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Abstract

Rocchio’s similarity-based relevance feedback algorithm, one of the most important query

reformation methods in information retrieval, is essentially an adaptive supervised learning

algorithm from examples. In practice, Rocchio’s algorithm often uses a fixed query updat-

ing factor. When this is the case, we strengthen the linear Ω(n) lower bound obtained in

[9] and prove that Rocchio’s algorithm makes Ω(k(n − k)) mistakes in searching for a col-

lection of documents represented by a monotone disjunction of k relevant features over the

n-dimensional binary vector space {0, 1}n, when the inner product similarity measure is used.

A quadratic lower bound is obtained when k is linearly proportional to n. We also prove an

O(k(n−k)3) upper bound for Rocchio’s algorithm with the inner product similarity measure

in searching for such a collection of documents with a constant query updating factor and a

zero classification threshold.
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1 Introduction

Research on relevance feedback in information retrieval has a long history [22, 2, 11, 13, 12, 17,

14, 19]. It is regarded as the most popular query reformation strategy [2]. The central idea

of relevance feedback is to improve search performance for a particular query by modifying the

query step by step, based on the user’s judgments of the relevance or irrelevance of some of

the documents retrieved. In the vector space model [19, 21], both documents and queries are

represented as vectors in a discretized vector space. In this case, relevance feedback is essentially

an adaptive supervised learning algorithm: A query vector and a similarity measure are used to

classify documents as relevant and irrelevant; the user’s judgments of the relevance or irrelevance

of some the classified documents are used as examples for updating the query vector as a linear

combination of the initial query vector and the examples judged by the user.

In his popular textbook [22], Keith van Rijsbergen describes the relevance feedback as a

fixed error correction procedure and relates it to the linear separation problem. When the inner

product similarity is used, relevance feedback is just a Perceptron-like learning algorithm [15]. It

is known [14] that there is an optimal way for updating the query vector if the sets of relevant and

irrelevant documents are known. Practically it is impossible to derive the optimal query vector,

because the full sets of the relevant and irrelevant documents are not available. Wong, Yao

and Bollmann [23] studied the linear structure in information retrieval. They designed a very

nice gradient descent procedure to compute the coefficients of a linear function and analyzed its

performance. In order to update the query vector adaptively, their gradient descent procedure

must know the user preference which is in practice the unknown target to be learned by an

information retrieval system.

There are many different variants of relevance feedback in information retrieval. However, in

this paper we only study Rocchio’s similarity-based relevance feedback algorithm [14, 12, 19]. As

a first step towards formal analysis of Rocchio’s similarity-based relevance feedback algorithm,

the work in [9] establishes linear lower bounds on classification mistakes for the algorithm over

the binary vector space {0, 1}n, when any of the four typical similarities (inner product, dice

coefficient, cosine coefficient, and Jaccard coefficient) listed in [19] is used. The linear lower

bounds obtained in [9] are independent of the query updating factor and the classification

threshold that are used by the algorithm. A number of challenging problems regarding further

analysis of the algorithm remain open [9]. In [5] we proved that the learning complexity of

Rocchio’s algorithm is O(n+n2(log n+ logM)) over the n-dimensional discretized vector space
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{0, . . . ,M−1}n, when the inner product similarity measure is used. Several general lower bounds

were also obtained.

In practice, a fixed query updating factor and a fixed classification threshold are often used

in Rocchio’s similarity-based relevance feedback algorithm [2, 19]. When this is the case, one

shall naturally ask whether the linear lower bounds obtained in [9] can be further strengthened?

The main contribution of this paper is to give a positive answer to this question. We prove

that Rocchio’s algorithm makes Ω(k(n− k)) mistakes in searching for a collection of documents

represented by a monotone disjunction of k relevant features over the n-dimensional binary vector

space {0, 1}n, when the inner product similarity measure is used. A quadratic lower bound is

obtained when k is linearly proportional to n. In particular, when the zero classification threshold

is used, the above quadratic lower bound also holds for the dice coefficient, cosine coefficient

and Jaccard coefficient similarity measures. We also prove an O(k(n − k)3) upper bound for

Rocchio’s algorithm with the inner product similarity measure in searching for a collection of

documents represented by a monotone disjunction of k relevant features with a constant query

updating factor and a zero classification threshold. The general upper bound obtained in [5]

for Rocchio’s algorithm holds when arbitrary query updating factors are allowed. This upper

bound does not apply to the case in this paper where only a fixed query updating factor is used.

It should be pointed out that the lower bounds established in [9, 5] and this paper for

Rocchio’s similarity-based relevance feedback algorithm is based on the following worst case

considerations: The user acts as an adversary to the algorithm; the algorithm is required to

precisely search for the collection of all the documents relevant to the given search query; and

the algorithm is allowed to receive one document example judged by the user as relevance or

irrelevant at each step. In practical applications, in contrast to the above worst case consid-

erations, the user in general may not act as an adversary to the algorithm; the algorithm is

usually required to search for a short list of top ranked documents relevant to the given search

query; and at each step of the similarity-based relevance algorithm, the user may judge a few

documents as relevance feedback to the algorithm. In other words, the appropriate situation

in real-world information retrieval applications would be a kind of “sympathetic oracle” model,

where the user is not an adversary to the information retrieval system but a “sympathetic judge”

who provides the most useful possible information in order to help the system help him/her ac-

complish his/her work. Hence, our lower bounds proved in this paper as well as those in [9, 5]

for Rocchio’s similarity-based relevance feedback algorithm may not affect the algorithm’s ef-
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fective applicability to the real-world problems despite of their theoretical significance. The

formal analysis of the algorithm helps us understand the nature of the algorithm well so that

we may find new strategies to improve its effectiveness or design new algorithms for information

retrieval. We have made some progress along this line in [3, 4, 8, 7, 10]. For example, in [3, 4], we

have designed two types of multiplicative adaptive algorithms for user preference retrieval with

provable better performance: One has better performance than Rocchio’s algorithm in learning

a class of linear classifiers over non-binary vector space. The other boosts the usefulness of an

index term exponentially, while the gradient descent procedure in [23] boosts the usefulness of

an index term linearly.

This paper is organized as follows. In section 2, we give a formal presentation of Rocchio’s

similarity-based relevance feedback algorithm. In section 3, we prove an Ω(k(n−k)) lower bound

over the binary vector space {0, 1}n for Rocchio’s algorithm with a fixed query updating factor

when the classification threshold is zero. In section 4, we prove the Ω(k(n − k)) lower bound

holds for Rocchio’s algorithm with a fixed query updating factor and a non-zero classification

threshold over {0, 1}n. In section 5, we give an O(k(n−k)3) upper bound for Rocchio’s algorithm

with a constant query updating factor α = 1 and a constant classification threshold θ = 0. We

conclude the paper in section 5.

2 Rocchio’s Similarity-Based Relevance Feedback Algorithm

Let R be the set of all real values, and let R+ be the set of all non-negative real values. Let

n be a positive integer. In the binary vector space model in information retrieval [19, 21], a

collection of n features (or terms) T1, T2, . . . , Tn are used to represent documents and queries.

Each document d is represented as a vector vd = (d1, d2, . . . , dn) such that for any i, 1 ≤ i ≤ n,

the i-th component of vd is one if the i-th feature Ti appears in d or zero otherwise. Each

query q is represented by a vector vq = (q1, q2, . . . , qn) such that for any i, 1 ≤ i ≤ n, the i-th

component of vq ∈ R is a real value used to determine the relevance (or weight) of the i-th feature

Ti. Because of the unique vector representations of documents and queries, for convenience we

simply use d and q to stand for their vector representations vd and vq, respectively.

A similarity measure, or similarity for short, in general is a function m from Rn×Rn to R+.

A similarity m is used to determine the relevance closeness of documents to the search query and

to rank documents according to such closeness. In the binary vector space model of information
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retrieval [19, 21, 2], to retrieve relevant documents for a given query vector q with respect to a

similarity m, the system searches for all the documents d, classifies those with similarity values

m(q,d) higher than an explicit or implicit threshold as relevant, and returns to the user a short

list of relevant documents with highest similarity values. This information retrieval process is

in fact determined by a linear classifier, as defined later in this section, which is composed of a

query vector q, a similarity m, and a real-valued threshold θ.

