
Rocchio’s similarity-based relevance feedback algorithm,
one of the most important query reformation methods in
information retrieval, is essentially an adaptive learning
algorithm from examples in searching for documents rep-
resented by a linear classifier. Despite its popularity in
various applications, there is little rigorous analysis of its
learning complexity in literature. In this article, the au-
thors prove for the first time that the learning complexity
of Rocchio’s algorithm is O(d � d 2(log d � log n)) over
the discretized vector space {0, … , n � 1}d, when the
inner product similarity measure is used. The upper
bound on the learning complexity for searching for docu-
ments represented by a monotone linear classifier ()
over {0, … , n � 1}d can be improved to, at most, 1 � 2k
(n � 1) (log d � log(n � 1)), where k is the number of
nonzero components in . Several lower bounds on the
learning complexity are also obtained for Rocchio’s algo-
rithm. For example, the authors prove that Rocchio’s al-
gorithm has a lower bound �((d

2)log n) on its learning
complexity over the Boolean vector space {0, 1}d.

Introduction

Information retrieval has a long history of research on rel-
evance feedback (for example, Baeza-Yates & Ribeiro-Neto,
1999; Frake & Baeza-Yates, 1992; Ide, 1971a, 1971b;
Raghavan & Wong, 1986; Rocchio, 1971; Salton, 1989; van
Vijsbergen, 1979), and becomes a necessary part of our daily
life due to the popularity of the Web. It is regarded as the
most popular query reformation strategy (Baeza-Yates &
Ribeiro-Neto, 1999; Salton, 89). The central idea of rele-
vance feedback is to improve search performance for a par-
ticular query by modifying the query systematically, based
on the user’s judgments of the relevance or irrelevance of
some of the documents retrieved. In the vector space model
(Salton, 1989; Salton, Wong, & Yang, 1975), both docu-
ments and queries are represented as vectors in a discretized

q
S

q
S
, 0

vector space. In this case, relevance feedback is essentially
an adaptive learning algorithm from examples (Chen & Zhu,
2002): A query vector and a similarity measure are used to
classify documents as relevant and irrelevant; the user’s
judgments of the relevance or irrelevance of some the classi-
fied documents are used as examples for updating the query
vector as a linear combination of the initial query vector and
the examples judged by the user.

In his popular textbook, van Vijsbergen (1979) describes
the relevance feedback as a fixed error correction proce-
dure and relates it to the linear classification problem. When
the inner product similarity is used, relevance feedback is just
a “perceptron-like” learning algorithm (Lewis, 1991). There
is an optimal way for updating the query vector if the sets of
relevant and irrelevant documents are known (Rocchio,
1971). Practically, it is impossible to derive the optimal query
vector because the full sets of the relevant and irrelevant doc-
uments are not available. Wong, Yao, and Bollmann (1988)
studied the linear structure of user preference in information
retrieval. They designed a very good gradient descent proce-
dure to compute the coefficients of a linear function and ana-
lyzed its performance. To update the query vector adaptively,
their gradient descent procedure must know the user prefer-
ence, which is, in practice, the unknown target to be learned
by an information retrieval system. Chen (2001, 2004), de-
vised multiplicative adaptive algorithms for user-preference
retrieval with provable, efficient performance.

There are many different variants of relevance feedback in
information retrieval. However, in this article we only study
Rocchio’s similarity-based relevance feedback algorithm
(Rocchio, 1971; Salton, 1989). Despite its popularity in vari-
ous applications, there is little rigorous formal analysis of its
complexity as a learning algorithm in literature. As a first step
towards formal analysis of Rocchio’s similarity-based rele-
vance feedback algorithm, the work in (Chen & Zhu, 2002)
establishes a linear lower bound on the learning complexity
for the algorithm in searching for documents represented by
a monotone linear classifier (which is equivalently a disjunc-
tion of k relevant features) over the
Boolean vector space {0, 1}d, when any of the four typical

xi1
 ¡ xi2

 ¡ p ¡ xik

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY, 58(10):1392–1400, 2007

On the Complexity of Rocchio’s Similarity-Based
Relevance Feedback Algorithm

Zhixiang Chen and Bin Fu
Department of Computer Science, University of Texas-Pan American, 1201 W. University Drive, Edinburg,
TX 78541-2999. E-mail: {chen, binfu}@cs.panam.edu

Received September 12, 2005; revised October 16, 2006; accepted October
16, 2006

© 2007 Wiley Periodicals, Inc. • Published online 31 May 2007 in Wiley
InterScience (www.interscience.wiley.com). DOI: 10.1002/asi.20612

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—August 2007 1393
DOI: 10.1002/asi

similarity measures (inner product, dice coefficient, cosine
coefficient, and Jaccard coefficient) listed in Salton (1989)
is used. The linear lower bound obtained in (Chen & Zhu,
2002) is independent of the query updating factors and
the classification threshold that are used by the algorithm. A
number of challenging problems regarding further analysis
of the algorithm remain open (Chen & Zhu, 2002). In prac-
tice, a fixed query-updating factor and a fixed classification
threshold are often used in Rocchio’s similarity-based rele-
vance feedback algorithm (Baeza-Yates & Ribeiro-Neto, 1999;
Salton, 1989).

Using a fixed query-updating factor has many merits,
such as simplicity and efficiency. As another example, the
popular Winnow algorithm (Littlestone, 1988) uses a fixed
updating factor. When this is the case, the work in Chen and
Fu (2005) strengthens the linear lower bound in (Chen & Zhu,
2002) to a quadratic lower bound for Rocchio’s algorithm in
searching for documents represented by
over the Boolean vector space {0, 1}d.

