5, opt(P) has ≤ 2|g(P)|K
δ2 discs. The lemma 212

follows since each disc in the optimal solution has ≤ |P| choices. 213� 214

Lemma 9. The total time of the algorithm is O(M · na(log n)b+1), where M = fP (e1)
2e1 K

δ2 . 215

Let m = |g(P)| and T (m) be the time complexity of the algorithm. Clearly, m ≤ n,
where n = |P|. Assume that C4 is a positive constant such that finding the separator
takes ≤ C4ma(log m)b steps. By Lemma 8 and |P| ≤ f (|g(P)|), T (m) ≤ M for m ≤ e1.
We have T (m) ≤ C5 MT (γ1m) + C5 MT (γ2m) + C4ma(log m)b, where 0 ≤ γ1, γ2 ≤ b0,
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γ1 + γ2 ≤ 1, and C5 is a constant that is selected big enough so that we have following:

T (m) ≤ C5 MT (γ1m) + C5 MT (γ2m) + C4ma(log m)b

≤ C5 M(γ1m)a(log γ1m)b+1 + C5 M(γ2m)a(log γ2m)b+1 + C4ma(log m)b

≤ C5 Mma(log m)b+1.

Since e1 = E1

ε
1

1−α

, we let E2 = 2E1 K
δ2 . The theorem follows from Lemma 9 and Lemma

216

7.217 �218

Corollary 10. Let 0 < b0 < 1, 0 ≤ z0, and 0 < ε be constants. Let P be an Hc prob-219

lem. Assume that there exists an O(na(log n)b) time algorithm for computing the (b0, z0)-220

O(1)-width-bounded separator with constants a ≥ 1 and b ≥ 0. Then there exists an221

O((n
E2

ε
1

1−α )na(log n)b+1) time approximation algorithm to output Q ⊆ P with s(Q) ≥ (1 −222

ε)s(opt(P)), where α = 0.6, and E2 is a constant.223

Corollary 11. Let 0 < b0 < 1, 0 ≤ z0, and 0 < ε be constants. Let P be an H ′
c problem. As-224

sume that there exists an O(na(log n)b) time algorithm for computing the (b0, z0)-O(1)-width-225

bounded separator with constants a ≥ 1 and b ≥ 0. Then there exists an O(na(log n)b+1)226

time approximation algorithm to output Q ⊆ P with s(Q) ≥ (1 − ε)s(opt(P)).227

4. A randomized algorithm to find the separator228

From corollary 10 and corollary 11, the separator algorithm affects the speed of our ap-229

proximation. In this section, we will give an O(n(log n)4)-time randomized algorithm for230

finding the width-bounded separator on the plane. We will use the following well known231

fact that can be easily derived from Helly theorem (see Graham et al., 1996; Pach and232

Agarwal, 1995). Section 5 gives a deterministic linear time algorithm for finding the width-233

bounded separator, but it highly depends on the results from other papers (Fu, 2006;234

Jadhar, 1993). This section shows the reader about the existence and algorithm of the235

separator.236

Lemma 12. For an n-element set P in d-dimensional space, there is a point q with the pro-237

perty that any half-space that does not contain q, covers at most d
d+1 n elements of P. Such238

a point q is called a centerpoint of P. The point q is called 2
3 -center at the case d = 2.239

Let c ≥ 3 be a constant. For a set of n grid points P , we first sort them by their x-240

coordinates. Now let (x1, y1), (x2, y2), · · · , (xn, yn) be all points of P and their x-coordinates241

are sorted by increasing order: x1 ≤ x2 ≤ · · · ≤ xn . Let i1, · · · , ik be the positions such that242

|xi j − xi j +1| ≥ nc−1 (i = 1, · · · , k). Partition P into P1, · · · , Pk , where Pt = {(x j , y j )|it ≤243

j < it+1)}(t = 1, 2, · · · , k). Since |P| = n, |x j1 − x j2 | ≤ n · nc−1 = nc for every two points244

