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In this article we report our research on building Fea-
TURES—an intelligent web search engine that is able to
perform real-time adaptive feature (i.e., keyword) and
document learning. Not only does FeaTures learn from
the user’s document relevance feedback, but it also
automatically extracts and suggests indexing keywords
relevant to a search query and learns from the user’s
keyword relevance feedback so that it is able to speed
up its search process and to enhance its search perfor-
mance. We design two efficient and mutual-benefiting
learning algorithms that work concurrently, one for fea-
ture learning and the other for document learning. Fea-
TURES employs these algorithms together with an internal
index database and a real-time meta-searcher to per-
form adaptive real-time learning to find desired docu-
ments with as little relevance feedback from the user as
possible. The architecture and performance of FEATURES
are also discussed.

1. Introduction

As the World Wide Web rapidly evolves and grows, web
search has come to provide an interface between the human
users and the vast information on the web in people’s daily
life. There have been a number of popular and successful
general-purpose or meta search engines such as AltaVista
[a], Yahoo! [b], Google [c], MetaCrawler [d], Dogpile [€],
and Inference Find [f]. Many of the existing engines support
personalization (or customization) with the help of pre-
defined user profiles or a collection of customizable param-
eters such as suggestions about keywords to include or
exclude, language choices, document locations, etc. These
functions can help a search engine find more relevant doc-
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uments for the user. User profiles are often automatically
created by means of cookies, client-side digital traces or
tracking of user’s browsing patterns (Bollacker, Lawrence,
& Giles, 1999; Widyantoro, loerger, & Yu, 1999; Meng &
Chen, 1999), or manually created by users themselves.
Profiles can be used either at the server side or client side.
In most cases, the collection of customizable parameters is
fixed. In other cases, some of those parameters can be
automatically generated by tracking the recent browsing
processes of a user. For example, a search engine can
compile a list of suggested keywords based on its internal
ranking and the user’s most recent browsing contents for
use in future search. In essence, the nature of the personal-
ization (or customization) are static in the sense that it is
defined before a search process and is not able to support
real-time adaptive learning from the user’s relevance feed-
back through interactive refinements.

One approach for the next generation of intelligent
search engines is that they be built on top of existing search
engine design and implementation techniques. They may be
built by integrating intelligent components with one general-
purpose search engine or with a collection of general-
purpose search engines through meta-searching. An intelli-
gent search engine would use the search results of the
general-purpose search engines as its starting search space,
from which it would adaptively learn from the user’s feed-
back to boost and to enhance the search performance and
the relevance accuracy. It may use feature extraction, doc-
ument clustering and filtering, and other methods to help an
adaptive learning process. Recent research on web commu-
nities (Kleinberg, 1999; Gibson, Kleinberg, & Raghavan,
1998; Chakrabarti et al., 1998) has used a short list of web
pages returned by a search engine as a starting set for further
expansion of search. There has been considerable effort
applying machine learning to web search-related applica-
tions, e.g., scientific article locating and user profiling (Bol-
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lacker, Lawrence, & Giles, 1998; 1999; Lawrence, Bol-
lacker, & Giles, 1999), focused crawling (Rennie & McCal-
lum, 1999), collaborative filtering (Nakamura & Abe, 1998;
Billsus & Pazzani, 1998), and user preference boosting
(Freund, lyer, Schapire, & Singer, 1998). An adaptive real-
time search algorithm without an index, which is basically
a focused search starting at some given url and crawling
within some neighboring documents, is given in Ikeji and
Fotouhi (1999).

FeaTures is part of our research on building an intelligent
search engine (Chen, Meng, Zhu, & Fowler, 2000; Chen &
Meng, 2000). In this article, document features are limited
to keywords that are used to index documents, but our
approach may be applied to other cases of document fea-
tures. Given a search engine S, we use two new concepts,
dynamic features and dynamic vector space, to explore the
search result R(q, u) returned by Sfor any query g and any
user u. Our strategy is that we use the dynamic features that
are relevant to the query q to map the whole document
search space to a substantially smaller subspace, the dy-
namic vector space, that is relevant to the query. We present
a feature-learning algorithm that extracts a small set of the
dynamic features, i.e., the most relevant indexing keywords
to the search query at the moment, and suggests those
keywords to the user for him/her to judge whether they are
indeed relevant or not. The feature-learning algorithm
works concurrently with the document-learning algorithm
operating on relevance judgments to retrieve relevant doc-
uments for the user. Both learning algorithms help each
other to speed up the search process and enhance search
performance. An internal index database is used in which
each document is indexed using about 300 keywords. We
also design and implement a meta-searcher for FEATURES
through real-time meta-searching, parsing, and indexing.
FeaTures uses an internal index database, a real-time meta-
searcher, and learning algorithms to perform real-time adap-
tive learning for web search to retrieve relevant documents
requiring the least possible feedback.

The rest of this article is organized as follows. In section
2, we discuss the necessity of adaptive learning from rele-
vance feedback for web search. In section 3, we introduce
two new concepts, the dynamic features and the dynamic
vector space, which are relevant to a search query. In
section 4, we present the feature-learning and the document-
learning algorithms and strategies for feature ranking and
document ranking as well as a method for simulating equiv-
alence queries. In section 5, we explain the design and
implementation of FEaTures. The performance of FEATURES
is also discussed. We conclude the article in section 6.

