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Abstract

We study the problem of properly learning unions of two axis�parallel rectangles over the domain f�� n��g�

in the on�line model with equivalence queries
 When only O�log n� equivalence queries are allowed� this

problem is one of the �ve interesting open problems proposed in ���� regarding learning geometric concepts


In this paper� we design an e�cient algorithm that properly learns unions of two rectangles over the domain

f�� n� �g� using O�log� n� equivalence queries


	



� Introduction

We consider the model of on�line learning from examples introduced by Angluin ��� �see also ���� ��� �	��


In this model� the learning process may be viewed as a game between two players called teacher and learner


They use a set X� called the domain of examples� and a set of C � �X � called the concept class
 Before

the game starts the teacher chooses an element ct � C� called target concept
 The task of the learner is to

identify ct from examples
 The game proceeds in iterations
 During iteration j�

�i� the learner A proposes a hypothesis hAj from a hypothesis class H � �X and asks the teacher an

equivalence query �hAj � ct��
 The choice of h
A
j is determined by the current strategy of A


�ii� if hAj � ct� then the teacher responds with �YES� and terminates the learning process
 Otherwise he

gives a counterexample �CE� x � X from the symmetric di�erence

hAj �ct � �ctnhAj � � �hAj nct��

If a CE belongs to ctnhAj � then we call it a positive counterexample �PCE for short�
 The CE�s belonging
to hAj nct are called negative counterexamples �NCE for short�


The goal of the learner is to identify the target concept with a minimal number of equivalence queries


For the worst case analysis� we can imagine that the teacher and learner are adversaries and the teacher

tries to make the task of the learner as hard as possible� i
e
� he obliges the learner to make the maximal

number of equivalence queries
 This leads to the following�

�iii� the learning complexity of an algorithm A� denoted by LC�A�� is de�ned as follows�

LC�A� � max

������
�����
i � N

����������

there is ct � C and a learning process with

CE�s xj � hAj �ct such that

hAj �� ct for j � �� � � � � i� �

������
�����
�

�iv� the learning complexity of a concept class C is de�ned by

LC�C� � minfLC�A�jA is a learning algorithm for Cg�

At this stage� we want to mention that in the on�line model of Angluin ��� we distinguish between proper

learning �the hypotheses proposed by the learner are from the target concept class� i
e
� H � C� and arbitrary

�



learning �the hypotheses of the learner are arbitrary concepts� i
e
� H � �X 
 In this paper we shall consider
only proper learning algorithms


We say that a learning algorithm for a concept class C is e�cient if the learning complexity of the
algorithm is polynomial in the logarithm of the size of the domain
 The given de�nition of the learning

complexity does not take into the account the time spent by the learning algorithm A to compute its new

hypothesis from the old hypotheses and the examples presented
 There are cases for which the computation

of such hypothesis is not possible in polynomial time
 The attention is focused only on the amount of

interaction between the teacher and the learner� i
e
� the number of CE�s presented by the teacher
 However�

in this paper we are interested in learning algorithms that have run�time polynomial in d and log n as well


One of the most important open problems in computational learning theory is that of e�cient learnability

of DNF formulas
 Great e�orts have been devoted to solve this problem in di�erent models of learning


Because of the tight relation existing between the class of DNF formulas and the geometric classes studied

in this paper we shall give a short overview on important results about learnability of DNF formulas


Pitt and Valiant showed in ���� that for any constant k � �� the class of k�term DNF formulas is not

properly learnable in the PAC model �see ��
� for de�nition� under the assumption that RP �� NP 
 Their

result implies that the class of k�term DNF formulas� for constant k � �� is not properly learnable in the
exact learning model using equivalence queries under the assumption that P �� NP 
 Bshouty et� al� showed

in ���� that the class of
p
log n�term DNF formulas is properly on�line learnable using equivalence and

membership queries
 It was shown in ���� that this positive result cannot be signi�cantly improved in the

exact model or the PAC model allowing membership queries� given certain standard theoretical complexity

assumptions


When the number of occurrences of each variable in a DNF formula is restricted� many positive and

negative results have been obtained
 Angluin et� al� proved in ��� that the class of read�once Boolean

