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Abstract. Rocchio’s similarity-based Relevance feedback algorithm, one of the
most important query reformation methods in information retrieval, is essentially
an adaptive supervised learning algorithm from examples. In spite of its popularity
in various applications there is little rigorous analysis of its learning complexity in
literature. In this paper we show that in the binary vector space model, if the initial
query vector is 0, then for any of the four typical similarities (inner product, dice
coefficient, cosine coefficient, and Jaccard coefficient), Rocchio’s similarity-based
relevance feedback algorithm makes at least n mistakes when used to search for a
collection of documents represented by a monotone disjunction of at most k relevant
features (or terms) over the n-dimensional binary vector space {0, 1}n. When an
arbitrary initial query vector in {0, 1}n is used, it makes at least (n + k − 3)/2
mistakes to search for the same collection of documents. The linear lower bounds
are independent of the choices of the threshold and coefficients that the algorithm
may use in updating its query vector and making its classification.

Keywords: relevance feedback, vector space, supervised learning, similarity, lower
bound.

1. Introduction

Research on relevance feedback in information retrieval has a long his-
tory (Baeza-Yates and Ribeiro-Neto, 1999; Frakes and Baeza-Yates,
1992; Ide, 1971b; Ide, 1971a; Raghavan and Wong, 1986; J.J. Rocchio,
1971; Salton, 1989). It is regarded as the most popular query reforma-
tion strategy (Baeza-Yates and Ribeiro-Neto, 1999). The central idea
of relevance feedback is to improve search performance for a partic-
ular query by modifying the query step by step, based on the user’s
judgments of the relevance or irrelevance of some of the documents
retrieved. In the vector space model (Salton, 1989; Salton et al., 1975),
∗ The extended abstract of this paper was published in Proceedings of the Eleventh
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Notes in Computer Science 1969, pages 108-119, Springer-Verlag, December, 2000.
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both documents and queries are represented as vectors in a discretized
vector space. In this case, relevance feedback is essentially an adaptive
supervised learning algorithm: A query vector and a similarity are used
to classify documents as relevant and irrelevant; the user’s judgments of
the relevance or irrelevance of some the classified documents are used as
examples for updating the query vector as a linear combination of the
initial query vector and the examples judged by the user. Especially,
when the inner product similarity is used, relevance feedback is just a
Perceptron-like learning algorithm (Lewis, 1991). It is known (J.J. Roc-
chio, 1971) that there is an optimal way for updating the query vector
if the sets of relevant and irrelevant documents are known. Practically
it is impossible to derive the optimal query vector, because the full sets
of the relevant and irrelevant documents are not available.

There are many different variants of relevance feedback in informa-
tion retrieval. However, in this paper we only study Rocchio’s similarity-
based relevance feedback algorithm (J.J. Rocchio, 1971; Ide, 1971a;
Salton, 1989). In spite of its popularity in various applications, there
is little rigorous analysis of its complexity as a learning algorithm in
literature. This is the main motivation for us to investigate the learning
complexity of Rocchio’s similarity-based relevance feedback algorithm.
Wong, Yao and Bollmann (Wong et al., 1988) studied the linear struc-
ture in information retrieval. They designed a very nice gradient descent
procedure to compute the coefficients of a linear function and analyzed
its performance. In order to update the query vector adaptively, their
gradient descent procedure must know the user preference which is in
practice the unknown target to be learned by an information retrieval
system. More discussions of their gradient descent procedure will be
given in section 5.1.

The main contribution of our work in this paper is that linear lower
bounds on classification mistakes are proved for the algorithm when
any of the four typical similarities (inner product, dice coefficient,
cosine coefficient, and Jaccard coefficient) listed in (Salton, 1989) is
used. Technically, our work in this paper is enlightened by the work
in (Kivinen et al., 1997) on lower bounds of the Perceptron algorithm.
Precisely, we borrow the method developed in (Kivinen et al., 1997) for
constructing an example sequence with pairwise constant inner prod-
ucts. We extend the method to cope with other similarities besides inner
product. We also design a new method for selecting trial sequences and
prove in a uniform way our lower bounds for Rocchio’s similarity-based
relevance feedback algorithm.

It should be pointed out that the lower bounds established in this
paper for Rocchio’s similarity-based relevance feedback algorithm is
based on the following worst case considerations: The user acts as an
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adversary to the algorithm; the algorithm is required to precisely search
for the collection of all documents relevant to the given search query;
and the algorithm is allowed to receive one document example judged
by the user as relevance or irrelevant at each step 1. In practical appli-
cations , in contrast to the above worst case considerations, the user in
general may not act as an adversary to the algorithm; the algorithm
is usually required to search for a short list of top ranked documents
relevant to the given search query; and at each step of the similarity-
based relevance algorithm, the user may judge a few documents as
relevance feedback to the algorithm. In other words, the appropriate sit-
uation in real-world information retrieval applications would be a kind
of “sympathetic oracle” model, where the user is not an adversary to the
information retrieval system but a “sympathetic judge” who provides
the most useful possible information in order to help the system help
him/her to accomplish his/her work. Hence, our lower bounds proved in
this paper for Rocchio’s similarity-based relevance feedback algorithm
may not affect the algorithm’s effective applicability to the real-world
problems despite of their theoretical significance. The formal analysis
of the algorithm helps us understand the nature of the algorithm well
so that we may find new strategies to improve its effectiveness or de-
sign new algorithms for information retrieval. Recently, we have made
some progress along this line in (Chen, 2001). We have designed two
types of multiplicative adaptive algorithms for user preference retrieval
with provable better performance: One has better performance than
Rocchio’s algorithm in learning a class of linear classifiers over non-
binary vector space. The other boosts the usefulness of an index term
exponentially, while the gradient descent procedure in (Wong et al.,
1988) boosts the usefulness of an index term linearly.

We refer the readers to the work of (Salton and Buckley, 1990;
Lewis, 1991) for discussions of the Perceptron-like learning nature of the
similarity-based relevance feedback algorithm. It was stated in (Lewis,
1991) that the most important future direction for research in infor-
mation retrieval is likely to be machine learning techniques which can
combine empirical learning with the use of knowledge bases.

This paper is organized as follows. In section 2, we give a formal pre-
sentation of Rocchio’s similarity-based relevance feedback algorithm.
In section 3, we prove several technical lemmas based on the tech-
niques developed in (Kivinen et al., 1997). In section 4, we prove linear
lower bounds for Rocchio’s similarity-based relevance feedback algo-
rithm with any of the four typical similarities listed in (Salton, 1989).

1 This last restriction is not critical to the proof of the lower bounds, but it would
make the analysis easier.
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In section 5 we give some discussions of our result and also show that
Rocchio’s algorithm can be used to learn many other target document
classes. We conclude the paper and list several open problems in section
6.

2. Rocchio’s Similarity-Based Relevance Feedback
Algorithm

Let R be the set of all real values, and let R+ be the set of all non-
negative real values. Let n be a positive integer. In the binary vector
space model in information retrieval (Salton, 1989; Salton et al., 1975),
a collection of n features or terms T1, T2, . . . , Tn are used to represent
documents and queries. Each document d is represented as a vector
vd = (d1, d2, . . . , dn) such that for any i, 1 ≤ i ≤ n, the i-th component
of vd is one if the i-th feature Ti appears in d or zero otherwise. Each
query q is represented by a vector vq = (q1, q2, . . . , qn) such that for
any i, 1 ≤ i ≤ n, the i-th component of vq ∈ R is a real value used to
determine the relevance (or weight) of the i-th feature Ti. Because of
the unique vector representations of documents and queries, for conve-
nience we simply use d and q to stand for their vector representations
vd and vq, respectively.

A similarity in general is a function m from Rn × Rn to R+. A
similarity m is used to determine the relevance closeness of documents
to the search query and to rank documents according to such close-
ness. In the binary vector space model of information retrieval (Salton,
1989; Salton et al., 1975; Baeza-Yates and Ribeiro-Neto, 1999), to re-
trieve relevant documents for a given query vector q with respect to
a similarity m, the system searches for all the documents d, classifies
those with similarity values m(q,d) higher than an explicit or implicit
threshold as relevant, and returns to the user a short list of relevant
documents with highest similarity values. This information retrieval
process is in fact determined by a linear classifier, as defined later in
this section, which is composed of a query vector q, a similarity m, and
a real-valued threshold ψ.