2. Should We Learn From Relevance Feedback
or Should We Not?

The static nature of search engines can be understood
formally as follows. Let " denote the collection of web
documents, I denote the set of time values, 9 the set of all

possible queries, and U the set of all users. Mathematically,
a search engine Scan be understood as a map fg as follows:

fgQ X AU x =2,

That is, given any query g € 2, any user u € AU, and any
timet € J, f4(q, u, t) is a subset of documents in W. We
say that a search engine S is static, if

fs(q, u, t) =fgq, u’, t)

foranyge 2,u, U €U, andt, t’ € T with [t — t'| =
B for some constant B. As far as we understand, the existing
general-purpose search engines (or meta-search engines) are
static, because within certain time intervals (say, intervals
between updates of the index database or search strategies),
the search result of the engine is dependent on the query
only.

The static nature of the existing search engines makes it
very difficult, if not impossible, to support the dynamic
changes of the user’s search interests. The following sce-
nario is not typical. Let us suppose that X is a computer
scientist and his daily work and web search are all computer
science-oriented. However, one day X wanted to search for
several good geometry reference books for his child in high
school to read. All his personalization (or customization) is
heavily computer science-oriented and thus provides no
help but misleading search directions. Turning off the aug-
mented features of personalization (or customization) is a
simple and nice trick. This time X received high school-
related pages and geometry-related pages. Sadly, the high
school-related pages are not related to high school geometry
and the geometry related pages are oriented for computer
science professionals, because the ranking and search strat-
egy of the search engine is for general purpose.

The augmented features of personalization (or customi-
zation) certainly help a search engine to increase its search
performance; however, their ability is very limited. An
intelligent search engine should be built on top of existing
search engine design and implementation techniques. It
should use the search result of the general-purpose search
engines as its starting search space, from which it would
adaptively learn in real-time from the user’s relevance feed-
back to boost and enhance search performance and rele-
vance accuracy. With the ability to perform real-time adap-
tive learning from relevance feedback, the search engine is
able to learn a user’s search interest changes or shifts, and
thus provides the user with improved search results.

Relevance feedback is the most popular query reforma-
tion method in information retrieval (Salton, Wong, &
Yang, 1975; Baeza-Yates & Ribeiro-Neto, 1999). It is es-
sentially an adaptive learning process from the document
examples judged by the user as relevant or irrelevant. It
requires a sequence of iterations of relevance feedback to
search for the desired documents. As it is known through the
research of Salton, Wong, & Yang (1975 and Salton (1971),
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a single iteration of similarity-based relevance feedback
usually produces improvements from 40% to 60% in the
search precision, evaluated at certain fixed levels of the
recall and averaged over a number of user queries.

Some people have the opinion that web search users are
not willing to try iterations of relevance feedback to search
for their desired documents. However, the authors think
otherwise. It is not a question whether the web search users
are not willing to try iterations of relevance feedback to
perform their search. It is a question whether we can build
an adaptive learning system that supports high search pre-
cision increase with several iterations of relevance feed-
back. The web search users may have no patience to try
more than a couple of dozens of iterations of relevance
feedback. But, if a system has a 20% or so search precision
increase with about five or fewer iterations of relevance
feedback, are the users willing to use such a system? The
authors believe that the answer will be “yes.”

As matter of fact, the authors conducted a survey about
the answers to the above question among a group of 62
students in the summer of 2000, and 96% answered “yes.”
The survey was conducted as follows. We selected the
students in two summer classes as the targeted survey
objects. We explained the purpose of the survey. We also
explained the concepts of relevance feedback and precision
and recall as well. To make sure that the students under-
stood those concepts we demonstrated several examples of
the real-time search with relevance feedback using the
working prototype of WebSail (Chen et al., 2000) that we
have implemented. We then asked the students the follow-
ing questions: If a system has a 20% or so search precision
increase with one iteration of relevance feedback, do you
want to use such a system? The same question was repeated
with the number of iterations being 2, 3, . . ., 10, and greater
than 10, respectively. We counted how many students an-
swered “yes” and computed the average values. We found
that 96% of the students would like to use such a system
with five or fewer iterations of relevance feedback if a 20%
or so search precision may be achieved. We used the 20%
precision increase in our survey because we believe that this
increase is reasonable and can be achieved practically.

It is certainly not trivial at all to implement adaptive
relevance feedback for web search. Because an adaptive
learning process needs to keep the history of the learning,
the search engine must use a separate thread for each
individual search request and must maintain the thread until
the search ends. A search thread usually needs to have its
own working space and is very time and space consuming.
Imagine that a general-purpose search engine needs to pro-
cess hundreds or thousands of search requests in every
minute. It would be too difficult to maintain so many threads
in every single minute and to answer each search request
very efficiently. Other difficulties include designing inno-
vative real-time adaptive learning algorithms with as little
relevance feedback from the user as possible.