formulas is properly learnable
 In particular� this result implies that the class of read�once DNF formulas

is properly learnable
 Aizenstein et� al� proved in ��� that the class of read�thrice DNF formulas is not

properly learnable using equivalence and membership queries if co�NP �� NP 
 On the other hand� it has

been shown through the work in ���� �� ��� that the class of read�twice DNF formulas is properly learnable

using equivalence and membership queries
 In ���� Pillaipakkamnat and Raghavan proved that the negative

result in ��� still holds when one assumes P �� NP � and they also established many other negative results

regarding proper learnability of subclasses of DNF formulas
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Although unions of rectangles are generalizations of DNF formulas� no signi�cant progress has been

made on the properly learnability of unions of rectangles
 In ���� Maass and Tur�an proposed �ve interesting

open problems regarding learning discretized geometric concepts
 The �rst one is whether unions of two

rectangles over the discretized plane f�� n� �g� is properly learnable using O�log n� equivalence queries


In this paper� we shall study proper learnability of unions of two rectangles in the ��dimensional dis�

cretized space f�� � � � � n � �g� with equivalence queries
 We denote by N the set of all natural numbers


�i� j � N � we use �i� j� to denote the set fi� � � � � jg if i 	 j or 
 otherwise
 We de�ne the class of all discretized
axis�parallel rectangles �or rectangles for short� over the domain ��� n� ��d as follows�

BOXd
n �

	
dY

i��

�ai� bi� j � 	 ai� bi 	 n� ���i � ��� ��


�

The concept class of unions of two rectangles over the domain ��� n� ��� is denoted by

TWO�
n � fC� � C�jC�� C� � BOX�

ng�

We organize this paper as follows
 In section �� we survey previous research on learning unions of

rectangles
 In section 	� we prove several technical results about the structures of unions of two rectangles

over the domain ��� n � ���
 In section �� we construct an algorithm that properly learns any union of two

rectangles over the domain ��� n � ��� using O�log� n� equivalence queries
 We list three open problems in
section �


� Previous Results

In the PAC model� Blumer et� al� proved in ��� that for constant dimension d� the class of unions of non�

discretized rectangles over the d dimensional Euclidean space is PAC learnable
 Long and Warmuth proved

in ���� that for constant k� the class of unions of k non�discretized rectangles over arbitrary dimensional

Euclidean space is learnable
 For constant n� Jackson proved in ��
� that any union of polynomially many

discretized rectangles over the domain ��� n � ��d is strongly PAC learnable with respect to the uniform
distribution and using membership queries as well


For learning the concept class BOXd
n the algorithm that issues the smallest rectangle consistent with

all previous CE�s is �d�space bounded and its e�ciency has been proved in the PAC learning model
 On

the other hand� this strategy has a learning complexity ��dn� in the learning model of Angluin ���


�



Maass and Tur�an ���� presented an algorithm that learns separately each of the �d corners of the target

concept from BOXd
n
 Their algorithm has learning complexity O��

d log n�


The best known on�line learning algorithm for BOXd
n has been presented by Chen and Maass in ���� ���


Their algorithm consists of �d separate search strategies that determine the parameters a�� b�� � � � � ad� bd of

the target concept ct �
Qd

j���aj � bj �
 The learning complexity of their algorithm is O�d
� log n�


In ��� Auer discussed the problem of learning the class of BOXd
n in a noisy environment

�
 He showed

that BOXd
n is learnable if and only if the fraction of the noisy examples is less than

�
d�� 
 For BOX

d
n he

also presented a learning algorithm that requires O� d� log n
��r��d��� � equivalence queries� if the fraction of noise r

is less than �
�d�� 
 Maass and Tur�an ���� also showed that even if the learner is allowed to propose arbitrary

concepts as hypotheses� the learning complexity of BOXd
n is ��d log n�
 As shown by Auer and Long ���

this lower bound holds even if the membership queries are allowed
 If we consider only proper learning�

then this lower bound can be raised to �� d�

log d log n� �see ����
 Ameur constructed in �	� a �d�space bounded

algorithm that also properly learns BOXd
n using O�d

� logn� equivalence queries


Maass and Warmuth developed in ���� a learning algorithm that matches the ��d log n� lower bound


