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Abstract

Existing popular algorithms for user preference retrieval, such as Rocchio’s
similarity-based relevance feedback algorithm and its variants [Rocchio
(1971); Ide, (1971a)], the Perceptron algorithm [Rosenblatt, (1958)] and
the Gradient Descent Procedure [Wong et al., (1988)], are based on linear
additions of documents judged by the user. In contrast to the adoption of
linear additive query updating techniques in those algorithms, in this chap-
ter two new algorithms, which use multiplicative query expansion strategies
to adaptively improve the query vector, are designed. It is shown that one
algorithm has a substantially better mistake bound than the Rocchio and
the Perceptron algorithms in learning a user preference relation determined
by a linear classifier with a small number of non-zero coefficients over the
real-valued vector space [0,1]™. It is also shown that the other algorithm
boosts the usefulness of an index term exponentially, while the gradient
descent procedure does so linearly. Applications of those two algorithms to
Web search are also presented.

15.1 Introduction

Consider a collection of documents D. For any given user, her preference
about documents in D is a relation defined over documents in D with re-
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spect to her information needs or search queries. For any two documents
in the collection, she may prefer one to the other or considers them as be-
ing equivalent. In other words, she may rank one higher than the other
or gives them the same rank (or does not care the actual ranks for the
two). Unfortunately, her preference may have various representations and,
to make the things even worse, is unknown to an information retrieval sys-
tem. However, one thing a system can do is to “learn” the unknown user
preference through a series of adaptive improvements on some hypothetical
guess. Among a variety of such “learning” processes, the most popular one
is relevance feedback.

Research on relevance feedback in information retrieval has a long
history [Baeza-Yates and Ribeiro-Neto, (1999); Frakes and Baeza-Yates,
(1992); Ide, (1971a,b); Raghavan and Wong (1986); Rocchio, (1971);
Salton, (1989); Spink and Losee, (1996)]. It is regarded as the most popu-
lar query reformation strategy [Baeza-Yates and Ribeiro-Neto, (1999)]. The
central idea of relevance feedback consists of selecting important terms, or
expressions, attached to the documents that have been judged as relevant
or irrelevant by the user, and of enhancing the importance of those terms
in a new query formation. Usually, relevance feedback works in a step by
step fashion. In practice, at each step, a small set of top ranked documents
(say, 20) are presented to the user for judgment of relevance. The expected
effect is that the new query will be moved towards the relevant documents
and away from the irrelevant ones.

In the vector space model [Salton, (1989); Salton et al., (1975)], both
documents and queries are represented as vectors in a vector space. A vec-
tor space may be binary in the simplest case, or real-valued when more
realistic term weighting and indexing methods such as tf-idf are used. In
the vector space model, relevance feedback is essentially an adaptive su-
pervised learning algorithm: A query vector q and a similarity measure m
are used as a hypothetical guess for the user preference relation to classify
documents as relevant or irrelevant and to rank the documents as well;
the user’s judgments of the relevance or irrelevance of some of the clas-
sified documents are used as examples for updating the query vector and
hopefully for improving the hypothetical guess towards the unknown user
preference relation. The effectiveness of a concrete relevance feedback pro-
cess depends on, among other factors, the query updating strategy used
by the process. There exist a wide collection of relevance feedback algo-
rithms [Salton, (1989); Baeza-Yates and Ribeiro-Neto, (1999)] with designs
based on two basic techniques: query expansion with additions of doc-
uments judged by the user and term reweighting for modifying document
term weights based on the user relevance judgment. We will focus ourselves
on the query expansion technique.
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The query expansion technique used in the existing relevance feed-
back algorithm is essentially a linear additive query updating or modifying
method: Adding a linear combination

ond; +--- + a.d;

to the current query vector, where dy,...,d, are the vectors of the doc-
uments judged by the user at the current iteration of relevance feedback,
and «; are real-valued updating factors for 1 < i < s. Certainly, a con-
crete algorithm will choose its own favorite updating factors in the above
linear combination. Rocchio’s algorithm and its variants [Rocchio, (1971);
Ide, (1971a,b); Salton, (1989); Baeza-Yates and Ribeiro-Neto, (1999)] are
the most popular relevance feedback algorithms with linear additive query
updating strategies. Especially, those algorithms are very similar to the
Perceptron algorithm [Rosenblatt, (1958); Duda and Hart, (1973)], a well-
known and extensively studied algorithm in fields such as Artificial Intelli-
gence, Machine Learning, and Neural Networks. The similarities between
those algorithms were mentioned and discussed in [Salton and Buckley,
(1990); van Rijsbergen, (1979); Chen and Zhu, (2002)]. Another type of
the algorithm, the gradient descent procedure, was designed in [Wong et
al., (1988)] for finding a linear structured user preference relation (or ac-
ceptable ranking strategy). This procedure also resembles the Perceptron
algorithm in its adoption of linear additive query updating technique for
minimizing its current ranking errors.

