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Abstract

In this paper, we develop a probabilistic model to approach two realistic scenarios regarding the

singular haplotype reconstruction problem - the incompleteness and inconsistency occurred in the DNA

sequencing process to generate the input haplotype fragments and the common practice used to generate

synthetic data in experimental algorithm studies. We design three algorithms in the model that can

reconstruct the two unknown haplotypes from the given matrix of haplotype fragments with provable high

probability and in time linear in the size of the input matrix. We also present experimental results that

conform with the theoretical efficient performance of those algorithms. The software of our algorithms

is available for public access and for real-time on-line demonstration.

Keywords: Singular haplotype reconstruction, SNP fragments, probabilistic modeling and analysis,

linear time probabilistic algorithm, inconsistency and incompleteness errors.

1. Introduction

Abstractly, a genome can be considered a string over the alphabet of nucleotides {A,G,C, T}. It is accepted

that the genomes between any two humans are over 99% identical (Terwilliger and Weiss, 1998; Hoehe et al.,

2000). The remaining sites which exhibit substantial variation (in at least 5% of the population) are called

Single Nucleotide Polymorphisms (SNPs). The values of a set of SNPs on a particular chromosome copy

define a haplotype. While a haplotype is a string over the four nucleotide bases, typical SNP sites only vary
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between two values. Therefore, we can logically represent a haplotype as a binary string over the alphabet

{A,B}. The haplotype of an individual chromosome can be thought of as a “genetic finger print” specifying

the bulk of the genetic variability among distinct members of the same species. Determining haplotypes

is thus a key step in the analysis of genetic variation. In recent years, the haplotyping problem has been

extensively studied, see, f.g., (G. Lancia, 2006; Zhao et al., 2005; Wang et al., 2006; Zhang et al., 2006; Bafna

et al., 2005; Rizzi et al., 2002; Wang et al., 2005; Lippert et al., 2002; Cilibrasi et al., 2005; Lancia et al.,

2004; G. Lancia, 2006; Alessandro Panconesi, 2004; Clark, 1990; Gusfield, 2000, 2002; Xie and Wang, 2007;

Li et al., 2004; Genovese et al., 2007).

There are several version of the haplotyping problem. Of most interest is the haplotyping of diploid

organisms, such as humans, which have two chromosomes, and thus two haplotypes. A common method to

obtain an individual’s two haplotypes is to first obtain a collection of sequencing data from the individual’s

chromosomes. This data consists of a collection of fragments, each partially specifying the sequence of one

of the two base chromosomes. This data typically contains two types of errors. The data is incomplete in

that each fragment will fail to assign a base to some collection of positions, and inconsistent in that some

positions may be sequenced with an incorrect value. Further, in practice it is not known which chromosome

is being sequenced by which fragments. The general haplotype reconstruction problem is then to take this

input set of sequenced fragments and derive the two haplotypes which yielded the given fragments. This

problem, which we consider, is the singular haplotype reconstruction problem and, like other versions of the

problem, has also been extensively studied, see, f.g., (Cilibrasi et al., 2005; Wang et al., 2005; Lippert et al.,

2002; Bafna et al., 2005).

More concretely, we assume we are given a collection of n length m strings over the alphabet {A,B,−}

denoting the sequence of each fragment, where − denotes a hole in which no value is measured at that

position for that fragment. From this basic setup, a number of problems have been considered for various

different optimization functions. In particular, one can consider removing certain fragments from the input

data such that the remaining set of fragments can be divided into two separate sets, each set consisting of

fragments that do not contain any conflicts (a site in which two strings contain different, non-hole values).

Such a removal implicity derives two haplotypes corresponding to the two groups. This problem is referred

to as the minimum fragment removal problem (MFR). A second problem involves removing or discounting

a subset of the SNP sites to create two consistent sets of fragments. This is referred to as the minimum

SNP removal problem (MSR). Finally, a third approach is to flip or correct a number of sites for various

fragments. This is referred to as the minimum error correction problem (MEC).

While much work has been done on these problems, the incompleteness and inconsistency of data frag-

ments makes most versions of these haplotyping problems NP-hard or even hard to approximate (f.g., (Cili-

2

Page 2 of 17

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Linear Time Probabilistic Algorithms for Haplotype Reconstruction

brasi et al., 2005; Lippert et al., 2002; Bafna et al., 2005)), and many elegant and powerful methods such

as those in (Li et al., 2002) cannot be used to deal with incompleteness and inconsistency at the same time.

Other methods have proposed heuristics (Genovese et al., 2007; Alessandro Panconesi, 2004), but do not

provide provably good results.

In this paper, we develop a probabilistic approach to overcome some of the difficulties caused by the

incompleteness and inconsistency occurred in the input fragments. In our model, we assume the input data

fragments are attained from two unknown haplotype strings. Some number of the fragments are derived from

the first haplotype, some from the second haplotype. Each fragment is assumed to be generated according

to two error parameters, α1 and α2, representing inconsistency errors and incompleteness errors respectively.

These parameters represent the percentage chance that any given position will be sequenced incorrectly

from the base haplotype, or will be omitted as a hole, respectively. Further, we assume a third parameter β

denoting a minimum difference percentage between the two base haplotype strings.