The hypotheses of their algorithms are represented by a �virtual threshold gate� of depth � that has �dn

boolean variables as input
 It is still open whether one can close the ��log d��gap� between the upper and

lower bounds in the model of proper learning
 One should note that it follows from Angluin ��� that on�line

learning with only equivalence queries implies PAC learning under any distribution


When the learner is allowed to use both equivalence and membership queries� Chen and Homer ����

�rst proved that the class of unions of k rectangles over the domain ��� n� ��� is learnable with O�k� log n�
queries
 Later� Goldberg et� al� ���� proved that for constant dimension d� the class of unions of rectangles

over the domain ��� n � ��d is polynomial time learnable with equivalence and membership queries
 They
also proved that for constant k but arbitrary dimension d� the class of unions of k rectangles is polynomial

time learnable with equivalence and membership queries
 Recently� it has been proved that for constant

dimension d� the class of unions of rectangles over the domain ��� n� ��d is polynomial time learnable using
only equivalence queries �see �
� ��� ����


�Environment is noisy� if some of the counterexamples are invalid or noisy� i�e�� they belong to the target concept but are

classi�ed as negative or are outside the target concept but classi�ed as positive�
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Figure �� Type�� and Type�� witnesses

� Structural Properties of TWO�

n

In this section we will show several structural properties about unions of two rectangles over the domain

��� n � ���
 In the next section� we will use those properties to design an algorithm that properly learns

TWO�
n using O�log

� n� equivalence queries


For any set A � ��� n� ���� we use ��A� to denote the minimal rectangle in BOX�
n containing A


Given C � TWO�
n� for any example y �� C and for any set of examples S � C� we say that �y� S� is a

witness for C if and only if y � ��S�
 It is easy to see that C �� BOX�
n if and only if there is a witness for

it


Lemma ���� Assume that �y� S� is a witness for C � TWO�
n� Let y � �y�� y�� and ��S� � �a�� b�� �

�a�� b��� Then� there are examples u � �u�� u��� v � �v�� v�� � S such that either u � �a�� y�� � �y�� b�� and
v � �y�� b�� � �a�� y�� �in this case� we call �y� u� v� a type�� witness for C�� or u � �a�� y�� � �a�� y�� and
v � �y�� b��� �y�� b�� �in this case� we call �y� u� v� a type�� witness for C��

The structures of type�� and type�� witnesses are illustrated in Figure �


Proof� Because ��S� is minimal� there is at least one example u � S at the upper boundary �a�� b���
�b�� b�� of ��S�
 Assume that u � �a�� y�� � �b�� b��
 Again� because ��S� is minimal� there are examples
v� � S and v�� � S at the bottom and right boundaries �a�� b�� � �a�� a�� and �b�� b�� � �a�� b�� of ��S��
respectively
 If one of them� say� v� is in �y�� b��� �a�� y��� then �y� u� v�� is a type�� witness for C
 Otherwise�

�



v� � �a�� y��� �a�� y�� and v�� � �y�� b��� �y�� b��� thus �y� v�� v��� is a type�� witness for C
 Similarly� the lemma
is also true when u � �y�  �� b��� �b�� b��
 �

It has been shown in ���� ��� that there is an algorithm that properly learns BOXd
n using O�d

� log n�

equivalence queries
 Let LR denote a copy of the algorithm restricted over the domain ��� n� ���
 Then� LR
properly learns BOX�

n using at most c log n equivalence queries for a constant c


Lemma ���� There is an algorithm that �nds a witness for any target concept C � TWO�
nnBOX�

n using

O�log n� equivalence queries� �Hence� by Lemma 	��� the algorithm �nds a type�� �or a type��� witness for

C��

Proof� We employ algorithm LR to learn C
 Since C �� BOX�
n and the learner issues hypotheses in