(x j1 , y j1 ), (x j2 , y j2 ) in the same set Pt . On the other hand, |x j1 − x j2 | ≥ nc−1 for every two245

points (x j1 , y j1 ), (x j2 , y j2 ) in the different sets Pt1 and Pt2 , respectively. We act the same on246

each Pi by their y-coordinates. Then P is partitioned into ∪i, j Pi, j such that each Pi, j is inside247

an square of size nc × nc, and the distance between two points in two different subsets sets248

Pi1, j1 and Pi2, j2 is at least nc−1. This can be done in O(n log n) steps. The gap nc−1 between249

two different Pi1, j1 and Pi2, j2 is sufficient for the divide and conquer application for the disc250
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covering problem in the last section since each disc radius is between 1 and another constant. 251

We only design the algorithm a set of n grid points set P in an nc × nc region. It is not 252

meaningful to consider the width w ≥ √
n as our upper bound w

√
n is even larger than the 253

total number of points. 254

Definition 13. Let P be a set of grid points on the plane. A 2
3 -boundary is a line L such 255

that the number of points of P on one side of L is in the interval ( 2
3 |P|, 2

3 |P| + 1]. For a 256

2
3 -boundary L , if L ′ is another 2

3 -boundary for P such that L and L ′ are parallel each other, 257

and there are ≥ 1
3 |P| points between them, we call L and L ′ are a pair of 2

3 -boundaries. For 258

a line L and vector v, if L can be expressed by the equation p(t) = p0 + t · v, then we say 259

that the line L is along direction v. A set of vectors v1, v2, · · · , vm is called a m-star vectors 260

if the angle between vi and vi+1 is π
m for i = 1, 2, · · · , m − 1. If L1, L2, · · · , Lm are m lines 261

through a same point and each Li is along vi , we call L1, L2, · · · , Lm m-star for the m-star 262

vectors v1, v2, · · · , vm . 263

It is easy to see that each 2
3 center point is between every pair of 2

3 -boundaries. Assume that 264

P is a set of n grid points in an nc × nc area S, where c is a constant. The function f (L , S, P) 265

computes the number of points of P on the two sides of the line L . For a vector v, if pi p j 266

is not parallel to v for any two points pi �= p j in P , it always exists a pair of 2
3 -boundaries 267

along the direction v. If the angle between v and pi p j is > 1
n100 for any pi �= p j in P , such 268

a pair of boundaries can be found by binary search via checking the number of points of P 269

on two sides of each line, which can be done by calling functin f (L , S, P). It only checks 270

O(log n) lines along the vector v. The idea of our algorithm is to find a m-star such that each 271

line of the m-star is between a pair of 2
3 -boundaries. Therefore, each of them gives a balanced 272

partition for the point set P . With high probability, each line also has angle > 1
n100 with any 273

pi p j for every pi �= p j in P . Select one of the m-lines L that has the least number of points 274

from P to close L . 275

4.1. Intersection between a polygon and a strip area 276

We use a linked list to store the vertices of a convex polygon in counterclockwise order. A 277

strip area is an area between two parallel lines on the plane. For two parallel lines L1 and L2 278

on the plane, we use [L1, L2] to represent the strip region between L1 and L2. Each node of 279

the linked list holds a vertex of the polygon. Throughout the algorithm, we often compute 280

the intersection of a strip and a polygon. If the polygon has m nodes, such an intersection 281

can be computed in O(m) steps. For each line segment in the polygon, we check if there is 282

a intersection between it and the strip boundary lines. Record the area of the polygon inside 283

the strip area. 284

4.2. Count the number of points on the two sides of a line 285

Assume P is a set of n points in nc × nc square S0. The square S0 is partitioned into 286