3. Dynamic Features Versus Dynamic
Vector Space

In spite of the World Wide Web’s size and the high
dimensionality of web document indexing features, the tra-
ditional vector space model in information retrieval (Salton
et al., 1975; Salton, 1989; Baeza-Yates & Ribeiro-Neto,
1999) has been used for web document representation and
search. However, to implement real-time adaptive learning
with limited computing resource, here, at an Ultra™ One
Sun workstation, we cannot apply the traditional vector
space model directly. Recall that back in 1998, the Alta-
Vista system was running on 20 multiprocessor machines,
all of them having more than 130 Giga-Bytes of RAM and
over 500 Giga-Bytes of disk space (Baeza-Yates & Ribeiro-
Neto, 1999). We need a new model that is efficient enough
both in time and space for FEaTures and other web search
implementations with limited computing resources. The
new model may also be used to enhance the computing
performance of a web search system even if enough com-
puting resources are available.

We now examine indexing in web search. Again, in this
article, we use keywords as document indexing features. Let
X denote the set of all indexing keywords for the whole web
(or, practically, a portion of the whole web). Given any web
document d, let I (d) denote the set of all indexing keywords
in X that are used to index d with nonzero values. Then we
have the following two properties:

1. The size of I(d) is substantially smaller than the size of
X. Practically, 1(d) can be bounded by a constant. The
rationale behind this is that in the simplest case we do not
need to use all the keywords in d to index it. In our
implementation of FEaTurRes, we use about 300 key-
words to index documents in its internal database and at
most 64 automatically generated keywords to index a
document retrieved through meta-search.

2. For any search process related to the search query g, let
D(q) denote the collection of all the documents that
match g, then the set of indexing keywords relevant to g,
denoted by F(q), is

F@= U I(d).

deD(q)

Although the size of F(q) varies from different queries, it is
still substantially smaller than the size of X, and might be
bounded by a few hundreds or a few thousands in practice.

Definition 3.1.

Given any search query g, we define F(q), which is
given in (b) above, as the set of dynamic features relevant to
the search query q.

Definition 3.2.

Given any search query ¢, the dynamic vector space
V(q) relevant to g is defined as the vector space that is
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constructed with all the documents in D(q) (as given in (b)
above) such that each of those document is indexed by the
dynamic features in F(Q).

For any query q, Features first finds the set of docu-
ments D(q) that match the query q. It finds D(q) with the
help of a general-purpose search strategy through searching
its internal database, or through meta-searching AltaVista
[a] when no matches are found within its internal database.
It then finds the set of dynamic features F(q), and later
constructs the dynamic vector space V(q). Once D(q),
F(q), and V(q) have been found, FEATURES starts its adap-
tive learning process from the user’s document and feature
relevance feedback. More precisely, it uses two learning
algorithms in parallel to achieve its goal of learning: One
algorithm adaptively learns from the documents judged by
the user as relevant or irrelevant examples; the other ex-
tracts and suggests a small set of keywords that are most
relevant to the search query up to the moment, and learns
from the keywords judged by the user as relevant or irrel-
evant. The feature-learning algorithm helps the document-
learning algorithm to increase the ranks of relevant docu-
ments, while the document-learning algorithm helps the
feature-learning algorithm to increase the ranks of the rel-
evant features.

Example 3.3.

We now give examples to show the significance of our
approach of dynamic features and dynamic vector spaces.
Here we use an example query “Zhixiang Chen” because it
is related to a big collection of web pages due to the
popularity of the family name “Chen,” and of course, it is
related to the web pages of one of authors. On January 12,
2001, we queried the search engine AltaVista with the
example query and found out that there are 247,371 related
pages. If we follow the traditional vector space approach,
then the number of terms (or keywords) used to index those
pages would be huge. To get some idea about this number,
we simply counted the number of keywords that occurred in
all Zhixiang Chen’s 267 web pages that reside at the web
server of the Computer Science Department, the University
of Texas—Pan American. We found 12,347 keywords. When
those 247,371 pages are considered, it is obvious that the
number of keywords occurred in those pages is much bigger
than 12,347. That is, any of those pages would be indexed
with many more than 12,347 keywords, or in other words,
the dimensionality of the vector space for those pages is
much bigger than 12,347.

Now, let us consider dynamic indexing features and
dynamic vector space. The top four web pages related to the
query “Zhixiang Chen” were

1 = www.cs.panam.edu/chen/researchProfile.html

, = cs-people.bu.edu/zchen

5 = www.uidaho.edu/micro-biology/faculty/chen.html

, = sunsite.informatik.rwth-aachen.de/dblp/db/indices/
a-tree/Chen:Zhixiang.html

d
d
d
d

The dynamic indexing features that were automatically gen-
erated by our system for those four pages are

I(d,) = {algorithm, chen, class, computing, data, edu, field,
information, learning, machine, mining, network, neural,
new, panam, paper, profile, project, recently, research,
retrieval, search, seek, strategies, visualization, web,
working, www, zhixiang}

I(d,) = {american, chen, class, computer, department, ed-
inburg, edu, find, pan, panam, people, profile, research,
science, texas, university, usa, zchen, zhixiang}

I(d;) = {acid, action, biology, chen, class, defense, faculty,
home, interest, mechanism, micro, page, plant, regula-
tion, research, response, salicylic, transcriptional, ui-
daho, www, zhixiang}