BOX�
n during the learning process of LR� the learner will not receive a �yes� from the teacher
 Assume by

contradiction that the learner has received c log n  � CE�s but hasn�t found any witnesses
 Let S be the

set of all PCE�s among the c log n � CE�s
 Thus� ��S� is consistent with all those received CE�s
 Recall
that ��S� � BOX�

n
 Consider the learning process of LR on the target concept ��S�
 Since algorithm
LR is deterministic and is oblivious to the input target concept� the learning process of LR for ��S� is the
same as that for C for those c log n � CE�s
 Hence� the learner requires at least c log n � CE�s to learn

��S�� a contradiction to the fact that c log n is the upper bound on the number of equivalence queries of
LR
 Therefore� the learner �nds a witness �y� S� for C with at most c log n � CE�s
 �

Let C � TWO�
n
 We say that C is separable if there are A �

Q�
i���ai� bi� and B �

Q�
i���ei� fi� such that�

C � A �B and A 
B � 

 It is easy to observe that A 
B � if and only if one of the following conditions
is true� ��� b� � e�! ��� f� � a�! �	� b� � e�! and ��� f� � a�
 Thus� in other words� C is separable if and

only if C � A �B and one of the above four conditions is true


Given C � A � B �
Q�

i���ai� bi� �
Q�

i���ei� fi� � TWO�
n� We say that C is an S��shape union if a� �

e� 	 b� � f� and e� � a� 	 f� � b�
 We say that C is an S��shape union if it can be obtained by rotating

an S��shape union by 
� degrees


We say that C is an X�shape union� if e� � a� 	 b� � f� and a� � e� 	 f� � b�


It is easy to see that S��shape� S��shape and X�shape unions are not separable
 Examples of S��shape�

S��shape and X�shape unions are given in Figure �


Lemma ���� For any C � TWO�
nnBOX�

n� if it is not separable� then it is an S��shape union� an
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S��shape union� or an X�shape union�

Proof� Let M be the minimal rectangle containing C
 Because C is not in BOX�
n and not separable�

M has four distinct corner points
 Note that for a pair of rectangles which overlapped and formed a �L� �or

a �T��� they could alternatively be expressed using a pair of non�overlapping rectangles �hence� their union

is separable�


Let C � A�B
 If either A or B contains two diagonal corner points of M � then C �M � a contradiction

to C �� BOX�
n
 Thus neither A nor B contains two diagonal corner points of M 
 This implies that each of

A and B may contain no corner points� one corner pointer� or two adjacent corner points of M 


If A contains no corner points� then the only possibility to arrange B such that A�B is not separable is
that B contains no corner points and� A and B form an X�shape union touching all four boundaries of M 


If A contains one corner point� say� the bottom left corner� then the only possibility to arrange B such

that A � B is not separable is that B contain the upper right corner only and� A and B overlap
 Thus� A

and B form a S��shape
 Similarly� if A contains the bottom right corner� then B contains the upper left

corner� thus they form an S��shape
 With the same analysis� if A contains one of the two upper corners�

then A and B form an S��shape or an S��shape


If A contains two adjacent corner points� say� the two bottom corners� then no matter how to arrange

B� their union is either a �T� or a �L� that is separable
 This implies that A cannot contain two adjacent

corner points


The same analysis can be done for di�erent cases of B
 Putting the above together� C either contains

��



no corner points of M or contains two diagonal corner points
 In the �rst case� C is an X�shape
 In the

latter case� C is either an S��shape or an S��shape
 �


� Learning TWO�

n
Using Equivalence Queries

Maass and Tur�an ���� proposed �ve open problems regarding on�line learning geometric concepts
 The �rst

problem is whether the class of unions of two discretized axis�parallel rectangles over the domain ��� n� ���

is properly learnable using O�logn� equivalence queries
 In this section� we provide a partial solution to

the open problem by showing that the class of unions of two discretized axis�parallel rectangles over the

domain ��� n���� is properly learnable using O�log� n� equivalence queries
 The proof below is substantially
di�erent from the earlier one given in ����
 The proof in ���� is very complicated because it analyzes all

possible cases and provides a particular solution for each of those cases


Lemma 	��� One can properly learn any separable target concept C � TWO�
n using O�log� n� equiva�

lence queries�

Proof� Given a separable concept C � A � B �
Q�

i���ai� bi� �
Q�

i���ei� fi�� we know that one of the

following conditions is true� ��� b� � e�! ��� f� � a�! �	� b� � e�! and ��� f� � a�
 However� we do not

know which one is true
 We design a learning algorithm which will try each of the four conditions
 Here�

we only consider how the algorithm works under the condition b� � e�
 One possible case of the condition

is illustrated in �gure 	
 The other three conditions can be coped with in the similar manner