4 squares S1, S2, S3, S4 of the same size. Each Si is partitioned into smaller and smaller 287

squares until the square size is less than 1 × 1. We obtain a tree of squares which has the 288

largest square S0 as root and all the squares in the same level have the same size. The 289

depth of the tree is O(log n). The squares in this tree are called simple square. Each sim- 290

ple square S is assigned a counter denoted by count(S), which counts the number of points 291

in it. 292
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Lemma 14. For a set of grid points P of n points on the plane, there is an O(n log n)-time293

algorithm to computer count(S) for all of those simple squares S that contains at least one294

point.295

Proof: For each square S with at least one point from the set P , set up a counter for it. For296

each point p, start from the bottom-most square which contains p ∈ P , increase the counter297

by one for each simple square which contains p. Since each point only has O(log n) simple298

squares that contain it, it takes O(n log n) steps to set up those counters.299 �300

Algorithm301

Input: a line L , a square S0 of size nc × nc, a set of n grid points P inside S0.302

Output: n1 and n2 that are the numbers of points of P on the left side and303

the right side of L , respectively.304

f (L , S0, P)305

n1 = n2 = 0;306

for the 4 sub-squares S1, S2, S3, S4 of S0307

if (Si ∩ L = ∅) then308

if Si is on the left of L , then n1 = count(Si ) + n1.309

else n2 = count(Si ) + n2.310

let Si1 , · · · , Sik (k ≤ 4) be all squares from S1, S2, S3, S4 that311

Si j ∩ L �= ∅ and count(Si j ) > 0 ( j = 1, · · · , k).312

(ni j ,1, ni j ,2) = f (L , Si j ) for ( j = 1, · · · , k).313

n1 = n1 + (n j1,1 + · · · + n jk ,1) and n2 = n2 + (n j1,2 + · · · + n jk ,2)314

return (n1, n2).315

End of Algorithm316

Lemma 15. The running time for f (L , S0, P) is O(t), where t is the number of simple317

squares s ∈ S0 that touch L and have count(s) > 0.318

Proof: Going through the recursion, we only go to the next level of squares that touch the319

line L .320 �321

4.3. The algorithm and its time complexity322

Definition 16. For two lines L1 and L2, share(L1, L2) is the number of simple squares that323

intersect both L1 and L2.324

Let δ > 0 be a small constant and m = c0
√

n for some constant c0 > 0, which will be325

fixed at the end of the proof for Lemma 23. The algorithm below finds the separator for a set326

of n grid points in nc × nc region.
327

Algorithm328

select a random 2D m-star vectors v1, v2, · · · , vm329

find the pairs of 2
3 -boundaries (L1,1, L1,2) and (L2,1, L2,2) along330

the directions v1 and v2 respectively331

let S be the intersection of two strips [L1,1, L1,2] and [L2,1, L2,2]332

for (i = 3 to m) do333

find the pair of 2
3 -boundaries (Li,1, Li,2) along direction vi334

let S be the intersection between S and the strip region [Li,1, Li,2]335
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m0 = ∞ 336

select a point p ∈ S 337

for i = 1 to m 338

let Li be a line through p 339

if (measure(Li , P, a) < m0) then m0 = measure(Li , P, a) and 340

L = Li 341

return L 342

End of Algorithm 343

Lemma 17. During the first loop, S is an nonempty polygon all the time. 344

Proof: The intersection between a convex polygon and a strip area is still convex polygon. 345

By Lemma 12, S is nonempty all the time. 346� 347

Lemma 18. For two lines L1 and L2 with angle 0 < θ ≤ π
2 between them, they share at 348

most c1 log n
sin θ

simple squares for some constant c1. 349

Proof: Let p be the intersection point of the two lines L1 and L2. If s1 and s2 are intersections 350

between L1, L2 and a t × t square respectively, then dist(s1, s2) ≤ √
2t . It is easy to see that 351

dist(s1, p) ≤
√

2t
sin θ

and dist(s2, p) ≤
√

2t
sin θ

. Every point q in a t × t square that touches both 352

L1 and L2 has distance ≤
√

2t
sin θ

+ √
2t to p. Furthermore, the point q has distance ≤ √

2t to 353

the middle line (through p) between L1 and L2 . Since those t × t squares do not overlap 354

one other, the total number of them is ≤ 2(
√

2t
sin θ

+√
2t)2

√
2t

t2 = 4
√

2(
√

2
sin θ

+ √
2) ≤ 16

sin θ
. For some 355

constant c3, there are at most c3 log n possible different sizes for the simple squares. Thus, 356