Unfortunately, in the real-world information retrieval applications,
usually an ideal query vector cannot be generated due to many factors
such as the limited knowledge of the users about the whole document
collection. A typical example is the real-world problem of web search.
In such a case, the user may use a few keywords to express what
documents are wanted. However, it is nontrivial for both the user and
a web search engine to precisely define the collection of documents
wanted as a query vector composed of a set of keywords. The alternative

pdfzchen.tex; 15/07/2001; 13:34; p.4



Some Formal Analysis of Rocchio’s Algorithm 5

solution to the query formation problem is, as stated in (Salton, 1989),
to conduct searches iteratively, first operating with a tentative query
formation (i.e., an initial query vector), and then improving formations
for subsequent searches based on evaluations of the previously retrieved
materials. This type of methods for automatically generating improved
query formation is called relevance feedback, and one particular and
well-known example is Rocchio’s similarity-based relevance feedback
(J.J. Rocchio, 1971; Ide, 1971a; Salton, 1989).

Rocchio’s similarity-based relevance feedback algorithm works in a
step by step adaptive refinement fashion as follows. Starting at an initial
query vector q1, the algorithm searches for all the documents d such
that d is very close to q1 according to the similarity m, ranks them by
m(q,d), and finally presents a short list of the top ranked documents
to the user. The user examines the returned list of documents and
judges some of the documents as relevant or irrelevant. At step t ≥ 1,
assume that the list of documents the user judged is x1, . . . ,xt−1. Then,
the algorithm updates its query vector as qt = αt0q1 +

∑t−1
j=1 αtjxj ,

where the coefficients αtj ∈ R for j = 0, 1, . . . , t − 1. At step t + 1,
the algorithm uses the updated query vector qt and the similarity m
to search for relevant documents, ranks the documents according to
m, and presents the top ranked documents to the user. In practice, a
threshold θ is explicitly (or implicitly) used to select the highly ranked
documents. Practically, the coefficients αtj may be fixed as 1,−1 or 0.5
(Baeza-Yates and Ribeiro-Neto, 1999; Salton, 1989). The following four
typical similarities were listed in (Salton, 1989): For any q,x ∈ Rn,

inner product : m1(q,x) =
n∑
i=1

qixi,

dice coefficient : m2(q,x) =
2m1(q,x)

m1(q,q) +m1(x,x)
,

cosine coefficient : m3(q,x) =
m1(q,x)√

m1(q,q)
√
m1(x,x)

,

Jaccard coefficient : m4(q,x) =
m1(q,x)

m1(q,q) +m1(x,x)−m1(q,x)
.

To make the above definitions valid for arbitrary q and x, we define
that the similarity between two zero vectors is zero, i.e.,

mi(0,0) = 0, for 1 ≤ i ≤ 4.

It should be pointed out that the cosine similarity m3 is nothing but
the inner product similarity m1 when the vectors are normalized. It is
also easy to show that Jaccard similarity m4 is a strictly monotonic

pdfzchen.tex; 15/07/2001; 13:34; p.5



6 Z. Chen and B. Zhu

transformation of the dice similarity m2. This implies that both the in-
ner product similarity and the cosine similarity may achieve equivalent
classification for any document document with respect to the given
query vector. The subtle, but important, difference between the two
similarities is that different rank values may be obtained for a document
with respect to the given query vector so that different “ranking gaps”
are obtained between documents. For example, when the rank gap
between documents x and y based on the inner product similarity m1 is
m1(q,x)−m1(q,y) = 0.8, the rank gap based on the similarity m3 may
be m3(q,x)−m3(q,y) = 0.2. Analogously, the above analysis applies
to the dice similarity and the Jaccard similarity. Different rank gaps be-
tween pairs of documents based on different similarities define different
user preference structures of the documents, hence different document
groups or clusters may be obtained. Therefore, different information
retrieval performances might be achieved for different similarities. In
other words, if the performance of an information retrieval system is not
concerned, then cosine and inner product similarities may be regarded
as two equivalent similarities, and so may Jaccard and dice similarities.
In (Wong et al., 1988) user preference was studied in terms of structures
of weak order and, in particular, linear order. In designing an adaptive
information retrieval system, the system performance is definitely not
a negligible factor. To our best knowledge, we do not know any prov-
able theoretical results about influences of the different similarities on
the performance of the similarity-based relevance feedback. Our linear
lower bounds proved in this paper tell us that in the worst case, the
four different similarities have the same affect on the performance of
Rocchio’s relevance feedback. But we do not know what the result will
be in the average case.

As stated in (Baeza-Yates and Ribeiro-Neto, 1999), the main ad-
vantage of the relevance feedback is its simplicity and good results.
The simplicity is due to the fact that the modified term weights (query
vector components) are computed directly from the set of retrieved
documents. The good results are observed experimentally and are due
to the fact that the modified query vector does reflect a portion of the
intended query semantics.

The similarity-based relevance feedback algorithm is essentially an
adaptive supervised learning algorithm from examples (Salton and Buck-
ley, 1990; Lewis, 1991). The goal of the algorithm is to learn some
unknown classifier to classify documents as relevant or irrelevant. The
learning is performed by modifying (or updating) the query vector that
serves as the hypothetical representation of the collection of all relevant
documents. The method for updating the query vector is similar to the
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Perceptron algorithm. We given the necessary formal definitions in the
following.

DEFINITION 1. Let m from Rn × Rn to R+ be a similarity. A
classifier with respect to m over the n-dimensional binary vector space
{0, 1}n is a triple (q, ψ,m), where q ∈ Rn is a query vector, and
ψ ∈ R is a threshold. The classifier (q, ψ,m) classifies any documents
d ∈ {0, 1}n as relevant if m(q,d) ≥ ψ or irrelevant otherwise. The clas-
sifier (q, ψ,m) is called a linear classifier with respect to the similarity
m, if m is a linear function from Rn ×Rn to R+.

For simplicity, we may just call (q, ψ,m) a classifier, or a linear
classifier when m is linear. The following are examples of classifiers:

(q1,m1, 10.6), q1 = (0, . . . , 0);
(q2,m2, 0.987), q2 = (1, . . . , 1);

(q3,m3,
3
n

), q3 = (1, 2, 3, . . . , 0);

(q4,m4,
1√
n

), q4 = (1.2, 2.3, . . . , 0.6).

In particular, (q1,m1, 10.6) is a linear classifier but the other three are
not, because m1 is linear and mi are not linear for i = 2, 3 and 4.

DEFINITION 2. An adaptive supervised learning algorithm A for
learning a target classifier (q, ψ,m) over the n-dimensional binary vec-
tor space {0, 1}n from examples is a game played between the algorithm
A and the user in a step by step fashion, where the query vector q and
the threshold ψ are unknown to the algorithm A, but the similarity m
is. At any step t ≥ 1, A gives a classifier (qt, ψt,m) as a hypothesis
to the target classifier to the user, where qt ∈ Rn and ψt ∈ R. If
the hypothesis is equivalent to the target, then the user says “yes” to
conclude the learning process. Otherwise, the user presents an example
xt ∈ {0, 1}n such that the target classifier and the hypothesis classifier
differ at xt. In this case, we say that the algorithm A makes a mistake.
At step t + 1, the algorithm A constructs a new hypothetical classifier
(qt+1, ψt+1,m) to the user based on the received examples x1, . . . ,xt.
The learning complexity (or the mistake bound) of the algorithm A is
in the worst case the maximum number of examples that it may receive
from the user in order to learn some classifier.

If the readers are familiar with on-line learning from equivalence
queries (Angluin, 1987; Littlestone, 1988), then an adaptive supervised
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learning algorithm as defined above is a proper on-line learning al-
gorithm for learning the class of classifiers from equivalence queries
over the n-dimensional binary vector space. We now give the formal
definition of Rocchio’s similarity-based relevance feedback algorithm.

