On Learning Discretized Geometric Concepts

— Extended Abstract —

Nader H. Bshouty*
Abstract

We present a polynomial time online learning al-
gorithm that learns any discretized geometric concept
generated from any number of halfspaces with any
number of known (to the learner) slopes in a con-
stant dimensional space. In particular, our algorithm
learns (from equivalence queries only) unions of dis-
cretized axis-parallel rectangles in a constant dimen-
stonal space in polynomial time. The algorithm also
runs in polynomial time in 1 if the teacher lies on [
counterexamples.

We then show a PAC-learning algorithm for the
above discretized geometric concept when the example
oracle lies on the labels of the examples with a fized

probability p < % — % that runs in polynomial time
also with r.

We use these methods, as well as a bounded ver-
sion of the finite injury priority method, to construct
algorithms for learning several classes of rectangles.
In particular we design efficient algorithms for learn-
ing several classes of unions of discretized axis-parallel
rectangles in either arbitrary dimensional spaces or
constant dimensional spaces.

*Department of Computer Science, The University of
Calgary, Calgary, Alberta, Canada T2N 1N4. Email:
bshouty@cpsc.ucalgary.ca

TDepartment of Computer Science, Boston University,
Boston, MA 02215. Email: zchen@cs.bu.edu. The author was
supported by NSF grant CCR91-03055 and by a Boston Uni-
versity Presidential Graduate Fellowship.

IDepartment of Computer Science, Boston University,
Boston, MA 02215. Email: homer@cs.bu.edu. The author was
supported by NSF grant CCR91-03055.

Zhixiang Chen!

Steve Homer!

1 Introduction

A discretized geometric concept G is a set of inte-
ger points G C N¢ where N, = {0,...,n —1}. In
this paper we consider discretized geometric concepts
whose boundaries lie on hyperplanes.

The first learning model we consider in this paper
is online learning [A88,L88], i.e., exact learning from
equivalence queries only, and it is different from the
PAC-learning in that the final output of the learning
algorithm must be exactly the concept being learned
rather than some approximation of the concept. The
equivalence oracle receives from the learner a hypoth-
esis H C V¢ and returns either “YES” indicating that
H is (exactly) equal to the target concept G or “NO”
with a counterexample a € HAG. It is known from
[A88] that online learning implies PAC-learning under
any distribution. Online learning with ¢ counterexam-
ples also guarantees PAC-learning that learns exactly
the target concept after ¢t counterexamples. Blum in
[B90] gave some evidence that online learning is harder
than PAC-learning.

We also consider PAC-learning under any distribu-
tion when the example oracle lies with a fixed proba-
bility p. Obviously, if p = 1/2 then the example oracle
gives random values for each point and no learning is
possible. We show that PAC-learning is possible if p
is polynomially close to 1/2.

The discretized geometric concepts considered in
this paper are those that have their boundaries
on hyperplanes Z?:l a; ;T; bij ¢ = 1,...,m.
The possible slopes of those hyperplanes, i.e., a; =
(@i1,---,0ai4), are known to the learner, but the same
slope with different shifts b can be used for many hy-
perplanes in G. To formalize this, let S C Z¢ where
Z is the set of integer numbers. Let z = ||S|| denote
the size of S (the sum of the logarithm of the absolute
values of the integers in S). Let G be a geometric con-
cept with its boundary on m hyperplanes in N'¢ with
slopes from S. The main results of this paper are: For
a constant dimension d,

1. The geometric concept G is online learnable in

poly(l,m, z,logn) time and queries if the equiva-
lence oracle lies on | examples.

2. The geometric concept G is PAC-learnable in
poly(r,m, z,logn) time when the example oracle
lies on the labels of the examples with a fixed
probability p < 1/2 —1/r.

3. Polynomial time algorithms exist for learning (a)
unions of rectangles®, (b) unions of k > 3 rect-
angles whose projections at some dimension are
pairwise-disjoint by unions of (k — 1)(logn + 1)
rectangles, and (c) unions of two disjoint rectan-
gles by unions of two rectangles. Results of (b)
and (c) hold for arbitrary dimensional spaces.