With respect to these three parameters, we develop algorithms that output the base haplotypes with

probability as a function of α1, α2, and β. In particular, we design three algorithms in our probabilistic

model that can reconstruct the two unknown haplotypes from the given matrix of haplotype fragments with

provable high probability and in time linear in the size of the input matrix. The first algorithm assumes prior

knowledge of the α1 parameter. The second algorithm does not require prior knowledge of any parameters

at a modest cost to run time. The third does not require prior knowledge of parameters and attains similar

analytical bounds as algorithm 2, yet exhibits a substantial empirical improvement in accuracy.

For all algorithms, we present experimental results that conform with the respective theoretically effi-

cient performance. The software of our algorithms is available for public access and for real-time on-line

demonstration.

Paper Layout In Section 2 we formally define the problem and the probabilistic model we use. In

Section 3 we develop some technical lemmas. In Section 4 we provide a haplotype reconstruction algorithm

that utilizes prior knowledge of an error parameter. In Section 5 we present an algorithm that requires

no prior knowledge of model parameters. In Section 6 we provide a third algorithm with provably good

accuracy that also performs particularly well in practice. In Section 7 we detail experimental results for our

algorithms.
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2. A Probabilistic Model

Assume that we have two haplotypes H1, H2, denoted as H1 = a1a2 · · · am and H2 = b1b2 · · · bm. Let

Γ = {S1, S2, . . . , Sn} be a set of n fragments obtained from the DNA sequencing process with respect to the

two haplotypes H1 and H2. In this case, each Si = c1c2 · · · cm is either a fragment of H1 or H2. Because we

lose the information concerning the DNA strand to which a fragment belongs, we do not know whether Si

is a fragment of H1 or H2. Suppose that Si is a fragment of H1. Because of reading errors or corruptions

that may occur during the sequencing process, there is a small chance that either cj 6= - but cj 6= aj , or

cj = -, for 1 ≤ j ≤ m, where the symbol - denotes a hole or missing value. For the former, the information

of the fragment Si at the j-th SNP site is inconsistent, and we use α1 to denote the rate of this type of

inconsistency error. For the latter, the information of Si at the j-th SNP is incomplete, and we use α2 to

denote the rate of this type of incompleteness error. It is known (f.g., (Wang et al., 2005; Lippert et al., 2002;

Bafna et al., 2005)) that α1 and α2 are in practice between 3% to 5%. Also, it is realistically reasonable

to believe that the dissimilarity, denoted by β, between the two haplotypes H1 and H2 is big. Often, β is

measured using the Hamming distance between H1 and H2 divided by the length m of H1 and H2, and is

assumed to be large, say, β ≥ 0.2. It is also often assumed that roughly half of the fragments in Γ are from

each of the two haplotypes H1 and H2.

In the experimental studies of algorithmic solutions to the singular haplotype reconstruction problem,

we often need to generate synthetic data to evaluate the performance and accuracy of a given algorithm.

One common practice (f.g., (Wang et al., 2005; Lippert et al., 2002; Bafna et al., 2005)) is as follows: First,

choose two haplotypes H1 and H2 such that the dissimilarity between H1 and H2 is at least β. Second,

make ni copies of Hi, i = 1, 2. Third, for each copy H = a1a2 · · ·am of Hi, for each i = 1, 2, . . . ,m, with

probability α1, flip ai to a′i so that they are inconsistent. Also, independently, ai has probability α2 to be a

hole -. A synthetic data set is then generated by setting parameters m, n1, n2, β, α1 and α2. Usually, n1 is

roughly the same as n2, and β ≈ 0.2, α1 ∈ [0.01, 0.05], and α2 ∈ [0.1, 0.3].

Motivated by the above reality of the sequencing process and the common practice in experimental

algorithm studies, we will present a probabilistic model for the singular haplotype reconstruction problem.

But first we need to introduce some necessary notations and definitions.

Let Σ1 = {A,B} and Σ2 = {A,B, -}. For a set C, |C| denotes the number of elements in C. For

a fragment (or a sequence) S = a1a2 · · · am ∈ Σm2 , S[i] denotes the character ai, and S[i, j] denotes the

substring ai · · ·aj for 1 ≤ i ≤ j ≤ m. |S| denotes the length m of S. When no confusion arises, we

alternatively use the terms fragment and sequence.

Let G = g1g2 · · · gm ∈ Σm1 be a fixed sequence of m characters. For any sequence S = a1 · · · am ∈ Σm2 , S
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is called a Fα1,α2(m,G) sequence if for each ai, with probability at most α1, ai is not equal to gi and ai 6= -;

and with probability at most α2, ai = -.

For a sequence S, define holes(S) to be the number of holes in the sequence S. If A is a subset of

{1, · · · ,m} and S is a sequence of length m, holesA(S) is the number of i ∈ A such that S[i] is a hole.

For two sequences S1 = a1 · · · am and S2 = b1 · · · bm of the same length m, for any A ⊆ {1, · · · ,m}, define

diff(S1, S2) =
|{i ∈ {1, 2, · · · ,m}|ai 6= - and bi 6= - and ai 6= bi}|

m

diffA(S1, S2) =
|{i ∈ A|ai 6= - and bi 6= - and ai 6= bi}|

|A| .