In this article, we prove for the first time that the learn-
ing complexity of Rocchio’s algorithm is O(d � d2(log d �
log n)) over the discretized vector space
when the inner product similarity measure is used. The
upper bound on the learning complexity for searching for
documents represented by a monotone linear classifier
over can be improved to at most 1 � 2k
(n � 1)(log d � log(n � 1)), where k is the number of
nonzero components in . An lower bound on
the learning complexity is obtained for Rocchio’s algorithm
over the vector space In practice, Rocchio’s
algorithm often uses fixed query updating factors. When this
is the case, the above lower bound is strengthened to 2�(d)

over the Boolean vector space {0, 1}d. In general, if the
query updating factors are bounded by O(nc), for some con-
stant c � 0, an �(nd�1�c/(n � 1)) lower bound is obtained
over The rest of the article is organized as
follows. In the next section, we give a formal presentation of
Rocchio’s similarity-based relevance feedback algorithm. In
the third section, we prove a general upper bound on the
learning complexity for Rocchio’s algorithm. Then, we show
that the general upper bound obtained in the third section
can be improved for Rocchio’s algorithm in the case of search-
ing for documents represented by a monotone linear classi-
fier over We go on to prove several lower
bounds on the learning complexity of Rocchio’s algorithm.
We present our conclusions in the final section.

Rocchio’s Similarity-Based Relevance
Feedback Algorithm

Let R be the set of all real values, and R� be the set of all
nonnegative real values. Let d and n be two integers with
d � 1 and n � 2. In the Boolean vector space model in in-
formation retrieval (Salton, 1989; Salton, Wong, & Yang,
1975), a collection of d features (or terms) are
used to represent documents and queries. Each document
x is represented as a vector such that forvSx � (x1, x2, p , xd)

T1, T2, p , Td

50, p , n � 16d.

50, p , n � 16d.

50, p , n � 16d.
�((d

2)log n)qS

50, p , n � 16d (qS, 0)

50, p , n � 16d,

xi1
 ¡ xi2

 ¡ p ¡ xik

any i, 1 � i � d, the ith component of is one if the ith fea-
ture Ti appears in x or zero otherwise. Each query q is repre-
sented by a vector such that for any
i, 1 � i � d, the ith component of is a real value used to
determine the relevance (or weight) of the ith feature Ti.
Because of the unique vector representations of documents
and queries, for convenience we simply use and to stand
for their vector representations and , respectively. If
term frequencies are used to index a document x, then is a
vector in the discretized vector space . Note
that fractional term frequency/inverse document frequency
vectors can converted into vectors in .

A similarity measure, called similarity for short, in gen-
eral is a function m from Rd � Rd to R�. A similarity m is
used to determine the relevance closeness of documents
to the search query and to rank the documents according to
such closeness. In the Boolean vector space model of infor-
mation retrieval (Baeza-Yates & Ribeiro-Neto, 1999; Salton,
1989; Salton, Wong, & Yang, 1975), to retrieve relevant doc-
uments for a given query vector with respect to a similar-
ity m, the system searches for all the documents , classifies
those with similarity values higher than an explicit
or implicit threshold as relevant, and returns to the user a
short list of relevant documents with highest similarity val-
ues. This information retrieval process is, in fact, determined
by a classifier, which is composed of a query vector , a
similarity m, and a real-valued threshold f. Among a variety
of similarity measures, vector inner product similarity is
commonly used (Baeza-Yates & Ribeiro-Neto, 1999; Salton,
1989; Salton, Wong, & Yang, 1975). To simplify presen-
tation, we will focus on vector inner product similarity,

, throughout this article.
Unfortunately, in the real world of information retrieval

applications, usually an ideal query vector cannot be gener-
ated due to many factors, such as the limited knowledge of the
users about the whole document collection. A typical exam-
ple is the real-world problem of Web search. In such a case,
the user may use a few keywords to express what documents
are wanted. However, it is nontrivial for the user and a Web
search engine to define precisely the collection of documents
wanted as a query vector composed of a set of keywords. The
alternative solution to the query formation problem is, as
stated in Salton (1989), to conduct searches iteratively, first
operating with a tentative query formation (i.e., an initial
query vector), and then improving formations for subsequent
searches based on evaluations of the previously retrieved
materials. This type of method for automatically generating
improved query formation is called relevance feedback,
and one particular and well-known example is Rocchio’s
similarity-based relevance feedback (Rocchio, 1971; Ide,
1971b; Salton, 1989).

Rocchio’s similarity-based relevance feedback algorithm
works in a step-by-step adaptive refinement fashion as fol-
lows. Starting at an initial query vector the algorithm
searches for all the documents such that is very close to
according to the similarity , ranks them by the similarity,
and finally presents a short list of the top-ranked documents to

q1
S

 # xS
qS1xSxS

qS1,

qS # xS � q1x1 � q2x2 � p � qdxd

qS

m(qS, xS)
xS

qS

50, p , n � 16d
50, p , n � 16d xS

vSqvSx

qSxS

vSq

vSq � (q1, q2, p , qd)

vSx

1394 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—August 2007
DOI: 10.1002/asi

Turán, 1994), then an adaptive learning algorithm as defined
above is a proper online learning algorithm for learning
the class of classifiers from equivalence queries over the
d-dimensional Boolean or discretized vector space.

Following Chen and Zhu (2002), we now give the formal
definition of Rocchio’s similarity-based relevance feedback
algorithm.

Definition 3: Rocchio’s similarity-based relevance feed-
back algorithm is an adaptive learning algorithm for learning
any linear classifier () over the d-dimensional discretized
vector space {0, … , n � 1}d from examples, where both
the query vector and the threshold f are unknown to the
algorithm, but the inner product similarity measure is known.
Let be the initial hypothesis. Assume that at the begin-
ning of step t 	 1 the algorithm has received a sequence of
counterexamples , then the algorithm uses the
following modified query vector for its next classification:

(1)

where , for j � 0, 1, … , t � 1, are called query
updating factors.