DEFINITION 3. Rocchio’s similarity-based relevance feedback algo-
rithm is an adaptive supervised learning algorithm for learning any
classifier (q, ψ,m) over the n-dimensional binary vector space {0, 1}n
from examples. Let q1 be the initial query vector. At any step t ≥ 1,
the algorithm presents a classifier (qt, ψt,m) as its hypothesis to the
target classifier to the user, where ψt ∈ R is the threshold, and the
query vector qt is modified as follows. Assume that at the beginning of
step t the algorithm has received a sequence of examples x1, . . . ,xt−1,
then the algorithm uses the following modified query vector qt for its
next classification:

qt = αt0q1 +
t−1∑
j=1

αtjxj , (1)

where αtj ∈ R, for j = 0, . . . , t−1, are called additive updating factors.

Please note that our definition above is a generalized version of
Rocchio’s original algorithm. In our definition, any function m from
Rn×Rn to R+ can be used as a similarity; arbitrary real values can be
used in computing the updated query vector; and finally our definition
allows adaptive learning until the target is obtained.

REMARK 4. We would like to give the following remarks about Roc-
chio’s similarity-based relevance feedback algorithm.

(a) In the above definition, Rocchio’s similarity-based relevance feed-
back algorithm can use any real-valued threshold and any real-
valued additive updating factors at each step. But in practice the
additive updating factors αtj may be fixed as 1 (or 0.5) to promote
the relevance of relevant examples and −1 (or −0.5) to demote the
irrelevance of irrelevant examples (Baeza-Yates and Ribeiro-Neto,
1999; Salton, 1989). αt0 is usually set to 1. Also in practice the
threshold is usually implicitly used for selecting a short list of top
ranked documents.

(b) For the purpose of the worst case analysis of the mistake bounds
of the algorithm, in the definition we only allow the algorithm to
receive one example at each step. We consider that the user acts
as an adversary to the algorithm and that the algorithm is required
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to precisely learn (or search for) the target linear classifier. In
practical applications, in contrast to the above worst case consid-
erations, at each step the algorithm may receive several examples
from the user; the user in general may not act as an adversary
to the algorithm; and the algorithm is usually required to search
for a short list of top ranked relevant documents. Hence, our lower
bounds proved in this paper may not affect the algorithm’s effective
applicability to the real-world problems. The formal analysis of the
algorithm helps us to understand its nature well so that we may be
able to find new strategy to improve its effectiveness or to design
new algorithms for information retrieval.

(c) When the similarity m is the inner product of two vectors, then
Rocchio’s algorithm is similar to Rosenblatt’s Perceptron algorithm
(Rosenblatt, 1958).

We will use the sets of documents represented by monotone dis-
junctions of relevant features to study the mistake bounds of Rocchio’s
algorithm. The efficient learnability of monotone disjunctions of rele-
vant features (or attributes) has been extensively studied in machine
learning (for example, (Littlestone, 1988)). Although very simple in for-
mat, monotone disjunctions are very common ways of expressing search
queries, especially in the case of web search. All existing popular search
engines support disjunctions of keywords as search query formations.
For any k with 1 ≤ k ≤ n, classifiers can be defined to precisely classify
a monotone disjunction of at most k relevant features

xi1 ∨ · · · ∨ xis , 1 ≤ s ≤ k. (2)

i.e., to precisely classify whether any given document satisfies the mono-
tone disjunction of (2) or not. If we choose a vector u ∈ Rn such that
all its components are zero except that those at positions i1, . . . , is are
one, then it is easy to verify that for any d ∈ {0, 1}n, each of the
following four expressions is a necessary and sufficient condition for
deciding whether d satisfies (2):

m1(u,d) ≥ 1
2
,

m2(u,d) ≥ 2
k + n

,

m3(u,d) ≥ 1√
kn
,

m4(u,d) ≥ 1
k + n− 1

.
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This implies that (u, 1
2 ,m1), (u, 2/(k + n),m2), (u, 1/

√
kn,m3) and

(u, 1/(k + n− 1),m4) are all respectively classifiers for (2).

3. Technical Lemmas

The technique used in (Kivinen et al., 1997) to prove linear lower
bounds for the Perceptron algorithm (or, in general, linear additive
on-line learning algorithms) is the construction of an example sequence
B = ((z′1, z′′1), . . . , (z′l, z′′l)) with pairwise constant inner products
such that for any given initial query vector (or weight vector as used in
(Kivinen et al., 1997)) and any linear classifier with the inner product
similarity, if the initial query vector and the linear classifier differ on the
sequence B, then the Perceptron algorithm makes one mistake at one
of the two examples in every pair of B. In other words, each pair of the
sequence B preserves the classification difference of the linear classifier
and the initial query vector for the Perceptron algorithm when the
examples in B are used to update the query vector. It was shown in
(Kivinen et al., 1997) that row vectors of Hadamard matrices can be
used to construct the required example sequence B. We will borrow the
above technique from (Kivinen et al., 1997) to prove linear lower bounds
for Rocchio’s similarity-based relevance feedback algorithm. However,
one must note that when a similarity (for example, the Jaccard coef-
ficient similarity) other than the inner product similarity is used, the
pairs of the sequence B as used in (Kivinen et al., 1997) may not still
preserve the classification difference of the target classifier (which may
not necessarily be linear) and the initial query vector. The rotation
invariant concept (Kivinen et al., 1997) is in general not applicable to
learning algorithms with a non-zero initial query vector, nor applica-
ble to non-rotation variants of the linear additive learning algorithms.
Therefore, we need to design new methods for constructing example
sequences that are applicable to Rocchio’s similarity-based relevance
feedback algorithm with arbitrary initial query vector and any of the
four similarities defined in section 2.

In the following we extend Definition 7 given in (Kivinen et al., 1997)
to deal with any similarity.

DEFINITION 5. Let the sequence B = ((z′1, z′′1), . . . , (z′l, z′′l)), where
z′t and z′′t are in {0, 1}n for all t. Let q1 ∈ Rn be a query vector, m a
similarity, and (u, ψ,m) a classifier. Define qt = αt0q1 +

∑t−1
j=1 αtjxj,

for t = 1, . . . , l, where xj ∈ {z′j , z′′j} and αtj ∈ R. We say that the
query vector qt and the classifier (u, ψ,m) differ on the sequence B
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with respect to m if either

m(qt, z′t) ≤ m(qt, z′′t) and m(u, z′t) > ψ > m(u, z′′t),
m(qt, z′t) ≥ m(qt, z′′t) and m(u, z′t) < ψ < m(u, z′′t).

We now prove a weaker version of Lemma 8 in (Kivinen et al., 1997)
in which only the initial query vector (or weight vector in their term)
is required to differ from the target linear classifier on the example
sequence, whereas we require that all the query vectors (the initial
one and the updated ones) differ from the target classifier which in
general may not be linear. We do not use the pairwise constant inner
product property, because we may not have such a property for other
similarities.

LEMMA 6. Let m from Rn×Rn to R+ be a similarity and let q1 ∈ Rn
be the initial query vector. Let the sequence

B = ((z′1, z′′1), . . . , (z′l, z′′l)),

where z′t and z′′t are in {0, 1}n for all t. For any classifier (u, ψ,m)
over the domain {0, 1}n, if qt, which is as defined in Definition 3, and
(u, ψ,m) differ on B with respect to m for t = 1, . . . , l, then Rocchio’s
similarity-based relevance feedback algorithm makes at least l mistakes
for learning the classifier (u, ψ,m).