There are two substantially different algorithms for
result 3(a). One is as a consequence of result 1 by
choosing the slopes S = {e;} as the standard basis
in the algorithm for result 1. Another algorithm that
learns unions of k rectangles by unions of O((klogn)?)
rectangles, as well as algorithms for results 3(b) and
3(c), are designed with a new and very different tech-
nique, the bounded injury priority method, which was
developed specifically for learning rectangles. By mak-
ing the analogy with priority arguments from recur-
sion theory explicit in our algorithm designs for on-line
learning unions of rectangles, we can obtain a more
precise analysis of methods present in earlier work in
this area. And as well, the priority method provides
a more general and canonical construction of learning
algorithms which can be used for new cases of learn-
ing of rectangles which were not possible before. The
methods developed here are far from the full strength
of finite injury arguments used in modern recursion
theory. They make essential and strong use of the no-
tion of requirements and of their (bounded) injury,
but only little use of priority assigned to these re-
quirements. Nonetheless they provide a new and use-
ful method with which to explain several complicated
constructions and proofs.

Result 3(a) is a generalization of one of the al-
gorithms in [GGM94] that online learns unions of
rectangles with membership queries and the algo-
rithm in [C93] that online learns unions of two
rectangles in the 2-dimensional space. See also
[MT90,MT91] and [MT92]. Another generaliza-
tion of it is online learning polynomial size deci-
sion trees over the basis “Is z; = d’ where =€

n work independent from ours, Maass and Warmuth
[MW94] also proved this result using hypotheses different from
unions of rectangles and achieving, as well, an optimal number
of equivalence queries.

{>,<,>,<} (in the nodes) in the constant dimen-
sional space. If the space is the plane N2 and S =
{(07 1)7 (17 0)7 (17 1)7 (17 _1)7 (17 2)7 (27]-)7 (17 _2)7 (27 _1)}
then our algorithm for result 1 in particular can learn
the geometric concepts that generated from lines that
makes the angles 0; 30; 45; 60; 90; 110; 135 and 150 with
the z-axis in polynomial time. In the three dimen-
sional space the algorithm can learn in polynomial
time a union of any number of regular polyhedra when
their boundary’s slopes are known.

In the literature PAC-learning of restricted (nondis-
cretized) geometric concepts is also studied. PAC-
learning a union of a constant number of (nondis-
cretized) rectangles in any dimensional space and a
union of any number rectangles in the constant dimen-
sional space is studied in [BEHW89] and [LW90]. Our
algorithm for result 1 also PAC-learns nondiscretized
geometric concepts under any distribution.

The paper is organized as follows. In section 2 we
give some preliminary results in geometry. In section
3 we describe our learning models. In section 4 we
give the online algorithm for result 1 and in section 5
we prove the correctness of the algorithm?. In section
6 we present the PAC-learning algorithm for result
2 and prove its correctness. In section 7 we describe
the bounded injury priority method. Technical results
about the method and three efficient learning algo-
rithms using it will be given in section 8 (see [CHb94]
for details).

2 Preliminaries

Let N,Z and R be the set of nonnegative in-
tegers, integers and reals, respectively. Let N,
{0,...,m — 1} and S C Z? be a set of slopes. A
d-dimensional hyperplane is Z?:1 a;x; = b for some
a;,b € Z (when we write Zle a;x; = b we mean
{z| Zle a;z; = b}). A halfspace is Zle a;z; > b
where =€ {>,>,<,<}. A discretized halfspace is
H N NZ for some halfspace H. A geometric concept
generated from hyperplanes with slopes from S C zd
is a set G C R? that its boundary 8@ is the union of
connected components that are on hyperplanes with
slopes from S. A discretized geometric concept gen-
erated from hyperplanes with slopes from S C Z4 s
€ NN 4 where G is a geometric concept generated from
hyperplanes with slopes from S.

The complezity Cs(G) of a geometric concept G is
the minimal number of hyperplanes with slopes from

2The results of [GGM94] as well as more details for the re-
sults in sections 4 and 5 are given in [BGGM94].

S that their union contains the boundary of G. The
complexity Cs(G) of a discretized geometric concept
G is the minimal Cs(G) over all geometric concept G
that satisfies G = GNNZ. It is obvious that any exact
learning algorithm for a discretized geometric concept
G cannot run in time less than the complexity Cs(G)
(information theory bound). Also the complexity of
learning one point in NV? is at least logn. In our algo-
rithms the input will be S. The size ||S]|| of S is the
number of bits we need to represent the elements of
S (which is the sum of the logarithm of the absolute
values of all the entries of the slopes in S). Therefore
we say that a learning algorithm runs in polynomial
time if the time is poly(||S||, Cs(G),logn).