The main advantage of the linear additive query updating techniques
used in those existing algorithms is their simplicity and good results. The
simplicity is due to the fact that the modified term weights (query vector
components) are computed directly from the set of retrieved documents.
The good results are observed experimentally and are due to the fact that
the modified query vector does reflect a portion of the intended query se-
mantics. The main disadvantage is that no optimality criterion is adopted
in practice without knowing the user preference ahead of the time, though
such criterion exist in theory [Rocchio, (1971); Salton, (1989); Baeza-Yates
and Ribeiro-Neto, (1999)]. In other words, those algorithms may have a
slow rate to converge to the target user preference relation. In fact, it has
been proved that, when used to learn a monotone disjunction of m relevant
variables over the n dimensional binary vector space, both Rocchio’s al-
gorithm and the Perceptron algorithm have an Q(n) lower bound on their
classification errors [Kivinen et al., (1997); Chen and Zhu, (2002)]. The
gradient descent procedure can, after the first iteration from a zero ini-
tial query vector, boost the usefulness of an index term linearly [Wong et
al., (1988)]. The slow converging rate and the linear boosting achieved by
those algorithms may not be liked by users in the real-world problem of Web
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search, because Web search users have no patience to try, say, more than
10 iterations of relevance feedback to gain some significant search precision
increase.

The main contributions of this chapter are as follows: In contrast to
the adoption of linear additive query updating techniques in the existing
algorithms, two types of algorithms, the multiplicative adaptive query ex-
pansion algorithm MA and the multiplicative adaptive gradient search al-
gorithm MG, are designed. Those two algorithms use multiplicative query
updating techniques to adaptively improve the query vector. It is proved
that algorithm MA has an O(mlogn) upper bound on classification er-
rors in learning a user preference relation determined by a linear classifier
ai, T, + -+ + a;,x;, > 0 over the real-valued vector space [0,1]". This
means that algorithm MA has substantially better performance than the
Rocchio’s and the Perceptron algorithms for learning the same type of user
preference relations. It is shown that after the first iteration from a zero
initial query vector algorithm MG boosts the usefulness of an index term
exponentially, while the gradient descent procedure does so linearly. This
means that a document with a good index term will be ranked exponen-
tially higher than the one without the good index term, thus more ideal
ranking effect will be generated by algorithm MG for users. The work
is this chapter is enlightened by algorithm Winnow [Littlestone, (1988)],
a well-known algorithm equipped with a multiplicative weight updating
technique. However, algorithm MG is a gradient descent search algorithm,
which is different from algorithm Winnow. Furthermore, algorithm MA
generalizes algorithm Winnow in the following aspects: Various updating
functions may be used; multiplicative updating for a weight is dependent
on values of the corresponding indexing terms, which is more realistic and
applicable to real-valued vector space; and finally, a number of documents
which may or may not be counterexamples to the algorithm’s current clas-
sification are allowed as relevance feedback to the algorithm. Two Applica-
tions of algorithms MA and MG have been discussed. The first application
is the project MARS [Meng and Chen, (2002)] (Multiplicative Adaptive
Refinement Search), which is built upon algorithm MA. The second is the
project MAGrads [Meng et al., (2003)] (Multiplicative Adaptive Gradient
Descent Search), which is built upon algorithm MG. Other related work on
intelligent Web search tools [Chen et al., (2002)] includes WebSail [Chen et
al., (2002)], Features [Chen et al., (2001)], Yarrow [Chen al., (2000)], and
PAWS [Meng and Chen, (2003)].

The rest of this chapter is organized as follows. Section 15.2 gives a
formal presentation of user preference in the vector space model. Section
15.3 includes the design of algorithm MA and its performance analysis in
terms of classification errors. Section 15.4 includes the design of algorithm
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MG and its performance analysis based on weighting of index terms. The
project MARS'is reported in Section 15.5. The project MAGrads is reported
in Section 15.6. Section 15.7 lists several problems for future study.

15.2 Vector Space and User Preference

Let R be the set of all real values, and RT be the set of all non-negative
real values. Let m be a positive integer. In the vector space model in
information retrieval a collection of n indexing terms T4, T5, . .., T, are used
to represent documents and queries. Each document d is represented as a
vector d = (dy, ..., d,) such that for any ¢, 1 <4 < n, the i-th component
of d; is used to determine the relevance (or weight) of the i-th term T in
the document. Because a document vector can be normalized, without loss
of generality we only consider the real-valued vector space [0,1]"™ in this
chapter. Given any two vectors x = (z1,...,%,) and y = (y1,---,%,) in
[0,1]™ (or R™), we use x-y to denote their inner product z1y1 + - -+ Zpyn-

Let D be a collection of documents. As in the work [Bollmann et al.,
(1987); Wong it et al., (1988)], given any two documents in D, we assume
that a user would prefer one to the other or regard both as being equivalent
with respect to her information needs (or search queries). In other words,
user preference of documents in D defines a preference relation < over D
as follows:

vd,d' € D, d <d < the user prefers d’ to d.

It has been shown in [Bollmann et al., (1987); Fishburn, (1970); Roberts,
(1976)] that if a user preference relation < is a week order satisfying some
additional conditions then it can be represented by a linear classifier. That
is, there is a query vector q = (q1,...,¢,) € R™ such that

Vvd,d' €D, d<d < q-d<q-d. (15.1)

In general a linear classifier over the vector space [0, 1]" is a pair of (q,6)
which classifies any document d as relevant if q - d > 6, or irrelevant oth-
erwise, where the query vector q € R™ and the classification threshold
6 € R*. Recall that q - d is usually used as the relevance rank or (score)
of the document d with respect to user preference.