For any witness �y� S� for C� let r�S� � �r�� r�� and l�S� � �l�� l�� be two examples in S such that

�x � �x�� x�� � S� l� 	 x� 	 r�� In other words� r�S� is an example in S with the largest �rst coordinate�

and l�S� is an example in S with the smallest �rst coordinate
 If l�S� � B� then S � B since b� � e� 	 l�S�


This implies y � ��S� � B
 Hence� y � C� a contradiction to the fact that y �� C
 Thus� l�S� � A
 Similarly�

r�S� � B
 Now� we can learn C as follows


Let LA and LB be two copies of algorithm LR
 The global algorithm uses LA and LB to learn A and B

at stages
 At each stage� when LA and LB issue respectively two hypotheses H�A� and H�B�� the global

algorithm issues a new hypothesis H�A� � H�B�
 We use W to collect counterexamples that have been

assigned to LA by the global algorithm since the last initiation of LA
 We describe the learning algorithm

below


��
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Figure 	� A Separable Union with b� � e�

Initially� set H�A� � H�B� � 
� and set W � 
�

Repeat the following process


Asks an equivalence query for H�A� �H�B�� The global algorithm stops if it receives

�YES�� If it receives a CE x� then it adds x to W �

The global algorithm decides� among all CE
s in W � whether there is a witness �y� S�

for the target concept� If so� it gives r�S� to LB to produce a new hypothesis and resets

H�A� � 
 and W � 
� and thus it starts a new initiation of LA�

If there is no witnesses� then if the received counterexample x is a PCE� then the global

algorithm gives it to only LA to produce a new hypothesis and� lets LB do nothing but

issue the previous hypothesis� otherwise the global algorithm gives it to both LA and

LB to produce two new hypotheses respectively�

We now analyze the learning complexity of the above process
 When the global algorithm �nds a witness

�y� S�� then by the above analysis� r�S� � B
 Since r�S� is a PCE to the union of LA and LB�s hypotheses�

it is not in LB�s hypothesis
 Since it is in B� it is a PCE for LB �learning B�
 So� LB always receives

PCE�s in B
 Hence� LB learns B using O�log n� equivalence queries� since it is a copy of algorithm LR

for learning BOX�
n using O�log n� equivalence queries
 By Lemma 	
�� the global algorithm needs O�log n�

equivalence queries to �nd a witness
 Hence� the global algorithm needs O�log� n� equivalence queries to

��



learn B
 After that� all the PCE�s received by the global algorithm are in A
 Thus� LA can learn A using

O�log n� additional equivalence queries� because LA is also a copy of algorithm LR for learning BOX�
n using

O�log n� equivalence queries
 Therefore� the global algorithm needs O�log� n� equivalence queries in total

to learn A and B
 �

Lemma 	��� One can properly learn any S��shape union in TWO�
n with O�log� n� equivalence queries�

Similarly� one can properly learns any S��shape union in TWO�
n with O�log� n� equivalence queries�

Proof� We only consider S��shape unions
 Given any target concept C � A � B �
Q�

i���ai� bi� �Q�
i���ei� fi�
 By the de�nition of S��shape unions� we have a� � e� 	 b� � f� and e� � a� 	 f� � b� �see

Figure ��
 It is easy to see that there are type�� witnesses for C� but there are no type�� witnesses for it


For any type�� witness �y� u� v�� one can verify from the de�nition that u � A and v � B


In a similar way as we did in the proof of Lemma �
�� the global algorithm employs two copies LA and

LB of algorithm LR to learn A and B� respectively
 The only exception is that� when one obtains a witness

�x� S�� by Lemma 	
�� the global algorithm can �nd a type�� witness �y� u� v� among examples in S � fxg

