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Abstract In this paper we present two main results about the inapproximability of
the exemplar conserved interval distance problem of genomes. First, we prove that it
is NP-complete to decide whether the exemplar conserved interval distance between
any two genomes is zero or not. This result implies that the exemplar conserved in-
terval distance problem does not admit any approximation in polynomial time, unless
P = NP . In fact, this result holds, even when every gene appears in each of the given
genomes at most three times. Second, we strengthen the first result under a weaker
definition of approximation, called weak approximation. We show that the exemplar
conserved interval distance problem does not admit any weak approximation within
a super-linear factor of 2

7m1.5, where m is the maximal length of the given genomes.
We also investigate polynomial time algorithms for solving the exemplar conserved
interval distance problem when certain constrains are given. We prove that the zero
exemplar conserved interval distance problem of two genomes is decidable in poly-
nomial time when one genome is O(logn)-spanned. We also prove that one can solve
the constant-sized exemplar conserved interval distance problem in polynomial time,
provided that one genome is trivial.
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1 Introduction

Genome rearrangement was pioneered by Sturtevant and Dobzhansky (1936) in 1936.
A central problem in the genome comparison and rearrangement area is to com-
pute the number (i.e., genetic distances) and the actual sequence of genetic oper-
ations needed to convert a source genome to a target genome. This problem orig-
inates from evolutionary molecular biology. In the past, typical genetic distances
studied include edit (Marron et al. 2004), signed reversal (Palmer and Herbon 1988;
Makaroff and Palmer 1988; Bafna and Pevzner 1995) and breakpoint (Watterson
et al. 1982) distances. Recently, conserved interval distance was also proposed to
measure the similarity of multiple sequences of genes (Bergeron and Stoye 2003;
Blin and Rizzi 2005). For an overview of the research performed in this area, readers
are referred to (Li et al. 2006; Hannenhalli and Pevzner 1999; Gascuel 2004) for a
comprehensive survey.

Until a few years ago, in genome rearrangement research, people always as-
sumed that each gene appears in a genome exactly once. Under this assump-
tion, the genome rearrangement problem is essentially the problem of comparing
and sorting signed/unsigned permutations (Hannenhalli and Pevzner 1999; Gascuel
2004). However, this assumption is very restrictive and is only justified in sev-
eral small virus genomes. For example, this assumption does not hold on eukary-
otic genomes where paralogous genes exist (Sankoff 1999; Nguyen et al. 2005;
Nguyen 2005). Certainly, it is important in practice to compute genomic distances ef-
ficiently, e.g., by Hannenhalli and Pevzner’s method (Hannenhalli and Pevzner 1999),
when no gene duplications arise; on the other hand, one might have to handle this
gene duplication problem as well. A few years ago, Sankoff proposed a way to select,
from the duplicated copies of genes, the common ancestor gene such that the distance
between the reduced genomes (exemplar genomes) is minimized (Sankoff 1999).
He also proposed a general branch-and-bound algorithm for the problem (Sankoff
1999). Recently, Nguyen, Tay and Zhang used a divide-and-conquer method to com-
pute the exemplar breakpoint distance empirically (Nguyen et al. 2005). As these
problems seemed to be hard, theoretical research followed almost immediately. It
was shown that computing signed reversals and breakpoint distances between exem-
plar genomes are both NP-complete (Bryant 2000). Recently, Blin and Rizzi further
proved that computing conserved interval distances between exemplar genomes is
NP-complete (Blin and Rizzi 2005); moreover, it is NP-complete to compute the
minimum conserved interval matching (i.e., without deleting the duplicated copies
of genes). There has been no formal theoretical results, before Nguyen (2005) and
our recent work (Chen et al. 2006a, 2006b), on the approximability of the exem-
plar genomic distance problems except the NP-completeness proofs (Bryant 2000;
Blin and Rizzi 2005). Nguyen (2005) proved that the exemplar breakpoint distance
problem cannot be approximated within a constant ratio in polynomial time unless
P = NP . Actually, this result was proved through a reduction from the set cover
problem. This work was announced in (Nguyen et al. 2005).

In (Chen et al. 2006b), we present the first set of inapproximability and approx-
imation results for the exemplar breakpoint distance problem, given two genomes
each containing only one sequence of genes drawn from n identical gene families.
(Some of the results hold subsequently for the exemplar reversal distance problem.)



J Comb Optim (2008) 15: 201–221 203

For the one-sided exemplar breakpoint distance problem, which is also known to
be NP-complete, we obtain a factor-2(1 + logn), polynomial-time approximation.
The approximation algorithm follows the greedy strategy for the set cover problem,
but constructing the family of sets is non-trivial and is related to a new problem of
longest constrained common subsequences which is related to but different from the
recently studied constrained longest common subsequences (Bereg and Zhu 2005).
More recently, non-breaking similarity of genomes has been studied in (Chen et al.
2007). It was proved in this paper that the exemplar non-breaking similarity problem
of genomes does not admit any n1−ε factor approximation, unless P = NP . Poly-
nomial time algorithms were also obtained for several practically interesting cases of
the problem.

In this paper, we study the inapproximability of the exemplar conserved interval
distance problem of genomes. we first prove that deciding zero exemplar conserved
interval distance between two genomes is NP-complete. This result implies that the
exemplar conserved interval distance problem does not admit any approximation in
polynomial time, unless P = NP . In fact, this result holds even when every gene
appears in each of the given genomes at most three times. This result significantly
improves the NP-completeness result obtained by Blin and Rizzi (2005). We then
strengthen the first result under a weaker definition of approximation (which we call
weak approximation). We show that the exemplar conserved interval distance prob-
lem does not admit any weak approximation within a super-linear factor of 2

7m1.5,
where m is the maximal length of the given genomes. We also investigate polynomial
time algorithms for solving the exemplar conserved interval distance problem when
certain constraints are given. We prove that the zero exemplar conserved interval dis-
tance problem of two genomes is decidable in polynomial time when one genome is
O(logn)-spanned. Blin and Rizzi (2005) proved that the exemplar conserved interval
distance problem of two genomes is NP-complete, even when one genome is trivial.
We prove that one can find the exemplar conserved interval distance between two
genomes in polynomial time, provided that one genome is trivial and the distance
between the two is a constant that is not known beforehand.

2 Preliminaries

In the genome comparison and rearrangement problem, we are given a set of
genomes, each of which is a signed sequence of genes. The order of the genes cor-
responds to their positions on the linear chromosome and the signs correspond to
which of the two DNA strands the genes are located. Most of the past research are
under the assumption that each gene occurs in a genome once. This assumption is not
usually fulfilled for eukaryotic genomes or the likes where duplications of genes exist
(Sankoff 1999). Sankoff proposed a method to select an exemplar genome, by delet-
ing redundant copies of a gene, such that in an exemplar genome any gene appears
exactly once; moreover, the resulting exemplar genomes should have a property that
certain genetic distance between them is minimized (Sankoff 1999).