Note that our definition above is a generalized version of
Rocchio’s original algorithm. In our definition, arbitrary real
values can be used as query updating factors in computing
the updated query vector; and our definition allows adaptive
learning until the target is obtained. Also note that the percep-
tron algorithm for multivalued features (Hampson & Volper,
1990) allows updating factors to be 1 or �1.

An Upper Bound for Documents Represented
by a Linear Classifier

In this section, we will prove an upper bound on the
learning complexity of Rocchio’s similarity-based algo-
rithm in searching for documents represented by a linear
classifier over the discretized vector space {0, … , n � 1}d.
We first prove Lemma 1 using linear independence to allow
Rocchio’s algorithm to simulate any adaptive learning algo-
rithm for learning linear classifiers. Utilizing linear inde-
pendence to derive upper bounds on learning complexity
can be found, for example, in Bshouty, Chen, Decatur, and
Homer (1995), Chen and Homer (1997), Kivinen, Warmuth,
and Auer (1997).

Lemma 1: Let A be any given adaptive learning algorithm
for learning linear classifiers over the d-dimensional dis-
cretized vector space {0, … , n � 1}d. Assume that A issues
linear classifiers as its hypotheses. Let l(A) and t(A) denote,
respectively, the learning complexity and the time complexity
of the algorithm A. Then, the learning complexity of Rocchio’s
similarity-based relevance feedback in searching for docu-
ments represented by a linear classifier over {0, … , n � 1}d

is at most d � l(A), and its time complexity is O(d2 log2 n
(d � l(A)) � t(A)).

aij
� R

qSt � at0
qS1 � a

t�1

j�1

atj
xSj,

qSt

xS1, x
S

2, p , xSt�1

(qS0, f1)

qS

qS, f

the user. The user examines the returned list of documents and
judges some of the documents as relevant or irrelevant. At
step t � 1, assume that the list of documents the user judged is

Then, the algorithm updates its query vector
as where the coefficients

for j � 0, 1, … , t � 1. The algorithm then uses the updated
query vector to search for relevant documents, ranks the
documents according to their similarity to , and presents
the top-ranked documents to the user. In practice, a thresh-
old f is explicitly (or implicitly) used to select the highly
ranked documents. Practically, the coefficients may

be fixed as 1, �1, or 0.5 (Baeza-Yates & Ribeiro-Neto,
1999; Salton, 1989).

The similarity-based relevance feedback algorithm is
essentially an adaptive learning algorithm from examples
(Chen & Fu, 2005; Chen & Zhu, 2002; Lewis, 1991; Salton &
Buckley, 1990; van Vijsbergen, 1979). The goal of the algo-
rithm is to learn some unknown classifier to classify docu-
ments as relevant or irrelevant. The learning is performed by
modifying (or updating) the query vector that serves as the
hypothetical representation of the collection of all relevant
documents. The method for updating the query vector is
similar to the Perceptron algorithm for multivalued features
(Hampson & Volper, 1990; Rosenblatt, 1958), where updating
factors are allowed to be 1 or �1, while arbitrary updat-
ing factors are, in general, permitted for relevance feedback.
We give the necessary formal definitions in the following.

Definition 1: A linear classifier over the d-dimensional
discretized vector space is a pair ,
where is the query/weight vector and is a
classification threshold. The classifier classifies any docu-
ments as relevant if or
irrelevant otherwise.

Definition 2: An adaptive learning algorithm A for
learning an unknown target linear classifier over the
d-dimensional discretized vector space from
examples is a game played between the algorithm A and the
user in a step-by-step fashion, where the query/weight
vector and the threshold f are unknown to the algorithm A.
At any step t � 1, A gives a linear classifier as a
hypothesis to the target linear classifier to the user, where

and . If the hypothesis is equivalent to the
target, then the user says “yes” to conclude the learning
process. Otherwise, the user presents a counterexample

such that the target classifier and the
hypothetical classifier differ at . In this case, we say that
the algorithm A makes a mistake. At step t � 1, the algo-
rithm A constructs a new hypothetical linear classifier

to the user based on the received counterexamples
. The learning complexity (or the mistake

bound) of the algorithm A is in the worst case the maximum
number of counterexamples that it may receive from the user
to learn a classifier over {0, … , n � 1}d.

If the readers are familiar with online learning from
equivalence queries, for example, (Littlestone, 1988; Maass &

xS1, x
S

2, p , xSt

(qSt�1, ft�1)

xSt

xSt � 50, p , n � 16d

ft � RqSt � Rd

(qSt, ft)
qS

50, p , n � 16d(qS, f)

qS # xS � fxS � 50, 1, p , n � 16d
f � RqS � Rd

(qS, f)50, p , n � 16d

atj

qSt

qSt

atj
� RqSt � at0

qS1 � gt�1
j�1atj

xSj,
xS1, x

S

2, p , xSt�1.

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—August 2007 1395
DOI: 10.1002/asi

Proof: By Definition 2, the algorithm A works in a step-
by-step fashion. At step t � 1, A computes a hypothesis lin-
ear classifier . We design the following procedure to
allow Rocchio’s algorithm to simulate the algorithm A:

Simulation Procedure:

For t � 1, do
Call A to generate the hypothesis ().
Set and let Rocchio’s algorithm present

the hypothesis to the user.
If the user answers yes, then stop. Otherwise, a

counterexample is received as relevance
feedback judged by the user.