I(d,) = {ameur, bibliography, chen, class, dblp, foued,
home, hpsearch, informatik, list, page, publication, rwth,
search, server, sunsite, zhixiang}

The set of dynamic features for those four web pages is

F(“Zhixiang Chen”) = I(d,) + I(d,) + I(d3) + I(d,) =
{acid, action, algorithm, american, ameur, bibliography,
biology, chen, class, computer, computing, data, dblp,
department, defense, edinburg, edu, faculty, field, find,
foued, home, hpsearch, informatik, information, interest,
learning, list, machine, mechanism, micro, mining, net-
works, neural, new, page, pan, panam, paper, people,
plant, profile, projects, publication, recently, regulation,
research, response, retrieval, rwth, salicylic, science,
search, seek, server, strategies, sunsite, texas, transcrip-
tional, university, usa, uidaho, visualization, web, work-
ing, www, zchen, zhixiang}

We should point out that the strategy we used to find
dynamic features is based on parsing out keywords in the
head, title, and the first few sentences of the web pages. A
variety of other strategies may be designed, and we plan to
study those in the future research. The point is that the
number of dynamic features is much smaller than the num-
ber of traditional indexing features. Hence, the approach of
dynamic features and the vector space is practically feasible
for real-time adaptive learning in web search.

4. Feature Learning and Document Learning

As we have investigated (Chen, Meng, & Fowler, 1999;
Chen et al., 2000; Chen & Meng, 2000), intelligent web
search can be modeled approximately as an adaptive learn-
ing process such as online learning (Angluin, 1987; Little-
stone, 1988), where the search engine acts as a learner and
the user as a teacher. The user sends a query to the engine,
the engine uses the query to search the index database, and
returns a list of document urls that are ranked according to
a ranking function. Then, the user provides relevance feed-
back, and the engine uses the feedback to improve its next
search and returns a refined list of document urls. The
learning (or search) process ends when the engine finds the
desired documents for the user. Conceptually, a query en-
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tered by the user can be understood as the logical expression
of the collection of the documents the user wants. A list of
document urls returned by the engine can be interpreted as
an approximation to the collection of the desired docu-
ments.

Rocchio’s similarity-based relevance feedback algo-
rithm, one of the most popular query reformation methods
of information retrieval (Rocchio, 1971; Ide, 1971; Salton,
1989; Baeza-Yates & Ribeiro-Neto, 1999), is in essence
adaptive supervised learning from examples (Salton &
Buckley, 1990; Lewis, 1991). We showed (Chen & Zhu,
2000) that for any of the four typical similarity measures
(inner product, cosine coefficient, dice coefficient, and Jac-
card coefficient) listed in Salton (1989), Rocchio’s similar-
ity-based relevance feedback algorithm has a worst-case
lower bound that is at least linear in the dimensionality of
the Boolean vector space. More precisely, we showed that
in the n-dimensional Boolean vector space model, if the
initial query vector is 0, then when any of the four typical
similarity measures (inner product, dice coefficient, cosine
coefficient, and Jaccard coefficient) is used, Rocchio’s sim-
ilarity-based relevance feedback algorithm makes at least n
mistakes when used to search for a collection of documents
represented by a monotone disjunction of at most k relevant
features (or indexing terms). When an arbitrary Boolean
initial query vector is used, it makes at least (n + k — 3)/2
mistakes to search for the same collection of documents.
Our linear lower bound holds for arbitrary classification
threshold and updating coefficients used at each step of the
algorithm. Because the linear lower bound was proved
based on the worst case analysis, they may not affect the
effective applicability of the similarity-based relevance
feedback algorithm. On the other hand, the lower bound
helps us understand the algorithm well so that we may find
new strategies to improve its performance or design new
learning algorithms with better performance.

4.1. The General Setting of Learning

For each particular search query g, with the help of
certain general-purpose search strategies, FeaTures first
finds the three sets; the general matching document set
D(q), the dynamic feature set F(q), and the dynamic vector
space V(q). Let F(q) = {K,, ..., K.} such that each K;
denotes a dynamic feature (i.e., an indexing keyword). The
two learning algorithms of FEaTures maintain a common
weight vector w = (wq, ..., w,) for dynamic features in
F(q). The components of w have non-negative real values.
The feature-learning algorithm uses w to extract and learn
the most relevant features. The document-learning algo-
rithm also uses w to classify documents in D(q) as relevant
or irrelevant.

One should note that during the learning process both
learning algorithms update the common weight vector w
concurrently. Of course, both algorithms need to be
equipped with efficient ranking functions. Moreover, we
also need to provide a good strategy to simulate the equiv-

alence query for the document-learning algorithm, because
the user in reality cannot serve as a real teacher as modeled
in online learning.