Proof. Let A be Rocchio’s similarity-based relevance feedback algo-
rithm for learning (u, ψ,m). Consider the trial sequence

S = ((x1, y1), . . . , (xl, yl)),

in which xt ∈ {z′t, z′′t }, and yt is the classification value of xt determined
by the unknown target classifier (u, ψ,m) for t = 1, . . . , l. In other
words, yt = 1 if (u, ψ,m) classifies xt as relevant or yt = 0 otherwise.
At any step t with 1 ≤ t ≤ l, the hypothesis of the algorithm A is
(qt, ψt,m) with

qt = αt0q1 +
t−1∑
j=1

αtjxj

according to expression (1) of Definition 3. By the assumption, qt and
(u, ψ,m) differ on the sequence B with respect to m. That is, we
have either m(qt, z′t) ≤ m(qt, z′′t) and m(u, z′t) > ψ > m(u, z′′t),
or m(qt, z′t) ≥ m(qt, z′′t) and m(u, z′t) < ψ < m(u, z′′t). In the first
case, if ψt ≤ m(qt, z′t), the adversary chooses xt = z′′t . In this case,
yt = 0, i.e., the target classifier classifies xt = z′′t as irrelevant, but
the hypothesis issued by A classifies it as relevant, thus A makes a
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mistake. If ψt > m(qt, z′t), the adversary chooses xt = z′t. In such a
case, yt = 1, i.e., the target classifier classifies xt = z′t as relevant,
but the hypothesis issued by A classifies it as irrelevant, thus again
A makes a mistake. In the second case of m(qt, z′t) ≥ m(qt, z′′t) and
m(u, z′t) < ψ < m(u, z′′t), with the same manner we can show that
the learning algorithm A makes a mistake at either z′t or z′′t . Therefore,
A makes l mistakes on the trial sequence S. This means that A makes
at least l mistakes for learning the unknown target classifier (u, ψ,m).
2

We now follow the approach in (Kivinen et al., 1997) to construct
example sequences from row vectors of Hadamard matrices. Such se-
quences are essentially applicable to Rocchio’s similarity-based rele-
vance feedback algorithm when the zero initial vector is used, but not
when a non-zero initial vector is used. Let In be the identity matrix of
order n.

DEFINITION 7. A Hadamard matrix Hn of order n is an n × n
matrix with elements in {−1, 1}, such that

HT
nHn = HnHT

n = nIn. (3)

Hn is normalized if the first row and the first column consist of ones
only.

The above (2) implies that any two distinct rows (or columns) of a
Hn are orthogonal. Normalized Hadamard matrices can be constructed
as follows. Let H1 = (1). For any n = 2d with d ≥ 0, define

H2n =
(
Hn Hn

Hn −Hn

)
. (4)

Two examples of Hadamard matrices are given as follows.

H4 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 .

H8 =



1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1


.
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Some Formal Analysis of Rocchio’s Algorithm 13

The following property follows from (3) and (4).

PROPOSITION 8. For n = 2d with d > 0, let ht be the t-th row of the
normalized Hadamard matrix Hn for t = 1, . . . , n, we have

m1(hi, ht) = 0, for 1 ≤ i < t ≤ n, (5)
m1(hi, hi) = n, for 1 ≤ i ≤ n, (6)

n∑
j=1

h1j = n, and
n∑
j=1

hij = 0 for 1 < i ≤ n. (7)

DEFINITION 9. Let n = 2d + k − 1 for some positive integers d and
k. For t = 1, . . . , 2d, let ht be the t-th row of the normalized Hadamard
matrix H2d. We define BH to be the sequence ((z′1, z

′′
1), . . . , (z′

2d
, z′′

2d
)),

where

z′t = ((ht,1 + 1)/2, . . . , (ht,2d + 1)/2, 0, . . . , 0),

z′′t = ((−ht,1 + 1)/2, . . . , (−ht,2d + 1)/2, 0, . . . , 0)

PROPOSITION 10. Let n = 2d + k − 1 for some positive integers d
and k and let BH = ((z′1, z

′′
1), . . . , (z′

2d
, z′′

2d
)) be the sequence as defined

in Definition 9. For any i and j with 1 ≤ i, j ≤ 2d, we have

(a) m1(z′1, z′1) = 2d; m1(z′′1, z′′1) = 0;
m1(z′i, z′i) = m1(z′′i, z′′i) = 2d−1, if 1 < i ≤ 2d.

(b) m1(z′1, z′j) = m1(z′1, z′′j) = 2d−1;

m1(z′′1, z′j) = m1(z′′1, z′′j) = 0, if 1 < j ≤ 2d.
(c) m1(z′i, z′j) = m1(z′i, z′′j) = m1(z′′i, z′j)

= m1(z′′i, z′′j) = 2d−2, if 1 < i < j ≤ 2d.
Proof. We only prove (a), because (b) and (c) can be coped with

similarly. By Proposition 8,

m1(z′i, z′i) =
1
4

2d∑
s=1

(his + 1)2 =
1
4

(
2d∑
s=1

h2
is + 2

2d∑
s=1

his +
2d∑
s=1

1)

=
1
4

(2d + 2
2d∑
s=1

his + 2d) =
1
4

(2d+1 + 2
2d∑
s=1

his).

If i = 1, then
∑2d

s=1 his = 2d, hence m(z′1, z′1) = 2d. If i 6= 1, then∑2d

s=1 his = 0, hence m1(z′i, z′i) = 2d−1. Similarly,

m1(z′′i, z′′i) =
1
4

2d∑
s=1

(−his + 1)2 =
1
4

(
2d∑
s=1

h2
is − 2

2d∑
s=1

his +
2d∑
s=1

1)
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14 Z. Chen and B. Zhu

=
1
4

(2d − 2
2d∑
s=1

his + 2d) =
1
4

(2d+1 − 2
2d∑
s=1

his).

If i = 1, then
∑2d

s=1 his = 2d, hence m1(z′′1, z′′1) = 0. If i 6= 1, then∑2d

s=1 his = 0, hence m1(z′′i, z′′i) = 2d−1. 2

We now introduce a new method for constructing example sequences
that are applicable to Rocchio’s similarity-based relevance feedback
algorithm with any of the four similarities and an arbitrary initial query
vector. We expand a Hadamard matrix by adding rows and columns
with zeroes, and exchange rows and columns of the expanded matrix
according to the initial query vector. The new method is given in the
proof of Proposition 11.

PROPOSITION 11. Given any n = 2d + k − 1 with positive integers
d and k, for any query vector q ∈ {0, 1}n, there is a sequence D(q) =
((v′1,v

′′
1), . . . , (v′

2d−1 ,v′′2d−1)) such that v′t and v′′t are in {0, 1}n for
t = 1, . . . , 2d−1, and the sequence satisfies all the three properties given
in Proposition 10 with each occurrence of 2d replaced by 2d−1 and
each occurrence of z replaced by v, respectively. Furthermore, we have
m1(q,v′1) = 0 if q has at least 2d−1 zero components or m1(q,v′1) =
2d−1 otherwise; and

m1(q,v′i) = 0, for i 6= 1;
m1(q,v′′i) = 0, for all i.

Proof. Given any vector q = (q1, . . . , qn) ∈ {0, 1}n with n = 2d+k−1
for positive integers d and k, we have

2d−1 =
n− k + 1

2
≤ n

2
.

This means that we can choose 2d−1 components of q, denoted by
qi1 , . . . , qi2d−1

, such that they are either all one or all zero. Define the
n× n matrix Cn as follows.

Cn =

(
H2d−1 02d−1×(n−2d−1)

0(n−2d−1)×2d−1 0(n−2d−1)×(n−2d−1)

)
,

where H2d−1 is the 2d−1 × 2d−1 Hadamard matrix. We move the first
2d−1 rows of Cn to the rows i1, . . . , i2d−1 , respectively. This process
can be achieved through a sequence of exchanges of two rows. In other
words, there is an n× n transformation matrix A such that ACn does
the work and AAT = nIn. We now move the first 2d−1 columns of ACn
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Some Formal Analysis of Rocchio’s Algorithm 15

to the columns i1, . . . , i2d−1 , respectively. Similarly, this process can be
achieved through a sequence of exchanges of two columns. Moreover,
ACnA

T does the work. Now, for any j with 1 ≤ j ≤ 2d−1, let dij =
(x1, . . . , xn) denote the ij-th row of ACnAT . Then, for 1 ≤ s ≤ 2d−1, the
is-th component of dij denoted by xis is in fact the s-th component
of the j-th row of the Hadamard matrix H2d−1 . In other words, dij
has all zero components except these 2d−1 components xis forming a
subvector that is the same as the j-th row of H2d−1 . We finally construct
v′j from dij by changing all its −1 components to zero and keeping all
its other components. We also construct v′′j from dij by changing all its
−1 components to one and all its one components to zero, and keeping
all the other components. In other words, v′j and v′′j are constructed as
follows:

− We first construct z′j and z′′j from the 2d−1×2d−1 Hadamard matrix
H2d−1 as in Definition 10.