For t 	 1, do
If is also a counterexample to A’s current

hypothesis linear classifier (), then
call A to generate a new hypothesis ()
using

If is not a counterexample to A’s current
hypothesis linear classifier (), then
simply let and ft � ft�1.

Compute as the projection of onto the linear
space defined by

Let Rocchio’s algorithm present the new hypoth-
esis to the user.

If the user answers yes, then stop. Otherwise a
counterexample is received as relevance
feedback, then repeat the process for t 	 1.

We note that Rocchio’s algorithm in the above simulation
procedure uses a zero initial query vector. For any t 	 1, the
algorithm uses a query vector for some ai � R,
because is the projection of onto the linear space
defined by . This means that the query vector is
updated following Expression (1). Also, since is the pro-
jection of onto the linear space defined by
we have for some vector such that
for i � 1, … , t � 1.

For any t 	 1, if is linearly dependent on
i.e., for some bi � R, then we have

Hence, the algorithm A has the same classification on
as Rocchio’s algorithm does. In other words, if both the
algorithm A and Rocchio’s algorithm have different classifi-
cations on , then must be linearly independent of

. Note that is a counterexample for the
hypothesis linear classifier () of Rocchio’s algorithm.
The above analysis implies that if is not a counterexample
for the hypothesis linear classifier () of the algorithm A,
then must be linearly independent of .xSt, x

S

2, p , xSt�1xSt

qSt, ft

xSt

qSt*, ft

xStxS1, x
S

2, p , xSt�1

xStxSt

xSt

 � qSt*
a
t�1

i�1

bix
S

i � qSt*
 xSi

 � qSt*
a
t�1

i�1

bixi
S

�a
t�1

i�1

bir
S

t
 xSi

 qt
 xt � (qSt* � rSt)
a
t�1

i�1

bix
S

i

xSt � gt�1
i�1bix

S

i

xS1, x
S

2, p , xSt�1,xSt

rSt
 xSt � 0rStqSt � qSt* � rSt

xS1, x
S

2, p , xSt�1,qSt

qSt*
xS1, x

S

2, p , xSt�1

qStqSt*
qSt* � gt�1

i�1aixi
S

xSt

(qt
S *, ft)

xS1, x
S

2, p , xSt�1.
qStqt

S *
qSt � qSt�1

qSt�1, ft�1

xSt�1

xS1, x
S

2, p , xSt�1.
qSt, ft

qSt�1, ft�1

xSt�1

xS1

(q1
S *, f1)

q1
S * � 0

S
qS1, f1

(qSt, ft)

Because there are at most d many linearly independent
vectors over the vector space {0, … , n � 1}d, this can only
happen at most d times. This follows that the learning com-
plexity of Rocchio’s algorithm is at most d � l(A). For each
t 	 1, the projection can be computed using standard
matrix operations in O(d2log2 n) time, and the above simula-
tion procedure runs at most d � l(A) iterations. Therefore,
the time complexity of Rocchio’s algorithm is O(d2log2 n
(d � l(A)) � t(A)).

Maass and Turán (1994) studied online learning of linear
classifiers (or half spaces) with equivalence queries. Our
adaptive learning model in Definition 2 is the same as their
online learning model with equivalence queries. We restate
their Theorem 3.3 (p. 393), which was proved using linear
programming technique, with our term of adaptive learning
from examples in the following:

Theorem 1 (Maass & Turán, 1994): There is an adaptive
learning algorithm for learning linear classifiers from exam-
ples over the space {0, … , n � 1}d with an O(d2(log d �
log n)) upper bound on its learning complexity. Moreover,
the time complexity of the algorithm is polynomial in d
and log n.

With the help of Theorem 1 of Maass and Turán (1994)
and Lemma 1, we are ready to give a general upper bound on
the learning complexity for Rocchio’s algorithm.

Theorem 2: The learning complexity of Rocchio’s simi-
larity-based relevance feedback algorithm in searching
for documents represented by a linear classifier over the
d-dimensional discretized vector space {0, … , n � 1}d is
O(d � d2(log d � log n)). Moreover, the time complexity of
achieving this upper bound is polynomial in d and log n.

Proof: Let A be the adaptive learning algorithm given by
Theorem 1 for learning linear classifiers over the space
{0, … , n � 1}d from examples. The algorithm A uses linear
classifiers as hypotheses. We use the procedure given in the
proof of Lemma 1 to allow Rocchio’s algorithm to simulate
this algorithm A. Then, by Lemma 1 and Theorem 1, the learn-
ing complexity of Rocchio’s algorithm is O(d � d2(log d �
log n)), and the time complexity is polynomial in d and log n.

Upper Bounds for Documents Represented
by a Monotone Linear Classifier

In this section, we consider the learning complexity of
Rocchio’s similarity-based relevance feedback algorithm in
searching for documents represented by a monotone linear
classifier () over the discretized vector space {0, … ,
n � 1}d, where 1 � i � d. For
a monotone linear classifier (), any
is classified as relevant if

(2)

or is classified as irrelevant otherwise. The efficient learn-
ability of monotone linear classifiers has been extensively

qS
 xS � q1x1 � q2x2 � p
 � qdxd 	 0,

xS � 50, p , n � 16dqS, 0
qS � (q1, q2, p , qd), qi � 0,

qS, 0

qSt*

1396 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—August 2007
DOI: 10.1002/asi

studied in machine learning (for example, Littlestone, 1988).
Monotone linear classifiers are straightforward extensions of
monotone disjunctions of relevant features (or attributes).
Although very simple in format, monotone disjunctions are
very common ways of expressing search queries, especially
in the case of Web search. All existing popular search en-
gines support OR combinations (or monotone disjunctions)
of keywords as search query formations.