Unfortunately, in the real-world information retrieval applications, usually an ideal query

vector cannot be generated due to many factors such as the limited knowledge of the users about

the whole document collection. A typical example is the real-world problem of web search. In

such a case, the user may use a few keywords to express what documents are wanted. However,

it is nontrivial for both the user and a web search engine to precisely define the collection of

documents wanted as a query vector composed of a set of keywords. The alternative solution to

the query formation problem is, as stated in [19], to conduct searches iteratively, first operating

with a tentative query formation (i.e., an initial query vector), and then improving formations

for subsequent searches based on evaluations of the previously retrieved materials. This type

of methods for automatically generating improved query formation is called relevance feedback,

and one particular and well-known example is Rocchio’s similarity-based relevance feedback

[14, 12, 19].

Rocchio’s similarity-based relevance feedback algorithm works in a step by step adaptive

refinement fashion as follows. Starting at an initial query vector q1, the algorithm searches

for all the documents d such that d is very close to q1 according to the similarity m, ranks

them by m(q,d), and finally presents a short list of the top ranked documents to the user. The

user examines the returned list of documents and judges some of the documents as relevant or

irrelevant. At step t ≥ 1, assume that the list of documents the user judged is x1, . . . ,xt−1.

Then, the algorithm updates its query vector as qt = αt0q1 +
∑t−1

j=1 αtjxj , where the coefficients

αtj ∈ R for j = 0, 1, . . . , t − 1. At step t + 1, the algorithm uses the updated query vector qt

and the similarity m to search for relevant documents, ranks the documents according to m,

and presents the top ranked documents to the user. In practice, a threshold θ is explicitly (or

implicitly) used to select the highly ranked documents. Practically, the coefficients αtj may be

fixed as 1,−1 or 0.5 [2, 19]. The following four typical similarities were listed in [19]: For any

q,x ∈ Rn,

inner product : m1(q,x) =
n

∑

i=1

qixi,
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dice coefficient : m2(q,x) =
2m1(q,x)

m1(q,q) +m1(x,x)
,

cosine coefficient : m3(q,x) =
m1(q,x)

√

m1(q,q)
√

m1(x,x)
,

Jaccard coefficient : m4(q,x) =
m1(q,x)

m1(q,q) +m1(x,x) −m1(q,x)
.

To make the above definitions valid for arbitrary q and x, we define that the similarity between

two zero vectors is zero, i.e.,

mi(0,0) = 0, for 1 ≤ i ≤ 4.

The similarity-based relevance feedback algorithm is essentially an adaptive supervised learn-

ing algorithm from examples [22, 20, 15]. The goal of the algorithm is to learn some unknown

classifier to classify documents as relevant or irrelevant. The learning is performed by modifying

(or updating) the query vector that serves as the hypothetical representation of the collection of

all relevant documents. The method for updating the query vector is similar to the Perceptron

algorithm. We given the necessary formal definitions in the following.

Definition 1 Let m from Rn × Rn to R+ be a similarity. A classifier with respect to m over

the n-dimensional binary vector space {0, 1}n is a triple (q, ψ,m), where q ∈ Rn is a query

vector, and ψ ∈ R is a threshold. The classifier (q, ψ,m) classifies any documents d ∈ {0, 1}n

as relevant if m(q,d) ≥ θ or irrelevant otherwise. The classifier (q, ψ,m) is called a linear

classifier with respect to the similarity m, if m is a linear function from Rn ×Rn to R+.

Definition 2 An adaptive supervised learning algorithm A for learning a target classifier (q, ψ,m)

over the n-dimensional binary vector space {0, 1}n from examples is a game played between the

algorithm A and the user in a step by step fashion, where the query vector q and the threshold θ

are unknown to the algorithm A, but the similarity m is. At any step t ≥ 1, A gives a classifier

(qt, θt,m) as a hypothesis to the target classifier to the user, where qt ∈ Rn and θt ∈ R. If the

hypothesis is equivalent to the target, then the user says “yes” to conclude the learning process.

Otherwise, the user presents an example xt ∈ {0, 1}n such that the target classifier and the

hypothesis classifier differ at xt. In this case, we say that the algorithm A makes a mistake. At

step t + 1, the algorithm A constructs a new hypothetical classifier (qt+1, θt+1,m) to the user

based on the received examples x1, . . . ,xt. The learning complexity (or the mistake bound) of

the algorithm A is in the worst case the maximum number of examples that it may receive from

the user in order to learn some classifier.
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If the readers are familiar with on-line learning from equivalence queries [1, 16], then an

adaptive supervised learning algorithm as defined above is a proper on-line learning algorithm

for learning the class of classifiers from equivalence queries over the n-dimensional binary vec-

tor space. We now give the formal definition of Rocchio’s similarity-based relevance feedback

algorithm.

Definition 3 Rocchio’s similarity-based relevance feedback algorithm is an adaptive supervised

learning algorithm for learning any classifier (q, θ,m) over the n-dimensional binary vector

space {0, 1}n from examples. Let q1 be the initial query vector. At any step t ≥ 1, the algorithm

presents a classifier (qt, θt,m) as its hypothesis to the target classifier to the user, where θt ∈ R

is the threshold, and the query vector qt is modified as follows. Assume that at the beginning of

step t the algorithm has received a sequence of examples x1, . . . ,xt−1, then the algorithm uses

the following modified query vector qt for its next classification:

qt = αt0q1 +
t−1
∑

j=1

αtjxj , (1)

where αtj ∈ R, for j = 0, . . . , t− 1, are called query updating factors.

In particular, when a fixed query updating factor α > 0 and a fixed classification threshold

θ are used, at any step t ≥ 1, Rocchio’s algorithm uses (qt, θ,m) as its hypothesis to the target

classifier, and the query vector qt is modified as

qt = q1 +
t−1
∑

j=1

α(y∗j − yj)xj , (2)

where y∗j is the binary classification value of the target classifier (q, ψ,m) on xj , and yj is the

binary classification value of the hypothesis classifier (qt, θ,m) on xj .

Please note that our definition above is a generalized version of Rocchio’s original algorithm.

In our definition, any function m from Rn × Rn to R+ can be used as a similarity; arbitrary

real values can be used in computing the updated query vector; and finally our definition allows

adaptive learning until the target is obtained.

3 When the Classification Threshold Is Zero

We will use a set of documents represented by a monotone disjunction of relevant features

to study the mistake bounds of Rocchio’s algorithm. The efficient learnability of monotone
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disjunctions of relevant features (or attributes) has been extensively studied in machine learning

(for example, [16]). Although very simple in format, monotone disjunctions are very common

ways of expressing search queries, especially in the case of web search. All existing popular

search engines support disjunctions of keywords as search query formations. For any k with

1 ≤ k ≤ n, classifiers can be defined to precisely classify a monotone disjunction of k relevant

features

Xi1 ∨ · · · ∨Xik . (3)

i.e., to precisely classify whether any given document satisfies the monotone disjunction of (3)

or not. If we choose a vector u ∈ Rn such that all its components are zero except that those at

positions i1, . . . , ik are one, then it is easy to verify that for any d ∈ {0, 1}n, each of the following

four expressions is a necessary and sufficient condition for deciding whether d satisfies (3):

m1(u,d) ≥ 1

2
,

m2(u,d) ≥ 2

k + n
,

m3(u,d) ≥ 1√
kn
,

m4(u,d) ≥ 1

k + n− 1
.

This implies that (u, 1
2 ,m1), (u, 2/(k + n),m2), (u, 1/

√
kn,m3) and (u, 1/(k + n − 1),m4) are

all respectively classifiers for (3).

From now on, we only consider Rocchio’s algorithm with a fixed query updating factor α > 0

and a fixed classification threshold θ.

Property 1 Let qt+1 be the query vector of Rocchio’s algorithm at step t + 1 ≥ 2. Then, for

any s, 2 ≤ s ≤ 4, and any x ∈ {0, 1}n, we have:

If q1 = 0, then

m1(qt+1,x) ≥ 0 ⇐⇒ m1(
t

∑

j=1

(y∗j − yj)xj ,x) ≥ 0 ⇐⇒ ms(
t

∑

j=1

(y∗j − yj)xj ,x) ≥ 0. (4)

If q1 6= 0, then

m1(qt+1,xj) ≥ 0 ⇐⇒ ms(qt+1,xj) ≥ 0. (5)
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By expression (2) in Definition 3, when q1 = 0, qt+1 =
∑t

j=1 α(y∗j − yj)xj , this yields the

equivalence of (4) because α > 0. (5) follows from the fact that the enumerator of ms is m1 and

the denominator of ms is positive.