Example 4.1.1. We continue example 3.3 with the example
query “Zhixiang Chen.” For simplicity let us consider the
top four pages returned by AltaVista on January 12, 2001.
Please recall that AltaVista found a total of 247,371 relevant
pages at the time. According to example 3.3, the set of
dynamic features for those four web pages is

F(“Zhixiang Chen”) = I(d,) + I(d,) + I(d3) + I1(d,) =
{acid, action, algorithm, american, ameur, bibliography,
biology, chen, class, computer, computing, data, dblp,
department, defense, edinburg, edu, faculty, field, find,
foued, home, hpsearch, informatik, information, interest,
learning, list, machine, mechanism, micro, mining, net-
works, neural, new, page, pan, panam, paper, people,
plant, profile, projects, publication, recently, regulation,
research, response, retrieval, rwth, salicylic, science,
search, seek, server, strategies, sunsite, texas, transcrip-
tional, university, usa, uidaho, visualization, web, work-
ing, www, zchen, zhixiang}

This means that we need to use a common weight vector w
= (Wy, Wy, ..., Wg,) for computing the weights of all the
68 dynamic features. For example, w, represents the weight
of “acid,” and w,, represents the weight of “publication.”
Remember that the features are sorted in lexicographical
order.

4.2. The Feature Learning Algorithm FEX (Feature
EXtraction)

For any dynamic feature K; € F(q) with1l <i = n, we
define the rank of K; as

h(K;) = ho(K)) + w;.

ho(K;) is the initial rank for K;. Recall that K; is some
indexing keyword. With the feature ranking function h and
common weight vector w, FEX extracts and learns the most
relevant features as follows.

Algorithm FEX. At stage s = 0, it first sorts all the
dynamic features in F(q) with the ranking function h and
extracts 10 top-ranked features and suggests them to the
user for her to judge their relevance to the query g. When it
receives the feature relevance feedback from the user, then
for each feature K; judged by the user as relevant, it promote
K, by setting w; = pw;; for each feature judged by the user
as irrelevant it demotes it by setting w; = w;/d. Here, both
p and d are, respectively, feature promotion and demotion
parameters, and they are tunable.

Example 4.2.1. We continue example 4.1.1. The feature
learning algorithm FEX will use features judged by the user
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to promote or demote their weights. For example, when the
feature*acid” is judged by the user as relevant, then its
weight w, will be promoted and hence the score of the web
page d5 will be increased. When the feature “publication” is
judged by the user as irrelevant, its weight w,, will be
demoted and hence the score of the web page d, will be
decreased.

4.3. The Document-Learning Algorithm TW2

The algorithm TW2, a tailored version of Winnow?2
(Littlestone, 1988), was designed and successfully imple-
mented in our recent projects WebSail and Yarrow (Chen et
al., 2000; Chen & Meng, 2000). Winnow?2 sets all initial
weights to 1, but TW2 sets all initial weights to 0 and has a
different promotion strategy accordingly. Another substan-
tial difference between TW2 and Winnow?2 is that TW2
accepts document examples that may not contradict its
current classification to promote or demote its weight vec-
tor. One must notice that Winnow?2 only accepts examples
that contradict its current classification to perform promo-
tion or demotion. The rationale behind setting all the initial
weights to 0 is not as simple as it looks. The motivation is
to focus attention on the propagation of the influence of the
relevant documents, and use irrelevant documents to adjust
the focused search space. Moreover, this approach is com-
putationally feasible because existing effective document-
ranking mechanisms can be coupled with the learning pro-
cess.

Algorithm TW2 (The tailored Winnow2). TW2 uses the
common weight vector w and a real-valued threshold 6 to
classify documents in D(q). Initially, all weights have value
0. Let a > 1 be the promotion and demotion factor. TW2
classifies documents whose vectors X = (X, ..., Xp)
satisfy 2, w;x; > 6 as relevant, and all others as irrele-
vant. If the user provides a document that contradicts the
classification of TW2, then we say that TW2 makes a
mistake. Let w; , and w; , denote the weight w; before the
current update and after, respectively. When the user re-
sponds with a document which may or may not contradict to
the current classification, TW2 updates the weights in the
following two ways

e Promotion: For a document judged by the user as relevant

with vector X = (X4, ..., X,), fori = 1,...,n, set
Wi,bl |f Xq - 0,
Wi,=1 & if x=2L1landw,=0,
aWiyb, |f X| = 1 and Wi,b 75 0

e Demotion: For a document judged by the user as irrelevant
with vector X = (Xy, ..., X,), fori =1,...,n, setw, ,
=W, la.

In contrast to the linear lower bounds proved for Roc-
chio’s similarity-based relevance feedback algorithm (Chen
& Zhu, 2000), the above learning algorithm has surprisingly

small mistake bounds for learning any collection of docu-
ments represented by a disjunction of a small number of
relevant features. The mistake bounds are independent of
the dimensionality of the indexing features. For example

e To learn a collection of documents represented by a disjunc-
tion of at most k relevant features (or indexing keywords)
over the n-dimensional boolean vector space, TW2 makes at
most [«?A/(a — 1)0] + (a + 1)k In 6 — « mistakes,
where A is the number of dynamic features occurred in the
learning process.

e When, in average, | out of k relevant features (or indexing
keywords) appear as dynamic features for any relevant doc-
ument judged by the user during the learning process, the
bound in Theorem 4.3.1 is improved to «?A/(a — 1)6
+ [(a + 1)¥1]In_6 — « in average, where A is the number
of dynamic features occurred in the learning process.