For a set of sequences Γ = {S1, S2, · · · , Sk} of length m, define vote(Γ) to be the sequence H of the same

length m such that H [i] is the most frequent character among S1[i], S2[i], · · · , Sk[i] for i = 1, 2, · · · ,m.

We often use an n×m matrix M to represent a list of n fragments from Σm
2 and call M an SNP fragment

matrix. For 1 ≤ i ≤ n, let M [i] represent the i-th row of M , i.e., M [i] is a fragment in Σm
2 .

We now define our probabilistic model:

The Probabilistic Singular Haplotype Reconstruction Problem: Let β, α1 and α2 be small

positive constants. Let G1, G2 ∈ Σm1 be two haplotypes with diff(G1, G2) ≥ β. For any given n×m matrix

M of SNP fragments such that ni rows of M are Fα1,α2(m,Gi) sequences, i = 1, 2, n1 +n2 = n, reconstruct

the two haplotypes G1 and G2, which are unknown to the users, from M as accurately as possible with high

probability. We call β (resp., α1, α2) dissimilarity rate (resp., inconsistency error rate, incompleteness error

rate).

3. Technical Lemmas

For probabilistic analysis we need the following two Chernoff bounds (Motwani and Raghavan, 2000, see),

which can be derived from the work in (Li et al., 2002).

Lemma 1. (Li et al., 2002) Let X1, · · · , Xn be n independent random 0, 1 variables, where Xi takes 1 with

probability at most p. Let X =
∑n

i=1Xi. Then for any 1 ≥ ε > 0, Pr(X > pn+ εn) < e−
1
3nε

2

.

Lemma 2. (Li et al., 2002) Let X1, · · · , Xn be n independent random 0, 1 variables, where Xi takes 1 with

probability at least p. Let X =
∑n

i=1Xi. Then for any 1 ≥ ε > 0, Pr(X < pn− εn) < e−
1
2nε

2

.

We shall prove several technical lemmas for algorithm analysis in the next three sections.
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Lemma 3. Let S be a Fα1,α2(m,G) sequence. Then, for any 0 < ε ≤ 1, with probability at most 2e−
ε2m

3 ,

diff(Gi, S) > α1 + ε or holes(S) > (α2 + ε)m.

Proof: Let Xk, k = 1 · · · ,m, be random variables such that Xk = 1 if S[k] 6= Gi[k] and S[k] 6= −, or 0

otherwise. By the definition of the Fα1,α2(m,G) sequences, Xk are independent and Pr(Xk = 1) ≤ α1. So,

by Lemma 1, with probability at most e−
ε2m

3 , X1 + · · ·+Xm > (α1 + ε)m Thus, we have diff(G,S) > α1 + ε

with probability at most e−
ε2m

3 . Similarly, with probability at most e−
ε2m

3 , holes(S) > (α2 + ε)m.

Lemma 4. Assume that A is a fixed subset of {1, 2, · · · ,m}. Let S be a Fα1,α2(m,G) sequence. Then, for

any 0 < ε ≤ 1, with probability at most 2e−
ε2|A|

3 , diffA(Gi, S) > α1 + ε or holesA(S) > (α2 + ε)|A|.

Proof: Let S′ be the subsequence consisting of all the characters S[i], i ∈ A, with the same order as in

S. Similarly, let G′ be the subsequence consisting of all the characters G[i], i ∈ A, with the same order as

in G. It is easy to see that diffA(S,Gi) = diff(S′, G′). The lemma follows from a similar proof for Lemma 3.

Lemma 5. Let Ni be a set of ni many Fα1,α2(m,Gi) sequences, i = 1, 2. Let β and ε be two positive

constants such that 2α1+2α2+2ε < 1, and diff(G1, G2) ≥ β. Then, with probability at most 2(n1+n2)e−
ε2βm

3 ,

diff(Si, Sj) ≤ β(1− 2α1 − 2α2 − 2ε) for some Si ∈ Ni and some Sj ∈ Nj with i 6= j.

Proof: For each Gi, let Ai be the set of indexes {k ∈ {1, 2, · · · ,m}|Gi[k] 6= Gj [k]}, where i 6= j. Since

diff(Gi, Gj) ≥ β and |Gi| = |Gj | = m, we have |Ai| ≥ βm. For any Fα1,α2(m,Gi) sequence S, by Lemma 4,

with probability at most 2e−
ε2|Ai|

3 ≤ 2e−
ε2βm

3 , diffAi(S,Gi) > α1+ε or holesAi(S) > (α2+ε)|Ai|. Hence, with

probability at most 2nie
− ε2βm3 , diffAi(S,Gi) > α1+ε or holesAi(S) > (α2+ε)|Ai|, for some S ∈ Ni. Therefore,

with probability at most 2(n1 +n2)e−
ε2βm

3 , we have diffAi(S,Gi) > α1 + ε or holesAi(S) > (α2 + ε)|Ai,j |, for

some S ∈ Ni, for some i = 1 or 2. In other words, with probability at least 1− 2(n1 + n2)e−
ε2βm

3 , we have

diffAi(S,Gi) ≤ α1 + ε and holesAi(S) ≤ (α2 + ε)|Ai,j |, for all S ∈ Ni and for i = 1 and 2.