− We construct v′j by adding n−2d−1 zero components to the end of
z′j and then moving the first 2d−1 components of z′j to i1, . . . , i2d−1

through exchanging columns.

− Similarly, we construct v′′j by adding n− 2d−1 zero components to
the end of z′′j and then moving the first 2d−1 components of z′′j to
i1, . . . , i2d−1 through exchanging columns.

Hence, Proposition 11 follows from Proposition 8 in a manner similar
to Proposition 10. 2

In the following two lemmas we show that the sequence BH enables
the query vector qt to preserve m1 similarity for any pair of z′t and
z′′t in BH when the zero initial query vector is used, and the sequence
D(q1) enables the query vector qt to preserve m1 similarity for any
pair of v′t and v′′t in D(q1) when the arbitrary initial query vector q1

is used.

LEMMA 12. For n = 2d +k− 1 with positive integers k and d, let BH
be the sequence defined in Definition 9. Let

qt = αt0q1 +
t−1∑
j=1

αtjxj

for t = 1, . . . , 2d, where the initial query vector q1 = 0, αtj ∈ R, and
xj ∈ {z′j , z′′j}. Then, m1(qt, z′t) = m1(qt, z′′t) for 1 ≤ t ≤ 2d.
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16 Z. Chen and B. Zhu

Proof. For any 1 ≤ j < t ≤ 2d, for xj ∈ {z′j , z′′j}, by Proposition 10
(b) and (c) we have m1(xj , z′t) = m1(xj , z′′t). Hence, for any 1 < t ≤
2d,

m1(qt, z′t) = m1(
t−1∑
j=1

αtjxj , z
′
t) =

t−1∑
j=1

αtjm1(xj , z′t)

m1(qt, z′′t) = m1(
t−1∑
j=1

αtjxj , z
′′
t) =

t−1∑
j=1

αtjm1(xj , z′′t)

=
t−1∑
j=1

αtjm1(xj , z′t)

For t = 1, we have m1(q1, z′1) = m1(q1, z′′1) = 0, since q1 = 0. Thus,
for any 1 ≤ t ≤ 2d, m1(qt, z′t) = m1(qt, z′′t). 2

LEMMA 13. Let n = 2d + k − 1 with positive integers k and d. Given
any initial query vector q1 ∈ {0, 1}n, let D(q1) be the sequence given
in Proposition 11, and

qt = αt0q1 +
t−1∑
j=1

αtjxj

for t = 1, . . . , 2d−1, where αtj ∈ R and xj ∈ {v′j ,v′′j}. Then, m1(qt,v′t) =
m1(qt,v′′t) for 2 ≤ t ≤ 2d−1. Moreover, m1(q1,v′1) = m1(q1,v′′1) if
q1 has at least 2d−1 zero components.

Proof. For any 1 ≤ j < t ≤ 2d−1, for xj ∈ {v′j ,v′′j}, by Proposition
11, properties similar to (b) and (c) of Proposition 10 hold for the
sequence D(q1). Hence, we have m1(xj ,v′t) = m1(xj ,v′′t). Thus, for
any 2 ≤ t ≤ 2d−1, we have by Proposition 11

m1(qt,v′t) = m1(αt0q1 +
t−1∑
j=1

αtjxj ,v
′
t)

= αt0m1(q1,v′t) +m1(
t−1∑
j=1

αtjxj ,v
′
t)

=
t−1∑
j=1

αtjm1(xj ,v′t)

m1(qt,v′′t) = m1(αt0q1 +
t−1∑
j=1

αtjxj ,v
′′
t)

= αt0m1(q1,v′′t) +m1(
t−1∑
j=1

αtjxj ,v
′′
t)
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Some Formal Analysis of Rocchio’s Algorithm 17

=
t−1∑
j=1

αtjm1(xj ,v′′t) =
t−1∑
j=1

αtjm1(xj ,v′t)

Thus, for any 2 ≤ t ≤ 2d−1, m1(qt,v′t) = m1(qt,v′′t). If q1 has at
least 2d−1 zero components, then again by Proposition 11 we have
m1(q1,v′1) = m1(q1,v′′1) = 0. 2

The following lemma allows us to choose examples in some subdo-
main to force a learning algorithm to make mistakes.

LEMMA 14. Given n > k − 1 ≥ 0, there is an adversary strategy that
forces any adaptive supervised learning algorithm to make at least k−1
mistakes for learning the class of disjunctions of at most k−1 variables
from {xi1 , . . . , xik−1

} over the binary vector space {0, 1}n. Moreover,
the adversary chooses examples in the vector space with nonzero values
only for variables in {xi1 , . . . , xik−1

}.
Proof. For any given adaptive supervised learning algorithm, at any

step t for 1 ≤ t ≤ k−1, the adversary uses the example xt to defeat the
learning algorithm as follows, where xt has all zero components except
that its it-th components is one: If the learning algorithm classifies xt
as relevant, then the adversary classifies it as irrelevant, otherwise the
adversary classifies it as relevant. 2

One may easily note that the strategy we used above to prove
Lemma 14 can be generalized to prove the following fact: Any given
adaptive supervised learning algorithm makes at least n mistakes to
learn the class of disjunctions of at most n variables from {x1, . . . , xn}
over the binary vector space {0, 1}n, because the algorithm can be
forced to make one mistake to determine whether or not each of the
n variables is in the target disjunction of at most n variables. Unfor-
tunately, one must note that this kind of strategy cannot be used to
prove that an adaptive supervised learning algorithm (such as Rocchio’s
algorithm) makes at least n mistakes for learning a disjunction of at
most k variable when k is less than n, especially, when k is a small
constant. That is the reason why we must design sophisticated methods
in this paper to prove linear lower bounds for Rocchio’s algorithm for
learning disjunctions of at most k variables, where k can be any value
between 1 and n. For example, k can be 1, 3, logn, or n

10 . Disjunctions
of a small number of variables are the common ways for users to specify
their information needs. For example, in the real-world of web search,
the number of keywords used in a query session is usually very small.
The problem of learning disjunctions of a small number of variables
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18 Z. Chen and B. Zhu

has been studied by many researchers (see, for example, the work in
(Littlestone, 1988)).

Careful readers may have observed that we do not rule out the choice
of d = 0 in the decomposition of n = 2d + k − 1 from Proposition 8 to
Lemma 13 in this section. When d = 0, we have k = n, hence Lemma
14 can be simply used to prove linear lower bounds for any adaptive
supervised learning algorithm (such as Rocchio’s algorithm) to learn
disjunctions of at most k = n variables over the binary vector space.
However, as we pointed out in the above paragraph, for any k such that
1 ≤ k < n, we must reply on the choice of d 6= 0 in the decomposition
of n = 2d + k− 1 to prove our linear lower bounds. For example, in the
case of k = 1, with the choice of d 6= 0 such that n = 2d we can prove
that Rocchio’s algorithm makes at least n = 2d mistakes for learning
disjunctions of one variable when the zero initial query vector is used.
As we will show in the next section, the proof is accomplished through
the construction of 2d pairs of examples from row vectors of Hadamard
matrix H2d . Once again, the strategy of Lemma 14 or the like is not
applicable at all to the case of learning disjunctions of one variable, nor
to the case of learning disjunctions of a small number of variables.

4. Linear Lower Bounds

We are now ready to prove linear lower bounds for Rocchio’s similarity-
based relevance feedback algorithm when any of the four typical sim-
ilarities is used. Throughout this section, we let n = 2d + k − 1 with
two positive integers d and k, and let u be the vector in {0, 1}n such
that its first component is one, its last k− 1 components have all k− 1
or fewer ones (however, these one-components are not specified at this
point), and all other components are zero. Given any query vector
q1 ∈ {0, 1}n, let qi1 , . . . , qi2d−1

be its 2d−1 components such that they
are either all zero or all one. Define u(q1) to be the vector in {0, 1}n
such that its i1-th component is one, its ij-th components are all zero
for j = 2, . . . , 2d−1, and among the remaining n − 2d−1 components
there are at most k − 1 one components (again, setting which of these
components to be one is not determined at this point). Note that both
u and u(q1) define respectively a monotone disjunction of at most k
relevant features. We use E(u) and E(u(q1)) to denote the monotone
disjunctions represented by u and u(q1), respectively.