L1 and L2 can share at most 16c3 log n
sin θ

simple squares. 357� 358

Lemma 19. Let v1, v2, · · · , vm be a m-star vectors. Each vector vi has at most k lines along 359

it (the line set along direction vi is denoted by L(vi )). Then for each line L j in L(v j ), 360∑m
i=1,i �= j

∑
Li ∈L(vi ) share(L j , Li ) ≤ c4k · m · (log m) · (log n) for some constant c4 > 0. 361

Proof: For Li ∈ L(vi ), the angle between Li and L j is π |i− j |
m . By Lemma 18, share(L j , Li ) ≤

c1 log n
sin |i− j |π

m

≤ c2m log n
π |i− j | for some constant c2. Therefore,

m∑
i=1,i �= j

∑
Li ∈L(vi )

share(L j , Li ) ≤
m∑

i=1,i �= j

∑
Li ∈L(vi )

c2m log n

π |i − j | ≤
m∑

i=1,i �= j

kc2m log n

π |i − j |

≤ kc2m log n

π

m∑
i=1,i �= j

1

|i − j | <
2kc2m log n

π

m∑
i=1

1

i
≤ c4 · k · m · (log m) · (log n),

where c4 is a constant > 2c2
π

. 362� 363

Lemma 20. Let θ ≤ π
4m . Let M1, · · · , Mt be t fixed line. Let L1, · · · , Lm be the m lines along 364

the m directions in a random m-star vectors v1, · · · , vm, respectively. Then with probability 365

≤ 4θ ·m·t
π

, one of M1, M2, · · · , Mt has angle ≤ θ with some line from L1, · · · , Lm. 366
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Proof: We assume that the vector v1 has an angle between 0 to π
m with x-axis. Each M j can367

have angle ≤ θ with at most one line among L1, · · · , Lm . For a line Li with angle to x-axis368

between kπ
m and (k+1)π

m , it has probability ≤ 2θ
π
m

= 2θm
π

to have angle ≤ θ with M j . Therefore,369

the probability is ≤ 4θm
π

· t to have one line Mi ∈ {M1, · · · , Mt } such that that Mi has angle370

≤ θ with one of the vectors L1, L2, · · · , Lm .371 �372

Lemma 21. Let v be a vector and P be a set of n grid points in a nc × nc. The vector v has373

angle ≥ θ with any line pi p j for every pi �= p j in P. It generate O(log n + log 1
θ

) lines L374

along v (to query f (L , S0, P)) to find out a pair of 2
3 boundaries at direction v.375

Proof: We assume that v is along the direction of y-axis. For each point p on the plane,376

let p(x) be the x-coordinate of p. Since the angle between y-axis and pi p j is ≥ θ and377

dist(pi , p j ) ≥ 1, we have |p(xi ) − p(x j )| ≥ sin θ . Let L1 and L2 be two vertical lines of378

distance ≤ nc such that all points of P are between them. Let L be the middle vertical lines379

between L1 and L2. Let (n1, n2) = f (L , S0, P). If n1 < n
3 , then let L1 = L . Otherwise, let380

L2 = L . Repeat the binary search until one 2
3 -boundary line is found. After O(log n + log 1

θ
)381

queries the function f (L , S0, P), the distance between two lines L1 and L2 is < sin θ .382 �383

Lemma 22. Let v1, v2, · · · , vm be a random m-star vectors. Let h0 > 2 be a constant and384

θ = π

4mh0
. If for every two points pi , p j ∈ P, pi p j has angle ≥ θ with vk(k = 1, · · · , m).385

Then the algorithm spends O(n(log n)4) for finding the separator.386

Proof: In order to compute measure(L , P, a), we let L ′ and L ′′ be two lines on the left and387

right sides of L respectively, and both of them are parallel to L . Furthermore, both L ′ and388