For any Fα1,α2(m,Gi) sequence Si, i = 1, 2, if diffAi(Si, Gi) ≤ α1 + ε and holesAi(Si) ≤ (α2 + ε)|Ai|, then

diff(S1, S2) ≥ diffAi(S1, S2) ≥ β(1−2α1−2α2−2ε). Thus, with probability at least 1−2(n1 +n2)e−
ε2βm

3 , we

have diff(S1, S2) ≥ β(1− 2α1 − 2α2 − 2ε), for every S1 ∈ N1 and every S2 ∈ N2. In words, with probability

at most 2(n1 +n2)e−
ε2βm

3 , we have diff(S1, S2) < β(1−2α1−2α2−2ε), for some S1 ∈ N1 and some S2 ∈ N2.

Lemma 6. Let α1, α2 and ε be three small positive constants that satisfy 0 < 2α1 + α2 − ε < 1. Assume

that N = {S1, · · · , Sn} is a set of Fα1,α2(m,G) sequences. Let H = vote(N). Then, with probability at most

2m(e−
ε2n
2 ), G 6= H.
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Proof: Given any 1 ≤ j ≤ m, for any 1 ≤ i ≤ n, let Xi be random variables such that Xi = 1

if Si[j] 6= G[j] and Si[j] 6= −, or 0 otherwise. By the definition of the Fα1,α2(m,G) sequences, Xi are

independent and Pr(Xi = 1) ≤ α1. So, by Lemma 2, with probability at most e−
ε2n
2 , X1+· · ·+Xn < (α−ε)n.

That is, with probability at most e−
ε2n
2 , there are fewer than (α1−ε)n characters Si[j] such that Si[j] 6= G[j]

and Si[j] 6= -. Similarly, with probability at most e−
ε2n
2 , there are fewer than (α2− ε)n characters Si[j] such

that Si[j] = -. Thus, with probability at most 2me−
ε2n
2 , there are fewer than (α1 + α2 − 2ε)n characters

Si[j] such that Si[j] 6= G[j] for some 1 ≤ j ≤ m. This implies that, with probability at least 1− 2me−
ε2n
2 ,

there are more than (1 − α1 − α2 + 2ε)n characters Si[j] such that Si[j] = G[j] for any 1 ≤ j ≤ m. Since

0 < 2α1 +α2−ε < 1 by the assumption of the theorem, we have (α1 +ε)n < (1−α1−α2 +2ε)n. This further

implies that with probability at least 1− 2me−
ε2n
2 , vote(N)[j] = G[j] for any 1 ≤ j ≤ m, i.e., vote(N) = G.

4. When the Inconsistency Error Parameter Is Known

Theorem 7. Assume that α1, α2, β, and ε > 0 are small positive constants that satisfy 4(α1 + ε) < β and

0 < 2α1 +α2− ε < 1. Let G1, G2 ∈ Σm1 be the two unknown haplotypes such that diff(G1, G2) ≥ β. Let M be

any given n×m matrix of SNP fragments such that M has ni fragments that are Fα1,α2(m,Gi) sequences,

i = 1, 2, and n1 + n2 = n. There exists an O(nm) time algorithm that can find two haplotypes H1 and H2

with probability at least 1 − 2ne−
ε2m

3 − 2me−
ε2n1

2 − 2me−
ε2n2

2 such that either H1 = G1 and H2 = G2, or

H1 = G2 and H2 = G1.

Proof: The algorithm, denoted as SHR-One, is described as follows.

Algorithm SHR-One

Input: M , an n×m matrix of SNP fragments.

Parameters α1 and ε.

Output: Two haplotypes H1 and H2.

Set Γ1 = Γ2 = ∅.

Randomly select a fragment r = M [j] for some 1 ≤ j ≤ n.

For every fragment r′ from M do

If (diff(r, r′) ≤ 2(α1 + ε)) then put r′ into Γ1

Let Γ2 = M − Γ1.

Let H1 = vote(Γ1) and H2 = vote(Γ2).

return H1 and H2.
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End of Algorithm

Claim 1. With probability at most ne−
ε2m

3 , we have either diff(f,G1) > α1 + ε for some Fα1,α2(m,G1)

sequence f in M , or diff(g,G2) > α1 + ε for some Fα1,α2(m,G2) sequence g in M .

By Lemma 4, for any fragment f = M [k] such that f is a Fα1,α2(m,G1) sequence, with probability at

most e−
ε2m

3 we have diff(f,G1) > α1 + ε. Since there are n1 many Fα1,α2(m,G1) sequences in M , with

probability at most n1e
− ε2m3 , we have diff(f,G1) > α1+ε for some Fα1,α2(m,G1) sequence f in M . Similarly,

with probability at most n2e
− ε2m3 , we have diff(g,G2) > α1 + ε for some Fα1,α2(m,G2) sequence g in M .

Combining the above completes the proof for Claim 1.

Claim 2. Let Mi be the set of all the Fα1,α2(m,Gi) sequences in M , i = 1, 2. With probability at least

1− ne− ε
2m
3 , Γ1 and Γ2 is a permutation of M1 and M2.