The following definitions are very much following those in (Bergeron and Stoye
2003; Blin and Rizzi 2005). Given a set of gene families (alphabet) F , a genome G

is a sequence of elements, called genes, of F such that each element is provided with



204 J Comb Optim (2008) 15: 201–221

a sign (+ or −). In general, we allow duplicated genes to be present in any genome.
Each occurrence of a gene family is called a gene, though we will not try to distin-
guish a gene and a gene family if the context is clear. For convenience, for any gene
g in a genome, we let g stand for +g. Given a genome G = g1g2 · · ·gm with no dupli-
cation of any gene, we say that gene gi immediately precedes gj if j = i + 1. Given
genomes G and H , if gene a immediately precedes b in G but neither a immediately
precedes b nor -b immediately precedes -a in H , then they constitute a breakpoint
in G. The breakpoint distance between G and H is the number of breakpoints in G

(symmetrically, it is the number of breakpoints in H ).
Let G be a genome built over a set of gene families F . Given a gene family f ∈ F ,

the number of occurrences of f in G is called the cardinality of f in G and is denoted
by card(f,G). A gene family of cardinality equal to (resp. greater than) one in G is
called trivial (resp. non-trivial) in G. For commodity, a gene belonging to a trivial
(resp. non-trivial) gene family will also be called trivial (resp. non-trivial). A genome
G is called trivial if every gene in G is trivial.

Moreover, a genome G is said to be k-duplicated if maxf ∈F card(f,G) = k. If all
the genes of a given gene family f ∈ F are pair-wise distant of at most k positions
in G then G is said to be a k-span genome, or k-spanned. For example, the following
genome G = -adc-bdaeb is 2-duplicated and it is a 5-span genome.

Given a genome G = g1g2 · · ·gm, for 1 ≤ i ≤ m, let G[i] denote the gene gi at po-
sition i in G. For any two positions i and j with 1 ≤ i ≤ j ≤ m, we will alternatively
denote the substring G[i]G[i + 1] · · ·G[j ] = gigi+1 · · ·gj by the interval G[i, j ], or
simply by [G[i],G[j ]] when no confusion arises. When G is trivial, for any two
genes a and b in G such that a precedes b, we let [a, b] denote the interval between
a and b in G. For example, given G′ = bdc-ag-e-fh, G′′ = bdce-gafh, there are 2
breakpoints c-a and -e-f between G′ and G′′ within the two intervals I1 = dc-ag-e-f
in G′ and I2 = dce-gaf in G′′. A signed reversal on a genome G simply reverses the
order and signs of all the elements in an interval of G, i.e. between two positions in
G. In the previous example, if a signed reversal operation is conducted in I1 on G′,
then we obtain a new genome G∗ = bfe-ga-c-dh.

Given a genome G built over a set of gene families F , an exemplar genome G′
of G is a genome obtained from G by deleting all but one occurrences of each gene
family. In other words, G′ is 1-duplicated. For example, let G = bcaadagef , the two
exemplar genomes of G are: bcadgef and bcdagef .

Given a set of trivial genomes G and two gene families a, b ∈ F , an interval [a, b]
is a conserved interval of G if (1) a precedes b or -b precedes -a in any genome in G;
and (2) the set of genes between a and b is the same—regardless to the signs—among
all the genomes in G. For example, let G = {G1,G2}, where G1 = bc-ag-e-fdh, G2 =
b-ce-gaf-dh, there are three conserved intervals between G1 and G2: [e, a], [b,h] and
[-a,g].

Given two sets of trivial genomes G and H, the conserved interval distance be-
tween G and H is defined as

d(G,H) = NG + NH − 2NG∪H,

where NG (resp. NH and NG∪H) is the number of conserved intervals in G (resp. H
and G ∪H).
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Let H = {H1,H2}, where H1 = b-cg-af-edh, H2 = bagcdefh, then there are two
conserved intervals between H1 and H2: [b,h] and [a, c]. There is only one conserved
interval in G ∪H: [b,h]. Therefore, d(G,H) = 3 + 2 − 2 × 1 = 3.

If G and H are both singletons, we use, for convenience, d(G,H) instead of
d(G,H) to denote the conserved interval distance between G = {G} and H = {H }.
Note that when only one genome G is considered, every interval in G is a conserved
interval. This implies that when both G and H are composed of n trivial genes, then
d(G,H) = 2(n2) − 2NG∪H .

The exemplar conserved interval distance problem, denoted as the ECID problem,
is defined as follows:

Instance: Two genomes G and H built over a set of n gene families, each genome
is of length O(m) and covers n identical gene families (i.e., it contains at least one
gene from each of the n gene families); an integer K .

Question: Are there respective exemplar genomes G′ of G and H ′ of H such that
the conserved interval distance d(G′,H ′) is at most K?

Note that the above ECID problem can be easily extended to two sets of genomes.
However, in this paper we will focus on this formulation of two single genomes.

In the next two sections, we present inapproximability results about the optimiza-
tion version of the ECID problem, namely, to compute or approximate the minimum
value K in the above formulation.

Given any two genomes G and H built over a set of gene families F , we define
the exemplar conserved interval distance between them as

ECID(G,H) = min{d(G′,H ′) | G′ and H ′ are respective exemplar

genomes for G and H }.
The exemplar breakpoint distance between G and H is the minimal breakpoint

distance between any two respective exemplar genomes for G and H .
Given a minimization problem Π , let OPT be the optimal solution of Π . We say

that an approximation algorithm A provides a performance guarantee of α for Π

if for every instance of Π , the solution value returned by A is at most α × OPT .
(Usually we say that A is a factor-α approximation algorithm for Π .) Typically we
are interested in polynomial time approximation algorithms.

In many biological problems, the optimal solution value OPT could be zero. (For
example, in some minimum recombination haplotype reconstruction problems the
optimal solution could be zero.) In that case, if computing such a zero optimal solu-
tion value is NP-complete then the problem does not admit any approximation unless
P = NP . However, in reality one would be happy to obtain a solution with value one
or two. Due to this reason, we relax the above (traditional) definition of approxima-
tion to weak approximation (Chen et al. 2006b). We say that a weak approximation
algorithm B provides a performance guarantee of α for Π if for every instance of
Π , the solution value returned by B is at most α × (OPT + 1).

3 The zero exemplar conserved interval distance (ZECID) problem

Recently, Chen et al. (2006b) proved that the zero exemplar breakpoint distance prob-
lem is NP-complete. Following the spirit of this work, in this section we shall con-
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sider the zero exemplar conserved interval distance problem, denoted by the ZECID
problem, in the following:

Instance: Two genomes G and H built over a set of n gene families, each genome
is of length O(m) and covers n identical gene families (i.e., it contains at least one
gene from each of the n gene families).

Question: Are there respective exemplar genomes G′ of G and H ′ of H such that
the conserved interval distance d(G′,H ′) is zero? In other words, is ECID(G,H) =
0?

We first give the following property about the zero conserved interval distance
between two trivial genomes.

Proposition 1 Let G and H be two trivial genomes built over the same set of genes
(i.e., G is a signed permutation of H ). Then, the conserved interval distance between
G and H is zero iff either G = H or G is the signed reversal of H .

Proof It follows from the given condition that d(G,H) = 2(n2) − 2NG∪H . If G = H

or G is the signed reversal of H , then every two genes in G form a conserved interval
in G and H . Thus, NG∪H = ( n

2

)
, implying d(G,H) = 0.

Now, suppose d(G,H) = 0. Then, we have NG∪H = (n2), i.e., every two genes in
G form a conserved interval in both G and H . We prove by induction on n that either
G = H or G is the singed reversal of H .

The property is trivially true for n = 1. When n = 2, let G = a1a2. In this case,
[a1, a2] must be a conserved interval in H . Hence, H is either a1a2 or -a2-a1, i.e.,
either G = H or G is the signed reversal of H .