A natural way to understand a user preference relation < is document
ranking: A user prefers a document d to a document d’, if and only if
she ranks d higher than d’. When a user has no preference of d to d’
nor d’ to d, then she is really not interested in how those two documents
are actually ranked. Based on such understanding, the following linear
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acceptable ranking strategy was proposed in [Wong et al., (1988)]:
vd,d' €D, d<d = q-d<q-d, (15.2)

where q € R™ is the query vector determined by the user.

Let D, be the set of all relevant documents in D with respect to a user’s
information needs (or search queries), and D;,. the set of all irrelevant doc-
uments. If we assume that a user preference relation has a simple structure
with only two levels, i.e., one level consisting of all relevant documents and
the other consisting of all irrelevant documents. Within the same level, no
preference is made between any two documents. Then, finding a user pref-
erence relation satisfying the expression (15.1) is equivalent to the problem
of finding a linear classifier (q,6) over [0, 1]™ with the property

VdeD, deD,<=q-d >0, (15.3)

where q € R™ is the query (or weight) vector. Similarly, finding a linear
acceptable ranking strategy satisfying expression (15.2) is equivalent to the
problem of finding a query vector q € R™ with the property

vd,d' e D, de€D;,andd € D, = q-d<q-d'. (15.4)

The goal of relevance feedback in information retrieval is to identify a
user preference relation < with respect to her information needs from the
documents judged by that user. Since user preference relations vary from
different users and may have various unknown representations, it is not
easy for an information system to find such relations. The existing popular
relevance relevance algorithms basically use linear additive query expansion
methods to find a user preference relation as follows:

- Start with an initial query vector qg.
- At any step k > 0, improve the k-th query vector qy, to

Ak+1 = i + oady + -+ - + a,d,, (15.5)

where dy,...,d, are the documents judged by the user, and
the updating factors a; € R fori=1,...,s.

One particular and well-known example of relevance feedback is Roc-
chio’s similarity-based relevance feedback [Rocchio, 1971; Salton, 1989].
Depending on how updating factors are used in improving the k-th query
vector as in expression (15.5), a variety of relevance feedback algorithms
have been designed [Ide, (1971a,b); Salton, (1989); Baeza-Yates and
Ribeiro-Neto, (1999)]. A similarity-based relevance feedback algorithm is
essentially an adaptive supervised learning algorithm from examples [Salton
and Buckley, (1990); van Rijsbergen, (1979); Chen and Zhu, (2002)]. The
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goal of the algorithm is to learn some unknown classifier (such as the linear
classifier in expression (15.3)) that is determined by a user’s information
needs to classify documents as relevant or irrelevant. The learning is per-
formed by modifying or updating the query vector that serves as the hy-
pothetical representation of the collection of all relevant documents. The
technique for updating the query vector is linear additions of the vectors
of documents judged by the user. This type of linear additive query up-
dating technique is similar to what is used by the Perceptron algorithm
[Rosenblatt, (1958)]. The linear additive query updating technique has
some disadvantage: It’s converging rate to the unknown target classifier is
slow, because it has been proved that the Perceptron algorithm [Kivinen et
al., (1997)] and the Rocchio’s relevance feedback algorithm [Chen and Zhu,
(2002)] with any of the four typical similar measures [Salton, (1989)] have
an Q(n) lower bound on their performance of learning in the n dimensional
binary vector space. In the real world of Web search, a huge number of
terms (usually, keywords) are used to index Web documents. To make the
things even worse, no users will have the patience to try, say, more than
10 iterations of relevance feedback in order to gain some significant search
precision increase. This implies that the traditional linear additive query
updating method may be too slow to be applicable to Web search, and this
motivates us to design new and faster query updating methods for user
preference retrieval in Section 15.3.

For a user preference with respect to her information needs, for any
index term T', define

- |D| = the total number of documents in the collection D
- |Dy| = the total number of relevant documents in D

- n = the number of documents in D indexed by T

- v = the number of relevant documents in D, indexed by
T

A gradient descent procedure has been designed in [Wong et al., (1988)]
to find an acceptable ranking strategy satisfying expression (15.2). The idea
of the procedure is to minimize ranking errors through linear additions of
d’ — d for all pairs of documents d’ and d that, according to expression
(15.3), are ranked incorrectly. When the gradient descent procedure is ap-
plied to find an acceptable ranking satisfying expression (15.4), it has been
shown [Wong et al., (1988)] that after the first iteration from a zero initial
query vector the procedure weighs an index term T linearly in ﬁr—‘ — |J,D—|, an
approximate measure of the usefulness of index term T for distinguishing
relevant and irrelevant documents. It has also shown that under certain
good index term probability distribution the above usefulness measure for
the index term T reaches its expected maximum when n = 0.5|D|, a justi-
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fication for choosing mid-frequency terms in indexing [Salton, (1989)]. In
contrast to the linear additive query updating strategy used in the gradient
descent procedure [Wong al., (1988)] for minimizing ranking errors, in Sec-
tion 15.4 a new algorithm with the multiplicative query updating strategy
will be designed. It is shown that after the first iteration from a zero initial
query vector the new algorithm weights an index term T exponentially in
Ig_rl — %. This means that ezponentially large gaps will be generated for
index terms with respect to measures of their usefulness. Hence, a doc-
ument with a good index term will be ranked exponentially higher than
one without the good index term, thus more ideal ranking effects will be
generated for users.