By the assumption of the theorem, the fragment r of M is either a Fα1,α2(m,G1) sequence or a

Fα1,α2(m,G2) sequence. We assume that the former is true. By Claim 1, with probability at least 1−ne− ε
2m
3 ,

we have diff(f,G1) ≤ α1 + ε for all Fα1,α2(m,G1) sequences f in M , and diff(g,G2) ≤ α1 + ε for all

Fα1,α2(m,G2) sequences g in M . Hence, for any fragment r′ in M , if r′ is a Fα1,α2(m,G1) sequence, then

with probability at least 1− ne− ε
2m
3 , we have diff(r, r′) ≤ diff(r,G1) + diff(r′, G1) ≤ 2(α1 + ε). This means

that, with probability at least 1− ne− ε
2m
3 , all Fα1,α2(m,G1) sequences in M will be included in Γ1. Now,

consider the case that r′ is a Fα1,α2(m,G2) sequence in M . Since diff(G1, G2) ≤ diff(G1, r) + diff(r,G2) ≤

diff(G1, r) + diff(r, r′) + diff(r′, G2), we have diff(r, r′) ≥ diff(G1, G2) − diff(G1, r) − diff(G2, r
′). By the

given condition of diff(G1, G2) ≥ β and 4(α1 + ε) < β, with probability at least 1 − ne−
ε2m

3 , we have

diff(r, r′) ≥ β − diff(G1, r) − diff(G2, r
′) ≥ β − 2(α1 + ε) > 2(α1 + ε), i.e., r′ will not be added to Γ1.

Therefore, with probability at least 1 − ne− ε
2m
3 , Γ1 = M1 and Γ2 = M − Γ1 = M2. Similarly, if r is a

Fα1,α2(m,G2) sequence, with probability at least 1 − ne− ε
2m
3 , Γ1 = M2 and Γ2 = M − Γ1 = M1. This

completes the proof of Claim 2.

Suppose that Γ1 and Γ2 is a permutation of M1 and M2. Say, without loss of generality, Γ1 = M1 and

Γ2 = M2. By Lemma 6, with probability at most 2me−
ε2n1

2 + 2me−
ε2n2

2 , vote(Γ1) 6= G1 or vote(Γ2) 6= G2.

Hence, by Claim 2, with probability at most 2ne−
ε2m

3 + 2me−
ε2n1

2 + 2me−
ε2n2

2 , vote(Γ1) 6= G1 or vote(Γ2) 6=

G2.

Concerning the computational time of the algorithm, we need to compute the difference between the

selected fragment r and each of the remaining n − 1 fragments in the matrix M . Finding the difference

between r and r′ takes O(m) steps. So, the total computational time is O(nm), which is linear in the size

of the input matrix M .
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5. When Parameters Are Not Known

In this section, we consider the case that the parameters α1, α2 and β are unknown. However, we assume

the existence of those parameters for the input matrix M of SNP fragments. We will show that in this case

we can still reconstruct the two unknown haplotypes from M with high probability.

Theorem 8. Assume that α1, α2, β, and ε > 0 are small positive constants that satisfy 2α1 + 2α2 + 2ε < 1,

0 < 2α1 +α2−ε < 1, and β(1−2α1−2α2−2ε) > 2(α1 +ε). Let G1, G2 ∈ Σm1 be the two unknown haplotypes

such that diff(G1, G2) ≥ β. Let M be any given n×m matrix of SNP fragments such that M has ni fragments

that are Fα1,α2(m,Gi) sequences, i = 1, 2, and n1 + n2 = n. Then, there exists an O(umn) time algorithm

that can find two haplotypes H1 and H2 with probability at least 1−(1−γ)u−4ne−
ε2βm

3 −2me−
ε2n1

2 −2me−
ε2n2

2

such that H1, H2 is a permutation of G1, G2, where γ = n1n2

n(n−1) and u is an integer parameter.

Proof: The algorithm, denoted as SHR-Two, is described as follows.

Algorithm SHR-Two

Input: M , an n×m matrix M of SNP fragments.

u, a parameter to control the loop.

Output: two haplotypes H1 and H2.

Let dmin =∞ and M = ∅.

For (k = 1 to u) do { //the k-loop

Let M1 = M2 = ∅ and d1 = d2 = 0.

Randomly select two fragments r1 = M [i1], r2 = M [i2] from M

For every fragment r′ from M do {

If (diff(ri, r
′) = min{diff(r1, r

′), diff(r2, r
′)} for i = 1 or 2, then put r′ into Mi.

}

Let di = max{diff(ri, r
′)|r′ ∈Mi} for i = 1, 2.

Let d = max{d1, d2}.

If (d < dmin) then let M = {M1,M2} and dmin = d.

}

return H1 = vote(M1) and H2 = vote(M2).

End of Algorithm

Claim 3. With probability at most (1− γ)u, r1, r2 is not a permutation of a Fα,β(m,G1) sequence and

a Fα,β(m,G2) sequence in all of the k-loop iterations.