Assume that the property is true for n ≥ 2. Now we consider the case of n+1 ≥ 3.
Let G = a1a2 · · ·anan+1 and H = b1b2 · · ·bnbn+1. NG∪H = ( n

2

)
implies that [ai, aj ]

is a conserved interval in both G and H for 1 ≤ i < j ≤ n+1. In particular, [a1, an+1]
is a conserved interval in H . Thus, either b1 = a1 and bn+1 = an+1, or b1 = -an+1
and bn+1 = -a1. Let G′ = a2 · · ·an and H ′ = b2 · · ·bn. We have NG′∪H ′ = (

n−2
2

)
,

hence d(G′,H ′) = 0. By the assumption, we have either G′ = H ′ or G′ is the signed
reversal of H ′. If b1 = a1 and bn+1 = an+1, and G′ = H ′, then we have G = H . If
b1 = -an+1 and bn+1 = -a1, and G′ is the signed reversal of H ′, then G is the signed
reversal of H . If b1 = a1 and bn+1 = an+1, but G′ is the signed reversal of H ′,
then G = a1a2 · · ·anan+1 and H = a1-an · · · -a2an+1. In this case, [a1, a2] is not a
conserved interval in H . Similarly, If b1 = -an+1 and bn+1 = -a1, but G′ = H ′, then
[a1, a2] is not a conserved interval in H . Therefore, only the first two cases can be
true, which imply the property. �

We now show the NP-completeness of the ZECID problem.

Theorem 1 The ZECID problem is NP-complete. More precisely, given any two
3-duplicated genomes G and H , it is NP-complete to decide whether the exemplar
conserved interval distance between G and H is zero or not.

Proof It is easy to see that the ZECID problem is in NP. To prove its NP-hardness,
we propose a reduction to it from the NP-complete 3SAT problem (Garey and John-
son 1979): Given a collection F = {f1, f2, . . . , fq} of q clauses, where each clause
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consists of a set of 3 literals (representing the disjunction of those literals) over a fi-
nite set of n Boolean variables X = {x1, x2, . . . , xn}, is F satisfiable? That is, is there
an assignment of truth values to X which makes every clause true? This reduction is
inspired of the one proposed in (Chen et al. 2006b) for the zero exemplar breakpoint
distance problem.

Let (F,X) be any instance of the 3SAT problem such that F = {f1, f2, . . . , fq}
and X = {x1, x2, . . . , xn}. Let F = {fi, gj | 1 ≤ i ≤ q,1 ≤ j ≤ n − 1} be the set
of gene families. We construct two non-trivial genomes G and H built over F as
follows:

G = S1g1S2g2 · · ·gn−1Sn,

H = T1g1T2g2 · · ·gn−1Tn,

where g1, g2, . . . , gn−1 are trivial genes (that would have a peg purpose), Si = ViV i

and Ti = V iVi with Vi (resp. V i ) being the sequence of elements of {fj | xi ∈ fj }
(resp. {fj | xi ∈ fj }) ordered by j . In other words, Vi (resp. V i ) represents in order
the clauses of F containing xi (resp. xi ). The obtained genomes G and H are indeed
3-duplicated, since any clause of F has 3 literals and therefore G and H are both
composed of exactly 3 occurrences of each fi of F for 1 ≤ i ≤ q .

We now show that F is satisfiable iff G and H have zero exemplar conserved
interval distance.

We first assume that F is satisfiable. In this case, let x1 = b1, . . . , xn = bn be
the assignment of truth values that makes each clause of F true. For 1 ≤ i ≤ n, if
xi = bi = 1, then deleting all the genes in V i from Si and Ti to obtain S′

i = Vi and
T ′

i = Vi , respectively. If xi = bi = 0, then deleting all the genes in Vi from Si and Ti

to obtain S′
i = V i and T ′

i = V i , respectively. Let

G′ = S′
1g1S

′
2g2 · · ·gn−1S

′
n,

H ′ = T ′
1g1T

′
2g2 · · ·gn−1T

′
n.

It is easy to see that G′ is the same as H ′. Since the assignment of truth values makes
F true, it makes each clause ft ∈ F = {f1, . . . , fq} true. That is, there is at least
one Boolean variable xi with either xi ∈ ft or xi ∈ ft such that the truth assignment
xi = bi makes ft true. If xi ∈ ft , then bi = 1. This means that ft is in Vi , hence it is
in both S′

i and T ′
i . Similarly, if xi ∈ ft , then bi = 0, implying that ft is in V i , hence

it in both S′
i and T ′

i . It follows from the above analysis that each gene ft ∈ F (which
represents the clause ft in F ) must occur in both S′ and H ′. If ft occurs more than
once in G′ or H ′ then one has to delete all but one of its occurrences in G and to
delete all but one of its corresponding occurrences in H ′. The two resulting genomes,
still denoted by G′ and H ′, are trivial and still the same. Finally, notice that both G′
and H ′ contain all q + n − 1 genes in F . By Property 1, we have d(G′,H ′) = 0.
Hence, ECID(G,H) = 0.

We then assume that G and H have zero exemplar conserved interval distance.
In this case, let G′′ (resp. H ′′) be an exemplar genome of G (resp. H ) such that
ECID(G,H) = d(G′′,H ′′) = 0. Since G′′ and H ′′ contain all the genes in F =
{f1, . . . , fq , g1, . . . , gn−1} without duplications, we have by Property 1 that either
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G′′ = H ′′ or G′′ is the signed reversal of H ′′. Because both G′′ and H ′′ contain
unsigned peg genes gi , we must have G′′ = H ′′. Let

G′′ = S′′
1 g1S

′′
2 g2 · · ·gn−1S

′′
n,

H ′′ = T ′′
1 g1T

′′
2 g2 · · ·gn−1T

′′
n ,

where S
′′
i (resp. T ′′

i ) denotes the substring in G′′ (resp. H ′′) corresponding to Si

(resp. Ti ) in G (resp. H ). G′′ = H ′′ implies S′′
i = T ′′

i for 1 ≤ i ≤ n. This further

implies that S
′′
i = T ′′

i is a subsequence of either Vi or V i because Si = ViV i and
Ti = V iVi . We now consider how to choose an assignment of truth values to Boolean
variables xi , 1 ≤ i ≤ n, to make F true. If S

′′
i is empty then we can assign either 1 or 0

to xi arbitrarily. If S
′′
i is not empty and is a subsequence of Vi then we assign xi = 1.

If S
′′
i is not empty and is a subsequence of V i then we assign xi = 0. Because each

gene ft ∈ F (that represents the clause ft ∈ F = {f1, . . . , fq}) occurs in G′′ (and H ′′)
once, it must occur in a non-empty S

′′
j . If S′′

j is a subsequence of Vj , then xj ∈ ft ,
this means that one can set xj = 1 to make ft true. Similarly, if S′′

j is a subsequence

of V j , then xj ∈ ft , this means that one can set xj = 0 to make ft true. Thus, the
assignment of truth values obtained above make every clause ft ∈ F truth, hence it
makes F true.