L ′′ have distance a to L . Let (n′
1, n′

2) = f (L ′, S0, a) and (n′′
1, n′′

2) = f (L ′′, S0, a). Since all389

points of P with distance ≤ a to L are between L ′ and L ′′, measure(L , P, a) = n − n′
1 − n′′

2.390

Let L(vi ) be the set of all lines L along vi that are used to query the function f (L , S0, P)391

in the algorithm. The set L(vi ) includes the lines (along vi ) for finding the the pair of 2
3 -392

boundaries along the vi and also the line L ′
i and L ′′

i for computing measure(Li , P, a). It is393

easy to see that the computational time of the algorithm is propositional to the number times394

that the lines in ∪m
i=1 L(vi ) touch the simple squares s with count(s) > 0.395

For a square s, assume s is touched by the lines in U1 ∪ U2 · · · Um , where Ui ⊆ L(vi )396

(i = 1, · · · , m). If U1 = U2 = · · · = Um = ∅, s is called of type 0. If there exists only one i397

(1 ≤ i ≤ m) with Ui �= ∅, s is called of type 1. Otherwise, s is of type 2 (there exist i �= j with398

Ui �= ∅ and U j �= ∅). For each vi , |L(vi )| ≤ c5 log n for some constant c5. This is because that399

L(vi ) is generated during the binary search for a pair of 2
3 -boundaries and the set L(vi ) has400

O(log n) lines the along vi (by Lemma 21 with m = O(
√

n) and θ = 1
mO(1) ). Define touch(s)401

to be the number of lines in ∪m
i=1 L(vi ) that intersects the simple square s.402

There are only O(n log n) simple squares s that has points in P (count(s) > 0). Since
|L(vi )| ≤ c5 log n,

∑
s is of type 1 and count(s) > 0 touch(s) = O(n(log n)2). For the set of

of all type 2 simple squares,

∑

s is of type 2 and count(s) > 0
touch(s)

≤ 2
m∑

j=1

∑
L j ∈L(v j )

(
m∑

i=1,i �= j

∑
Li ∈L(vi )

share(L j , Li ))
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≤ 2
m∑

j=1

∑
L j ∈L(v j )

c5 · log n · c4 · m · (log m)(log n)( by Lemma 19 with k ≤ c5 log n)

≤ 2| ∪m
j=1 L(v j )| · c5 · log n · c4 · m · (log m)(log n)

≤ 2m · (c5 log n) · c5 · c4 · m · (log n)3 = O(n · (log n)4).

Combining the two cases above, we conclude that

∑

s is a simple square
touch(s)

=
∑

s is of type 0
touch(s) +

∑

s is of type 1 and count(s) > 0
touch(s) +

∑

s is of type 2 and count(s) > 0
touch(s)

= 0 + O(n log n)2 + O(n(log n)4) = O(n(log n)4).

� 403

Lemma 23. Let L1, L2, · · · , Lm be a m-star through the same point o. There is a line Li 404

such that P has ≤ ( 4a√
π

) · √
n + δ

√
n grid points from P with distance ≤ a to Li . 405

Proof: For a grid point p, the number of lines that p has ≤ a distance to them is ≤ 406

2 arcsin a
dist(p,o) · m

π
+ 1. The total number of cases is T = ∑n

i=1(2 arcsin a
dist(pi ,o) · m

π
+ 1) = 407

2m
π

∑n
i=1(arcsin a

dist(pi ,o) ) + n. We present an upper bound for
∑n

i=1(arcsin a
dist(pi ,o) ) by using 408

the method as Fu and Wang (2004). 409

Let ε > 0 be a small constant which will be determined later. Select r0 to be large 410

enough such that for every point p with dist(o, p) ≥ r0, arcsin a
dist(o,p) < (1 + ε) a

dist(o,p) 411

and 1
dist(o,p′) < 1+ε

dist(o,p) for every point p′ with dist(p′, p) ≤
√

2
2 . Let P1 be the set of all 412

points p in P such that dist(o, p) < r0. The number of grid points in P1 is no more than 413