For randomly selected fragments r1 and r2, with probability γ, r1, r2 is a permutation of a Fα,β(m,G1)

sequence and a Fα,β(m,G2) sequence in M . When the k-loop is repeated u times, with probability at most

9
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(1 − γ)u, r1, r2 is not a permutation of a Fα,β(m,G1) sequence and a Fα,β(m,G2) sequence in all of the u

loop iterations. Thus, Claim 3 is true.

Let Ni be the set of the ni fragments in M that are Fα1,α2(m,Gi) sequences, i = 1, 2.

Claim 4. With probability at most 4ne−
ε2βm

3 , diff(Gi, S) > α1 + ε or holes(S) > (α2 + ε)m for some S

from Ni for some i = 1 or 2; or diff(S1, S2) ≤ β(1− 2α1 − 2α2 − 2ε) for some S1 ∈ N1 and some S2 ∈ N2.

By Lemma 3, for every fragment S from Ni, with probability at most 2e−
ε2m

3 , diff(Gi, S) > α1 + ε

or S has more than (α2 + ε)m holes. Thus, with probability at most 2ne−
ε2m

3 , diff(Gi, S) > α1 + ε or

holes(S) > (α2 + ε)m for some S from Ni for some i = 1 or 2.

By Lemma 5, with probability at most 2ne−
ε2βm

3 , diff(S1, S2) ≤ β(1− 2α1 − 2α2 − 2ε) for some S1 ∈ N1

and some S2 ∈ N2.

The above analysis completes the proof for Claim 4.

Claim 5. Let H1 = vote(M1) and H2 = vote(M2) be the two haplotypes returned by the algorithm.

With probability at most (1− γ)u + 4ne−
ε2βm

3 , M1,M2 is not a permutation of N1, N2.

We assume that (1) diff(S1, S2) > β(1− 2α1− 2α2− 2ε) for every S1 from N1 and every S2 from N2; and

(2) diff(Gi, S) ≤ α1 + ε and holes(S) ≤ (α2 + ε)m for all S ∈ Ni for i = 1, 2. We consider possible choices of

the two random fragments r1 and r2 in the following.

At any iteration of the k-loop, if r1 ∈ N1 and r2 ∈ N2, then by (2) we have diff(r1, r
′) ≤ diff(r1, G1) +

diff(r′, G1) ≤ 2(α1+ε) for any r′ ∈ N1; and diff(r2, r
′) ≤ diff(r2, G2)+diff(r′, G2) ≤ 2(α1+ε) for any r′ ∈ N2.

By (1) and the given condition of the theorem, we have, diff(r1, r
′) > β(1− 2α1 − 2α2 − 2ε) > 2(α1 + ε) for

any r′ ∈ N2; and diff(r2, r
′) > β(1− 2α1 − 2α2 − 2ε) > 2(α1 + ε) for any r′ ∈ N1. This implies that at this

loop iteration we have M1 = N1,M2 = N2 and d ≤ 2(α1 + ε). Similarly, if at this iteration r1 ∈ N2 and

r2 ∈ N1, then M1 = N2,M2 = N1 and d ≤ 2(α1 + ε).

If r1, r2 ∈ N1 at some iteration of the k-loop, then for any r′ ∈ N2, either r′ ∈M1 or r′ ∈ M2. In either

case, by (1) of our assumption and the given condition of the theorem, we have d ≥ β(1− 2α1− 2α2− 2ε) >

2(α1 + ε) at this iteration. Similarly, if r1, r2 ∈ N2 at some iteration of the k-loop, then we also have

d > 2(α1 + ε) at this iteration.

It follows from the above analysis that, under the assumption of (1) and (2), once we have r1 ∈ N1

and r2 ∈ N2 or r1 ∈ N2 and r2 ∈ N1 at some iteration of the k-loop, then M1, M2 is a permutation of

N1, N2 at the end of this iteration. Furthermore, if M1 and M2 are replaced by M ′1 and M ′2 after this

iteration, then M ′1,M
′
2 must also be a permutation of N1, N2. By Claims 3 and 4, with probability at most

(1 − γ)u + 4ne−
ε2βm

3 , the assumption of (1) and (2) is not true, or r1 ∈ N1 and r2 ∈ N2 (or r1 ∈ N2 and

r2 ∈ N1) is not true at all the iterations of the k-loop. Hence, with probability at most (1− γ)u + 4ne−
ε2βm

3 ,

the final list of M1 and M2 returned by the algorithm is not a permutation of N1, N2, so the claim is proved.
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For M1 and M2 returned by the algorithm, we assume without loss of generality Mi = Ni, i = 1, 2.

By Lemma 6 and the given condition of the theorem, with probability at most 2me−
ε2n1

2 + 2me−
ε2n2

2 ,

we have H1 = vote(M1) 6= G1 or H2 = vote(M2) 6= G2. Thus, by Claim 6, with probability at most

(1− γ)u + 4ne−
ε2βm

3 + 4me−
ε2n
2 , we have H1 6= G1 or H2 6= G2.

It is easy to see that the time complexity of the algorithm is O(umn), which is linear in the size of M

for a constant u.