The above reduction takes linear time in the length of F . Each clause fi ∈ F, i =
1, . . . , q , appears in G (resp. H ) exactly 3 times. There are n−1 additional peg genes
in G and in H . Therefore, the length of G (resp. H ) is bounded by 3q +n− 1 ≤ |F |,
since |F | = 3q + n. �

Example 1 Given F = {f1, f2, f3},X = {x1, x2, x3, x4}, where f1 = {x1, x2, x4},
f2 = {x1, x3, x4}, f3 = {x2, x3, x4}, and f4 = {x1, x2, x3}, we have two 3-duplicated
genomes in the following:

G = f1f2f4g1f3f1f4g2f2f3f4g3f1f2f3,

H = f2f4f1g1f1f4f3g2f4f2f3g3f3f1f2.

d(G′′,H ′′) = 0, with G′′ = H ′′ = f4g1f3g2g3f1f2, corresponding to the assignment
of truth values (that makes F true) with x1 = 0, x3 = 0 (or 1), and x2 = x4 = 1.

Corollary 1 Given any two sets of genomes G and H, it is NP-complete to decide
whether the exemplar conserved interval distance between G and H is zero or not.

Theorem 1 and the above corollary imply that the ECID problem does not ad-
mit any polynomial time approximation unless P = NP —if such a polynomial time
approximation existed, then it would be able to decide, given any two genomes G

and H , whether G and H have zero exemplar conserved interval distance in polyno-
mial time, hence contradicting Theorem 1. We should point out that it remains open
whether the zero exemplar conserved interval distance problem of two 2-duplicated
genomes is NP-hard or not. Interestingly, the similar problem for the zero exemplar
breakpoint distance problem of two 2-duplicated genomes is also open (Chen et al.
2006b).
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4 Weak inapproximability

Given two genomes G and H built over a set of gene families F , let opt(G,H) be
the optimal exemplar conserved interval distance between G and H , i.e.

opt(G,H) = ECID(G,H)

= min{d(G′,H ′) | G′ (resp. H ′) is an exemplar genome for G (resp. H )}.
We shall prove a super-linear 2

7m1.5 factor inapproximability bound on the optimal
exemplar conserved interval distance between two genomes under the weak approx-
imation model we proposed in Sect. 2. Notice that the super-linear factor 2

7m1.5 in
the bound we obtain in Theorem 2 and Corollary 2 for the optimal exemplar con-
served interval distance problem is substantially stronger than the sublinear m1−ε

factor, ε > 0, in the bound obtained in (Chen et al. 2006b) for the optimal exemplar
breakpoint distance problem.

Theorem 2 Let t (x) : N → N be a function computable in polynomial time. If there
is a polynomial time algorithm such that, given two genomes A and B built over a
set of gene families F with length at most m, it can return two exemplar genomes A′
and B ′ for A and B respectively such that d(A′,B ′) ≤ t (m)opt(A,B) + 2

7m1.5, then
P = NP .

Proof Let (F,X) be any instance of the 3SAT problem (Garey and Johnson
1979) such that X = {x1, x2, . . . , xn} is a set of n Boolean variables and F =
{f1, f2, . . . , fq} is a set of q clauses over X, where each clause in F has three lit-
erals. We assume without loss of generality that q ≥ 2n. (We can add additional
clauses such as {xi, xi, xj } to F to make sure q ≥ 2n so that the expanded formula is
equivalent to F .) Let G(F),H(F) be the two genomes as constructed in the proof of
Theorem 1 for (F,X) such that F is satisfiable iff there are two exemplar genomes
G′(F ) and H ′(F ) for G(F) and H(F) respectively such that d(G′(F ),H ′(F )) = 0.
Let |G(F)| = |H(F)| = u, i.e., the number of occurrences of all the genes in G(F)

(or H(F)). Since each clause in F has three literals, we have

u + 1 ≤ 3q + n ≤ 3q + 1

2
q ≤ 7

2
q.

Hence,

q ≥ 2

7
(u + 1). (1)

We now give several notations that are needed in the following analysis. Given
a genome S, let Σ(S) be the set of all the distinct genes occurred in S. If Σ ′ is a
different set of genes such that Σ(S) ∩ Σ ′ = ∅ and |Σ ′| = |Σ(S)|, we define S(Σ ′)
to be a new genome obtained by replacing all the genes in S, in one to one fashion,
by those in Σ ′. For example, let S = ab-acd-bc, then Σ(S) = {a, b, c, d}. Let Σ ′ =
{w,x, y, z}, then S(Σ ′) = wx-wyz-xy.

For M ≥ 3, let Σ1,Σ2, . . . ,ΣM be M pairwise disjoint sets of genes of size
|Σ(G(F))|. Let G1 = G(F)(Σ1),G2 = G(F)(Σ2), . . . ,GM = G(F)(ΣM) be the
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sequences derived from G(F). Let H1 = H(F)(Σ1),H2 = H(F)(Σ2), . . . ,HM =
H(F)(ΣM) be the sequences derived from H(F). Let

F =
M⋃

i=1

Σi ∪ {sj |1 ≤ j ≤ M}

be the set of gene families, where sj is not in any Σi . Define two genomes A and B

built over F as follows:

A = G1s1G2s2 · · ·GMsM,

B = H1s1H2s2 · · ·HMsM,

where each si is a trivial gene in A and B (that would have a peg purpose). Let
m = |A| = |B| = M(u + 1). By the construction of G(F) and H(F) in the proof of
Theorem 1, each of G(F) and H(F) has q + n − 1 distinct genes. Hence, each of
Gisi and Hisi has q + n distinct genes.

Assume that some polynomial time algorithm outputs two exemplar genomes A′
and B ′ for A and B respectively with d(A′,B ′) ≤ t (m)opt(A,B) + 2

7m1.5, then one
can decide whether F is satisfiable by checking whether d(A′,B ′) ≤ 2

7m1.5. The
analysis is given as follows.

If F is satisfiable, then, as in the proof of Theorem 1, two identical exemplar
genomes can be obtained respectively from Gi and Hi for 1 ≤ i ≤ M . Hence, two
identical exemplar genomes can be obtained respectively from A and B . Therefore,
by Property 1, the conserved interval distance between those two identical genomes
for A and B is zero. Hence, we have opt(A,B) = 0. This implies that d(A′,B ′) ≤
t (m)opt(A,B) + 2

7m1.5 = 2
7m1.5.

We now consider that f is not satisfiable. We will show that d(A′,B ′) > 2
7m1.5.

Let

A′ = A1A2 · · ·AM,

B ′ = B1B2 · · ·BM,

such that Ai (resp. Bi ) is the exemplar genome corresponding to Gisi (resp. Hisi ),
1 ≤ i ≤ M . Since F is not satisfiable, it follows from the proof of Theorem 1 that
d(Ai,Bi) ≥ opt(Gi,Hi) ≥ 1 for 1 ≤ i ≤ M ; namely, there is at least one conserved
interval in Ai but not in Bi . Recall that all the occurrences of genes in Gi and Hi

(hence, Ai and Bi ) are unsigned. This implies that there are two genes a and b in Ai ,
1 ≤ i ≤ M , such that one of the following is true:

(1) [a, b] is a (conserved) interval in Ai but [b, a] is in Bi (i.e. b precedes a in Bi ).
(2) There exists some gene c ∈ [a, b] in Ai but c �∈ [a, b] in Bi .
(3) There exists some genes c in Ai such that c �∈ [a, b] in Ai but c ∈ [a, b] in Bi .