15.3 Multiplicative Adaptive Query Expansion Algorithm

In this section, a multiplicative query updating technique is designed to
identify a user preference relation satisfying expression (15.1). It is believed
that linear additive query updating yields some mild improvement on the
hypothetical query vector towards the target user preference. A query
updating technique that can yield dramatic improvements is wanted so that
the hypothetical query vector can be moved towards the target in a much
faster pace. The idea is that when an index term is judged by the user, its
corresponding value in the hypothetical query vector should be boosted by
a multiplicative factor that is dependent on the value of the term itself.

Algorithm M A(qo, f,0):
(i) Inputs:
qQo, the non-negative initial query vectory
f(z):[0,1] — R™, the updating function
0 > 0, the classification threshold
(ii) Set k= 0.
(ii1) Classify and rank documents with the linear classifier
(ax, 8).
(iv) While (the user judged the relevance of a document d) do
{
fori=1,...,n, do{
/* qr = (ql‘k,...,qn,k), d= (dl,...,dn) */
if (di #0) {
/* adjustment */
if (qik # 0) set gik+1 = ik
else set qi,p+1 =1
if (d is relevant) /* promotion */
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set g p+1 = (14 f(di))qik+1

else  /* demotion */

ikl
set Qi k+1 = 1+£(d;)

} else
set Qi k+1 = qik
}
}

(v) If no documents were judged in the k-th step, then stop.
Otherwise, let k =k + 1 and go to step (iv).
/* The end of the algorithm MA */

In this chapter, only non-decreasing updating functions f(z) : [0,1] =
R is considered, because it is wanted that multiplicative updating for an
index term is proportional to the value of the term. We are, in particular,
interested in the following two examples of algorithm MA:

Algorithm LMA: In this algorithm, we let the updating function in
algorithm MA be f(z) = az, a linear function with a positive coefficient
a>1.

Algorithm ENL: In this algorithm, we let the updating function in al-
gorithm MA be f(z) = o, an exponential function with o > 1.

The design of algorithm MA is enlightened by algorithm Winnow [Lit-
tlestone, (1988)], a well-known algorithm equipped with a multiplicative
weight updating technique. However, algorithm MA generalizes algorithm
Winnow in the following aspects: (1) Various updating functions may be
used in algorithm MA, while only constant updating functions are used in
algorithm Winnow; (2) multiplicative updating for a weight is dependent
on the value of corresponding indexing terms, which is more realistic and
applicable to real-valued vector space, while algorithm Winnow considers
all the terms equally; and (3) finally, a number of documents which may
or may not be counterexamples to the algorithm’s current classification
are allowed as relevance feedback; while algorithm Winnow is an adaptive
learning algorithm from equivalence queries, requiring the user to provide
a counterexample to its current hypothesis. The equivalence query model
is hardly realistic, because a user in reality has no knowledge about the
information system nor about the representation of her preference. What
she may do, and is able to do, is that she can judge some documents as
what she needs or not among those provided by the system. We can derive
algorithm Winnow [Littlestone, (1988)] and algorithm TW2 [Chen et al.,
(2002)] in the following.

Algorithm M A becomes algorithm Winnow [Littlestone, (1988)] when
the following restrictions are imposed:

- the vector space is set to the binary vector space {0,1}".
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- the initial query vector is set to go = (1,...,1).

- the update function is chosen as f(z) = «, a positive
constant function.

- at step (iv), equivalence query is adopted. That is, the
user is asked to judge at most one document that is a coun-
terexample to the current classification of the algorithm.

Algorithm MA becomes algorithm TW2 [Chen et al., (2002)] when the
following restrictions are imposed:

- the vector space is set to the binary vector space {0,1}".
- the initial query vector is set to go = (0,...,0).

- and the updating function is chosen as f(z) = «, a posi-
tive constant function.

We now analyze the the performance of algorithm MA when it is used
to identify a user preference satisfying expression (15.3), a linear classifier
(q,0). Here, we consider a zero threshold in expression (refeq3). We say
that algorithm MA makes an classification error at step k is the user judged
a document as a counterexample to the algorithm’s current hypothesis. We
estimate the total number of classification errors algorithm MA will make
based on the worst-case analysis. We also let at most one counterexample
may be provided to the algorithm at each step. From now on to the end of
this section it is assumed that q = (g1, ¢, ---,¢n) is a non-negative query
vector with m non-zero components and 8 > 0. Define

B=min{g | ¢i >0,1<i<n}.

Definition 3.1. Documents in the collection D are said to be in-
dexed with respect to a threshold 6, 0 < § < 1, if for any document
d=(di,...,d,) € D one has either d; =0 or 6 < d;, 1 <i<n.

In other words, when a document is indexed with respect to a threshold
4, any index term with a value below the threshold § is considered not
significant, and hence set to zero. Recall that in the vector space model
a document and its vector have the equivalent meaning, so we may not
distinguish the two concepts.