Theorem 1 Rocchio’s similarity-based relevance feedback algorithm with similarity mi, 1 ≤ i ≤
4, makes at least 3k(n − k) mistakes in searching for a collection of documents represented by

a monotone disjunctions of k relevant features over the binary vector space {0, 1}n, when the

initial query vector q1 = 0, and the algorithm uses a fixed query updating factor α > 0 and a

fixed classification threshold θ = 0.

Proof. By expression (4) of Property 1, we only need to consider the similarity m1 and

the query updating factor α = 1. Without loss of generality, let us work on the monotone

disjunction

Fk = X1 ∨ · · · ∨Xk (6)

of k relevant features. Other monotone disjunctions of k features can be handled with similarly.

The idea is that, for j = 1, . . . , k, we construct a sequence of examples that allow the

algorithm to focus on the learning of the relevant feature Xj exclusively. The algorithm gains

no information for any other relevant features, hence it is unable to update the components of

the query vector corresponding to relevant features other than Xj .

We consider the part of learning the relevant feature X1. This part is divided into two

steps: The preprocessing part and the learning part. We start with the preprocessing part. We

construct examples xt, t = 1, . . . , n − k, such that xt,k+t = 1 and all its other components are

0. x1 does not satisfy Fk. But m1(q1,x1) = 0, classifying x1 as relevant. Hence, the algorithm

makes one mistake, and the query vector q2 is updated as

q2,k+1 = −1, and

q2,j = q1,j = 0, 1 ≤ j ≤ n and j 6= k + 1.

Similarly, for 2 ≤ t ≤ n− k, the algorithm makes a mistake on xt and sets

qt+1,k+t = −1, and

qt+1,j = qt,j, for 1 ≤ j ≤ n and j 6= k + t.

At the end of this part, the query vector qn−k+1 is update as

qn−k+1,j = 0, for j = 1, . . . , k, and

qn−k+1,k+j = −1, for j = 1, . . . , n− k.
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We then begin the learning part. We construct examples yt for t = 1, . . . , 2(n − k). We set

yt,1 =











1, if t is odd,

0, if t is even.

yt,l = 0, for 2 ≤ l ≤ k, and

yt,k+l = 1, for 1 ≤ l ≤ n− k.

Obviously, yt satisfies Fk if t is odd, and it does not if t is even. For y1, m1(qn−k+1,y1) =

−(n− k) < 0. This implies that the algorithm makes a mistake, and the query vector qn−k+2 is

updated as

qn−k+2,1 = 1,

qn−k+2,l = 0, for l = 2, . . . , k, and

qn−k+2,k+l = 0, for l = 1, . . . , n − k.

For y2, m1(qn−k+2,y2) = 0, implying that the algorithm makes another mistake, and the query

vector qn−k+3 is updated as

qn−k+3,1 = 1,

qn−k+3,l = 0, for l = 2, . . . , k, and

qn−k+3,k+l = −1, for l = 1, . . . , n− k.

It follows from the similar analysis that the algorithm makes one mistake for each yt, and the

query vector has the following property:

qn−k+t+1,1 =











(t+ 1)/2, for t = 1, 3, . . . , 2(n − k) − 1,

t/2, for t = 2, 4, . . . , 2(n − k).

qn−k+t+1,l = 0, for l = 2, . . . , k,

qn−k+t+1,k+l =











0, for t = 1, 3, . . . , 2(n − k) − 1 and 1 ≤ l ≤ n− k

−1, for t = 2, 4, . . . , 2(n − k) and 1 ≤ l ≤ n− k.

In summary, both the preprocessing part and the learning part for the relevant feature X1

force the algorithm to make at least 3(n − k) mistakes. Moreover, at the end the query vector

q3(n−k)+1 is updated as

q3(n−k)+1,1 = n− k,

q3(n−k)+1,l = 0, for l = 2, . . . , k, and

q3(n−k)+1,k+l = 0, for l = 1, . . . , n− k.

By simple induction, we can utilize the similar preprocessing part and learning part to force

the algorithm to make 3(n − k) mistake to learn each of the remaining relevant features Xj,
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2 ≤ j ≤ k. Therefore, the algorithm makes at least 3k(n − k) mistakes in searching for the

collection of documents represented by Fk. 2

Theorem 2 Rocchio’s similarity-based relevance feedback algorithm with similarity ms, 1 ≤
s ≤ 4, makes Ω(k(n − k)) mistakes in searching for documents represented by a monotone

disjunction of k relevant features over the binary vector space {0, 1}n, when the initial query

vector q1 ∈ {0, 1}n is not 0, the query updating factor α > 0 is a constant and the classification

threshold θ = 0.

Proof. By expression (5) of Property 1, we only need to consider the similarity m1. Again,

we work on the monotone disjunction Fk, defined in expression (6), of k relevant features. The

idea of proof is similar to that of Theorem 1. That is, for each relevant feature, we construct

examples that force the algorithm to focus on the learning of that feature exclusively.

We shall address two cases, the initial query vector q1 has either at least k zero components

or fewer than k zero components.

Case 1: In this case, we assume without loss of generality that q1,i = 0 for i = 1, . . . , k+m,

and q1,k+m+j = 1 for j = 1, . . . , n− k −m, where 0 ≤ m ≤ n− k.

We start with the initial phase to set the (k+ j)-th component of the query vector to −α for

j = 1, . . . ,m. We construct examples xt for t = 1, . . . ,m such that xt,k+t = 1 and all its other

components are 0. xt does not satisfy the given monotone disjunction Fk. By simple induction,

m1(qt,xt) = 0, implying that xt is classified by the algorithm as relevant. Hence, the algorithm

makes one mistake on xt, and the (k + t)-th component of the query vector qt+1 is updated as

qt+1,k+t = −α and all the other components are the same as those in qt. At the end, the query

vector qm+1, denoted as A1 = qm+1 to simplify notation, is updated as

A1,j = 0, for 1 ≤ j ≤ k,

A1,k+j = −α, for j = 1, . . . ,m,

A1,k+m+j = 1, for j = 1, . . . , n− k −m.

The second phase is to manipulate the n− k−m many components of A1 with value 1. Let

T be the smallest integer satisfying T > 1/α. We have

0 < T − 1/α ≤ 1. (7)

For each j with k + m + 1 ≤ j ≤ n, in order to force the algorithm to make mistakes at the

j-th component of A1 we construct examples yt such that yt,j = 1 and all its other components
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are 0, t = 1, . . . , T. yt does not satisfy the given monotone disjunction Fk. By simple induction,

m1(At,yt) = 1− (t−1)α, which is greater than or equal to zero because of the choice of T . This

implies that the algorithm classifies yt as relevant. Hence, the algorithm makes one mistake

on yt, and the j-th component of the query vector At+1 is updated as At+1,j = 1 − tα and all

its other components remain the same as those in At. At the end of this phase, the algorithm

makes T (n − k −m) mistakes. At this point, to simplify notation we let B1 = AT (n−k−m)+1,

which is

B1,l = 0, for 1 ≤ l ≤ k, (8)

B1,k+l = −α, for j = 1, . . . ,m, and (9)

B1,k+m+l = 1 − Tα, for l = 1, . . . , n− k −m. (10)

The third phase is for learning the relevant feature X1. We construct examples zt for

t = 1, . . . , 2(m + (n − k −m)(T − 1
α
)). We set

zt,1 =











0, if t is even,

1, if t is odd,

zt,l = 0, for 2 ≤ l ≤ k, and

zt,k+l = 1, for 1 ≤ l ≤ n− k.