π (r0 +
√

2
2 )2. For each point p ∈ P1, arcsin a

dist(o,p) ≤ π
2 . Let r be the minimum radius of 414

a circle C with center at o and contains n grid points. Let r ′ = r +
√

2
2 . The circle C ′

415

of radius r ′ contains all the 1 × 1 unit grid squares with center at points of P . There- 416

fore,
∑n

i=1 arcsin a
dist(pi ,o) = ∑

p∈P1
arcsin a

dist(p,o) + ∑
p∈P−P1

arcsin a
dist(p,o) ≤ ∑

p∈P1

π
2 + 417∑

p∈P−P1
arcsin a

dist(o,p) < π2

2 (r0 +
√

2
2 )2 + ∑

p∈P−P1

(1+ε)a
dist(o,p) ≤ π2

2 (r0 +
√

2
2 )2 + a(1 + ε)2

418∫ ∫
C ′

1
dist(o,p) dx dy = a(1 + ε)2

∫ 2π

0

∫ r ′

0
ρ

ρ
dρdθ + π2

2 (r0 +
√

2
2 )2 = 2aπ (1 + ε)2r ′ + π2

2 (r0 + 419√
2

2 )2. 420

It is easy to verify that r ≤ 1√
π

√
n + 4

√
2 (see Lemma 9 in Fu and Wang (2004)). There- 421

fore, there is a line Li that has ≤ T
m ≤ 2m

π
(2aπ (1+ε)2r ′+ π2

2 (r0+
√

2
2 )2)+n

m ≤ ( 4a√
π

) · √
n + δ

√
n grid 422

points from P with distance ≤ a if ε is selected small enough and c0 is big enough. 423� 424

Theorem 24. For constant a > 0 and small constant δ > 0, there is an O(n(log n)4)-time 425

randomized algorithm for finding a-width separator for a set of n grid points set P in a 426

Springer



P1: NAE

SJNW719-08-NO00007132 styleA.cls (2005/11/30 v1.0 LaTeX Springer document class) February 10, 2006 16:14

UNCORRECTED
PROOF

J Comb Optim (2006) 11: 203–218 215

nO(1) × nO(1) region such that each side has ≤ 2
3 |P| + 1 points of P, and the number of427

points with distance to the center line of the separator is ≤ ( 4a√
π

) · √
n + δ

√
n.428

Proof: Let θ = π

4mh0
for constant h0 > 2. By Lemma 20, it has probability ≥ 1 − 1

mh0−1 that429

for every two points pi , p j ∈ P , the line pi p j has angle ≥ θ with any vk among the random430

m-star v1, · · · , vm . By Lemma 22, the computational time is O(n(log n)4). By Lemma 23,431

we can find a line Li that satisfies the requirements of the theorem.432 �433

This theorem implies the corollary below by combining with corollary 11.434

Corollary 25. Let ε > 0 be a constant and P be a H ′
c problem. There exists an O(n(log n)5)435

time randomized approximation algorithm to output Q ⊆ P with s(Q) ≥ (1 − ε)s(opt(P)).436

5. Linear time deterministic algorithm for 2D separator437

Using the linear time algorithm for finding the center point for a set of 2D points by Jadhar438

(1993) and the existence of width-bounded separator by Fu (2006), we derive a determin-439

istic linear time algorithm for 2D width-bounded geometric separator. The width-bounded440

geometric separator studied in this section is more general than that in the previous sections.441

This version was applied in developing 2O(
√

n)-time exact algorithms (Fu, 2006) for a class442

of geometric NP-hard problems whose previous exact algorithm take nO(
√

n)-time.443

The diameter of any P ⊆ R2 is maxp1,p2∈P dist(p1, p2). For a > 0 and a set A of points in444

R2, if the distance between every two points in A is at least a, then A is called a-separated.445

For ε > 0 and a set Q of points in R2, an ε-sketch of Q is another set P of points in R2
446

such that each point in Q has distance ≤ ε to some point in P . We say P is a sketch of447