6. Tuning the Dissimilarity Measure

In this section, we consider a different dissimilarity measure in algorithm SHR-TWO to improve its ability

to tolerate errors. We use the sum of the differences between ri and every fragment r′ ∈ Mi, i = 1, 2, to

measure the dissimilarity of the fragments in Mi with ri. The new algorithm SHR-Three is given in the

following. We will present experimental results in Section 7 to show that algorithm SHR-Three is more

reliable and robust in dealing with possible outliers in the data sets.

Algorithm SHR-Three

Input: M , an n×m matrix of SNP fragments.

u, a parameter to control the loop.

Output: two haplotypes H1 and H2.

Let dmin =∞ and M = ∅.

For (k = 1 to u) do { //the k-loop

Let M1 = M2 = ∅ and d1 = d2 = 0.

Randomly select two fragments r1 = M [i1], r2 = M [i2] from M

For every fragment r′ from M do {

If (diff(ri, r
′) = min{diff(r1, r

′), diff(r2, r
′)} for i = 1 or 2, then put r′ into Mi.

}

Let di =
∑

r′∈Mi
diff(ri, r

′) for i = 1, 2.

Let d = max{d1, d2}.

If (d < dmin) then let M = {M1,M2} and dmin = d.

}

return H1 = vote(M1) and H2 = vote(M2).

End of Algorithm

Theorem 9. Assume that α1, α2, β, and ε > 0 are small positive constants that satisfy 2α1 + 2α2 + 2ε < 1,
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0 < 2α1 + α2 − ε < 1, η > 2(α1+ε)
β(1−2α1−2α2−2ε) with η = min(n1,n2)

2n , and β(1− 2α1 − 2α2 − 2ε) > 2(α1 + ε). Let

G1, G2 ∈ Σm1 be the two unknown haplotypes such that diff(G1, G2) ≥ β. Let M be any given n×m matrix

of SNP fragments such that M has ni fragments that are Fα1,α2(m,Gi) sequences, i = 1, 2, and n1 +n2 = n.

Then, there exists an O(umn) time algorithm that can find two haplotypes H1 and H2 with probability at

least 1− (1− γ)u − 4ne−
ε2βm

3 − 2me−
ε2n1

2 − 2me−
ε2n2

2 such that H1, H2 is a permutation of G1, G2, where

γ = n1n2

n(n−1) and u is an integer parameter.

Proof: Let Ni be the set of the ni many Fα1,α2(m,Gi) sequences in M , for i = 1, 2.

We first notice that both Claims 3 and 4 in the proof of Theorem 8 hold here following the same analysis.

However, we need to prove the following claim with different analysis:

Claim 6. Let H1 = vote(M1) and H2 = vote(M2) be the two haplotypes returned by the algorithm.

With probability at most (1− γ)u + 4ne−
ε2βm

3 , M1,M2 is not a permutation of N1, N2.

We assume that (1) diff(S1, S2) > β(1 − 2α1 − 2α2 − 2ε) for every S1 from N1 and every S2 from N2;

and (2) diff(Gi, S) ≤ α1 + ε and holes(S) ≤ (α2 + ε)m for each S from Ni (i = 1, 2).

We shall consider the two cases:

Case 1. At some iteration of the k-loop, both r1 and r2 are selected from the same Ni for i = 1 or 2.

For each r′ ∈ Nj , j 6= i, by assumption (1) we have both diff(ri, r
′) > β(1 − 2α1 − 2α2 − 2ε), i = 1, 2.

Notice that r′ must be either in M1 or M2. So, at least half of the fragments in Nj will be either in M1

or M2. Therefore, at this iteration, we have d ≥ 1
2njβ(1 − 2α1 − 2α2 − 2ε) ≥ ηnβ(1 − 2α1 − 2α2 − 2ε) =

ηβ(1− 2α1 − 2α2 − 2ε)n > 2(α1 + ε)n.

Case 2. At some iteration of the k-loop, r1 and r2 are selected from different Ni for i = 1 and 2. Without

loss of generality, ri ∈ Ni, i = 1, 2. For each r′ ∈ N1, by assumption (2) we have diff(r1, r
′) ≤ 2(α1 + ε); by

assumption (1) and the given condition of the theorem we have diff(r2, r
′) > β(1−2α1−2α2−2ε) > 2(α1+ε).

Similarly, for each r′ ∈ N2, diff(r2, r
′) ≤ 2(α1 + ε), and diff(r1, r

′) > 2(α1 + ε). Therefore, at this iteration,

we have M1 = N1 and M2 = N2, and d ≤ 2(α1 + ε)n1 + 2(α1 + ε)n2 = 2(α1 + ε)n.

The two cases implies that under the assumption of (1) and (2), if at any iteration of the k-loop, we have

r1 ∈ N1 and r2 ∈ N2, or r1 ∈ N2 and r2 ∈ N1, then the final list of the two sets M1,M2 is a permutation of

N1, N2. Hence, Claim 6 follows from Claims 3 and 4 in the proof of Theorem 8, which are true here as we

mentioned earlier.

Now, we assume that the final list of the two sets M1,M2 is a permutation of N1, N2. By Lemma 6,

with probability at most 2m(e−
δ2n1

2 ) + 2m(e−
δ2n2

2 ), H1 = vote(M1), H2 = vote(M2) is not a permutation of

G1, G2. This, together with Claim 6, completes the probabilistic claim of the theorem.