Lemma 3.2. Assume that documents are indexed with respect to a
threshold 6. Let u denote the total number of promotions that algorithm
MA needs to find the linear classifier (q,0). Let m denote the number of
non-zero components in q. Then,

/]
ue< Moezs
= log(1 + £(3))
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Proof. Without loss of generality, we may further assume that the m
non-zero components of q are ¢y, . . ., ¢,,. When a promotion occurs at step
k, a relevant document d is given to the algorithm as a counterexample to
its current classification. Because of document indexing with respect to the
threshold 4, there is some ¢ with 1 <4 < m such that d; > §. This means
that the i-th component g; ; of the query vector q; will be promoted to

Gikr1 = (14 f(di))ase > (1 + £(0)) ks (15.6)

because f is non-decreasing. Since g; will never be demoted, it follows
from expression (15.6) that ¢; » can be promoted at most

log %
log(1 + f(9))

times. Since each promotion yields a promotion for at least one g; for
1 <4 < 'm, the total number of promotions u is at most m times the value
given in expression (15.7). O

Theorem 3.3. Assume that documents in D are indexed with respect to
a threshold 6,0 < § < 1. Let T' denote the total number of classification er-
rors algorithm MA makes in order to find the linear classifier (q,0) over the
real-valued vector space [0,1]", where all components in q are nonnegative.
Let m denote the number of non-zero components in q. Then,

(15.7)

[+ f(1))(n —m) + 0](1 + f(6))(1 + 6)

he 1006
L)AL FEOA+) ) mlog s
1(6)5 log(1 + £(9))

(Hence, if @ = I is chosen, T = O(mlogn).)

Proof. Without loss of generality, we may assume again that the m non-
zero components of q are ¢qi,...,¢y,. We estimate the sum of the weights
>, k- Let u and v be the number of promotion steps and the number
of demotion steps occurred during the learning process, respectively. Let
tr denote the number of zero components in q at promotion step k. Note
that once a component of qi is promoted to a non-zero value, it will never
become zero again. For a promotion at step k£ with respect to a relevant
document d judged by the user, for i = 1,...,n, we have

ik 7/f di = 0,
Gikr1 =14 1+ f(di)), ifdi#0andgy=0,
(14 f(di))gik, if di #0 and ¢; x # 0.
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Since a promotion only occurs when

n
qr-d = Zdi(h,k = Z gk <0,
i1

d,’ -750 and q,-,k #0

we have

n
Z(Ii,k+1 = Z Qik+1 + Z gik+1 + z Qi k+1
i=1

d;#0 and q; =0 d;#0 and q; 1 #0 d;=0
= > (L+ f(di)) + > L+ f(d))aik + D ik
d;#0 and q; x=0 di#0 and q; x#0 d;=0

<@+ S S g
i=1

d;#0 and ¢;,x#0

< (14 f())te + 14/ Z diqik + Z(Izk
i1

1)
d;#0 and g; x#0

<@ s+ g4y (158)

For a demotion at step k& with respect to an irrelevant document d judged
by the user, for i = 1,...,n, we have

1 1
; =qr—(1———)ik <qir — (1 — ——=)qix-
Qik+1 = Qik — ( 1+f(di))qz7k <qik—( 1+f(5))(h,k
Since a demotion occurs only when > | dig; r > 60, we have
n

n n 1
Z%’,kﬂ < ;(h,k -(1- Tf(&)) Z Qi k

i=1 3 i=1

&0 A
- izzlq’*’“ T+ fO) ;1 1+ 0 2ok

: ; kT T+ e +9) ; didi.k

) £(6)
: ; N ) (15.9)

zchen
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Let the sum of the initial weights be o. Hence, by (15.8) and (15.9), after
u promotions and v demotions,

- = - 1+ £(1))6u 8)6v
i:ZIQi,k+1 S(1+f(1))i_zlti+§qz',o+( +f5( )ou (1+]{((6)))(1+6)

(1+ f(1))0u f(6)0v

<@+ fQ)(n—m)+o+ 5 @+ FO)A+9)

Note that at any step the weights are never negative. It follows from the
above relation that

v < [+ f1)(n=m) +0](1 + f(6))( +9)
- f(0)0
L4 FA)NA+ () +d)u
f(0)d '

It follows from Lemma 3.2 and (15.10) that the total number of promotions
and demotions, i.e., the total number of classification errors T', is bounded

(15.10)

by
[(1+ F(1))(n — m) + o](L + f(8)(1+ )
T<v+u< 7(0)0
(1+ f(W)(L + F(8)(A + O)u
+ f(é)(i +u
2 1A+ £)(n = m) +0)(1 + £(3))(1 +9)
= 7(0)8
(14 F(1)A + £(8)(1 +6) mlog g3
” 785 T iog@+ /)
This completes our proof. O

15.4 Multiplicative Gradient Descent Search Algorithm

In this section, we design algorithm MG for finding a query vector q satis-
fying the acceptable ranking strategy condition (15.2). Algorithm MG uses
a multiplicative query updating technique to minimize its ranking errors.
It will be shown that algorithm MG boosts the usefulness of an index term
exponentially in contrast to linear boosting achieved by the gradient descent
procedure in [Wong et al., (1988)].

Algorithm MG(qq, f):
(i) Inputs:
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qQo, the non-negative initial query vectory
f(zx): [0,1] — RY, the updating function

(ii) Set k = 0.
(ii1) Let qp be the query wvector at step k. Identify the set of
maistakes

(qr) ={<d,d' >|d<d',qr-d>qz-d}.