The actual implementation of the learning algorithm TW?2
requires the help of document ranking and equivalence
query simulation given in the following two subsections.

Example 4.3.1. We continue example 4.1.1. The document
learning algorithm TW2 will use document examples
judged by the user to promote or demote the weights of the
dynamic features in those examples. For example, when the
document d5 is judged as relevant by the user, then the
algorithm TW2 will promote the weights for all dynamic
features in 1(d;) = {acid, action, biology, chen, class,
defense, faculty, home, interest, mechanism, micro, page,
plant, regulation, research, response, salicylic, transcrip-
tional, uidaho, www, zhixiang}. Thus, any document with
dynamic features in I (d3) will also be promoted. When the
document d, is judged as irrelevant by the user, then the
algorithm TW2 will demote the weights for all dynamic
features in 1(d,) = {algorithm, chen, class, computing,
data, edu, field, information, learning, machine, mining,
network, neural, new, panam, paper, profile, project, re-
cently, research, retrieval, search, seek, strategies, visual-
ization, web, working, www, zhixiang}. Consequently, any
document with dynamic features in 1(d;) will be demoted.

4.4. Document Ranking

Let g be a ranking function independent of TW2 and
FEX. We define the ranking function f for TW2 as follows.
For any web document d & D(q) with vector xg4

= (Xq, .-+, X)) € V(Q)

f(d) = ydg(d) + Bl + 2 wix;,

i=1

g remains constant for each document d during the learning
process of TW2. Various strategies can be used to define g;
e.g., PageRank (Brin & Page, 1998), classical tf-idf scheme,
vector spread, or cited-based rankings (Yuwono & Lee,
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FIG. 1. Architecture of FEATURES.

FeatureRanker

1996). The two additional tuning parameters are used to do
individual document promotions or demotions of the docu-
ments that have been judged by the user. Initially, let B4
= 0 and yq4 = 1. y4 and B4 can be updated in the similar
fashion as w; is updated by TW2.

4.5. Equivalence Query Simulation

The DocumentRanker of FEATURES uses the ranking func-
tion f to rank the documents, and the HtmlConstructor
returns the top-10-ranked documents to the user. These
top-10-ranked documents represent an approximation to
the classification made by TW2. The quantity 10 can be
replaced by, say, 25 or 50. But it should not be too large for
two reasons: The user may only be interested in a very small
number of top-ranked documents, and the display space is
limited for visualization. The user can examine the short list
of documents and can end the search process, or if some
documents are judged misclassified, document relevance
feedback can be provided. Sometimes, in addition to the
top-10-ranked documents, the system may also provide the
user with a short list of other documents below the top 10.
Documents in the second short list may be selected ran-
domly. The motivation for the second list is to give the user
some better view of the classification made by the learning
algorithm.

5. The FeaTtures

5.1. The Architecture

FeaTures is implemented on an Ultra One Sun Worksta-
tion using 27 Giga-bytes hard disk storage on an IBM
R6000 workstation. It is a multithreaded program coded in
C+ +. Its architecture is shown in Figure 1. FEATURES main-
tains an internal index database with about 834,000 docu-
ments, each of which is indexed with about 300 indexing
keywords. Besides its internal index database, it has a

MetaSearcher that queries AltaVista when needed. The doc-
uments retrieved through meta-search are parsed and in-
dexed by the DocumentParser and the Documentindexer
that work in real-time. The two learning algorithms FEX
and TW?2 update the common weight vector w concurrently.
The major components and their functions are explained in
the next subsection.

5.2. How Features Works

FeaTures has an interface as shown in Figure 2. Using
this interface, the user can enter a query and specify the
number of document urls to be returned. Having entered
query information, she then starts FEATURES. FEATURES in-
vokes its Query/FeedbackParser to parse the query informa-
tion, document-relevance feedback, or feature-relevance
feedback. Then, Dispatcher decides whether the current task
is an initial search process or a learning process. If it is an
initial search process, Dispatcher first calls QuerySearcher
to find the relevant documents within its internal index
database. The relevant documents found by QuerySearcher
are then passed to DocumentRanker, which ranks the doc-
uments and sends them to HtmIConstructor. HtmIConstruc-
tor finally generates html content to be shown to the user.

If QuerySearcher fails to find any documents relevant to
the query within IndexDataBase, FEaTures calls its Meta-
Searcher to query AltaVista and retrieve a list of documents.
The length of the list is determined by the user. Once the list
of the top-matched documents is retrieved, FEaTures calls
its DocumentParser and Documentindexer to parse re-
trieved documents, collate them, and index them with at
most 64 indexing keywords. The indexing keywords are
automatically extracted from the retrieved documents by
DocumentParser. The indexed documents will be cached in
IndexDataBase and also sent to DocumentRanker and later
to HtmlConstructor to be displayed to the user.

Usually, HtmlConstructor shows the top-10-ranked doc-
uments, plus the top-10-ranked features, to the user for her
to judge document relevance and feature relevance. How-
ever, for the initial search, HtmlConstructor shows only the
top-ranked documents. The format of presenting the top-
10-ranked documents together with the top-10-ranked fea-
tures is shown in Figure 3. In this format, each document url
and each feature are preceded by radio buttons for the user

FIG. 2.