Theorem 3: The learning complexity of Rocchio’s
similarity-based relevance feedback algorithm in searching
for documents represented by a monotone linear classifier
() over the discretized vector space {0, … , n � 1}d is at
most 1 � 2k(n � 1)(log d � log(n � 1)). Here, k is the num-
ber of nonzero components of .

We postpone the proof to the end of this section, but first
give the following corollary, which resembles the bound of
the well-known algorithm Winnow1 (Littlestone, 1988).

Corollary 1: The learning complexity of Rocchio’s
similarity-based relevance feedback algorithm in searching for
documents represented by a monotone linear classifier
over the Boolean vector space {0, 1}d is at most 1 � 2k log d.
Here, k is the number of nonzero components of .

We now extend the multiplicative query updating tech-
nique developed by Littlestone (1988) for learning monot-
one linear classifiers over the Boolean vector space {0, 1}d

to the discretized vector space {0, … , n � 1}d to search
for documents represented by a monotone linear classifier

satisfying expression (2). It is easy to see that addi-
tive query updating yields some mild improvement on the
hypothetical query vector towards the target linear classi-
fier, whereas multiplicative query updating can yield dra-
matic improvements so that the hypothetical query vector
can be moved towards the target in a much faster pace. The
idea is that when a document is judged by the user as rel-
evance feedback, for the ith component xi of correspond-
ing the ith index term, the value of the ith component of the
hypothetical query vector should be boosted by a multi-
plicative factor and xi as well. We present the multiplica-
tive adaptive learning algorithm, denoted as MAL, in the
following:

Algorithm MAL:
(i) Inputs:

, the initial query vector.
a: the query updating factor.
f � 0, the classification threshold.

(ii) Set t � 1.
(iii) Classify and rank documents with the linear classifier ().
(iv) While (the user judged the relevance of a document) do {

For i � 1, … , d, do {
/* , . */
If (xi � 0) {

If (is relevant) /* promotion step */

Set qi,t�1 � a

x
i

n � 1
qi,t

xS

xS � (x1, p , xd)qSt � (q1,t, p , qd,t)

xS
qS1, f

qS1 � 1
S

� (1, 1, p , 1)

xS
xS

(qS, 0)

qS

(q, 0)S

qS

qS, 0

Else /* demotion step */
Set qi,t�1 � 0

} Else
Set qi,t�1 � qi,t

}
}

(v) If no documents were judged in the t th step, then stop.
Otherwise, let t � t � 1 and go to step (iv).

We observe that algorithm MAL differs from algorithm
Winnow1 (Littlestone, 1988) at the promotion step as follows:
MAL uses to update qi,t�1, whereas algorithm
Winnow1 uses a qi,t. We now analyze the performance of
algorithm MAL when it is used to search for documents rep-
resented by a monotone linear classifier () satisfying
Expression (2).

Lemma 2: Let u denote the total number of promotions
that algorithm MAL needs to search for documents repre-
sented by a monotone linear classifier . If a 	 n � 1,

then, Here, k is the number of nonzero

components qi 	 0.

Proof: Without loss of generality, we may further assume
that the k nonzero components of are q1, q2, … , qk and all
the other components are zero. When a promotion occurs at
step t, a relevant document is given to the algorithm as a
counterexample to its current classification. That is, there
must be some i with 1 � i � k such that xi � 1. This means
that the ith component qi,t of the query vector will be pro-
moted to

because 1 � xi � n � 1. By Expression (2), qi,t will never be
demoted. Because qi,1 � 1, this follows that qi,t can be pro-
moted at most

(3)

times. Because each promotion yields a promotion for at
least one qi,t for 1 � i � k, the total number of promotions u
is at most k times the value given in Expression (3).

Lemma 3: Let T denote the learning complexity of the
algorithm MAL in searching for documents represented a
monotone linear classifier over the discretized vector
space {0, … , n � 1}d. Let k denote the number of nonzero
components of . Suppose a 	 n � 1. Then,

(4)

Proof: Without loss of generality, we may assume again
that the k nonzero components of are q1, q2, … , qk and allqS

T �
d(n � 1)

f
� ka

log f

log
a

n � 1

.

qS

(qS, 0)

log f

log
a

n � 1

qi,t�1 � a

xi

n � 1
qi,t �

a

n � 1
qi,t,

qSt

xS

qS

u � k

log f

log
a

n � 1

.

(qS, 0)

qS, 0

a

xi

n � 1
qi,t

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—August 2007 1397
DOI: 10.1002/asi

the other components are zero. We estimate the sum of
Let u and v be the number of promotion steps and

the number of demotion steps that occurred during the learn-
ing process, respectively. For a promotion at step t with re-
spect to a relevant document judged by the user, for
i � 1, … , d, since 0 � xi � n � 1, we have

Thus,

Because a promotion occurs only when

we have

(5)

For a demotion at step t with respect to an irrelevant docu-
ment judged by the user, for i � 1, … , d, since again 0 �
xi � n � 1, we have

Thus, we have

Because a demotion occurs only when

we have

(6)
 �a

d

i�1

qi,t �
1

n � 1
f.

a
d

i�1

qi,t�1 �a
d

i�1

qi,t �
1

n � 1a
d

i�1

qi,t xi

qSt
 xS �a
d

i�1

qi,t xi � f,

qi,t�1 � qi,t �
xi

n � 1
qi,t .

qi,t�1 � µ
qi,t � qi,t �

xi

n � 1
qi,t, if xi � 0,

0 � qi,t � qi,t � qi,t �
xi

n � 1
qi,t, if xi � 0.

xS

 � a
d

i�1

qi,t �
a � 1

n � 1
f.

a
d

i�1

qi,t�1 � a
d

i�1

qi,t �
a � 1

n � 1 a
d

i�1

qi,t xi

qSt
 xS � a
d

i�1

qi,t xi � f,

qi,t�1 � qi,t � (a � 1)
xi

n � 1
qi,t.

qi,t�1 � µ
qi,t � qi,t � (a � 1)

xi

n � 1
qi,t, if xi � 0,

a

xi

n � 1
qi,t � qi,t � (a � 1)

xi

n � 1
qi,t, if xi � 0.

xS

gd
i�1

qi,t.
Note that the initial query vector

By Expressions (5) and (6), after u promotions and v demotions,

(7)

Because at any step the components of the query are never
negative, it follows from Expression (7) that

(8)

It follows from Lemma 2 and Expression (8) that the total
number of promotions and demotions, i.e., the learning com-
plexity T, is bounded by

This completes our proof.