If T(qx) = 0, then stop.
(iv) For each pair < d,d’ >€ I'(qr), do {
fori=1,...,m, do {
if (di #0) {
/¥ adjustment */
if (gi,x # 0) set gir+1 = Gk else set

Qik+1 =1
set qie+1 = (1 + f(di))gik+1 /* pro-
motion */
}
if (di #0)
set i k1 = % /* demotion */
}
}

(v) Let k =k +1 and go to step (iii).
/* The end of the algorithm MG */

Theorem 4.1. Assume that algorithm MG is applied to find an accept-
able ranking strategy satisfying condition (15.4). If one chooses the initial
query vector qo = 0, then after the first iteration, for any i with 1 <i <mn,
the weight g; 1 for the i-th index term in qq is

qi,1 = H H

deD;r d' €D

7(d')
7(d)”

where 7(d') = 1+ f(d}) if dj # 0 or 1 otherwise, and 7(d) = 1+ f(d;)
if di # 0 or 1 otherwise. In particular, when a linear updating function
f(z) = a is chosen,

Gin = (1 +a)|D|-|DT\(u§ﬁ|*%),
where |D,| is the total number of relevant documents, 1 is the number of
documents indexed by the i-th index term T;, and vy is the number of relevant
documents indezed by T;
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Proof. Since the acceptable ranking strategy satisfying condition
(15.4), it follows from qp = 0 that at the first iteration one obtains

T(qo) = {< d,d’ > |d € D;,,d' € D,}.

Here D, and D;, denote respectively the set of relevant documents and the
set of irrelevant ones. Note that during the first iteration, for each pair
< d,d’ >€ T'(qo), for any ¢ with 1 < ¢ < n, a promotion is performed
for the i-th component of the query vector if d; # 0 and a demotion is
performed for the i-th component if d; # 0. This implies that for any ¢,
1 < i < n, after the first iteration the value g;;1 with respect to the i-th
index term is

q“_H H d

deD;, d’eD,.

When a constant updating function f(z) = « is used, it easily follows from
the above expression that

q“_H H d

deD;, d'€D,

_ Hd'eD,, Hde’D,-T 7(d') Hd'eD (r(d I))‘D”|
HdE’Dir Hd’e’D 7(d) Hde’Dw( 7(d)) /P!

_ Haep, @+ F@)Pl 1+ f(dy) P

™ Tlaco, (L + F@)P-T = (1 + f(d:)P-10=)
= (1 + a)Pirh=IP-l(n=)

= (1 4 )(IPI=1P:D7=ID:l(n=)
= (1 + ) PPl )

This completes our proof. a

In Fig. 15.1, we illustrate the boosting effects of algorithm MG (the
exponential curve) and the gradient descent procedure (the linear curve).
When the probability distribution of an index term has the pattern as
shown in part (b) of Fig. 15.1, we can show in a way similar to [Wong
et al., (1988)] that the expected value of the usefulness - B |D| for an
index term reached its maximum when 5 = 0.5|D|, another justification for
choosing mid frequent terms in indexing [Salton, (1989)].
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(a) (b)

Fig. 15.1 (a)Boosting Rates. (b) Index Term Prob. Distribution

15.5 Meta-Search Engine MARS

In this section, we report the application of algorithm MA to the experi-
mental meta-search engine MARS [Meng and Chen, (2002)] (Multiplicative
Adaptive Refinement Search). The architecture of MARS is shown in Fig.
15.2. User queries to MARS are accepted from a browser. Besides entering
the query, a user can also specify a particular general-purpose search engine
that she would like MARS to use and the maximum number of returned
results (the larger the number is, the more time it takes to process). The
QueryConstructor organizes the query into a format conforming to the
specified search engine. One of the MetaSearchers sends the query to the
general-purpose search engine. When the results are sent back from the
general-purpose search engine, DocumentParser, DocumentIndexer and
Ranker process the returned URLs and list them to the user as the initial
search result. At this point, the rank is based on the original rank from the
search engine. Constrained by the amount of space available on a typical
screen, we list the top 10 URLSs (highest ranked) and the bottom 10 URLs
(lowest ranked). Once the results are displayed, the user can interactively
work with MARS to refine the search results. Each time the user can mark a
particular URL as relevant or not relevant. Upon receiving feedbacks from
the user, MARS updates the weight assigned to each index term within
the set of documents already returned from the specified search engine, ac-
cording to the algorithm MA. The refined results are sorted based on their
ranking scores and then displayed back to the user for further relevance
feedback. This process continues until the satisfactory results are found or
the user quits her search.

Some initial tests have conducted in [Meng and Chen, (2002)] to see how
effectively and efficiently the algorithm MA can be applied to Web search
using MARS meta-search engine. Two types of performance measures, the
search precision improvement and the delay statistics of the MARS, were
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Query/FeedbackPars

[ MA ] [ QueryConstructor j

Meta—Searchers
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Ranker <—[Documentlnde>;e DocumentParsgr

Fig. 15.2 The Architecture of MARS

used. A dozen of queries were sent to MARS to examine the response
times. These response times are divided into two categories: The initial
response time between the time issuing the query and the time receiving
the response from an external search engine the user selected; and the time
needed for the algorithm MA to refine the results. One calls these two
time measurements initial time and refine time. The statistics in the Table
15.1 indicates the two measures. One should note that the initial time is
needed to get any search results from the external search whether or not
the algorithm MA is involved. As can be seen, the time spent in refining
the search results is very small relative to the time to get the initial result.