Obviously, zt satisfies the given monotone disjunction Fk if t is odd, and it does not if t is even. By

simple induction, when t is odd, we have m1(Bt, zt) = (t−1)α/2−mα+(n−k−m)(1−Tα) < 0;

and when t is even, we have m1(Bt, zt) = tα/2 + (n − k − m)α + (n − k − m)(1 − Tα) ≥
(n − k −m)(α + 1 − Tα) ≥ 0. The last step follows from expression (7). This means that the

algorithm makes a mistake for each example zt, and the query vector is updated as follows: For

t = 1, 3, . . . , 2(m + (n − k −m)(T − 1
α
)) − 1, Bt+1,1 = (t+1)α

2 , Bt+1,l = 0 for l = 2, . . . , k + m,

and Bt+1,l = 1− (T − 1)α for l = k +m+ 1, . . . , n; for t = 2, 4, . . . , 2(m+ (n− k−m)(T − 1
α
)),

Bt+1,1 = tα
2 , Bt+1,l = 0 for j = 2, . . . , k, Bt+1,l = −α for l = k+1, . . . , k+m, and Bt+1,l = 1−Tα

for l = k +m+ 1, . . . , n.

The above analysis implies that the algorithm makes 2(m+(n−k−m)(T− 1
α
)) mistakes in the

phase of learning the relevant feature X1. Comparing the query vector at the end of this phase

with expressions (9) to (10), it is interesting to notice that the query vector at the beginning

and at the end of this phase remains the same, except for its first component. Precisely, we have

B1,1 = 0, but B2(m+(n−k−m)(T− 1

α
))+1,1 = m+ (n− k −m)(T − 1

α
), (11)
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B1,j = B2(m+(n−k−m)(T− 1

α
))+1,j = 0, j = 2, . . . , k, (12)

B1,j = B2(m+(n−k−m)(T− 1

α
))+1,k+j = −α, j = 1, . . . ,m, and (13)

B1,j = B2(m+(n−k−m)(T− 1

α
))+1,k+m+j = 1 − Tα, j = 1, . . . , n− k −m. (14)

We can apply a similar phase to the phase for learning the relevant feature X1 for each of the

remaining relevant features Xj , 2 ≤ j ≤ k. That is, we can construct a new example z′t from

each zt. The new example z′t is obtained via changing the j-th component of zt to 1 if t is odd

and to 0 if t is even, the i-th component to zero for 1 ≤ i ≤ k but i 6= j, and letting the other

n− k components remain the same as those in zt. By simple induction, the algorithm will make

one mistake on each z′t, the query vector satisfies the similar invariant property as shown in

expressions (12) to (14). Therefore, the algorithm makes at least 2k(m + (n − k −m)(T − 1
α
))

mistakes in all the k phases of learning the relevant feature Xi for 1 ≤ i ≤ k. Combining with

the first two phases, the algorithm makes in total at least m+ (n− k−m)T + 2k(m+ (n− k−
m)(T − 1

α
)) = Ω(k(n− k)) mistakes.

Case 2: In the second case, we assume without loss of generality that q1,i = 0 for i =

1, . . . ,m′ where 0 ≤ m′ < k, q1,i = 1 for i = m′ + 1, . . . , k, . . . , n.

In this case, we do not need the initial phase in Case 1. For consistence with Case 1, we let

A1 = q1. We first follow the second phase in Case 1 to manipulate, for each j, 1 ≤ j ≤ n − k,

the 1-component A1,k+j by constructing examples yt for t = 1, . . . , T . Like in the second phase

in Case 1, each of such examples forces the algorithm to make a mistake, and to update At+1,j

to 1 − tα. At the end of this phase, the algorithm makes (n − k)T mistakes, and the query

vector A(n−k)T+1, denoted as B1 to simply notation, becomes B1,l = 0 for 1 ≤ l ≤ m′, B1,l = 1

for m′ + 1 ≤ l ≤ k, and B1,k+l = 1 − Tα for l = 1, . . . , n− k.

For i, 1 ≤ i ≤ m′, we follow the same phase as that in Case 1 for learning the relevant

feature Xi by constructing examples zt for t = 1, . . . , 2(n − k)(T − 1
α
). The only difference is

that here we have m = 0. Like in that phase in Case 1, these examples forces the algorithm to

make 2(n − k)(T − 1
α
) mistakes, and the query vector maintains the similar invariant property

as exhibited in expressions (12) to (14) in Case 1.

For i, m′ + 1 ≤ i ≤ k, we again follow the same phase as that in Case 1 for learning the

relevant feature Xi by constructing examples zt for t = 1, . . . , 2((n − k)(T − 1
α
) − 1

α
). The two

differences that we have here are m = 0 and B1,i = 1. The fact of m = 0 will not change the

process. But the fact of B1,i = 1 will change the number of examples to 2((n− k)(T − 1
α
)− 1

α
),
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because the i-th component of the query vector Bt+1 becomes 1+ (t+1)α
2 for odd t, and 1+ tα

2 for

even t. Again, these examples forces the algorithm to make 2((n−k)(T − 1
α
)− 1

α
) mistakes, and

the similar invariant property as exhibited in expressions (12) to (14) in Case 1. is maintained

for the query vector.

Putting the above analysis together, the algorithm makes at least

L(α) = (n− k)T + 2m′(n− k)(T − 1

α
) + 2(k −m′)((n − k)(T − 1

α
) − 1

α
)

mistakes in Case 2. If α = 1, then T = 2, thus L(α) ≥ 2k(n − k) + 2(n − 2k +m′). If α > 1,

then T = 1, thus

L(α) ≥ 2k(n − k)(α − 1)

α
+ n− 3k.

If 0 < α < 1, we consider two cases, either 1/α = p for some integer p > 1, or 1/α = p + r for

some integer p > 1 and some decimal value r with 0 < r < 1. When 1/α = p, we have T = p+1,

and

L(α) = (2k + 1 +
1

α
)(n − k) − 2(k −m′)

α
.

When 1/α = p+ r, we have T = p+ 1, and

L(α) ≥ 2k(n− k)(1 − r) + (n− 3k + 2m′)/α.

The above analysis yields an Ω(k(n − k)) lower bound for Rocchio’s algorithm in Case 2. 2

4 When the Classification Threshold Is Not Zero

One can introduce an auxiliary feature variable to deal with the threshold so that a linear clas-

sifier over the n-dimensional vector space with a non-zero threshold is equivalent to a linear

classifier over the (n + 1)-dimensional vector space with a zero threshold. Thus, it is tempting

to use Theorems 1 and 2 to derive lower bounds for Rocchio’s algorithm with a non-zero classi-

fication threshold over the (n + 1)-dimensional binary vector space. However, one shall notice

that the auxiliary feature variable will always maintain a value 1 in any example given to the

algorithm and the threshold may have arbitrary values other than just 1 or 0. Therefore, the

proofs of these two theorems cannot be applied here.

Theorem 3 Rocchio’s similarity-based relevance feedback algorithm with similarity m1 makes

Ω(k(n − k)) mistakes in searching for a collection of documents represented by a monotone
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disjunction of k relevant features over the binary vector space {0, 1}n, when the query updating

factor α > 0 is a constant and the initial query vector is q1 = 0.

Proof. As in the previous section, let us consider the monotone disjunction Fk defined in

expression (6), and for each i, 1 ≤ i ≤ k, we construct examples that allow the algorithm to

focus on the learning of the relevant feature Xi exclusively. We shall analyze four cases for the

classification threshold θ.

Case 1: θ ≥ (n − k)α. For each relevant feature Xi, 1 ≤ i ≤ k, we construct a sequence of

examples xt, t = 1, . . . , (n−k), such that xt,i = 1 and xt,j = 0 for 1 ≤ j ≤ n and j 6= i. Note that

xt satisfies Fk. Since q1 = 0, by simple induction, we havem1(q(i−1)(n−k+1)+t,xt) = (t−1)α < θ.

This implies that the algorithm makes a mistake on xt, and the query vector is updated as

q(i−1)(n−k)+t+1,i = tα,

q(i−1)(n−k)+t+1,j = (n− k)α, for 1 ≤ j ≤ i− 1, and

q(i−1)(n−k)+t+1,j = 0, i+ 1 ≤ j ≤ n,

At the end, the algorithm makes at least k(n − k + 1) mistakes in learning all the k relevant

features in Fk.

Case 2: 0 < θ < (n − k)α. We choose the integer T such that (T − 1)α < θ ≤ Tα,

1 ≤ T ≤ (n − k). Let N = ⌊n−k
T

⌋. For the relevant feature X1, we first construct an example

x1 such that x1,i = 1, x1,k+j = 1, j = 1, . . . ,NT , and the remaining components are zero.