Q if P is an ε-sketch of Q for some constant ε > 0 (ε does not necessarily depend on448

the size of Q). A sketch set is usually a 1-separated set such as a grid point set. A weight449

function w : P → [0, ∞) is often used to measure the density of Q near each point in P . Let450

f : R2 → R be a smooth function. Its curve is the set L( f ) = {v ∈ R2| f (v) = 0}. A line in451

R2 through a fixed point p0 ∈ R2 is defined by the equation (p − p0) · v = 0, where v is the452

normal vector of the plane and “ .” is the usual vector inner product (u · v = ∑d
i=1 uivi for453

u = (u1, . . . , ud ) and v = (v1, . . . , vd )). A line in R2 is determined by L( f ) for some linear454

function f : R2 → R.455

Definition 26. Given any Q ⊆ R2 with sketch P ⊆ R2, a constant a > 0, and a weight456

function w : P → [0, ∞), an a-wide-separator is determined by the curve L( f ) for some457

linear function f : R2 → R. The separator has two measurements for its quality of separa-458

tion: (1) balance(L( f ), Q) = max(|Q1|,|Q2|)
|Q| , where Q1 = {q ∈ Q| f (q) < 0} and Q2 = {q ∈459

Q| f (q) > 0}; and (2) measure(L( f ), P, a
2 , w), where in general measure(A, P, x, w) =460 ∑

p∈P,dist(p,A)≤x w(p) for any A ⊆ R2 and x > 0. When f is fixed or no confusion461

arises, we use balance(L , Q) and measure(L , P, a
2 , w) to stand for balance(L( f ), Q) and462

measure(L( f ), P, a
2 , w), respectively.463

Definition 27. A (b, c)-partition of the 2-dimensional plane R2 divides the plane into a464

disjoint union of regions P1, P2, . . ., such that each Pi , called a regular region, has an area465

size of b and a diameter ≤ c. A (b, c)-regular point set A is a set of points in R2 with a466
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(b, c)-partition P1, P2, . . ., such that each Pi contains at most one point from A. For two 467

regions A and B, if A ⊆ B (A ∩ B �= ∅), we say B contains (intersects resp.) A. 468

Definition 28. Let a > 0, p and o be two points in R2. Define Pr2(a, p0, p) to be the prob- 469

ability that the point p has ≤ a perpendicular distance to a random line L through the point 470

p0. Define function fa,p,o(L) = 1 if p has a distance ≤ a to the line L through o, or 0 471

otherwise. The expectation of function fa,p,o(L) is E( fa,p,o(L)) = Prd (a, o, p). Assume 472

P = {p1, p2, . . . , pn} is a set of n points in R2 and each pi has weight w(pi ) ≥ 0. Define 473

function Fa,P,o(L) = ∑
p∈P w(p) fa,p,o(L). 474

We give an upper bound for the expectation E(Fa,P,o(L)) for Fa,P,o(L) in the lemma 475

below. 476

Lemma 29. Fu (2006) Let d ≥ 2. Let o be a point in R2, a, b, c > 0 be constants and 477

ε, δ > 0 be small constants. Assume that P1, P2, . . . , form a (b, c)-partition for R2, and the 478

weights w1 > · · · > wk > 0 satisfy k · maxk
i=1{wi } = O(nε). Let P be a set of n weighted 479

(b, c)-regular points in a 2-dimensional plane with w(p) ∈ {w1, . . . , wk} for each p ∈ P. Let 480

n j be the number of points p ∈ P with w(p) = w j for j = 1, . . . , k. We have E(Fa,P,o(L)) ≤ 481

(k2 · ( 1
b )

1
2 + δ) · a · ∑k

j=1 w j · √
n j + o(nε), where k2 = 4√

π
. 482

Definition 30. A set of vectors v1, v2, · · · , vm is called a m-star vectors if the angle between 483

vi and vi+1 is π
m for i = 1, 2, · · · , m − 1. If L1, L2, · · · , Lm are m lines through a same point 484

and each Li is along the direction of the vector vi , we call L1, L2, · · · , Lm m-star for the 485

m-star vectors v1, v2, · · · , vm . 486

Theorem 31. Jadhar (1993) There exists an O(n) time algorithm to find a center point for 487

a finite set of points on the plane. 488

Theorem 32. Let a, a1, a2 > 0 be constants and ε, δ > 0 be small constants. Let P be a 489

set of n (a1, a2)-grid points in R2, and Q be another set of m points in R2 with sketch P. 490