For case (1), for any gene d in Aj , j �= i, if j < i, then [d, a] does not contain b

in A′, but [d, a] contains b in B ′, hence [d, a] is a conserved interval in A′ but not
in both A′ and B ′; [d, b] contains a in A′, but [d, b] does not contain a in B ′, hence
[d, b] is a conserved interval in A′ but not in both A′ and B ′. Similarly, if i < j ,
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then [a, d] and [b, d] are two conserved intervals in A′ but not in both A′ and B ′.
Analogously, for any e in Bj , j �= i, if j < i, then [e, a] and [e, b] are two conserved
intervals in B ′ but not in both A′ and B ′; if j > i, then [a, e] and [b, e] are two
conserved intervals in B ′ but not in both A′ and B ′. Recall that each of Gj and Hj

has q + n − 1 distinct genes. This means that each of Aj and Bj has q + n distinct
genes. Thus, in this case, Ai and Bi contribute at least 4(q + n)(M − 1) conserved
intervals in either Ai or Bi but not in both, 1 ≤ i ≤ M . Taking off

∑M−1
j=1 8j many

conserved intervals that are over counted, we have, when q + n ≥ 4, at least

4(q + n)M(M − 1) −
M−1∑

j=1

8j = 4(q + n)M(M − 1) − 4M(M − 1)

≥ 3(q + n)M(M − 1)

conserved intervals in either A′ or B ′ but not in both. Hence, we have d(A′,B ′) ≥
3(q + n)M(M − 1), when q + n ≥ 4.

For case (2), since c must also be in Bi , c occurs either before a or after b in Bi . If
c occurs before a, then we have [a, c] in Ai but [c, a] in Bi . If c occurs after b, then
we have [c, b] in Ai but [b, c] in Bi . In either case, following a similar analysis for
case (1), we have d(A′,B ′) ≥ 3(q +n)M(M − 1), when q +n ≥ 4. Analogously, we
also have d(A′,B ′) ≥ 3(q + n)M(M − 1) for case (3), when q + n ≥ 4.

In summary, in either of the three cases, when q + n ≥ 4, we have

d(A′,B ′) ≥ 3(q + n)M(M − 1)

= 3

(
q

2
+ q

2
+ n

)
M(M − 1)

> 3

(
q

2
+ q

2
− n

)
M(M − 1)

≥ 3

2
qM(M − 1), for q ≥ 2n

>
3

7
(u + 1)M(M − 1), by inequality (1)

>
2

7
(u + 1)MM, M ≥ 3

= 2

7
mM.

Since m = (u + 1)M , setting M = (u + 1), we have

d(A′,B ′) >
2

7
m1.5. �

The following corollary follows directly from Theorem 2 by letting t (m) = 2
7m1.5.

Corollary 2 If there is a polynomial time algorithm such that, given two genomes
A and B of length at most m built over a set of gene families F , it can re-
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turn exemplar genomes A′ and B ′ for A and B respectively satisfying d(A′,B ′) ≤
2
7m1.5[opt(A,B) + 1], then P = NP .

This negative result shows that even under the weak approximation model pro-
posed in Sect. 2 which is much weaker than the conventional approximation model,
it is not possible to obtain a good approximation to the optimal exemplar conserved
interval distance problem, unless P = NP .

5 When one genome is k-spanned

Theorem 1 implies it is impossible to decide whether the conserved interval distance
between two genomes is zero or not in polynomial time, unless P = NP . Theorem 2
further implies that the problem of finding the exemplar conserved interval distance
between two genomes does not admit any weak approximation, unless P = NP .
Blin and Rizzi (2005) proved that the exemplar conserved interval distance prob-
lem between two genomes is NP-complete even when all non-trivial segments of
the genomes are composed of only one duplicated gene. In fact, their proof implies
that, even when one genome is trivial and both genomes consist of unsigned genes,
the problem is still NP-complete. However, those negative results do not rule out
the possibility of solving the exemplar conserved interval distance problem between
two genomes in polynomial time when certain interesting constraint is imposed on
the two genomes. Chen, Fu and Zhu (2006b) gave a 2(1 + logn)-approximation to
the exemplar breakpoint distance problem for two genomes when one is O(logn)-
spanned. This motivates us to investigate whether one can solve in polynomial time
the exemplar conserved interval distance problem between two genomes when one
genome is O(logn)-spanned.

Given any two genome G and H built over a set of gene families F , let |G| = N

and |H | = M . Assume that G is k-spanned. We investigate how to decide whether
the conserved interval distance between G and H is zero or not.

We first consider that both G and H consist of unsigned genes only. Assume that
F has m distinct genes. By Property 1, the exemplar conserved interval distance be-
tween G and H is zero iff there is an exemplar genome A (resp. B) for G (resp. H )
such that A = B . Note that A and B , which consist of m distinct genes, are two sub-
sequences of G and H respectively. Thus, the exemplar conserved interval distance
between G and H is zero iff the length of a longest common subsequence, which
consists of distinct genes, between G and H is m. This gives us the following idea to
decide whether the exemplar conserved interval distance between G and H is zero or
not: Compute the length of a longest common subsequence, which consists of distinct
genes, between G and H . If the length is m, then the exemplar conserved interval dis-
tance between G and H is zero, otherwise it is not. It is well-known (see, for example,
Cormen et al. 2002) that finding a longest common subsequence between two strings
with respective lengths N and M can be done in O(MN) time by means of dynamic
programming. In our case of deciding zero exemplar conserved interval distance be-
tween two genomes G and H , a longest common subsequence is “constrained ” to
have distinct genes. Hence, we cannot apply the well-known O(MN) algorithm for
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finding a longest common subsequence to our “longest constrained common subse-
quence” problem.

Formally, given a segment (or a substring) A of G and a segment B of H , we call
a subsequence S a “constrained common subsequence” between A and B if (1) S is a
common subsequence between A and B and (2) S has no duplicated genes. Similarly,
we call S a “constrained subsequence” of G (or H ) if (1) S is a subsequence of G

(or H ) and (2) S has no duplicated genes.
To simplify presentation, we introduce a notation �: For genome G, S � G de-

notes that S is a constrained subsequence of G.
Without loss of generality, we let N = pk. We divide G into p disjoint seg-

ments Gi of equal length k, 1 ≤ i ≤ p, with Gi = G[(i − 1)k, ik]. For any i, j, s, t ,
1 ≤ i ≤ j ≤ p and 1 ≤ s ≤ t ≤ M , let A[i, j ] = GiGi+1 · · ·Gj and H [s, t] =
H [s]H [s + 1] · · ·H [t]. We consider how to find a longest constrained common sub-
sequence between A[i, j ] = GiGi+1 · · ·Gj and H [s, t].

For i = j , A[i, i] = Gi . For each B � Gi , let lccs(i, i,B,B, s, t) be a longest
constrained common subsequence between B and H [s, t].

For j = i +1, A[i, j ] = GiGi+1. For each B1 � Gi and each B2 � Gi+1 such that
B1B2 has no duplicated genes (i.e., B1B2 is a constrained subsequence of GiGj ),
let lccs(i, i + 1,B1,B2, s, t) be a longest constrained common subsequence between
B1B2 and H [s, t].

For j = i + 2, A[i, j ] = GiGi+1Gi+2. For each B1 � Gi and each B2 � Gi+2,
let lccs(i, i + 2,B1,B2, s, t) be a longest constrained common subsequence between
B1Gi+1B2 and H [s, t].