This example satisfies Fk, but m1(q1,x1) = 0 since q1 = 0. Hence, the algorithm makes a

mistake, and the query vector is updated as q2,1 = α, q2,k+j = α for j = 1, . . . ,NT , and all

the other components remain 0. Second, we construct examples xt for t = 2, . . . , T such that

xt,1 = 1 and all its other components are zero. This example satisfies Fk, but by simple induction

m1(qt,xt) = (t−1)α, which is less than θ. Hence, the algorithm makes one mistakes on each xt,

and the query vector is updated as qt+1,1 = tα and all the other components remain unchanged.

Third, for each relevant feature Xi, 2 ≤ i ≤ k, we construct examples wt for t = 1, . . . , T such

that wt,i = 1 and all its other components are zero. This example satisfies Fk, but by simple

induction m1(qT (i−1)+t,wt) = (t− 1)α < θ. Hence, the algorithm makes one mistakes on each

wt, and the query vector is updated as qT (i−1)+t+1,i = tα and all the other components remain

unchanged. At the end of the above three steps, the algorithm makes kT mistakes, and the

query vector qkT+1, denoted by A1 for simplicity, is updated as

A1,i = Tα, for 1 ≤ i ≤ k,

17



A1,k+j = α, for 1 ≤ j ≤ NT , and

A1,k+NT+l = 0, for 1 ≤ l ≤ n−NT − k.

Now, we construct examples yt for t = 1, . . . ,N−1 such that yt,k+T (t−1)+j = 1, j = 1, . . . , T ,

and all its other components are zero. Each yt does not satisfy Fk, but by simple induc-

tion m1(At,yt) = Tα ≥ θ. This forces the algorithm to make one mistake on yt and to set

At+1,k+T (t−1)+j = 0 for j = 1, . . . , T , while keeping all the other components unchanged. For

t = N , we set yt,k+j = 1 for j = 1, . . . , NT , and all the other components are zero. Again, this

example does not satisfy Fk and forces the algorithm to make one mistake. The query vector

AN+1, denoted as B1, is updated as

B1,i = Tα, for 1 ≤ i ≤ k,

B1,k+j = −α, for j = 1, . . . , (N − 1)T , and

B1,k+j = 0, for j = (N − 1)T + 1, . . . ,NT .

At this point, we have finished the preprocessing phase and obtained the query vector B1.

Next, we consider the step of learning the relevant feature Xi, for 1 ≤ i ≤ k. We construct

examples zt for t = 1, . . . , 2(N − 1)T such that zt,i = 1 if t is odd and zt,i = 0 if t is even,

zt,k+j = 1 for j = 1, . . . , NT , and all the other components are zero. Notice that zt satisfies Fk

if and only if t is odd. By simple induction, the algorithm makes one mistake on each zt, and

the query vector is updated as

Bt+1,i =











Tα+ (t+1)α
2 for odd t,

Tα+ tα
2 for even t,

(15)

Bt+1,j = Bt,j for 1 ≤ j ≤ k and j 6= i, (16)

Bt+1,k+j =



































0 for odd t and 1 ≤ j ≤ (N − 1)T ,

−α for even t and 1 ≤ j ≤ (N − 1)T ,

α for odd t and (N − 1)T + 1 ≤ j ≤ NT ,

0 for even t and (N − 1)T + 1 ≤ j ≤ NT .

(17)

Bt+1,j = 0 for k +NT + 1 ≤ j ≤ n. (18)

At the end of this step, the algorithm makes 2(N − 1)T + 1 mistakes and, the query vector

B2(N−1)T maintains the following invariant property as exhibited in expressions (15) to (18): all

its components are the same as those in B1, except that the i-component is updated successfully

to learn the relevant feature Xi. This invariant property allows us to follow the similar step for
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all the other relevant features Xj , 1 ≤ j ≤ k but j 6= i, to force the algorithm to make 2(N−1)T

mistakes for each of those relevant features. Therefore, the algorithm makes 2k(N−1)T mistakes

during these steps.

In summary, in this case the algorithm make at least kT +N + 2k(N − 1)T = Ω(k(n − k))

mistakes, since 1 ≤ T ≤ (n − k) and N = ⌊n−k
T

⌋.

Case 3: θ < −(n−k)α. We choose the integer T ′ ≥ (n−k) such that −α(T ′+1) < θ ≤ −αT ′.

In the initial step, for each j with 1 ≤ j ≤ n − k, we construct examples xt, t = 1, . . . , T ′ + 1

such that xt,k+j = 1, and xt,l = 0 for l 6= j. These examples do not satisfy Fk. By simple

induction, each xt forces the algorithm to make a mistake and the query vector is updated as

q(j−1)(T ′+1)+t+1,j = −tα, and q(j−1)(T ′+1)+t+1,l = q(j−1)(T ′+1)+t,l for l 6= j. At the end, the

algorithm makes (n− k)(T ′ + 1) mistakes, and the query vector is updated as q(n−k)(T ′+1)+1,j =

−(T ′+1)α for k+1 ≤ j ≤ n, and q(n−k)(T ′+1)+1,l = 0 for 1 ≤ j ≤ k. We let A′
1 = q(n−k)(T ′+1)+1

to simplify notation.

Now, for i = 1, . . . , k, we consider the step of learning the relevant feature Xi. For Xi, we

construct (n−k)(T ′+1) sequences of examples yt, z
t
s, s = 1, 2, . . . , n−k, t = 1, . . . , (n−k)(T ′+1).

Here, yt,i = 1, yt,j = 0 for 1 ≤ j ≤ k and j 6= i, and yt,k+j = 1 for 1 ≤ j ≤ n − k; zt
s,k+s = 1

and all its other components are zero. Obviously, yt satisfies Fk but zt
s does not. By simple

induction, each of yt and zt
s forces the algorithm to make a mistake, and at the end of the t-th

sequence of examples, the query vector is updated as

A′
t(n−k+1)+1,i = tα,

A′
t(n−k+1)+1,j = A′

t(n−k+1),j , for 1 ≤ j ≤ k and j 6= i.

A′
t(n−k+1)+1,k+j = −(T ′ + 1)α, for 1 ≤ j ≤ n− k.

At the end of these steps for learning all the k relevant features, the algorithm makes k(n −
k)(T ′+1)(n−k+1) mistakes. Adding the mistakes the algorithm made before, the total number

of mistakes in this case is at least k(n − k)(T ′ + 1)(n − k + 1) ≥ k(n− k)3.

Case 4: −(n − k)α < θ < 0. we choose T ′′ such that −(T ′′ + 1)α < θ ≤ −T ′′α for some

integer T ′′ with 0 ≤ T ′′ ≤ n − k − 1. For this T ′′, we have −(n − k) ≤ −(T ′′ + 1). Initially, for

any 1 ≤ j ≤ n − k, we construct examples xt, t = 1, . . . , T ′′ + 1, such that xt,j = 1 and xt,l = 0

for l 6= j. As in the initial phase of Case 3, each xt forces the algorithm to make a mistake.

After processing all j, 1 ≤ j ≤ n − k, the algorithm makes (n − k)(T ′′ + 1) mistakes, and the

query vector q(n−k)(T ′′+1)+1, denoted as A′′
1 to simplify notation, will be A′′

1,k+j = −(T ′′ + 1)α

19



for 1 ≤ j ≤ n− k, and A′′
1,i = 0 for 1 ≤ i ≤ k.

Next, for each i, 1 ≤ i ≤ k, we consider the step of learning the relevant feature Xi. For

t = 1, . . . , (n− k)(T ′′ + 1), we construct a sequence of examples yt, zt
s, s = 1, 2, . . . , n− k. Here,

yt,i = 1 and yt,j = 0 for 1 ≤ j ≤ k and j 6= i, and yt,k+j = 1 for 1 ≤ j ≤ n−k; zt
s,k+s = 1 zt

s,j = 1

for 1 ≤ j ≤ n and j 6= k+k. Notice that yt is satisfies Fk, but those n−k examples zt
s does not.

By simple induction, for each t, yt and zt,s forces the algorithm to make a mistake, and yt is used

to update the query vector by adding α to its i-th component and the last n−k components while

keeping all other components unchanged. Each of those n−k examples zt
s is used to update the

query vector by adding −α to the (k+ s)-th component while keeping all the other components

unchanged. Thus, after processing yt and zt
s, 1 ≤ s ≤ n−k, A′′

t(n−k+1)+1,i
= tα, A′′

t(n−k+1)+1,j
=

A′′
t(n−k+1),j for 1 ≤ j ≤ k and j 6= i, and A′′

t(n−k+1)+1,k+j
= −(T ′′ + 1)α for 1 ≤ j ≤ n− k. This

invariant property remains the same for the other relevant features Xj , 1 ≤ j ≤ k and j 6= i.