It is easy to see that the time complexity of the algorithm is O(umn), which is linear in the size of M .
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7. Experimental Results

We design a MATLAB program to test both the accuracy and the speed of algorithm SHR-Three. Due to

the difficulty of getting real data from the public domain (Alessandro Panconesi, 2004), our experiment data

is created following the common practice in literature such as (Wang et al., 2005; Alessandro Panconesi,

2004). A random matrix of SNP fragments is created as follows: (1) Haplotype 1 is generated at random

with length m (m ∈ {50, 100, 150}). (2) Haplotype 2 is generated by copying all the bits from haplotype

1 and flipping each bit with probability β (β ∈ {0.1, 0.2, 0.3}). This simulates the dissimilarity rate β

between two haplotypes. (3) Each haplotype is copied n
2 times so that the matrix has m columns and

n(n ∈ {10, 20, 30}) rows. (4) Set each bit in the matrix to - with probability α2 (α2 ∈ {0.1, 0.2, 0.3}). This

simulates the incompleteness error rate α2 in the matrix. (5) Flip each non-empty bit with probability

α1(α1 ∈ {0.01, 0.02, ..., 0.1}). This is the simulation of the inconsistency error rate of α1.

Tables 1 to 4 show the performance of algorithm SHR-Three with different parameter settings in accor-

dance with those in (Alessandro Panconesi, 2004). The typical parameters used in (Alessandro Panconesi,

2004) are m = 100, n = 20, β = 0.2, α2 = 0.2 and 0.01 ≤ α1 ≤ 0.05. These are considered to be close to

the real situations. In our tables, the results are the average time and the reconstruction rate of the 1000

executions of algorithm SHR-Three. A new random matrix is used for each execution. The reconstruction

rate is defined as the ratio of the total number of correctly reconstructed bits to the total number of bits in

two haplotypes. The computing environment is a PC machine with a typical configuration of 1.6GHz AMD

Turion 64X2 CPUs and 1GB memory.

8. Concluding Remarks

The software of our algorithms is available for public access and for real-time on-line demonstration at

http://fpsa.cs.uno.edu/HapRec/HapRec.html. We thank Liqiang Wang for implementing the programs in

Java and setting up this web site.

We have developed three linear time probabilistic algorithms for the singular haplotype reconstruction

problem with provable high success probability. Our experimental results conform with the theoretical

efficiency and accuracy of the algorithms.

It should be pointed out that our work can be extended to reconstruct multiple haplotypes from a set

of fragments. Our approach also opens the door to develop probabilistic methods for other variants of the
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haplotyping problem involving both inconsistency and incompleteness errors.
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Linear Time Probabilistic Algorithms for Haplotype Reconstruction

α1 (%) Time (ms) Reconstruction Rate (%)
1 3.460 100.00
2 3.706 100.00
3 3.983 99.99
4 4.188 99.96
5 4.390 99.95
6 4.553 99.90
7 4.697 99.77
8 4.943 99.58
9 5.183 99.39
10 5.412 98.94

Table 1: Results for m = 100, n = 20, β = 20% and α2 = 20%
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For Peer Review

Linear Time Probabilistic Algorithms for Haplotype Reconstruction

n = 10 n = 30
α1 (%) Time (ms) Reconstruction Rate (%) Time (ms) Reconstruction Rate (%)

1 2.444 99.91 4.744 100.00
2 2.568 99.78 5.046 100.00
3 2.674 99.58 5.261 100.00
4 2.774 99.36 5.605 99.99
5 2.851 99.01 6.045 100.00
6 2.925 98.60 6.302 99.97
7 3.028 98.03 6.567 99.96
8 3.121 97.54 6.870 99.85
9 3.213 96.81 7.307 99.70
10 3.314 95.85 7.635 99.56

Table 2: Results for m = 100, β = 20%, α2 = 20%

β = 10% β = 30%
α1 (%) Time (ms) Reconstruction Rate (%) Time (ms) Reconstruction Rate (%)

1 3.425 100.00 3.564 100.00
2 3.687 100.00 3.736 100.00
3 3.904 99.90 3.925 99.99
4 4.175 99.83 4.154 99.96
5 4.422 99.52 4.337 99.95
6 4.606 99.25 4.528 99.91
7 4.826 98.68 4.704 99.83
8 4.998 98.14 4.920 99.73
9 5.190 97.69 5.096 99.61
10 5.355 96.90 5.295 99.39

Table 3: Results for m = 100, n = 20 and α2 = 20%

α2 = 10% α2 = 30%
α1 (%) Time (ms) Reconstruction Rate (%) Time (ms) Reconstruction Rate (%)

1 3.225 100.00 3.575 99.98
2 3.551 99.99 3.792 99.98
3 3.712 100.00 3.990 99.94
4 3.980 99.98 4.184 99.88
5 4.162 99.98 4.369 99.76
6 4.324 99.97 4.592 99.54
7 4.550 99.94 4.761 99.09
8 4.733 99.92 4.968 98.52
9 4.911 99.82 5.191 97.70
10 5.116 99.72 5.401 96.75

Table 4: Results for m = 100, n = 20 and β = 20%
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