Let w1 > w2 · · · > wk > 0 be positive weights with k · maxk
i=1{wi } = O(nε), and w be a 491

mapping from P to {w1, · · · , wk}. There exists a deterministic O(n + m) time algorithm 492

to find a hyper plane L such that (1) each half plane has ≤ 2
3 m points from Q, and (2) 493

for the subset A ⊆ P containing all points in P with ≤ a distance to L has the property 494∑
p∈A w(p) ≤

(
kd · 1√

a1·a2
+ δ

)
· a · ∑k

j=1 w j · √
n j + O(nε) for all large n. 495

Proof: Let b = a1 · a2 and δ1 = δ
2 . By Lemma 29, E(Fa,P,o) ≤

(
k2√

b
+ δ1

)
· a · ∑k

j=1 w j · 496

√
n j + O(nε). In particular, we have

∑
p∈P Pr2(p, o, a) ≤

(
kd√

b
+ δ1

)
· a

√
n when we let 497

each weight be equal to 1. Each point p of P has format < (x, y), w(p) >, where (x, y) is 498

the coordinates for p and w(p) is the weight of p. 499

Algorithm: find separator on the plane 500

(a) Input: A set of points Q and a set of weighted points P on the plane. 501

(b) find a center point o for the set Q (see Theorem 31). 502

(c) let m =
√

n
δ1a . 503

(d) select a m-star l1, · · · , lm with center at o. 504

(e) let N (li ) = 0 for i = 1, · · · , m. 505
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(f) for each p ∈ P506

(e) for each li with dist(p, li ) ≤ a, N (li ) = N (li ) + w(p)507

(k) Output the line li with the least N (li ).508

End of the Algorithm509

We analyze the algorithm. By Theorem 31, the center point can be found in O(m) steps.510

The probability that a point p has distance ≤ a to L is Pr2(p, o, a) = 2 arcsin a
dist(o,p)

π
. For a grid511

point p, the number of lines that p has ≤ a distance to them is ≤ m · Pr2(p, o, a) + 1.512

Now we have those N (li )(i = 1, · · · , m) after running the algorithm. Each N (li ) is the513

sum of weights of the points of P with distance ≤ a to the line li . In other words,514

N (li ) = Fa,P,o(li ). For each point p ∈ P , its weight is added to the N (li )s for at most515

m Pr2(p, o, a) + 1 lines. We conclude that
∑m

i=1 N (li ) = ∑
p∈P w(p) · (m · Pr2(p, o, a) +516

1) = m(
∑

p∈P w(p)Pr2(p, o, a)) + ∑
p∈P w(p) = m · E(FP,o,a) + ∑k

j=1 w j n j . We also517

have
∑k

j=1 w j n j

m = ∑k
j=1 w j

n j

m = ∑k
j=1 w j

n j√
n

δ1a

≤ ∑k
j=1 w jδ1a

√
n j . Therefore, one of the m

518

lines has the sum of weights N (li ) ≤ (
∑m

i=1 N (li ))/m ≤ ( kd√
b

+ 2δ1) · a · ∑k
j=1 w j · √

n j +519

O(nε) for all large n.520

After the center is found, the total number of operations is propositional to
∑

p∈P521

m Pr2(p, o, a) + 1 ≤ m
∑

p∈P Pr2(p, o, a) + n ≤
√

n
aδ1

( kd√
b

+ δ1) · a
√

n + n ≤ (
( kd√

b
+δ1)

δ1
+ 1)522

n = O(n)523 �524

Corollary 33. Let ε > 0 be a constant and P be a H ′
c problem. There exists an O(n(log n))525

time approximation algorithm to output Q ⊆ P with s(Q) ≥ (1 − ε)s(opt(P)).526
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