The total number of mistakes at the end of these steps for learning all the k relevant features is

k(n− k)(T ′′ +1)(n− k+1) mistakes. Adding the mistakes the algorithm made before, the total

number of mistakes in this case is at least (n−k)(T ′′+1)+k(n−k)(T ′′+1)(n−k+1) ≥ k(n−k)2.
2

In the following, we consider that the constant query updating factor is 1.

Theorem 4 Rocchio’s similarity-based relevance feedback algorithm with similarity m1 makes

Ω(k(n − k)) mistakes in searching for a collection of documents represented by a monotone

disjunction of k relevant features over the binary vector space {0, 1}n, when the constant query

updating factor α = 1 and the initial query vector is q1 ∈ {0, 1}n is not 0.

Proof. As in the proof of Theorem 3, we consider the monotone disjunction Fk defined in

expression (6), and analyze four cases for the classification threshold θ.

Case 1: θ ≥ (n − k). For each relevant feature Xi, 1 ≤ i ≤ k, we construct a sequence of

examples xt, t = 1, . . . , n− k − 1, such that xt,i = 1 and xt,j = 0 for 1 ≤ j ≤ n and j 6= i. Note

that xt satisfies Fk. Since q1,i = 0 or 1, by simple induction, we have t− 1 ≤ m1(qt,xt) = t <

n − k ≤ θ. This implies that the algorithm makes a mistake on xt. At the end, the algorithm

makes at least k(n− k − 1) mistakes in learning all the k relevant features in Fk.

Case 2: 0 < θ < n− k. If θ ≥ (n− k)/10, then following the same approach as for Case 1

we can prove that the algorithm makes at least k((n− k)/10 − 1) mistakes in learning all the k

relevant features in Fk. In the rest of this case we assume 0 < θ < (n− k)/10. We consider the
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following two subcases of the initial query vector q1.

Subcase 2.1: The initial query vector q1 have at least k zero components. Without loss of

generality, we assume that qi = 0 for 1 ≤ i ≤ k +m and qj = 1 for m + k + 1 ≤ j ≤ n, where

0 ≤ m ≤ n− k.

We choose the example x such that xj = 1 for j = 1 or k + 1 ≤ j ≤ k + m, and all its

other components are zero. x satisfied Fk, but m1(q1,x) = 0. Hence, x forces the algorithm

to make a mistake and the query vector is updated as q2,1 = 1, q2,j = 0 for 2 ≤ j ≤ k and

q2,k+j = 1 for 1 ≤ j ≤ n − k. Let T be the integer such that T − 1 < θ ≤ T and N =

⌈(n − k)/T ⌉. Since 0 < θ < (n − k)/10, N ≥ 10. Let x2 be the example such that x2,j = 1

for j = k + 1, k + 1, . . . , (N − 1)T and all its other components are zero. This example does

not satisfies Fk but m1(q2,x2) = T (N − 1) > T ≥ θ. Hence, it forces the algorithm to make a

mistake and the query vector q3 becomes

q3,j = 1, for j = 1,

q3,j = 0, for 2 ≤ j ≤ k + (N − 1)T,

q3,j = 1, for j = k + (N − 1)T + 1, . . . , n.

We choose the example w such that wj = 1 for k+1 ≤ j ≤ k+NT and all its other components

are zero. This example does not satisfy Fk, but m1(q3,w) = T ≥ θ. Hence, the algorithm

makes a mistake on w and query vector q4, denoted as A1 to simplify notation, becomes

A1,1 = 1, for j = 1, (19)

A1,j = 0, for 2 ≤ j ≤ k, (20)

A1,k+j = −1, for 1 ≤ j ≤ (N − 1)T, (21)

A1,k+(N−1)T+j = 0, for 1 ≤ j ≤ T, (22)

A1,k+NT+j = 1, for 1 ≤ j ≤ n− k −NT . (23)

We now consider the step of learning the relevant feature Xi, 2 ≤ i ≤ k. For Xi, we construct a

sequence a examples yt, t = 1, 2, . . . , 2NT such that

yt,i =











1, if t is odd,

0, if t is even,

yt,j = 0, for 1 ≤ j ≤ k and j 6= i,

yt,k+j = 1, for 1 ≤ j ≤ NT,

yt,k+NT+j = 0, for 1 ≤ j ≤ n− k −NT.
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yt satisfies Fk if and only if t is odd. By simple induction, if t is odd, we have m1(At,yt) =

−(N−1)T+(t−1)/2 ≤ −(N−1)T+NT−1 = T−1 < θ; if t is even, we have m1(At,yt) = T > θ;

and the query vector is updated as

At+1,1 = 1;

At+1,i =











(t+ 1)/2, if t is odd,

t/2. if t is even,

At+1,j = At,j , for 2 ≤ j ≤ k and j 6= i,

At+1,k+j =











0, if t is odd and 1 ≤ j ≤ (N − 1)T ,

−1, if t is even and 1 ≤ j ≤ (N − 1)T ,

At+1,k+(N−1)T+j =











1, if t is odd and 1 ≤ j ≤ T ,

0, if t is even and 1 ≤ j ≤ T ,

At+1,k+NT+j = 1, for 1 ≤ j ≤ n− k −NT.

Hence, each yt forces the algorithm to make a mistake. Thus, the algorithm makes at least NT

mistakes for learning each of the relevant features Xi, 2 ≤ i ≤ k. A similar sequence of examples

can be applied the learning of X1. Since query vector has a value 1 corresponding to X1, we

need 2(NT − 1) examples to form the sequence. At the end, the algorithm makes in total at

least 2(k − 1)NT + 2(NT − 1) + 3 = 2kNT + 1 ≥ k(n− k)/5 mistakes.

Subcase 2.2: The initial query vector q1 have at most k zero components. Without loss of

generality, we assume that qi = 0 for 1 ≤ i ≤ k −m and qj = 1 for k −m + 1 ≤ j ≤ n, where

0 ≤ m ≤ k.

As in the Subcase 2.1, Let T be the integer such that T − 1 ≤ θ < T and N = ⌈(n− k)/T ⌉.
Since 0 ≤ θ < (n − k)/10, N ≥ 10. Let x1 be the example such that x1,j = 1 for j =

k+ 1, k+ 1, . . . , (N − 1)T and all its other components are zero. This example does not satisfies

Fk but m1(q2,x2) = T (N − 1) > T > θ. Hence, it forces the algorithm to make a mistake the

query vector q2 becomes q2,j = 0 for 1 ≤ j ≤ k −m, q2,j = 1 for k −m+ 1 ≤ j ≤ k, q2,k+j = 0

for 1 ≤ j ≤ (N − 1)T , and q2,j = 1 for k + (N − 1)T + 1 ≤ j ≤ n. We then choose x2 such

that x2,k+j = 1 for 1 ≤ j ≤ NT and all its other components are zero. This example does not

satisfy Fk but m1(q2,x2) = T ≥ θ. Hence, the algorithm makes a mistake at this example and

the query vector q3, denoted by A1, becomes

A1,j = 1, for k −m+ 1 ≤ j ≤ k, (24)

A1,j = 0, for 1 ≤ j ≤ k −m, (25)
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A1,k+j = −1; for 1 ≤ j ≤ (N − 1)T. (26)

A1,k+(N−1)T+j = 0, for 1 ≤ j ≤ T . (27)

A1,k+NT+j = 1, for 1 ≤ j ≤ n− k −NT . (28)

Comparing expressions (24) to (28) with expressions (19) to (23), the query vector A1 is almost

same as that for subcase 2.1. The difference is that for the first k components of A1, the first

m components have a value 1 in Subcase 2.2, while only the first component has a value 1 in

Subcase 2.1. Therefore, we can follow the approach in Subcase 2.1 to construct a sequence of

2NT examples to force the algorithm to make 2NT mistakes for learning Xi, m + 1 ≤ i ≤
k. We can also construct a sequence of 2(NT − 1) examples to force the algorithm to make

2(NT − 1) mistakes for learning Xj , 1 ≤ i ≤ m. Hence, at the end the algorithm makes at least

2m(NT − 1) + 2(k −m)NT + 2 ≥ 2kNT − 2k ≥ k(n− k)/5 − 2k mistakes.