For j > i + 2, A[i, j ] = GiGi+1 · · ·GlGl+1 · · ·Gj−1Gj with i + 1 ≤ l ≤ j − 2,
for each B1 � Gi and each B2 � Gj , let lccs(i, i + 1,B1,B2, s, t) be a longest con-
strained common subsequence between B1Gi+1 · · ·GlGl+1 · · ·Gj−1B2 and H [s, t].
For any l and x with i + 1 ≤ l ≤ j − 2 and s ≤ x ≤ t , for any B3 � Gl and any B4 �
Gl+1, let lccs(i, l,B1,B3, s, x) = U1V1 and lccs(l + 1, j,B4,B2, x + 1, t) = V2U2,
where V1 (resp. V2) is a constrained subsequence for B3 (resp. B4), define

merge(lccs(i, l,B1,B3, s, x), lccs(l + 1, j,B4,B2, x + 1, t))

=
{

U1V1V2U2, if V1V2 is a constrained subsequence of B3B4,

nil, otherwise.

Lemma 1 For any i, j, s, t with 1 ≤ i ≤ j ≤ p and 1 ≤ s ≤ t ≤ N , A[i, j ] =
Gi · · ·GlGl+1 · · ·Gj , i + 1 ≤ l ≤ j − 2, for each B1 � Gi and B2 � Gj ,

lccs(i, j,B1,B2, s, t)

= max
i<l<j−1;s≤x≤t

{merge(lccs(i, l,B1,B3, s, x),

lccs(l + 1, j,B4,B2, x + 1, t) | B3 � Gl,B4 � Gl+1}. (2)

Proof Note that |Gl | = |Gl+1| = k and G is k-spanned. No genes occurred in
GiGi+1 · · ·Gl−1 will occur in Gl+1 · · ·Gj−1Gj , and no genes occurred Gl+2 · · ·
Gj−1Gj will occur in GiGi+1 · · ·Gl . The only place for both GiGi+1 · · ·Gl−1Gl
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and Gl+1Gl+2 · · ·Gj−1Gj to have common genes is GlGl+1. This implies that
merge(lccs(i, l,B1,B3, s, x), lccs(l +1, j,B4,B2, x +1, t) yields a constrained com-
mon subsequence between B1Gi+1 · · ·Gl−1GlGl+1 · · ·Gj−1B2 and H [s, t]. Hence,
the length of the constrained common subsequence obtained in the right hand side of
expression (2) is no more than the length of the longest constrained common subse-
quence between B1Gi+1 · · ·Gl−1Gl Gl+1Gl+2 · · ·Gj−1B2 and H [s, t].

Let lccs(i, j,B1,B2, s, t) = UV WZ be a longest constrained common sub-
sequence between B1Gi+1 · · ·Gl−1GlGl+1 · · ·Gj−1B2 and H [s, t] such that, for
some x with s ≤ x ≤ t , UV is a constrained common subsequence between
B1Gi+1 · · ·Gl−1Gl and H [s, x] with Z � Gl , and WZ is a constrained common
subsequence between Gl+1Gl+2 · · ·Gj−1B2 and H [x + 1, t] with W � Gl+1. Let
B3 = V � Gl and B4 = W � Gl+1. Let lccs(i, l,B1,B3, s, x) = U ′V ′ such that
U ′V ′ is a longest constrained common subsequence between B1Gi+1 · · ·Gl−1B3
and H [s, x] with V ′ � B3, and lccs(l, j,B3,B2, x + 1, t) = W ′Z′ such that W ′Z′
is a longest constrained common subsequence between B4Gl+2 · · ·Gj−1B2 and
H [x + 1, t] with W � Gl+1. Then, |UV | ≤ |U ′V ′| and |WZ| ≤ |W ′Z′|. Since V W

has no duplicated genes, V ′ � B3 and W ′ � B4 implies V ′W ′ � B3B4. Thus, merging
lccs(i, l,B1,B3, s, x) and lccs(l+1, j,B3,B2, x +1, t) yields merge(U ′V ′,W ′Z′) =
W ′V ′W ′Z′, which has length |W ′V ′W ′Z′| ≥ |UV WZ|.

Combining the analysis above, the right hand side of expression (2) yields a
longest constrained common subsequence between B1Gi+1 · · ·Gl−1GlGl+1Gl+2
· · ·Gj−1B2 and H [s, t]. �

Lemma 2 The exemplar conserved interval distance between G = G1 · · ·Gp and
H is zero if and only if the longest constrained common subsequence given by
maxB1�G1,B2�Gp lccs(1,p,B1,B2,1,M) has length n, where n is the total number
of distinct genes occurred in G and H .

Proof If the longest constrained common subsequence given by

max
B1�G1,B2�Gp

{lccs(1,p,B1,B2,1,M)

has length n, then both G and H have a common exemplar genome, so by Property 1,
the exemplar conserved interval distance between G and H is zero.

If the exemplar conserved interval distance between G and H is zero, then
by Property 1 there is a longest constrained common subsequence S of length n

between G and H . If G = G1, then S � G, hence lccs(1,1, S, S,1,M), which
may not the same as S, is a longest constrained common subsequence of length
n between G and H . If G = G1G2, let S = S1S2 such that Si � Gi , i = 1,2,
then lccs(1,2, S1, S2,1,M) is a longest constrained common subsequence of
length n between G and H . Similarly, If G = G1G2G3, let S = S1S2S3 such
that Si � Gi , i = 1,2,3, then lccs(1,3, S1, S3,1,M) is a longest constrained
common subsequence of length n between G and H . In general, when G =
G1G2 · · ·Gp−1Gp with p ≥ 4, let S = S1S2S3 such that S1 � G1, S2 � Gp and
S3 � G2 · · ·Gp−1. Then, by Lemma 1, lccs(1,p,S1, S2,1,M) is a longest common
subsequence of length n between G and H . In either of the four cases, the length of
maxB1�G1,B2�G2{lccs(1,p,B1,B2,1,M) is n. �
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Let LCS denote the O(MN) time algorithm for finding a longest common subse-
quence between two strings of respective lengths N and M (Cormen et al. 2002). We
design the following algorithm LCCS (standing for Longest Constrained Common
Subsequence) for computing a longest constrained common subsequence between
two genomes G and H .

Algorithm LCCS(G,H)

1. for (d = 0;d < q − 1;d = d + 1)

2. {
3. for (i = 1; i ≤ q; i = i + 1)
4. {
5. j = i + d ;
6. if (j > q)

7. break;
8. for (s = 1; s ≤ M ; s = s + 1) and for (t = s; t ≤ M ; t = t + 1)
9. {
10. if (i == j)

11. for any B � Gi

12. call algorithm LCS to find lccs(i, j,B,B, s, t);
13. if (j == i + 1 or j == i + 2)
14. for any B1 � Gi and B2 � Gj (B1B2 � GiGi+1 if j == i + 1)
15. call algorithm LCS to find lccs(i, j,B1,B2, s, t);
16. if (j > i + 2)

17. for any B1 � Gi,B2 � Gj ,
18. lccs(i, j,B1,Be2, s, t) =

maxi<l<j−1;s≤x≤t {merge(lccs(i, l,B1,B3, s, x),
19. lccs(l + 1, j,B4,B2, x + 1, t)|B3 � Gl,B4 � Gl+1}
20. }
21. }
22. }
23. return max{lccs(1,p,B1,B2,1,M)|B1 � G1,B2 � Gp}
24. the end of algorithm LCCS

We are now ready to prove the following result:

Theorem 3 Given any two genome G and H built over a set of n gene families F , let
|G| = N and |H | = M . If G is k-spanned, then one can decide whether the exemplar
conserved interval distance between G and H is zero or not in O(24kN3M3/k2)

time.