Interface of FEATURES.
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FIG. 3. Initial query result for “colt.”

to indicate whether the document or the feature is relevant.
The search processes shown in Figures 3 and 4 were per-
formed on March 7, 2000. The query word was “colt” and
the desired web documents were those related to “compu-
tational learning theory.” After two iterations with a total of
four relevant and irrelevant documents and five relevant and
irrelevant features judged by the user as feedback, all the
“colt” related web documents among the initial 100
matched documents were moved to the top-10 positions.
The clickable urls could have been selected to view the
documents so that the user could make his/her judgment
more accurately. After providing relevance feedback, he/she
can submit the feedback to FEaTurEs, view all the document
urls, or enter a new query to start a new search process.

If the current task is a learning process from the user’s
document and feature relevance feedback, Dispatcher sends
the feature relevance feedback information to the feature
learner FEX and the document relevance feedback informa-
tion to the document learner TW2. FEX uses the relevant
and irrelevant features as judged by the user to promote and

Relevant?
Cyes Cno 139214.204 hitp:/i:
Cyes Cno 121908915 hil
€yes Cno 2030421 pitp
Cyes Cno 18790.248 hitp:/Atheoryics,
Cyes Cno 9860998 hitp://pfah inform:
Cyes Cno 8319.607 hitp//cswww.vus

7-tepieshtmi = .1 FACE
‘sch-abs himl

=-1FACE

Cyes Cno 888.563
Cyes Cno 879.206

=-1FACE

Cyes Cno 871.206 bty iwuw o
Cyes Cno 811782 hitp/

€yes Cno 738709 hitplistrategis.ic
Cyes Fno 71667  hito:fiwww.astospree
Cyes Cno 655416 &
Cyes Cno 627554 ity
Cyes Cno 567.210
Cyes Cno 55872
€ yes £ no_521.909

/5300023 hterid
/ky233013.htmi

=-1FACE

FIG. 4. Result for “colt” after two Iterations, four examples, and five
features judged.

demote the related feature weights in the common weight
vector w. TW2 uses the relevant and irrelevant documents
judged by the user as positive and negative examples to
promote and demote the weight vector. TW2 also performs
individual document promotion or demotion for those
judged documents. Once FEX and TW?2 have finished pro-
motions and demotions, the updated weight vector w is sent
to QuerySearcher and to FeatureRanker. FeatureRanker re-
ranks all the dynamic features that are then sent to Html-
Constructor. QuerySearcher searches IndexDataBase to find
the matched documents that are then sent to Document-
Ranker. DocumentRanker re-ranks the matched documents
and then sends them to HtmlConstructor to select docu-
ments and features to be displayed.

Example 5.2.1. When we queried AltaVista with “colt” on
March 7, 2000, it found 182,130 relevant pages. For exam-
ple, the following two pages were among the top-10 pages
returned

d, = http://sigact.acm.org/cot99/COLT99.html
d, = http://www.colteng.com

The dynamic features automatically generated by our sys-
tem for those two pages are

I(d;) = {acm, annual, california, class, computational, con-
ference, cruz, july, learning, org, region, registration,
santa, sigact, theory, twelfth, university}

I(d,) = {choice, clients, colteng, com, contractor, corpora-
tion, creative, engineering, innovative, people, quote,
solutions, striving, welcome}

Obviously, d, is relevant to “computational learning the-
ory,” while d, is not. When d, is judged as relevant and d,
as irrelevant, the document learning algorithm TW2 will
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Table 1. eee

Rorecision (50,10) (50,20) (100,10) (100,20) (150,10) (150,20) (200,10) (200,20)
AltaVista 0.36 0.30 0.36 0.30 0.36 0.30 0.36 0.30
FEATURES 0.48 0.40 0.51 0.44 0.52 0.46 0.52 0.46

promote all the pages with dynamic features in 1(d;) and
demote those with dynamic features in 1(d,). After this
iteration of the algorithm TW2, dynamic features such as
“learning, computational, theory, conference, papers,” were
among the top-ranked features and then presented to the
user to judge for their relevance by the feature learning
algorithm FEX. When “learning, computational, theory”
were judged by the user as relevant features, all the pages
with them as dynamic features would be promoted by the
algorithm FEX.

5.3. The Performance: Features Versus AltaVista

We have made FeaTtures open for public access. Inter-
ested readers can access it via the url given at the end of the
article and check its performance. Although FeaTures is still
in its early stages, its actual performance is promising. In
order to provide some measure of system performance we
have made a comparison between AltaVista [a] and Fea-
Tures. Our evaluation is based on the following approach
similar to Recall and Precision.