Case 3. θ ≤ −(n − k). Let T ≥ (n − k) be the integer such that −T − 1 < θ ≤ −T . We

consider the following two subcases of the query vector q1.

Subcase 3.1. q1 has at least k zero components. Without loss of generality, we assume

that that q1,i = 0 for 1 ≤ i ≤ k +m and q1,j = 1 for m+ k + 1 ≤ j ≤ n, where 0 ≤ m ≤ n− k.

For each j = 1, 2, . . . ,m, we choose a sequence of examples yt, t = 1, 2 . . . , T + 2, such that

yt,k+j = 1 and all its other components are zero. This example does not satisfy Fk and forces

the algorithm to make a mistake. For each yt, the algorithm decreases the (k+ j)-th component

of the query vector by 1 while keeping all the other components unchanged. At the end the

(k+j)-th component of the query vector become −T−1 < θ. Similarly, we can choose a sequence

of T +3 examples to change the (k+m+ j)-th component of the query vector to −T −1 < θ for

1 ≤ j ≤ n−k−m. That is, after processingm(T+2)+(n−k−m)(T+3) = (n−k)T+3(n−k)+m
examples, we have a query vector, denoted as A1 for simplicity, as follows:

A1,j = 0, for 1 ≤ j ≤ k,

A1,k+j = −T − 1, for 1 ≤ j ≤ n− k.

We now consider the learning of the relevant feature Xi, 1 ≤ i ≤ k. In the step of learning Xi,

for 1 ≤ t ≤ (n − k − 1)(T + 1), we construct a sequence of examples yt, z
t
s, s = 1, 2, . . . , n − k.

Here, yt,j = 1 for j = i or k + 1 ≤ j ≤ n, and yt,j = 0 for 1 ≤ j ≤ k and j 6= i; zt
s,j = 0 for

1 ≤ j ≤ k, and zt
s,k+j = 1 for 1 ≤ j ≤ n − k. By simple induction, each of yt and zt

s forces the

algorithm to make a mistake. yt helps the algorithm to update the i-th component of the query

vector to t and all the (k + j)-th components to −T ≥ θ, while the j-th component remains
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unchanged for 1 ≤ j ≤ k and j 6= i. Each example zt
s help the algorithm to reset the (k + s)-th

component of the query vector back to −T − 1 ≤ θ. At the end of this step, the i-component of

the query vector becomes (n− k − 1)(T + 1) and all the (k + s)-th components are −T − 1 for

1 ≤ s ≤ n − k, while the j-th components, for 1 ≤ j ≤ k and j 6= i, remain unchanged during

this step. Thus, the total number of mistakes for learning those k relevant features is at least

k(n− k− 1)(T + 1)(n− k+ 1) + (n− k)T + 3(n− k) +m = Ω(k(n− k)3), because T ≥ (n− k).

Subcase 3.2. q1 has at most k zero components. Without loss of generality, we assume

that that q1,i = 0 for 1 ≤ i ≤ m and q1,j = 1 for m+ 1 ≤ j ≤ n, where 0 ≤ m ≤ k.

As in Subcase 3.1, let −T − 1 < θ ≤ −T for the integer T ≥ n − k, and we can use

(n− k)(T + 3) examples to force the algorithm to make (n− k)(T + 3) mistakes and to change

all the (k+ j)-th components of the query vector to −T − 1 for 1 ≤ j ≤ n− k. For each relevant

feature Xi, 1 ≤ i ≤ k, the i-th component of the query vector has a value 0 or 1. As in the step

of learning Xi in Subcase 3.1, we can use at least (n− k− 1)(T + 1)− 1 sequences of examples,

yt, z
t
s, s = 1, 2, . . . , n− k, for 1 ≤ t ≤ (n− k− 1)(T +1)− 1 to learn Xi. The algorithm makes at

least k((n− k − 1)(T + 1)− 1)(n− k + 1) + (n− k)(T + 3) = Ω(k(n− k)3), because T ≥ n− k.

Case 4. −(n − k) < θ < 0. If θ ≤ −(n − k)/10, then following the same approach as

for Case 3 we can prove that the algorithm makes Ω(k(n − k)3 mistakes in learning all the k

relevant features in Fk. In the rest of this case we assume that If −(n − k)/10 < θ < 0. Let

0 ≤ T < (n − k)/10 be the integer such that −T − 1 < θ ≤ −T . We consider the following two

subcases of the query vector q1.

Subcase 4.1: The initial query vector q1 have at least k zero components. Without loss of

generality, we assume that qi = 0 for 1 ≤ i ≤ k +m and qj = 1 for m + k + 1 ≤ j ≤ n, where

0 ≤ m ≤ n− k.

For each j = 1, 2, . . . ,m, we choose a sequence of examples yt, t = 1, 2 . . . , T + 2, such that

yt,k+j = 1 and all its other components are zero. This example does not satisfy Fk and forces

the algorithm to make a mistake. It helps the algorithm to decrease the (k + j)-th component

of the query vector by 1 while keeping all the other components unchanged. At the end the

(k + j)-th component of the query vector become −T − 1 < θ for 1 ≤ j ≤ m. Similarly, we can

choose a sequence of T +3 examples to change the (k+m+ j)-th component of the query vector

to −T − 1 < θ for 1 ≤ j ≤ n− k−m. That is, after processing m(T + 2)+ (n− k−m)(T + 3) =
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(n− k)T + 3(n− k) − 4m examples, we have a query vector, denoted as A1 as follows:

A1,j = 0, for 1 ≤ j ≤ k,

A1,k+j = −T − 1, for 1 ≤ j ≤ n− k.

We now consider the learning of the relevant featureXi, 1 ≤ i ≤ k. In the step of learningXi,

for 1 ≤ t ≤ (n−k)T+9(n−k)/10, we construct a sequence of examples yt, z
t
s, s = 1, 2, . . . , n−k.

Here, yt,j = 1 for j = i or k + 1 ≤ j ≤ n, and yt,j = 0 for 1 ≤ j ≤ k and j 6= i; zt
s,j = 0 for

1 ≤ j ≤ k, and zt
s,k+j = 1 for 1 ≤ j ≤ n − k. By simple induction, each of yt and zt

s forces the

algorithm to make a mistake. yt helps the algorithm to update the i-th component of the query

vector to t and all the (k + j)-th components to −T ≥ θ, while the j-th component remains

unchanged for 1 ≤ j ≤ k and j 6= i. Each example zt
s help the algorithm to reset the (k + s)-th

component of the query vector back to −T −1 ≤ θ for 1 ≤ s ≤ n−k. At the end of this step, the

i-component of the query vector becomes (n−k)T+9(n−k)/10 and all the (k+s)-th components

are −T − 1 for 1 ≤ s ≤ n − k, while the j-th components, for 1 ≤ j ≤ k and j 6= i, remain

unchanged during this step. Thus, the total number of mistakes for learning those k relevant

features is at least k((n−k)T +9(n−k)/10)(n−k+1)+(n−k)T+3(n−k)−4m = Ω(k(n−k)3).

Subcase 4.2. q1 has at most k zero components. Without loss of generality, we assume

that that q1,i = 0 for 1 ≤ i ≤ m and q1,j = 1 for m+ 1 ≤ j ≤ n, where 0 ≤ m ≤ k.

As in Subcase 4.2, let −T − 1 < θ ≤ −T for the integer 0 ≤ T < (n− k)/10, and we can use

(n− k)(T + 3) examples to force the algorithm to make (n− k)(T + 3) mistakes and to change

all the (k+ j)-th components of the query vector to −T − 1 for 1 ≤ j ≤ n− k. For each relevant

feature Xi, 1 ≤ i ≤ k, the i-th component of the query vector has a value 0 or 1. As in the

step of learning Xi in Subcase 4.1, we can use at least (n− k)T + 9(n− k)/10 − 1 sequences of

examples, yt, z
t
s, s = 1, 2, . . . , n − k, for 1 ≤ t ≤ (n − k)T + 9(n − k)/10 − 1 to learn Xi. The

algorithm makes at least k((n−k)T +9(n−k)/10−1)(n−k+1)+(n−k)(T +3) = Ω(k(n−k)2)
mistakes. 2

We should point out that Theorem 4 holds for any constant query updating factor α > 0.