Proof of Theorem 3: It follows directly from the above
Lemma 3 and Lemma 1 in the previous section with the
choices of f � d(n � 1) and a � 2(n � 1).

Lower Bounds

Maass and Turán (1994) have derived the following
lower bound on the number of different linear classifiers
over the discretized vector space {0, … , n � 1}d:

Proposition 1 (Maass & Turán, 1994): The number of
different linear classifiers over the discretized vector space
{0, … , n � 1}d is at least . Based on the above
lower bound on the number of linear classifiers and the bi-
nary decision tree technique devised by Littlestone (1988),
they obtained an lower bound for any adaptive
(online) learning algorithm for learning linear classifier over
{0, … , n � 1}d. This implies the following corollary.

Corollary 2: The learning complexity of Rocchio’s algo-
rithm in searching for documents represented by a linear
classifier over the discretized vector space {0, … , n � 1}d is
at least . In particular, in the Boolean vector
space {0, 1}d, the lower bound is �(d2).

Remark 1: The above lower bound does not apply to the
case of searching for documents represented by a monotone
linear classifier over the discretized vector space {0, … ,
n � 1}d because there are fewer monotone linear classifiers
over {0, … , n � 1}d than general linear classifiers, so that
the lower bound on the number of linear classi-
fiers in general does not hold for monotone linear classifiers.
In particular, there are at most () monotone disjunctions

over the Boolean vector space {0, 1}d. We can
only derive an �(k log d) lower bound for searching for doc-
uments represented by a monotone disjunction of k Boolean
relevant features. When k is a constant, this lower bound

xi1
¡ p ¡ xik

d
k

�((d
2)logn)

�((d
2)logn)

�((d
2)log n)

n(2
d)(n � 1)d

T � n � u �
d(n � 1)

f
� ka

log f

log
a

n � 1

 .

n �
d(n � 1)

f
� (a � 1)u.

a
d

i�1

qi,t�1 � d �
(a � 1)

n � 1
fu �

1

n � 1
fn.

qS1 � 1
S

� (1, 1, p , 1).

1398 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—August 2007
DOI: 10.1002/asi

becomes �(log d). In Chen and Zhu (2002), an �(d) lower
bound is obtained for monotone disjunctions of k relevant
features over the Boolean vector space {0, 1}d.

We give an example to compare Corollary 2 with the lin-
ear lower bound obtained in (Chen & Zhu, 2002). To sim-
plify presentation, we assume that the constants in these
lower bounds are 1. We consider a typical Web searching
scenario with d � 300, k � 4, n � 20. In this case, it follows
from Proposition 1 that there are at least 20150�299 � 19300

many different linear classifiers over the discretized vector
space {0, … , 19}300. By Corollary 1, Rocchio’s algorithm
needs to have at least 193,839 many examples or documents
judged by the user as relevance feedback to learn, in the
worst case, a set of documents represented by a linear clas-
sifier over {0, … , 19}300. Similarly, Rocchio’s algorithm
needs to have at least 44,850 many examples or documents
judged by the user as relevance feedback to learn, in the
worst case, a set of documents represented by a linear classi-
fier over the Boolean vector space {0, 1}300. When only mo-
notone disjunction of k relevant features or
index terms are considered over the Boolean vector space
{0, 1}300, there are at most 330,791,175 many different mo-
notone disjunctions, which are far fewer than 20150�299 �
19300. Following a similar approach to Corollary 1, we have
that Rocchio’s algorithm needs to have at least k log n �
4 log 20 � 18 many examples or documents judged by the
user as relevance feedback to learn, in the worst case, a set of
documents represented by a monotone disjunction of k rele-
vant features or index terms over the Boolean vector space
{0, 1}300, whereas the linear lower bound obtained in Chen
and Zhu (2002) implies that Rocchio’s algorithm needs to
have at least 300 many examples or documents judged by
the user as relevance feedback to do the same. Obviously, the
linear lower bound in Chen and Zhu is stronger than the
lower obtained here for searching for a set of documents rep-
resented by a monotone disjunction of k relevant features or
index terms over the Boolean vector space. However, the work
in Chen and Zhu cannot be generalized to the discretized
vector space, or to general linear classifiers.

In practice, a fixed query updating factor a is used for
Rocchio’s algorithm. At any step t � 1, for 1 � i � d, the
i-component of the query vector is updated with respect
to the counterexample as follows: qi,t�1 �

qi,t � a xi,t if is relevance, otherwise qi,t�1 � qi,t � a xi,t.
In general, the classification threshold can be reviewed as an
additional variable, it can be updated as ft�1 � ft � a if

is relevance, otherwise ft�1 � ft � a. Following the
approach for deriving a lower bound for k-bound learning
algorithm in Maass and Turán (1994), we have the following
theorem.