For a search query q, let A denote the set of documents
returned by the search engine (either AltaVista or Fea-
Tures), and let R denote the set of documents in A that are
relevant to g. For any integer m with 1 = m =< |A|, define
R, to be the set of documents in R that are among the
top-m-ranked documents according to the search engine.
Now, we define the relative Recall R, ..., and the relative
Precision Ry egision as follows

Rprecision = m

We have conducted experiments for 100 search queries,
each of which was sent to both AltaVista and FEaTures. The
results returned from the two engines were examined man-
ually to calculate R, ecq @nd Ry ecision- Ve selected a query
based on the following conditions: It should have a long list
(say, more than 1,000) of relevant pages. Its relevant pages

should have different “clusters” or “groups.” Both condi-
tions are easy to verify through querying AltaVista. For
example, the query “colt” has 182,130 relevant pages ac-
cording to the query made on March 7, 2000. Those pages
can divided into a group related to “computational learning
theory,” a group related to “horses,” a group related to
“guns,” a group related to “corporation and engineering,”
and so on. It is rather easy to find 100 words satisfying the
conditions. Among those we selected are “colt, memory,
chip, language, high school geometry, michael jordan, har-
vard, utpa, architecture.” The number of keywords in our
queries varies from one to four, and the average number is
1.75. During those experiments, the authors served as users
and evaluated the documents returned by the search engines.
For each query, the set R of relevant pages is defined and
understood by the authors. For example, for the query
“colt,” the R is defined as the set of documents related to
“computational learning theory.” For the query “chip,” the
R is defined as the set of documents related to “computer
chips.” For the query “harvard,” the R is defined as the set
of documents related to “Harvard University.” Since each
query we selected has a huge number of relevant pages, in
order to perform the experiments we limit R within a short
list of top (say, 100)-ranked documents returned by the
search engine. We actually read and examined the contents
of all the documents within this short list to find R. We
followed the same approach to find the set R, for each
query, i.e., we read and examined the contents of the top-
m-ranked documents to find those that are indeed relevant
to the query.

We summarize the average relative Recall R, ., and the
average relative Precision R,,;ecision in Tables 1 and 2. One
may notice that FEaTUres has better performance by these
measures.

In the tables, each column is labeled by a pair of integers
(|Al, m), where |A| is the total number of documents
retrieved by the engine for the given search query and m is
used to define the relative Recall and Precision. Because of
the nonadaptive nature of AltaVista, it is obvious that Al-
taVista has the same relative Precision for each query when
the value of mis the same. The average relative Recall and

Table 2. eee

R ecall (50,10) (50,20) (100,10) (100,20) (150,10) (150,20) (200,10) (200,20)
AltaVista 0.37 0.51 0.30 0.42 0.29 0.39 0.29 0.39
FEATURES 0.67 0.96 0.42 0.80 0.37 0.71 0.37 0.67
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Precision values are calculated for FEaTures after an aver-
age of five interactive refinements.

6. Concluding Remarks and Future Work

Web search has come to people’s daily life as the web
evolves. Designing practically effective web search algo-
rithms is a challenging task. It calls for innovative methods
and strategies from many fields including machine learning.
As we pointed out, web search can be understood in some
sense as adaptive learning from queries. However, few
learning algorithms are ready to be used in web search
because of a number of realistic requirements. In general,
the fundamental question about any learning algorithm is
certainly its applicability to real-world problems. In the
particular case of web search, we are interested in learning
algorithms that can effectively increase the search perfor-
mance with a very small number (say, five) of relevance
feedback data, because users do not have their patience to
try too many iterations of learning. We think that the most
challenging problem regarding intelligent web search is
whether we can build an adaptive learning system that
supports high search precision increase with several itera-
tions of relevance feedback from the user.

As part of our efforts toward building an intelligent
system for web search, we have designed and implemented
FeaTures. It utilizes two adaptive learning algorithms that
work concurrently in real-time, one of which extracts and
learns the most relevant dynamic features from the user’s
feature relevance judgments, and the other which learns the
most relevant documents from the user’s document rele-
vance judgments. FeaTures is still in its early stages and
needs to be improved and enhanced in many aspects.

In the future, we plan to improve the interface of Fea-
TUres. Right now, the system displays the urls of the doc-
uments. If the user wants to know the contents of the
document, he/she needs to click the url to download the
content. We plan to display the url of a document together
with a good preview of its content. We also want to high-
light those indexing keywords in the preview and allow
them to be clickable for feature learning.

We also plan to apply clustering techniques to increase
the performance of our system. It is easy to observe that in
most cases documents that are relevant to a search query can
be divided into a few different clusters or groups. Recall that
documents relevant to “colt” can be divided into clusters
related to “computational learning theory,” “guns,” “horse,”
“corporation engineering,” etc. We believe that document
clustering techniques such as graph spectral partitioning can
be used to reduce the number of the iterations of the learn-
ing process and to increase the performance of the system.

At its current stage, FEATURes can only query AltaVista
for its meta-search purpose. We plan to expand its meta-
search capability to allow parallel queries to several existing
search engines. We want to use collaborative recommenda-
tion methods to collate the search results of the parallel
queries.

Because adaptive learning is incremental and depends on
the history of a learning process to improve learning per-
formance, FEaTures creates and maintains a specific thread
for each web-search process. When a search process is
finished, its related thread will be terminated. It may not be
easy to employ an adaptive learning algorithm at a popular
web-server side. Because a popular web server may have
thousands of user accesses in every minute, innovative
thread management methods are needed in order to maintain
many threads for individual search processes.
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