Table 15.1: Response Time in Seconds
Mean | Std Dev. | 95% Conf. Interval | Maximum
Original | 3.86 1.15 0.635 5.29
Refine 0.986 0.427 0.236 1.44

It has also been evaluated how algorithm MA improves the search pre-
cision. In the evaluation, a set of highly vague terms, such as memory
and language, were selected. These words may mean completely differently
in different areas. E.g., the term memory can mean human memory, or
the memory chips used in computers; and the term language can refer to
spoken language or computer programming language. We wanted to see
if the search precision improves dramatically with very limited relevance
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feedback. In all the tests, the search engine AltaVista [AV] was used. In
the following, as an example, we lists the comparative results of memory
and language.

Memory: The top-10 of the initial result sent back include two types of
URLs, as expected. One is computer memory related, the other is related
to memory in human beings. The following is the list (for space reason,
only the top 10 is listed). For the underlying search purpose the ones that
have an R in front are relevant; the ones with an X are irrelevant.

R http://www.memorytogo.com/

X http://memory.loc.gov/

X http://lcweb2.loc.gov/ammem /ammemhome.html

R http://www.datamem.com/

R http://www.samintl.com/mem/index.htm

X http://www.asacredmemory.com/

X http://www.exploratorium.edu/memory /lectures.html
X http://www.exploratorium.edu/memory /index.html

R http://www.satech.com/glosofmemter.html

R http://www.lostcircuits.com/memory/

With one round of refinement when a total of four URLs were marked (two
marked in the top 10 list and two marked in the bottom 10 list), four of
the original irrelevant URLs were eliminated and the revised top 10 URLs
are as follows.

R http://www.streetprices.com/Electronics/...ware PC
R http://www.memorytogo.com/

X http://www.crpuzzles.com/mem /index.html

R http://www.linux-mtd.infradead.org/

R http://fiberoptics.dimm-memory-infineon....owsides

R http://www.ramplus.com/cpumemory.html

X http://www.asacredmemory.com/

R http://www.computersupersale.com /shopdis..._A_cat_
R http://www.datamem.com/

R http://www.lostcircuits.com/memory/

Language: Similar to the term memory, the search results for language
can be roughly divided into two classes, the ones related to human languages
and the ones related to computer programming language. The following
is the original list of top 10 URLs returned from AltaVista [AV] with R
as relevant and X as irrelevant and we are looking for information about
programming language.
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X http://chinese.about.com/

R http://www.python.org/

X http://esl.about.com/

X http://esl.about.com/homework/esl/mbody.htm

X http://www.aliensonearth.com/catalog/pub/language/
X http://kidslangarts.about.com/

X http://kidslangarts.about.com /kids/kidslangarts/mb
X http://pwl.netcom.com/ rlederer/rllink.htm

X http://www.wordcentral.com/

X http://www.win-shareware.com/html/language.html

As can be seen, only one URL www.python.org is really relevant to what
was looked for. With a refinement of three URLs marked, one marked
irrelevant from the top 10 list, one marked relevant from the top 10 list,
and one marked from the bottom 10 list (www.suse.de/lang.html), the
refined list now contains six relevant URLs, compared to only one before
refinement. Of these six URLs, one was originally in top 10 and was marked;
one was originally in bottom 10 and was marked; the other four were not
examined nor marked before at all. But they showed up in the top 10 list!

R http://www.suse.de/lang.html

R http://www.python.org/

X http://www.eason.ie/flat index_with_area...L400_en

R http://www.w3.0rg/Style/XSL/

X http://www.hlc.unimelb.edu.au/

X http://www.transparent.com/languagepages/languages
R http://caml.inria.fr/

R http://home.nvg.org/ sk/lang/lang.html

R http://www.ihtml.com/

X http://www.aliensonearth.com/catalog/pub/language/

As can been seen from the above experimental results algorithm MA im-
prove the search performance significantly.

15.6 Meta-Search Engine M AGrads

This section reports an experimental meta-search engine MAGrads [Meng
et al., (2003)] (Multiplicative Adaptive Gradient Descent Search), which is
built upon algorithm MG. The architecture of MAGrads is similar to that
of MARS as shown in Fig. 15.2. As in MARS, a user can query MAGrads
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from a browser. The user can also specify a particular general-purpose
search engine she would like MAGrads to use and the maximum number
of returned results. The QueryConstructor organizes the query into a
format conforming to the specified search engine. One of the MetaSearchers
sends the query to the general-purpose search engine to receive the initial
search result. DocumentParser, DocumentIndexer and Ranker work in
the similar ways as they do in MARS. Once the results are displayed, the
user can interactively work with MAGrads to refine the search results. Each
time the user can mark a particular URL as relevant or not relevant. Upon
receiving feedbacks from the user, MAGrads updates the weight assigned
to each index term within the set of documents already returned from the
specified search engine, according to the algorithm MG. The refined results
are sorted based on their ranking scores and then displayed back to the user
for further relevance feedback. This process continues until the satisfactory
results are found or the user quits her search.

In order to provide some measures of system performance we conducted
a set of experiments and compared the search results between AltaVista
and MAGrads in regard to their search accuracy. The evaluation is based
on the following approach that is similar to the standard recall and precision
used in information retrieval.

For a search query g, let A denote the set of documents returned by the
search engine (either AltaVista or MAGrads), and let R denote the set of
documents in A that are relevant to ¢. For any integer m with 1 < m < |A],
define R,, to be the set of documents in R that are among the top m ranked
documents according to the search engine. One defines the relative recall
Ryccqu and the relative precision Ryrecision as follows.