Proof We first consider that both G and H have unsigned genes. Assume without loss
of generality N = kp. Let G = G1 · · ·Gp with |Gi | = k, 1 ≤ i ≤ p. By Lemma 2,
if the longest constrained common subsequence returned by algorithm LCCS has
length n, then the exemplar conserved interval distance between G and H is zero,
otherwise it is not. For each Gi , 1 ≤ i ≤ q , there are 2k possible ways to select a
constrained subsequence for it. For each iteration of lines 10 to 15 dealing with the
cases of j = i, i + 1 or i + 2, the algorithm performs an exhaustive search of all
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constrained subsequences of Gi · · ·Gj to find a longest constrained subsequence be-
tween Gi · · ·Gj and H [s, t]. Thus, the time complexity at each iteration for those
three cases is at most O(23kkM). For each iteration of lines 16 to 19 dealing with the
general case of j > i + 2, the time complexity is O(24kkpM). Hence, the total time
complexity of algorithm LCCS is O(24kkp3M3) = O(24kN3M3/k2).

When G and H have singed genes, we run algorithm LCCS two times. The first
time is to find a longest constrained common subsequence between G and H . The
second time is to find a longest constrained common subsequence between G and
the singed reversal of H . Here, we require algorithm LCCS to match an unsigned
gene with an unsigned, and a signed gene with a signed gene. by Property 1, G and
H have zero conserved interval distance iff there are exemplar genomes A and B

respectively for G and H such that either A = B or A is the signed reversal of B . In
the former case, G and H has a longest constrained subsequence of length n. In the
latter case, G and the signed reversal of H has a longest constrained subsequence of
length n. Hence, the conserved interval distance between G and H is zero if we find
a longest constrained common subsequence with length n, otherwise the distance is
not zero. The time complexity is the same as O(24kN3M3/k2) time, when G and H

have signed genes. �

The following corollary, followed directly from Theorem 3, implies that the zero
exemplar conserved interval distance problem is decidable in polynomial time, when
one genome is k-spanned.

Corollary 3 Given any two genome G and H built over a set of n gene families
F , let |G| = N and |H | = M . If G is O(logN)-spanned, then one can decide
whether the exemplar conserved interval distance between G and H is zero or not in
nO(1)N3M3/ log2 n time.

6 When one genome is trivial

We want to know in this section whether we can improve the result obtained in the
previous section when one genome is trivial. Blin and Rizzi (2005) proved that the
exemplar conserved interval distance problem between two genomes is NP-complete,
even when one genome is trivial and both genomes consist of unsigned genes. Hence,
by their result, one shall not expect a polynomial time algorithm to find the exemplar
conserved interval distance between two genomes with one being trivial, unless P =
NP . Nevertheless, we shall prove in this section that one can find in polynomial time
a constant-sized exemplar conserved interval distance between two genomes with one
being trivial.

For convenience, we continue using the notation �: S � G denotes that S is a
constrained subsequence of G. We also introduce a new notation :̃ For any segment
T of G, T̃ denotes the signed reversal of T .

We first give a simple relation between exemplar breakpoint distance and the ex-
emplar conserved interval distance between two genomes.
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Lemma 3 Given any two genomes G and H built over a set of gene families F , the
exemplar conserved interval distance between G and H is greater than or equal to
the exemplar breakpoint distance between G and H .

Proof Let A and B are two exemplar genomes respectively for G and H such that
d(A,B) is the exemplar conserved interval distance between G and H . Since every
breakpoint between A and B is not, by definition, a conserved interval in both A

and B , it contributes one to the value of d(A,B). Hence, d(A,B) is at least the num-
ber of breakpoints between A and B , and the latter is at least the exemplar breakpoint
distance between G and H . �

Lemma 4 Given any two genomes G and H built over a set of gene families F with
G being trivial, assume that the exemplar breakpoint distance between G and H is
c ≥ 0. Then, G can be divided into c + 1 segments G = G1G2 · · ·Gc+1 such that the
following two properties are true:

(1) H has a longest constrained subsequence G′
i1
G′

i2
· · ·G′

ic+1
, where i1, i2, . . . , ic+1

is a permutation of 1,2, . . . , c + 1, and G′
il

= Gil or G′
il

= G̃il , 1 ≤ l ≤ c + 1.
(2) The last gene in Gj and the first gene in Gj+1 form a breakpoint in G, 1 ≤ j ≤ c.

Proof Since the exemplar breakpoint distance between G and H is c, by definition,
there are two exemplar genomes A and B respectively for G and H such that the
number of breakpoints between A and B is c. Because G is trivial, we have A = G.
Let G = g1g1 · · ·gN and gil gil+1, 1 ≤ l ≤ c, be c breakpoints. Then, G1 = g1 · · ·gi1 ,
Gl = gil−1+1 · · ·gil , 2 ≤ l ≤ c, Gc+1 = Gic+1 · · ·gN are c + 1 segments of G sat-
isfying (2). For each Gil , 1 ≤ l ≤ c + 1, any two consecutive genes in Gil do not
form a breakpoint between G and B (otherwise the breakpoint distance between G

and B is more than c), this means that either Gil or its signed reversal is a sub-
string of B . Hence, B = G′

i1
G′

i2
· · ·G′

ic+1
, where i1, i2, . . . , ic+1 is a permutation of

1,2, . . . , c + 1, and G′
il

= Gil or G̃il , 1 ≤ l ≤ c + 1. Therefore, (1) is true. �

Theorem 4 Given any two genomes G and H built over a set of gene families F
with G being trivial. Let |G| = N and |H | = M . If the exemplar conserved interval
distance between G and H is a constant c ≥ 0, which is unknown. Then, one can find
this distance c in O(Nc+2Mc+2(MN + N3)) time.

Proof Both Lemmas 3 and 4 give us the following idea to find the exemplar con-
served interval distance between G and H , provided that this distance is a constant
c ≥ 0: Lemma 3 implies that, if two genomes A and B , which are exemplar re-
spectively for G and H , yield the exemplar conserved interval distance between G

and H , then the number of breakpoints between A and B is no more than c. For any
j = 1,2, . . . , we want to find all the possible exemplar genomes A and B respec-
tively for G and H such that there are j − 1 many breakpoints between them. Since
G is trivial, any exemplar genome A for G must be G itself, i.e., A = G. For any two
exemplar genomes G and B with j − 1 breakpoints, by Lemma 4, G and B satisfy
the two properties in the lemma. So, we can try all possible ways to divide G into
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j many segments. Say, G = G1G2 · · ·Gj is one of such j -segment divisions satis-
fying property (2) in Lemma 4. Then, B = G′

i1
G′

i2
· · ·G′

ic+1
is a longest constrained

common subsequence satisfying property (1) in Lemma 4. We can find such a B , if it
exists, through exhaustive search as follows. Try all possible ways to divide H into j

segments. Say, one of such segment is H = H1H2 · · ·Hj . For Gi and Hl , 1 ≤ i, l ≤ j ,
decide whether Gi or its signed reversal is a subsequence of Hl or not. This can be
done using the O(MN) time algorithm for finding a longest common subsequence
between two strings (Cormen et al. 2002). We obtain all possible B = G′

i1
G′

i2
· · ·G′

ij

such that i1, i2, . . . , ic+1 is a permutation of 1,2, . . . , j , G′
il

� Hl , and G′
il

= Gil or

G̃il , 1 ≤ l ≤ j . Once, we obtain a pair of exemplar genomes G and B with j − 1
many breakpoints, we find the conserved interval distance between them. This can be
easily done in O(N3) time. We keep the smallest conserved interval distance we have
found so far for 1,2, . . . , j . If this distance is larger than j , then try the above process
for j + 1. If this distance is less or equal to j , then stop and return it as the exemplar
conserved interval distance between G and H . We shall prove that this termination
condition is correct in Claim 5.