However, we observe that the proof for α 6= 1 is complicated and involves tedious analysis of

many cases.
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5 An Upper Bound

When arbitrary query updating factors are allowed, we can follow [5] to derive an O(n) upper

bound for Rocchio’s algorithm with similarity m1 in searching for the collection of documents

represented by a disjunction of k relevant features over the n-dimensional binary vector space.

This upper bound can be further tightened to O(n+k log n) for small k with the help of Lemma

1 in [5] and the Winnow algorithm in [16]. However, such an upper bound does not hold when a

fixed query updating factor is used. Using a fixed query updating factor in Rocchio’s algorithm as

described in [19, 2] has many merits, such as simplicity and efficiency. When allowing arbitrary

updating factors in expressions (1) and (2), there might be an optimal set of factors for updating

the query vector at each step, nevertheless finding them is not a trivial task. It should be pointed

out that counting argument based on decision trees of all monotone disjunctions of k relevant

features can only help us derive an Ω(k log n) lower bound for Rocchio’s algorithm.

Theorem 5 When a fixed updating factor α = 1, a zero classification threshold, and an initial

query vector q1 = 0 are used, Rocchio’s algorithm with similarity m1 makes at most O(k(n−k)3)
mistakes in searching for a collection of documents represented by a monotone disjunction of k

relevant features over the n-dimensional binary vector space.

Proof. As in the previous section, we consider the monotone disjunction Fk in expression

(6). For the query vector qt at step t ≥ 1, each example x satisfying Fk, called a positive

example, will increase at least one qt,i, 1 ≤ i ≤ k, by 1. This increment cannot be decreased at

later steps. x can increase qt,k+j by 1, in the worst case, for all j = 1, . . . , n − k. On the other

hand, each example y that does not satisfy Fk, called a negative example, will decrease at least

one qt,k+j by 1 but keep all qi unchanged for 1 ≤ i ≤ k. Eventually, all the increments of qt,k+j

made by positive examples, for any j = 1, . . . , n− k, shall be eliminated by negative examples.

We estimate in the worst case how small qk+1 + · · ·+qn can be. We have the following claim:

CLAIM 6 For any t ≥ 1, qt,k+j ≥ −(n+ k), 1 ≤ j ≤ n− k.

We prove this claim by induction on t. Since q1 = 0, this claim is true for t = 1. Assume

that the claim is true for t ≥ 1. That is, qt,k+j ≥ −(n − k), 1 ≤ j ≤ n − k. At step t, let xt be

the example received by the algorithm. If xt is a positive example, then for 1 ≤ j ≤ n− k

qt+1,k+j = qt,k+j + xt,k+j ≥ −(n+ k) + xt,k+j ≥ −(n− k).
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If xt is a negative example, then xt,i = 0 for 1 ≤ i ≤ k, and xt has, say, m components with a

value 1 among the last n− k components, where 1 ≤ m ≤ n− k. Without loss of generality, we

assume xt,k+j = 1 for 1 ≤ j ≤ m and xt,k+m+j = 0 for 1 ≤ j ≤ n− k−m. Since xt is a negative

example, we have

m1(qt,xt) = qt,k+1 + qt,k+2 + · · · + qt,k+m > 0, (29)

and the query vector is updated as

qt+1,i = qt,i, for 1 ≤ i ≤ k,

qt+1,k+j = qt,k+j − 1, for 1 ≤ j ≤ m,

qt+1,k+m+j = qt,k+m+j, for 1 ≤ j ≤ n− k −m.

By expression (29), we have qt,k+j > 0 for at least one j with 1 ≤ j ≤ m. Say, without loss of

generality, qt,k+s > 0, i.e., qt,k+s ≥ 1, for 1 ≤ s ≤ m′ ≤ m, and qt,k+m′+s ≤ 0 for 1 ≤ s ≤ m−m′.

For 1 ≤ s ≤ m′ ≤ m, qt+1,k+s = qt,k+s − 1 ≥ 0 ≥ −(n − k). If m′ < m ≤ n − k, then for 1 ≤
s ≤ m−m′, qt+1,k+m′+s = qt,k+m′+s − 1 ≥ −∑

1≤j≤m′ qt,k+j −
∑

1≤j≤m−m′ and j 6=s
qt,k+m′+j − 1

≥ −∑

1≤j≤m′ qt,k+j − 1 ≥ −m′ − 1 ≥ −(n − k − 1) − 1 = −(n − k). For 1 ≤ j ≤ n − k − m,

qt+1,k+m+j = qt,k+m+j ≥ −(n − k). Similarly, For 1 ≤ j ≤ k, qt+1,j = qt,j ≥ −(n − k). Hence,

the claim is true at step t+ 1.

For any query qt and for any example xt satisfying the i-th relevant feature Xi, 1 ≤ i ≤ k,

by Claim 29 we have

n
∑

j=1

qt,jxt,j ≥ qt,i +
∑

1≤j≤n−k and xt,j=1

qt,j ≥ qt,i − (n− k)2.

If qt,i − (n − k)2 > 0, then the algorithm has learned the relevant feature Xi. Recall that each

positive example xt satisfying the relevant feature Xi will help the algorithm to set qt+1,i =

qt,i + 1 and qt,i will never be decreased at any later steps. Hence, the algorithm needs at most

(n− k)2 + 1 positive examples satisfying Xi to increase the i-th component of the query vector

to (n− k)2 + 1 > (n− k)2. Thus, the algorithm needs at most k((n− k)2 + 1) positive examples

to learn all the k relevant features. Recall also that each positive example will add 1, in the

worst case, to each of the last n − k components of the query vector qt,k+j for 1 ≤ j ≤ n − k.

Each value 1 added to qt,k+j must be decreased, in the worse case, by one negative example.

Thus, the algorithm needs at most k((n− k)2 +1)(n− k) negative examples to learn those n− k
irrelevant features Xk+j , 1 ≤ j ≤ n− k.
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In summary, the algorithm needs at k((n− k)2 + 1) + k((n− k)2 + 1)(n− k) = O(k(n− k)3)

examples to learn Fk. 2

We should point out that Theorem 5 holds for any constant query updating α > 0, but the

proof for α 6= 1 is tedious.

6 Conclusions

In this paper, we study the learning complexity of Rocchio’s similarity algorithm with a constant

query updating factor over the Boolean vector space {0, 1}n. Using a fixed query updating factor

in Rocchio’s algorithm has many merits, such as simplicity and efficiency. Usually, a constant

query updating factor α = 1 or 0.5, as described in [19, 2], is used in practice for Rocchio’s

algorithm. As the first step towards formal analysis of Rocchio’s similarity-based algorithm,

linear lower bounds on the learning complexity have been obtained in [9] for the algorithm in

searching for a collection of documents represented by a monotone disjunction of at most k

relevant features (or terms) over the n-dimensional binary vector space {0, 1}n. Those linear

bounds hold when any of the four typical similarities (inner product, dice coefficient, cosine

coefficient, and Jaccard coefficient) is used, no matter what value is used for the query updating

factor. Several general lower bounds have also been obtained in [5] but those do not hold for

monotone disjunctions of k relevant features.

We strengthen the linear lower bounds in [9] in this paper and prove that Rocchio’s algorithm

makes Ω(k(n−k)) mistakes in searching for a collection of documents represented by a monotone

disjunction of k relevant features over the n-dimensional binary vector space {0, 1}n, when the

inner product similarity measure is used. This Ω(k(n−k)) lower bound result is a combination of

Theorems 1 to 4. A quadratic lower bound is obtained when k is proportional to n. In addition,

this quadratic lower bound also holds for the dice coefficient, cosine coefficient, and Jaccard

coefficient similarity measures, when the classification threshold is zero. We also have proved

an O(k(n − k)3) upper bound for Rocchio’s algorithm with a constant query updating factor

α = 1 and a constant classification threshold θ = 0 in searching for a collection of documents

represented by a monotone disjunction of k relevant features, when the inner product similarity

measure is used. However, a gap between O(k(n − k) and Ω(k(n− k)3) remains open. Further

study needs to carry out to close this gap.
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