LEMMA 15. Let BH = ((z′1, z′′1), . . . , (z′2d , z′′2d) be the example se-
quence defined in Definition 9. For any similarity mi, 1 ≤ i ≤ 4, there
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Some Formal Analysis of Rocchio’s Algorithm 19

is a ψ ∈ R such that the query vector

qt = αt0q1 +
t−1∑
j=1

αtjxj

and the classifier (u, ψ,mi) differ on BH with respect to mi for t =
1, . . . , 2d, where αtj are arbitrary values in R, and xj ∈ {z′j , z′′j}.

Proof. As noted in section 2, (u, 1/2,m1), (u, 2/(k + n),m2), (u,
1/
√
kn, m3), and (u, 1/(k + n − 1),m4) are respectively classifiers for

the monotone disjunction E(u) of at most k relevant features. It follows
from Definition 9 that the first component of z′t is one, the first of z′′t
is zero, and the last k components of each of both z′t and z′′t are all
zero for 1 ≤ t ≤ 2d. Hence, for any 1 ≤ t ≤ 2d, we have by Proposition
10

m1(u, z′t) = 1 >
1
2
, (8)

m2(u, z′t) =
2m1(u, z′t)

m1(u,u) +m1(z′t, z′t)
≥ 2
k + 2d−1

>
2

k + n
, (9)

m3(u, z′t) =
m1(u, z′t)√

m1(u,u)
√
m1(z′t, z′t)

≥ 1√
k2d−1

>
1√
kn
, (10)

m4(u, z′t) =
m1(u, z′t)

m1(u,u) +m1(z′t, z′t)−m1(u, z′t)

≥ 1
k + 2d−1 − 1

>
1

k + n− 1
, and (11)

mi(u, z′′t) = 0, for 1 ≤ i ≤ 4. (12)

By Lemma 12 and the above (8) and (12), for any 1 ≤ t ≤ 2d, qt and
the classifier (u, 1/2,m1) differ on the sequence BH with respect to m1.

For the similarity m2, for any t ≥ 2 we have by Proposition 10 and
Lemma 12

m2(qt, z′t) =
2m1(qt, z′t)

m1(qt,qt) +m1(z′t, z′t)
=

2m1(qt, z′t)
m1(qt,qt) + 2d−1

,

m2(qt, z′′t) =
2m1(qt, z′′t)

m1(qt,qt) +m1(z′′t, z′′t)
=

2m1(qt, z′t)
m1(qt,qt) + 2d−1

= m2(qt, z′t),

For t = 1, we have m1(q1, z′1) = m1(0, z′1) = 0, hence m2(q1, z′1) = 0.
Because z′′1 = q1 = 0, we also have m2(q1, z′′1) = 0 according to the
definition. Thus, for 1 ≤ t ≤ 2d, we have m2(qt, z′t) = m2(qt, z′′t),
hence by (9) and (12) the query vector qt and the classifier (u, 2/(k +
n),m2) differ on the sequence BH with respect to m2.
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20 Z. Chen and B. Zhu

For the similarity m3, for any t ≥ 2 we have by Proposition 10 and
Lemma 12

m3(qt, z′t) =
m1(qt, z′t)√

m1(qt,qt)
√
m1(z′t, z′t)

=
m1(qt, z′t)√

m1(qt,qt)
√

2d−1
,

m3(qt, z′′t) =
m1(qt, z′′t)√

m1(qt,qt)
√
m1(z′′t, z′′t)

=
m1(qt, z′t)√

m1(qt,qt)
√

2d−1

= m3(qt, z′t),

For t = 1, as for the similarity m1, m3(q1, z′1) = 0. Because z′′1 =
q1 = 0, we also have m3(q1, z′′1) = 0 according to the definition. Thus,
for 1 ≤ t ≤ 2d, we have m3(qt, z′t) = m3(qt, z′′t), hence by (10) and
(12) the query vector qt and the classifier (u, 1/

√
kn,m3) differ on the

sequence BH with respect to m3.
Finally, for the similarity m4, for any t ≥ 2 we have by Proposition

10 and Lemma 12

m4(qt, z′t) =
m1(qt, z′t)

m1(qt,qt) +m1(z′t, z′t)−m1(qt, z′t)

=
m1(qt, z′t)

m1(qt,qt) + 2d−1 −m1(qt, z′t)
,

m4(qt, z′′t) =
m1(qt, z′′t)

m1(qt,qt) +m1(z′′t, z′′t)−m1(qt, z′′t)

=
m1(qt, z′t)

m1(qt,qt) + 2d−1 −m1(qt, z′t)
= m4(qt, z′t),

For t = 1, as for m2 and m3 we have m4(q1, z′1) = m4(q1, z′′1) = 0.
Thus, for 1 ≤ t ≤ 2d, we have m4(qt, z′t) = m4(qt, z′′t), hence by (11)
and (12) the query vector qt and the classifier (u, 1/(k + n − 1),m4)
differ on the sequence BH with respect to m4. 2

LEMMA 16. Given any initial query vector q1 ∈ {0, 1}n, let D(q1) =
((v′1,v′′1), . . . , (v′2d−1 ,v′′2d−1) be the example sequence defined in Propo-
sition 11. For any similarity mi, 1 ≤ i ≤ 4, there is a ψ ∈ R such that
the query vector

qt = αt0q1 +
t−1∑
j=1

αtjxj

and the classifier (u, ψ,mi) differ on D(q1) with respect to mi for t =
2, . . . , 2d−1, where αtj are arbitrary values in R, and xj ∈ {v′j ,v′′j}.
Moreover, if q1 has at least 2d−1 zero components, then q1 and (u, ψ,mi)
differ with respect to mi, too.
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Proof. The proof is the same as what we just did for Lemma 15, but
we need to replace u by u(q1), z by v, and 2d by 2d−1, respectively. We
also need to use Proposition 11 and Lemma 13 to complete our proof.
2

We now prove the following main results in this paper.

THEOREM 17. Let n = 2d + k − 1 for some positive integers d
and k. For any given similarity mi with i ∈ {1, 2, 3, 4}, Rocchio’s
similarity-based relevance feedback algorithm makes at least n mistakes
for learning the class of monotone disjunctions of at most k relevant
features over the binary vector space {0, 1}n, when the initial query
vector q1 = 0 and the similarity mi are used.

Proof. Let A be the Rocchio’s similarity-based relevance feedback
algorithm with the similarity mi and the initial query vector q1 = 0.
We analyze the number of mistakes that A must make in learning
E(u), the disjunction of at most k relevant features represented by u.
As we noted before, there is a ψ ∈ R such that the classifier (u, ψ,mi)
classifies E(u), i.e., it is logically equivalent to E(u). By Lemma 15, the
classifier (u, ψ,mi) and the query vector qt with 1 ≤ t ≤ 2d differ on
the example sequence BH = ((z′1, z′′1), . . . , (z′2d , z′′2d) with respect to
the similarity mi. Thus, by Lemma 6, the adversary can use examples
from BH to force the algorithm A to make 2d mistakes. Note that the
last k − 1 components of all examples in BH are zero and the last
k− 1 components of u are unspecified but may have at most k− 1 one
components. Hence, by Lemma 14, the adversary can further force A
to make at least k − 1 mistakes to learn the values of the last k − 1
components of u. Putting all together, A makes at least 2d + k− 1 = n
mistakes for learning E(u). 2

THEOREM 18. Let n = 2d + k− 1 for some positive integers d and k.
For any given similarity mi with i ∈ {1, 2, 3, 4}, Rocchio’s similarity-
based relevance feedback algorithm makes at least (n+k−3)/2 mistakes
for learning the class of monotone disjunctions of at most k relevant
features over the binary vector space {0, 1}n, when an arbitrary initial
query vector q1 ∈ {0, 1}n and the similarity mi are used. Moreover, if
the initial query vector q1 has at least 2d−1 zero components, then the
algorithm makes at least (n+ k − 1)/2 mistakes.