Theorem 4. If a fixed query updating factor is used, then
the learning complexity of Rocchio’s similarity-based relevance
feedback algorithm in searching for documents represented
by a linear classifier over the Boolean vector space {0, 1}d is
at least 2�(d).

xSt

xSt

xSt � (x1,t, p , xd,t)
qSt�1

xi1
¡ p ¡ xik

Proof: Note that at any step t � 1, the counterexample
to the query vector is a Boolean vector in

{0, 1}d. As analyzed above, for 1 � i � d, the ith component
qi,t�1 of the query vector can be updated as either
qi,t, or qi,t � a, or qi,t � a, depending on whether is rele-
vant or not and whether xi is zero or one. By iteration from
Expression (1), qi,t�1 is obtained from qi,1 with t many oper-
ations, each of which is one of three types of �0, �a, and
�a. The order of these operations do not affect the value of
qi,t�1. The value of qi,t�1 is determined by the number of
each type of operations involved. Thus, there are at most t3

many possible values for qi,t�1. This means that there are at
most t3d many possible choices for qt�1. Similarly, ft�1 can
be updated as either ft � a or ft � a, implying that there
are at most t2 many possible values for ft�1. Therefore, at
step t, Rocchio’s algorithm with a fixed query updating fac-
tor can generate at most t3(d�1) many possible hypotheses.
By Proposition 1, to search for sets of documents repre-
sented by any linear classifier over the Boolean vector space
{0, 1}d, we must have

Hence, t � 2�(d).

Remark 2: As commented in Remark 1, the lower bound
in Theorem 4 does not apply to the case of searching for
documents represented by a monotone linear classifier over
discretized vector space {0, … , n � 1}d, because there are
fewer monotone linear classifiers over {0, … , n � 1}d than
general linear classifiers, so that the lower
bound on the number of linear classifiers in general does not
hold for monotone linear classifiers. In Chen and Fu (2005),
an �(k(n � k)) lower bound is obtained for Rocchio’s algo-
rithm in searching for documents represented by monotone
disjunctions of k relevant features over {0, 1}d.

We compare Theorem 4 with the lower bounds obtained
in Chen and Zhu (2002) and Chen and Fu (2005) in detail in
the following. To simplify presentation, we assume that the
constants in these lower bounds are 1. We consider a typical
Web-searching scenario with d � 300, k � 4, n � 20. We
also consider that a fixed query updating factor is used by
Rocchio’s algorithm. It follows from Theorem 4 that Rocchio’s
algorithm needs to have at least 2300 many examples or doc-
uments judged by the user as relevance feedback to learn, in
the worst case, a set of documents represented by a linear
classifier over the Boolean vector space {0, 1}300. However,
this result does not apply to the case of searching for docu-
ments represented by monotone disjunctions
of k relevant features or index terms over the Boolean vector
space {0, 1}300. As discussed before, the lower bounds, as
obtained by Chen and Zhu and Chen and Fu, apply to the case
of monotone disjunctions of k relevant features or index terms.
In particular, the linear lower bound obtained by Chen and
Zhu implies that Rocchio’s algorithm needs to have at least
300 examples or documents judged by the user as relevance

xi1
¡ p ¡ xik

�((d
2)log n)

t3(d�1) � 2(d
2).

xSt

qSt�1

qStxSt � (x1,t, p , xd,t)

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—August 2007 1399
DOI: 10.1002/asi

feedback in searching for a set of documents represented by
a monotone disjunction of k relevant features
or index terms over the Boolean vector space
{0, 1}300, whereas the lower bound obtained by Chen
and Fu implies that Rocchio’s algorithm needs to have
at least k(n � k) � 4 � 296 � 1,184 examples or docu-
ments judged by the user as relevance feedback to do the
same. Obviously, the lower bound obtained by Chen and Fu
is stronger than the lower bound obtained by Chen and Zhu
in the case of monotone disjunctions of k relevant features
when a fixed query updating factor is used.

Unfortunately, the proof of Theorem 4 cannot be general-
ized to the discretized vector space {0, … , n � 1}d. In this
case, qi,t�1 is obtained from qi,1 with k many operations, each
of which is one of three types of operations �0, �a xi,t, and
�axi,t. Because xi,t in general may not be 1 or 0, the value of
qi,t�1 is determined by not only the number of each type of
operations involved, but also the order of these operations.
However, we have the following lower bound.

Theorem 5: Suppose that the query updating factors used
by Rocchio’s similarity-based algorithm are bounded by O(nc)
from some constant c � 0 during its process of searching for
documents represented by a linear classifier over the dis-
cretized vector space {0, … , n � 1}d. Then, the learning com-
plexity of Rocchio’s algorithm is at least �(nd�1�c/(n � 1)).

Proof: It is proved in Hampson and Volper (1990) that there
are linear classifiers () over {0, … , n � 1}d such that
qi � u(nd�1) for some i, 1 � i � d. At each step t � 1, by the
given condition of the theorem, Rocchio’s algorithm can up-
date its query vector by a magnitude of at most O(nc(n � 1)).
Hence, the algorithm needs at least �(nd�1�c/(n � 1)) steps to
learn qi � u(nd�1).

Remark 3: The exponential lower bounds obtained in
Theorems 4 and 5 do not contradict the O(d � d2(log d �
log n)) upper bound obtained in Theorem 2 and the
1 � 2k(n � 1)(log d � log(n � 1)) upper bound obtained
in Theorem 3. In Theorems 4 and 5, the query updating fac-
tors are either fixed or bounded by O(nc); there are no such
requirements in Theorems 2 and 3. In reality, when comput-
ing the projection of a query vector onto a linear subspace
spanned by a list of counterexamples in the proof of Lemma
1, exponential query updating factors may occur. The multi-
plicative query updating technique used to prove Theorem 3
aims at boosting the related components of the query vector
at a fast, possibly exponential, pace.