It then gives v to LB to produce a new hypothesis� resets the hypothesis of LA to empty and starts a new

initiation of LA
 Analogously� the global algorithm properly learns C using O�log� n� equivalence queries


�

Lemma 	��� One can properly learn any X�shape union in TWO�
n with O�log� n� equivalence queries�

Proof� Given any X�shape target concept C � A � B �
Q�

i���ai� bi� �
Q�

i���ei� fi�� we have e� � a� 	
b� � f� and a� � e� 	 f� � b�
 It is easy to see that there are type�� and type�� witnesses for C


Given any type�� witness �y� u� v�� then either y � �b�� f�� � �f�� b�� or y � �e�� a�� � �a�� e��
 Those two
cases are illustrated in Figure �
 When y � �b�� f��� �f�� b��� we can easily verify the following

Property 	�	�

�
 u � A and v � B


�
 For any type�� witness �y�� u�� v��� if y�� � u�� then u
� � B and v� � A� otherwise u� � A and v� � B


Here� u � �u�� u��� y
� � �y��� y

�

��


	
 For any type�� witness �y��� u��� v���� if y��� � u� then u
�� � B and v�� � A� otherwise u�� � A and v�� � B


Here� u � �u�� u��� y
�� � �y��� � y

��

� �


When y � �e�� a�� � �a�� e��� we can also give similar properties like those in Property �
� to assign� for

�	
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any type�� �or type��� witness �y�� u�� v��� u� and v� to A and B correctly


Symmetrically� given any type�� witness �y� u� v�� then either y � �e�� a��� �f�� b�� or y � �b�� f��� �a�� e��

In any of the two cases� one can assign� for any type�� �or type��� witness �y�� u�� v��� u� and v� to A and B

correctly


We now consider how to learn C
 The learning process is divided into the following four parts
 The

control "ow of the global algorithm is illustrated in �gure �


Part �� Finding the 
rst witness� In the same way as we did in the proof of Lemma �
�� the global

algorithm employs two copies LA and LB of algorithm LR to learn A and B� respectively
 However� when

the global algorithm �nds the �rst witness �x� S�� it stops
 Using Lemma 	
�� it then �nds the �rst type

witness �y� u� v�� which is either type�� or type��� among the examples in S � fxg
 Remember that the
witness �y� u� v� will be kept by the global algorithm and will be used in part 	 to assign CE�s for LB to

learn B


Part �� Deciding whether the 
rst type witness �y� u� v� is type�� or type��� The global

algorithm decides whether �y� u� v� is type�� or type�� according to the de�nition given in Lemma 	
�
 This

decision is deterministic and rather easy to be performed


Part �� Trying the two possible locations for y� If �y� u� v� is a type�� witness� then y � �b�� f���
�f�� b�� or y � �e�� a�� � �a�� e��
 Unfortunately� the global algorithm does not know which of the two

conditions is true
 Similarly� if �y� u� v� is a type�� witness� then y � �e�� a��� �f�� b�� or y � �b�� f��� �a�� e��

Unfortunately� the global algorithm does not know which of the two conditions is true� either
 Our strategy

is to allow the global algorithm to try each of the two conditions
 More precisely� our strategy is as follows�

��



Find the first witness (y, u, v)

Decide whether the first witness

      is type-1 or type-2?

   Type-1 Type-2

Guess y in [b   , f  ]x[f  , b  ]1 1 2 2
Guess y in [e  , a  ]x[f  , b  ]1 1 2 2

Continue Learning Continue Learning

If learn the target If learn the targetStop
Yes

No

Yes

No

Restart learning for y in [e   , a   ]x[e   , b   ]1 1 2 2 Restart learning for y in [b   , f   ]x[a   , e   ]1 1 2 2

Figure �� The Control Flow for Learning an X�shape Union

��



If �y� u� v� is a type�� witness� then the global algorithm �rst guesses that y � �b�� f��� �f�� b��� and goes
to part � to continue learn
 If it learns the target concept C in part �� then it stops
 If it does not learn the

target concept in part �� then it knows that y must be in �e�� a��� �a�� e��
 Hence� it uses the new condition
y � �e�� a��� �a�� e�� to do part � one more time