The following is the algorithm ConstECID (standing for Constant Exemplar Con-
served Interval Distance) in detail.

Algorithm ConstECID(G,H)

/*precondition: G is trivial.*/
1. D = ∞;
2. for (j = 1; true; j = j + 1) /* the j -for-loop*/
3. {
4. for each j segments of G, G = G1G2 · · ·Gj

5. for each j segments of H , H = H1H2 · · ·Hj

6. {
7. for (i = 1; i ≤ j ; i = i + 1) and for (l = 1; l ≤ j ; l = l + 1)
8. {
9. decide whether Gi � Hl or G̃i � Hl ;
10. }
11. for each B = G′

i1
G′

i2
· · ·G′

ij
such that i1, i2, . . . , ij

is a permutation of 1,2, . . . , j ,
12. and G′

il
� Hl , G′

il
= Gil or G̃il

13. {
14. find d(G,B);
15. let D = min{D,d(G,B)};
16. }
17. }
18. if (D ≤ j)

19. return D and stop;
20. }
21. the end of algorithm ConstECID

Claim 5 Let ECID be the exemplar conserved interval distance between G and H .
Let Dj denote the value D found by algorithm ConstECID at the end of the j -th
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iteration of the j -for-loop. If for some j∗ ≥ 1, Dj∗ ≤ j∗ is true at line 18 in the
algorithm, then ECID = Dj∗ .

Proof of Claim 5 Recall that any exemplar genome for G is G itself for G is trivial.
Let B ′ be an exemplar genome for H such that ECID = d(G,B ′) and the num-
ber of breakpoints between G and B ′ is the smallest among all exemplar genomes
B for H such that ECID = d(G,B). Let j ′ be the number of the breakpoints be-
tween G and B ′. By Lemma 3, j ′ ≤ ECID. During the (j ′ + 1)-th iteration of the
j -for-loop, algorithm ConstECID must find B ′ via exhaustive search for all possible
exemplar genomes B for H such that the number of breakpoints between G and B

is j ′. So, the algorithm finds Dj ′+1 = d(G,B ′) = ECID at the (j ′ + 1)-th iteration
of the j -for-loop. Since the algorithm will never increase Dj when j gets larger, it
keeps ECID = Dj ′+1 for all j ≥ j ′ + 1. Let j∗ = max{j ′ + 1,ECID = Dj ′+1}. At
the j∗-th iteration of the j -for-loop, the algorithm still finds Dj∗ = Dj ′+1 = ECID.
For any j with 1 ≤ j < j∗, we must have Dj > j . This can be shown in two
cases. In the first case, we consider j ′ < ECID. In this case, j∗ = ECID. Thus,
Dj ≤ j implies ECID ≤ Dj ≤ j < j∗ = ECID, a contradiction. In the second case,
we consider j ′ = ECID. Here, j∗ = ECID + 1 = j ′ + 1. Thus, Dj ≤ j implies
ECID ≤ Dj ≤ j < j∗ = ECID + 1 = j ′ + 1, hence 1 ≤ j = Dj = ECID = j ′. Let
B ′′ be the exemplar genome for H found by the algorithm at the j -th iteration of the
j -for-loop such that Dj = d(G,B). By Lemma 3, the breakpoint distance between
G and B ′′ is j − 1 ≤ d(G,B) = ECID = j ′, contradicting to the fact that j ′ is the
smallest breakpoint distance between G and any exemplar genome B for H such
that d(G,B) = ECID. Therefore, we must have Dj > j . This implies that j∗ is the
smallest j such that Dj ≤ j . Since the j -for-loop repeats for j = 1,2, . . . ,N , the
algorithm will find j∗ at the j∗-th iteration of this loop. Again, for this j∗, we have
ECID = Dj∗ .

Suppose the exemplar conserved interval distance between G and H is c. By
Claim 5, algorithm ConstECID will find c at most the (c + 1)-th iteration of the
j -for-loop. Deciding whether Gi � Hl or G̃i � Hl , i.e., whether Gi or its signed
reversal is a subsequence of Hl can be done in O(MN) time by the well-known
algorithm for finding a longest common subsequence between two strings (Cor-
men et al. 2002). Given two exemplar genomes of length N , one can find its con-
served interval distance in O(N3) time. The total time of algorithm ConstECID is
O(Nc+2Mc+2(MN + N3)). �

7 Concluding remarks

We prove two major lower bounds on the approximation of the exemplar conserved
interval distance problem of genomes. The first result implies that the conserved inter-
val distance problem of genomes does no admit any polynomial time approximation,
unless P = NP . The second result further implies that this problem does not admit
any weak approximation with a super-linear factor 2

7m1.5, unless P = NP . How-
ever, good approximation may exist for special cases of genomes, and good heuristics
may perform well empirically or on average. It would be interesting to study some
meaningful special cases. For example, can we obtain a good approximation when
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one genome is 2-duplicated and the other is a 3-span genome? Such a special case
partially conforms with the real-life dataset that duplications of genes are typically
pegged and occur at not very far away positions (Nguyen et al. 2005).

To start with our effort on solving interesting special cases of the exemplar con-
served interval distance problem, we present two positive results in this paper. The
first is a polynomial time algorithm for deciding whether the exemplar conserved
interval distance between two genomes is zero or not when one genome is O(logn)-
spanned. The second is a polynomial time algorithm for finding an unknown constant-
sized exemplar conserved interval distance between two genomes. Blin and Rizzi
(2005) proved that the exemplar conserved interval distance problem between two
genomes is NP-complete, even when one genome is trivial and both genomes consist
of unsigned genes. By our Theorem 1, the zero exemplar conserved interval distance
problem between two genome is NP-complete, even when both are 3-duplicated. By
our Theorem 2, it is impossible to give a good weak approximation to the exemplar
conserved interval distance problem for two general genomes. Those two results to-
gether with Blin and Rizzi’s result show that the two special cases solved by our two
polynomial time algorithms are not trivial.

Given a k-span genome G and a general genome H , each is a sequence containing
O(m) signed or unsigned genes drawn from a set of n gene families, a 2(1 + logn)-
approximation algorithm was devised in (Chen et al. 2006b) to compute the exemplar
breakpoint distance between G and H when k = O(logn). Can we improve Theo-
rem 3 to approximate the non-zero exemplar conserved interval distance for such a
k-span genome G and a general genome H when k = O(logn)? Again, we should
point out that computing the exemplar conserved interval distance of two genomes
is more involved than computing their exemplar breakpoint distance. We should also
point out that by Blin and Rizzi (2005) it is impossible to compute, in general, the
exact exemplar conserved interval distance for two genomes when one is O(logn)-
spanned, unless P = NP , because a trivial genome is 0-spanned. We do not know
whether Theorem 4 can be improved to find any non-constant (say, logn) sized ex-
emplar conserved interval distance between two genomes when one is trivial.

We prove that the zero exemplar conserved interval distance problem between two
3-duplicated genomes is NP -complete. Is this problem still NP -complete when the
two genomes are 2-duplicated? The answer to this problem remains open. Interest-
ingly, it also open whether the zero exemplar breakpoint distance problem of two
2-duplicated genomes is NP -complete or not (Chen et al. 2006b).
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