Proof. Let A be the Rocchio’s similarity-based relevance feedback
algorithm with the similarity mi and the arbitrary initial query vector
q1 ∈ {0, 1}n. We analyze the number of mistakes that A must make
in learning E(u(q1)), the disjunction of at most k relevant features
represented by u(q1). As we noted before, there is a ψ ∈ R such that the
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classifier (u(q1), ψ,mi) classifies E(u(q1)), i.e., it is logically equivalent
to E(u(q1)). By Lemma 16, the classifier (u(q1), ψ,mi) and the query
vector qt with 2 ≤ t ≤ 2d differ on the example sequence D(q1) =
((v′1,v′′1), . . . , (v′2d−1 ,v′′2d−1) with respect to the similarity mi. If q1

has at least 2d−1 zero components, then the classifier and q1 also differ
with respect to mi. Thus, by Lemma 6, the adversary can use examples
from D(q1) to force the algorithm A to make 2d−1−1 mistakes, or 2d−1

mistakes if q1 has at least 2d−1 zero components. Note that there are
n − 2d−1 > k − 1 positions such that the components of all examples
in D(q1) at those positions are zero, and the components of u at those
components are unspecified but may have at most k−1 one components.
Hence, by Lemma 14, the adversary can further force A to make at
least k−1 mistakes to learn the values of the components of u at those
n−2d−1 positions. Putting all together, A makes at least 2d−1 +k−2 =
(n+k−3)/2 mistakes for learning E(u); and if q1 has at least 2d−1 zero
components, A makes at least 2d−1 +k− 1 = (n+k− 1)/2 mistakes. 2

The lower bounds obtained in Theorems 17 and 18 are indepen-
dent of the choices of the threshold and coefficients that Rocchio’s
similarity-based relevance feedback algorithm may use in updating its
query vector and in making its classification.

5. Discussions

5.1. The Gradient Descent Procedure

As pointed out in (Wong et al., 1988), one primary concern in informa-
tion retrieval is to ensure that those documents more relevant to the
user information needs are ranked ahead of those less relevant ones.
This means that a ranking is acceptable if it can guarantee that less
preferred documents will not be listed in front of the more preferred
ones (such a ranking is called an acceptable ranking in (Wong et al.,
1988)). Let ≺ denote the user preference relation over the document
vector space. Wong, Yao and Bollmann designed a very nice gradient
descent procedure to compute the query vector q satisfying

d ≺ d′ =⇒ m1(q, b) > 0,

where b = d′− d is called the difference vector for documents d and d′.

Gradient Descent Procedure. The procedure is outlined as fol-
lows:

(i) Choose an initial query vector q0 and let k = 0.
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(ii) Let qk be the query vector in the k-th step. Identify the set of
difference vectors

Γ(qk) = {b = d′ − d|d ≺ d′, m1(q, b) ≤ 0}.

If Γ(qk) = ∅ (i.e., qk is a solution vector), terminate the procedure.

(iii) Let
qk+1 = qk +

∑
b∈Γ(qk)

b.

(iv) Let k = k + 1; go back to step (ii).

The above gradient descent procedure is a very nice adaptive al-
gorithm for computing the query vector. However, it must know the
user preference relation ≺ ahead of the time and perform exhaustive
search to identify the set Γ(qk) at step (ii). The exhaustive search is
of exponential time complexity. In practice and in a machine learning
setting, the user preference relation ≺ is the unknown target that must
be learned by an information retrieval system. In this sense, the gradi-
ent descent procedure is not an adaptive learning process. On the other
hand, Rocchio’s similarity-based relevance feedback algorithm formally
defined in section 2 is an adaptive learning algorithm without a priori
knowledge of the user preference. The updating process for the query
vector at each iteration is of linear time complexity.

5.2. Learning Other Document Classes

In this paper, we study the learning of a document class represented
by a monotone disjunction of index features (or terms) with Rocchio’s
algorithm. In fact, Rocchio’s algorithm can be easily used to learn other
target document classes such as the class represented by a conjunction
of disjunctions of index features (or terms). Conjunctions of disjunc-
tions are the most common forms for search queries as constructed
by humans. We give several examples here. From those examples we
know that the lower bounds proved in previous section on the learning
performance of Rocchio’s algorithms hold for those learning cases.

Example 1 (Learning Arbitrary Disjunctions). An arbitrary
disjunction is a general case of monotone disjunctions and may have
negated index features in it. A negated index feature in a disjunction
means that the feature should not occur in the desired documents. Let

g(x1, . . . , xn) = xi1 ∨ · · · ∨ xis ∨ x̄j1 ∨ · · · ∨ x̄jt
be an arbitrary disjunction. Let z = (z1, . . . , zn) be a document vector
that makes g false, i.e., g(z1, . . . , zn) = 0. Then, we must have zi1 =
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· · · = zis = 0 and zj1 = · · · = zjt = 1. We can use z to transform g into
a monotone disjunction

yf(x1, . . . , xn) = g(x1 +z1, . . . , xn+zn) = xi1 ∨· · ·∨xis ∨xj1 ∨· · ·∨xjt .

Please also note that the same z can be used to transform f back into
g in the following manner

g(x1, . . . , xn) = f(x1 + z1, . . . , xn + zn).

The above transformation methods tell us that g can be learned as
follows. First, use Rocchio’s algorithm with an initial query vector q
to learn g. When a document vector z = (z1, . . . , zn) is judged by the
user as irrelevant, then one can use this z to transform any obtained
document vector d = (d1, . . . , dn) into d+ z = (d1 + z1, . . . , dn + zn) to
continue the learning. With this kind of transformation, the algorithm
actually learns the function f . But as we observed before, f can be eas-
ily transformed into g with the document vector z. The above process
implies that learning an arbitrary disjunction with Rocchio’s algorithm
has the same performance as learning a monotone disjunction.

Example 2 (Learning Monotone Conjunctions). Let

g(x1, . . . , xn) = xi1 ∧ · · · ∧ xis

be a monotone conjunction, i.e., all index features occurred in g are
positive. The negation of g is a disjunction

ḡ(x1, . . . , xn) = x̄i1 ∨ · · · ∨ x̄is .

Note that the vector z = (1, . . . , 1) can be used to transform ḡ into a
monotone disjunction

f(x1, . . . , xn) = ḡ(x1 + z1, . . . , xn + zn) = xi1 ∨ · · · ∨ xis ,

and to transform f back into ḡ

ḡ(x1, . . . , xn) = f(x1 + z1, . . . , xn + zn).

Hence, to learn g we only need to learn its negation ḡ, and by example
1 this can be done with Rocchio’s algorithm.

Example 3 (Learning Arbitrary Conjunctions). Let

g(x1, . . . , xn) = xi1 ∧ · · · ∧ xis ∧ x̄j1 ∧ · · · ∧ x̄jt

be an arbitrary conjunction. The negation ḡ of g is

ḡ(x1, . . . , xn) = x̄i1 ∨ · · · ∨ x̄is ∨ xj1 ∨ · · · ∨ xjt
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which is an arbitrary disjunction. To learn g we only need to learn
its negation ḡ, and by Example 1 this can be done with Rocchio’s
algorithm.

Example 4 (Learning Disjunctions of Conjunctions). Let

G(x1, . . . , xn) = G1(x1, . . . , xn) ∨ · · · ∨Gs(x1, . . . , xn)

be a disjunction of conjunctions, Gi is a conjunction for 1 ≤ i ≤ s.
Using the virtual variable technique developed in (Maass and Warmuth,
1998), one can learn G as follows: Introduce one new input variable
(virtual variable) for each of the possible 3n conjunctions that can be
constructed from variables x1, . . . , xn. When the values of x1, . . . , xn are
known, then the value of each virtual variable is easy to be determined.
With the help of virtual variables, G is a monotone disjunction and thus
can be learned with Rocchio’s algorithm.

Example 5 (Learning Conjunctions of Disjunctions). Let

F (x1, . . . , xn) = F1(x1, . . . , xn) ∧ · · · ∧ Fs(x1, . . . , xn)

be a conjunction of disjunctions, Fi is a disjunction for 1 ≤ i ≤ s.
Because the negation of F is a disjunctions of conjunctions, as in
Example 4 the virtual variables technique developed in (Maass and
Warmuth, 1998) can be used to learn the negation of F and hence F
itself.