R

Rrccatt = %
R

Rprecision = M
m

The relative recall R,...q; measures the percentage of relevant documents
in R are listed in the top-m list m positions. The more relevant docu-
ments are listed within the top-m list, the better the performance is of the
search engine. The relative precision Ry, ccision iS @ measure of how many
documents are relevant among the top-m list.

In the evaluation, a list of 20 queries were selected. The queries were
tested against AltaVista and MAGrads, respectively. The performance
results were collected and recorded. When a query was issued to AltaVista,
One manually went through the returned results (the set A), marking the
ones that were relevant (the set R). The number of relevant documents
within the top-10 and top-20 were also marked (the set R,, where m =
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Table 15.2: Relative Precision and Recall Comparison

Rprecision Rrecall
AltaVista | MAGrads || AltaVista | MAGrads
(50,10) 0.55 0.82 0.23 0.40
(50,20) 0.52 0.74 0.40 0.69
(100,10) 0.55 0.85 0.14 0.27
(100,20) 0.52 0.77 0.24 0.46
(150,10) 0.55 0.86 0.11 0.23
(150,20) 0.52 0.79 0.19 0.40
(200,10) 0.55 0.88 0.09 0.21
(200,20) 0.52 0.80 0.17 0.35

10,20). We then again manually went through the documents list to check
the number of documents appeared at the top-10 and top-20 list. For
each of the 20 queries, one selected the total number of documents to be
returned by AltaVista and used by MAGrads to be 50, 100, 150, and 200,
respectively. The relative recall and relative precision were computed for
each of the query. The average was taken for comparison between AltaVista
and MAGrads. The results of the comparison are listed in Table 15.2.

In Table 15.2, each row is labeled by a pair of integers (|A|,m), where
|A| is the total number of documents retrieved by the search engine for a
given query and m is the limit of the size of the top-listed documents. Some
observations and analysis are obtained from the data listed in the table:

(1) AltaVista holds relative precisions, Rprecision = “jn—’"l, constant
across the document sets of size 200, 150, 100, and 50 for the given value
of m (the number of top documents listed to the user). The reason is that
the document set returned by AltaVista and its order in response to the
given query is fixed. Thus the set R, is a constant with regard to a given
value of m. In the underlying experiments, m was assigned the value of 10
and 20.

(2) On the other hand for MAGrads the set R, changes as the user
enters its feedback and MAGrads re-adjusts the document relevance ac-
cording to the user feedback. On average more relevant documents sift up
towards the top-listed document set based on the user relevance feedback.
Thus it has a better average relative precision than that of AltaVista.

(3) As for relative recall, Ryecqu = %, the case is different. For
AltaVista, although the set R,,, the set of relevant documents that are
actually listed in the top-m documents is fixed, the base size |R| is changing
from 50 to 200. Thus the average relative recall is in fact decreasing (from
0.23 to 0.09 for m = 10 and from 0.40 to 0.17 for m = 20) as the base
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document size increases.

(4) The relative recall of MAGrads is decreasing as the base size in-
creases for the same reason for a given value of m. However because of the
relevance feedback MAGrads has a much higher average relative recall rate
than that of AltaVista.

As can be seen from the table, MAGrads has a much better average
performance than that of AltaVista, as far as relative precisions and rela-
tive recalls are concerned. The primary reason is the use of multiplicative
gradient descent algorithm MG in MAGrads. Since the query list is cho-
sen randomly and the comparison is done for the same set of documents
between AltaVista and MAGrads, the results here are convincing that the
MAGrads algorithm performs very well.

15.7 Concluding Remarks

The motivations of the work in this chapter come from the reality of Web
search: Web search users usually have no patience to try, say, more than 5
iterations of relevance feedback for some intelligent search system in order
to gain certain significant search precision increase. Existing popular algo-
rithms for user preference retrieval have their own beauty and advantages.
Because of the adoption of linear additive query updating techniques, when
used to identify user preference determined by a linear classifier those algo-
rithms, such as Rocchio’s algorithm and its variants [Rocchio, (1971); Ide,
(1971a,b)], the Perceptron algorithm [Rosenblatt, (1958); Duda, (1973)]
and gradient descent procedure, [Wong et al., (1988)] have either a slow
converging rate or small boosting on the usefulness of an index term.

In contrast to the adoption of linear additive query updating techniques
in the those existing algorithms, two new algorithms MA and MG have
been designed in this chapter. Those two algorithms use multiplicative
query updating techniques to adaptively learn the user’s preference from
relevance feedback. It is proved that algorithm MA has substantially better
performance than the Rocchio and the Perceptron algorithms in the case of
identifying a user preference relation that is determined by a linear classifier
with a small number of non-zero coefficients. It is also shown that algo-
rithm MG boosts the usefulness of an index term exponentially to identify a
linear structured user preference after the first iteration, while the gradient
descent procedure does so linearly. Two applications MARS and MAGrads
of algorithms MA and MG are also presented, and the experimental results
show that both algorithms can achieve significant search precision increase.

The current theoretical results have been obtained for algorithms MA
and MG in the worst-case performance analysis. It is interesting to analyze
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the average-case performance of those two algorithms. We feel that this
task is very challenging. It is also interesting to conduct emperimental
studies to understand the behaviors of the algorithms MA and GA with
real world data sets. Finally, we would like to investigate more applications
of the two algorithms to Web search.
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