Similarly� if �y� u� v� is a type�� witness� then the global algorithm �rst guesses that y � �e�� a��� �f�� b���
and goes to part � to continue learn
 If it learns the target concept C in part �� then it stops
 If it does not

learn the target concept in part �� then it knows that y must be in �b�� f��� �a�� e��
 Hence� it uses the new
condition y � �b�� f��� �a�� e�� to do part � one more time


Part 	� Using the 
rst witness �y� u� v� and the location of y to learn the target concept C�

In the same way as we did in the proof of Lemma �
�� the global algorithm employs two copies LA and LB

of algorithm LR to learn A and B� respectively
 During the learning process� whenever the global algorithm

�nds a new �type�� or type��� witness �y�� u�� v��� it will use the �rst witness �y� u� v� and the location of y as

well as Property �
� to determine which one of u� and v� belongs to B� and thus to assign it to the learning

algorithm LB accordingly
 Moreover� we only allow the global algorithms to continue learning for at most

t log� n queries� where the constant t will be determined in the following paragraphs


Now� assume that �y� u� v� is a type�� witness and y � �b�� f�� � �f�� b��
 By Property �
�� the global
algorithm assigns v to LB to produce a new hypothesis and resets the hypothesis of LA to empty
 After

that� the global algorithm continues learning as it did in the proof of Lemma �
�
 Whenever it receives

a new witness �x�� S��� by Lemma �
� it �nds also a new type�� �or type��� witness �y�� u�� v��
 Then� by

Property �
�� it assigns one of u� and v� to the learning algorithm LB
 It then lets LB to produce a new

hypothesis� and accordingly resets the hypothesis of LA to empty
 With a similar analysis as we did in the

proof of Lemma �
�� the global algorithm properly learns C using O�log� n� equivalence queries


If �y� u� v� is a type�� witness and y � �e�� a�� � �e�� a��� with a similar analysis� the global algorithm
can also learn C using O�log� n� queries
 In the same way� we can show that the global algorithm learns C

using O�log� n� equivalence queries� if �y� u� v� is a type�� witness and y � �e�� a��� �f�� b��� or if �y� u� v� is
a type�� witness and y � �b�� f��� �a�� e��


Choose a constant t such t log� n is the upper bound on the number of queries required by the global

algorithm in each of the above four cases� then t is the constant needed in part �
 �

Theorem 	��� There is an algorithm that properly learns TWO�
n using O�log� n� equivalence queries�

��



Proof� Let L�� L� and L� be the algorithms constructed for Lemma �
�� �
� and �
	� respectively
 Fix

a constant c such that c log� n is a common upper bound on the number of equivalence queries of L�� L�

and L�
 For any target concept C � TWO�
n� the global algorithm �rst employs L� to learn it for at most

c log� n equivalence queries
 If L� learns it� then the global algorithm stops
 Otherwise� by Lemma �
��

C is not separable
 Thus� by Lemma 	
	� C is an S��shape �or S��shape� or X�shape� union
 The global

algorithm then employs L� to continue learning for at most c log
� n equivalence queries
 If L� learns it then

the global algorithm stops
 Otherwise� by Lemma �
�� it is an X�shape union
 Hence� by Lemma �
	� the

global algorithm can �nally learn it by employing L� for at most c log
� n queries
 �

� Open Problems

In ����� An e�cient algorithm was constructed to properly learn unions of two rectangles over the domain

f�� n � �g� with at most two equivalence queries and at most ���d  �� log n  d  	 membership queries


The proofs in ���� are based on case analysis and very complicated and tedious
 We don�t know whether

one can �nd simpler constructions and proofs for the results obtained in ����


Can one design an e�cient algorithm that properly learns unions of k axis�parallel rectangles over the

domain ��� n � ��d with equivalence and membership queries for any non�constant k� It seems that this

problem is not easy even if d is �xed


Is ��log� n� the lower bound on the number of equivalence queries for proper learning of unions of two

axis�parallel rectangles over the domain ��� n� ����
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