5.3. A Remark on the Optimal Criterion of Rocchio’s

Algorithm

According to (J.J. Rocchio, 1971; Salton, 1989), the construction of
an ideal query vector would target to maximize the average query-
document similarity for the relevant documents and at the same time
minimize the average of the query-document similarity for the irrelevant
documents. It is known in (J.J. Rocchio, 1971; Salton, 1989) that under
appropriate assumptions such an ideal query vector has the form

Qopt = k

{
1
R

∑
Rel

Di

|Di|
− 1
N −R

∑
Nonrel

Di

|Di|

}
,

where R and N − R are the assumed number of relevant and irrele-
vant documents, and the summations range over the sets of normalized
relevant and irrelevant documents, respectively. However, the optimal
query vector cannot be adopted in practice, because the sets of relevant
and irrelevant documents with respect to the queries are not known
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before an exhaustive search. Recall that the gradient descent procedure
in (Wong et al., 1988) has a similar problem. On the other hand, the
optimal query vector can be adaptively approached in the following
(see (Salton, 1989)):

Q(i+1) = Q(i) +
1
|R′|

∑
Di∈R′

Di −
1
|N ′|

∑
Di∈N ′

Di, or

Q(i+1) = Q(i) + α
∑
Di∈R′

Di − β
∑

Di∈N ′
Di,

where R′ is the set of documents judged by the user as relevant by the
end of iteration i, and N ′ is the set of documents judged as irrelevant. In
the above two approximation formulas, 1

|R′| ,
1
|N ′| , α and β are updating

factors (or coefficients). In our formalization of Rocchio’s algorithm
given in section 2, arbitrary updating factors are allowed. The lower
bounds we have proved are in fact independent of the choices of the
updating factors. That is, our lower bounds hold even if 1

|R′| and 1
|N ′|

are used as updating factors.

5.4. Counting Arguments

For any k with 1 ≤ k ≤ n, given any disjunction of k variables

Q = xi1 ∨ · · · ∨ xik ,

it is easy to know that there are 2n−k documents in the binary vector
space {0, 1}n that are irrelevant to Q, i.e., the vectors of those doc-
uments make Q false; and that there are 2n − 2n−k documents that
are relevant to Q, i.e., the vectors of those documents make Q true.
When k is small, say k = 3, 2n−3 is a huge value for a very large n.
That is, there are a huge number of documents that are irrelevant to Q.
One might ask whether or not this kind of observation helps us to find
some simple ways to prove linear lower bounds for Rocchio’s algorithm.
For example, an adversary could, in response to almost any formulated
query, produce some document which matches the query to some degree
but it not relevant. As a matter of fact, this sort of idea is in essence an
example of the decision tree technique developed in (Littlestone, 1988)
to prove lower bounds for general learning algorithms:

− In the decision tree, each inner node is labeled with a document
vector in the binary vector space {0, 1}n.

− There are two edges leaving each inner node, labeled “relevant”
and “irrelevant”, respectively.
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− Each leaf is labeled with a disjunction of at most k variables in
such a way that the disjunction at the leaf is consistent with all
the labels along the path leading from the root to the leaf ( the
number of inner nodes along this path is the depth of the leaf).

− Assume that the depth of every leaf of the decision tree is at least
t. Then, the mistake bound of any learning algorithm for learning
disjunctions of at most k variables is at least t. Readers can refer
(Littlestone, 1988) for the proof of this statement.

The decision tree technique is useful because it reduces the problem
of proving a lower bound for every learning algorithm to the problem
of constructing a single decision tree with the required depth. The
latter can usually be done through counting arguments to estimate the
depth of the decision tree. To our best knowledge, (Maass and Turán,
1994) is the best article to prove lower bounds for learning a threshold
gate, a general case of a disjunction of at most k variables. The article
presents several powerful counting arguments to estimate the depth
of decision tree for the class of threshold gates. Unfortunately, those
counting arguments do not help us to obtain linear lower bounds for
Rocchio’s algorithm. The reason is that there are not many monotone
disjunctions of at most k binary variables. One can easily find out that
the number of monotone disjunctions of at most k binary variables is

C(k) =
k∑
i=1

(
n
i

)
.

The least depth of the decision tree for the class of monotone disjunc-
tions of at most k binary variables is log2C(k). For example,

log2C(1) = log2 n = o(n),

log2C(2) = log2

n2 + n

2
= o(n),

log2C(n) = log2

n∑
i=1

(
n
i

)
= log2(2n − 1) < n,

log2C(k) < log2C(n) < n, for any k < n.

Therefore, counting arguments cannot yield linear lower bounds for
Rocchio’s algorithm when k is much less than n, especially when k is
a small constant. For example, when k = 1, the lower bound produced
by the counting argument is just log2 n. However, the non-counting
technique that we use is this paper can yield linear lower bounds for
Rocchio’s’ algorithm for any k with 1 ≤ k ≤ n, even if k = 1. Please
recall that disjunctions of a small number of variables are the common
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ways for users to specify their information needs. For example, in the
real-world of web search, the number of keywords used in a query
session is usually very small. The problem of learning disjunctions of a
small number of variables has been studied by many researchers (see,
for example, the work in (Littlestone, 1988)).

6. Conclusions and Open Problems

Rocchio’s similarity-based relevance feedback algorithm is one of the
most popular query reformation method in information retrieval and
has been used in various applications. It is essentially an adaptive
supervised learning algorithm from examples. However, there is little
rigorous analysis of its learning complexity. In this paper we prove
linear lower bounds for Rocchio’s similarity-based relevance feedback
algorithm when any of the four typical similarities listed in (Salton,
1989) is used. Because the linear lower bounds are proved with the worst
case analysis, they may not affect the algorithm’s effective applicability
to the real-world problems. The lower bounds help us understand the
nature of the algorithm well so that we may find new strategies to im-
prove the effectiveness of Rocchio’s algorithm or design new algorithms
for information retrieval. One possible way is to use the Winnow2
(Littlestone, 1988) algorithm as an alternative for the similarity-based
relevance feedback algorithm in applications of information retrieval.
For example, in our recent research on building real-time intelligent
web search engines (Chen et al., 2000; Chen and Meng, 2000), we used
a tailored version of Winnow2.

We list the following open problems for future research.
Problem 1. The lower bound in Theorem 18 holds for an arbitrary

initial query vector q1 ∈ {0, 1}n. Choosing a zero-one initial query
vector is a very common practice in applications. For example, in web
search an initial zero-one query vector may be constructed with the
query words submitted by the user. When the initial query vector q1 is
chosen from Rn, we can prove the same lower bound with the similar
but tedious approach for the similarities m1,m2, and m3. But we do
not know whether the same lower bound still holds for m4.

Problem 2. In this paper we have proved linear lower bounds for
Rocchio’s similarity-based relevance feedback algorithm in the binary
vector space. We do not know whether our approach can be extended
to study the learning complexity of Rocchio’s algorithm in arbitrary
discretized vector space.

Problem 3. The linear lower bounds we have established for Roc-
chio’s algorithm in the binary vector is based on the worst-case anal-
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ysis. It would be very interesting to analyze the average-case learning
complexity of Rocchio’s algorithm. We feel that this problem is very
challenging, because any nontrivial average case analysis will reply
on realistic models of document distribution, index term distribution,
and the user preference distributions as well. We feel that it is not
easy to model those distributions nor to analyze the complexity un-
der those distributions. The probabilistic corpus model proposed in
(Papadimitrious et al., 2000) may shed some light on this problem.

Problem 4. Although it follows from our linear lower bounds that
the Winnow2 algorithm (Littlestone, 1988) has better worst case learn-
ing complexity, the authors do not know any provable theoretical anal-
ysis of the average learning complexity about the Winnow2 algorithm,
nor about the similarity-base relevance feedback algorithm. More pre-
cisely, we do not know whether the Winnow2 algorithm performs bet-
ter in average than the Rocchio’s similarity-based relevance feedback
algorithm.
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