Concluding Remarks

It would be very interesting to analyze the average-case
learning complexity of Rocchio’s algorithm. We feel that
this problem is very challenging because any nontrivial av-
erage case analysis will reply on realistic models of document
distribution, index term distribution, and the user prefer-
ence distribution as well. We feel that it is not easy to model
those distributions, or to analyze the complexity under those

qS, 0

xi1
¡ p ¡ xik

distributions. The probabilistic corpus model proposed in
Papadimitriou, Raghavan, and Tamaki (2000) may shed some
light on this problem.

Acknowledgments

Zhixiang Chen’s research was supported in part by NSF
CNS-0521585. Part of Bin Fu’s work was done when he
was on the computer science faculty at the University of
New Orleans and was also affiliated with the Research
Institute for Children, 200 Henry Clay Avenue, New
Orleans, LA 70118. Bin Fu’s research was supported by
Louisiana Board of Regents under contract number LEQSF
(2004–07)-RD-A-35.

References

Baeza-Yates, R., & Ribeiro-Neto, B. (Eds.). (1999). Modern information
retrieval. Essex, UK: Addison-Wesley.

Bshouty, N., Chen, Z., Decatur, S., & Homer, S. (1995). On the learnability
of Zn-DNF formulas. In P. Auer & R. Merr (Eds.), Proceedings of the
18th Annual Conference on Computational Learning Theory, Lecture
Notes in Computer Science 3559 (pp. 198–205). Berlin: Springer.

Chen, Z. (2001). Multiplicative adaptive algorithms for user preference
retrieval. In J. Wang (Ed.), Proceedings of the Seventh Annual Interna-
tional Computing and Combinatorics Conference, Lecture Notes in
Computer Science 2108 (pp. 540–549). Berlin: Springer.

Chen, Z. (2004). Multiplicative adaptive user preference retrieval and its
applications to web search. In G. Zhang, A. Kandel, T. Lin, & Y. Yao
(Eds.), Computational web intelligence: Intelligent technology for web
applications (pp. 303–328). Singapore: World Scientific.

Chen, Z., & Fu, B. (2005). A quadratic lower bound for Rocchio’s similarity-
based relevance feedback algorithm. In L. Wang (Ed.), Proceedings of
the Eleventh Annual International Computing and Combinatorics Con-
ference, Lecture Notes in Computer Science 3595 (pp. 955–964). Berlin:
Springer.

Chen, Z., & Zhu, B. (2002). Some formal analysis of Rocchio’s similarity-
based relevance feedback algorithm. Information Retrieval, 5, 61–86.

Frakes, W., & Baeza-Yates, R. (Ed.). (1992). Information retrieval: Data
structures and algorithms. Englewood Cliffs, NJ: Prentice Hall.

Ide, E. (1971a). Interactive search strategies and dynamic file organization in
information retrieval. In G. Salton (Ed.), The smart system—Experiments
in automatic document processing (pp. 373–393). Englewood Cliffs, NJ:
Prentice-Hall.

Ide, E. (1971b). New experiments in relevance feedback. In G. Salton (Ed.),
The smart system—Experiments in automatic document processing
(pp. 337–354). Englewood Cliffs, NJ: Prentice-Hall.

Hampson, S., & Volper, D. (1990). Representing and learning Boolean
functions of multivalued features. IEEE Transactions on Systems, Man,
and Cybernetics, 20, 67–80.

Kivinen, J., Warmuth, M., & Auer, P. (1997). The perceptron algorithm vs.
Winnow: Linear vs. logarithmic mistake bounds when few input vari-
ables are relevant. Artificial Intelligence, 1/2, 325–343.

Lewis, D. (1991). Learning in intelligent information retrieval. In
L. Birnbaum & G. Collins (Ed.), Proceedings of the Eighth International
Workshop on Machine Learning (235–239). San Francisco: Morgan
Kaufmann.

Littlestone, N. (1988). Learning quickly when irrelevant attributes abound:
A new linear-threshold algorithm. Machine Learning, 2, 285–318.

Maass, W., & Turán, G. (1994). How fast can a threshold gate learn?
Computational Learning Theory and Natural Learning Systems, 1,
381–414.

Papadimitriou, C., Raghavan, P., & Tamaki, H. (2000). Latent semantic in-
dexing: A probabilistic analysis. Journal of Computer and System
Science, 61(2), 217–235.

1400 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—August 2007
DOI: 10.1002/asi

Raghavan, V., & Wong, S. (1986). A critical analysis of the vector space
model for information retrieval. Journal of the American Society for In-
formation Science and Technology, 37(5), 279–287.

Rocchio, J. (1971). Relevance feedback in information retrieval. In G.
Salton (Ed.), The smart retrieval system—Experiments in automatic doc-
ument processing (pp. 313–323). Englewood Cliffs, NJ: Prentice-Hall.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information
storage and organization in the brain. Psychological Review, 65(6), 386–407.

Salton, G. (Ed.). (1989). Automatic text processing: The transformation, analy-
sis, and retrieval of information by computer. Boston: Addison-Wesley.

Salton, G., & Buckley, C. (1990). Improving retrieval performance by
relevance feedback. Journal of the American Society for Information
Science and Technology, 41(4), 288–297.

Salton, G., Wong, S., & Yang, C. (1975). A vector space model for auto-
matic indexing. Communications of the ACM, 18(11), 613–620.

van Vijsbergen, C.J. (1979). Information retrieval. Boston: Butterworths.
Wong, S., Yao, Y., & Bollmann, P. (1988). Linear structures in information

retrieval. In N. Belkin, & C.J. van Rijsbergen (Eds.), Proceedings of the
1988 ACM-SIGIR Conference on Research and Development in Infor-
mation Retrieval (pp. 219–232). New York: ACM Press.