Let S = {a1,...,as} C Z¢ be a set of slopes and
B = {By,...,B;} where B; C R. A grid G(S,B) is
the set of connected components in R? generated from
the hyperplanes a;z”7 = b;; where z = (z1,...,24),
t=1,...,s and b; ; € B;. Each connected component
is of the form

S
Cirje = ﬂ {2 [bij1 < aix” <bij}

i=1

for

where B; = {bi71, .. ~;bi7l,—}; l; = |Bz| and —oo = b@o <
bi71 << bi,li < bi7l,—+1 = 00.

Let E C N4 x {0,1} be a set of labeled examples
(z,y). We say that E is consistent with G(S, B) if for
every two examples (x1,y1) and (22,y2) if ;1 and s
are in the same component in G(S, B) then y; = y».
For a grid G(S, B) and a consistent set E we define the
boolean function H(G, E) : N4 — {0,1} as follows:

w=1,...,s.

y if I(z,y) € E, x and a are
in the same component
0 otherwise

H(G, E)(a) =

This hypothesis is consistent with the examples in
E.

We will denote by Z,, the set {0, F1,...,F(n—1)}.

In the paper we will use the following lemma

Lemma 1. Let S = {a1,...,a5s} C Z¢ be a set
of slopes and B = {By,...,Bs} where B; C Z and
|Bi]| < m for all i = 1,...,s. Then the number of
connected components of G(S, B) is at most (ms)?+1.

Proof. We show a more general result: Any t d-
dimensional hyperplanes in a d+ 1-dimensional hyper-
plane H divides it into at most ¢t? 4+ 1 connected com-
ponents. The proof is by induction on d. For d = 0,
t points in a line divide the line into ¢t + 1 connected
components. For any d we have: Let Hy,...,H; be

d-dimensional hyperplanes. If H,,...,H; are paral-
lel then they divide H to t + 1 < t? + 1 connected
components.

Suppose Hi,...,H; are not parallel. Then each
connected component in H is bounded by at least
two hyperplanes in Hy,...,H;. For each H; let R; =
{H;NH;|H;NHj # 0,j # i} be d — 1 dimensional
hyperplanes in H;. Since |R;| < ¢t — 1, by the induc-
tion hypothesis the hyperplanes in R; intersect H; in
at most (¢t — 1)~! 4+ 1 connected components. Each
connected component corresponds to at most two con-
nected components generated by Hy,...,H; in H (one
from each side). Therefore, the number of connected
components generated by Hy, ..., H; is at most twice
the number of connected components in U!_; R;. Since
the number of connected components in Ul_, R; is
at most ((t — 1)~! + 1)t and since each connected
component generated by Hi, ..., H; is bounded by at
least two hyperplanes, the number of connected com-
ponents generated by Hi, ..., H; is at most

(-1 + 1t <t + 1.

3 The Learning Models

A domain is a set of elements. We will call the el-
ements of a domain points. Given a domain X. A
concept is G C X. A class of concepts G is G C 2.
The elements of G are represented in some represen-
tation. The size of G € G, size(G), is the number of
bits needed to represent G in this representation.

The first learning model we consider here is the
online learning model, [A88, L88]. In the online learn-
ing a teacher has a target concept G that is from a
class of concepts G. The learner wants to exactly
learn G in polynomial time using polynomial num-
ber of equivalence queries. In the equivalence queries
the learner gives the teacher a hypothesis H and the
teacher answers “YES” if H = G or “NO” with
a counterexample (CE) ¢ € HAG if H # G. If
x € (H—G) then z is called a negative counterexample
(NCE) or a positive counterexample (PCE). Polyno-
mial time means polynomial in log|X| and the size of
the target concept.

A [-liar teacher is a teacher that is allowed to lie at
most [times in the equivalence queries.

In the online learning with membership queries
model the teacher also answers membership queries. In
the membership queries the learner gives the teacher
a point z and the teacher answers “YES” if z € G and
“NO” ifx €G.

In the PAC-learning model the teacher gives labeled
examples (z,G[z]) where G[z] =“YES” if ¢ € G and
Glz] =“NO” if z € G. The labeled examples are given
according to an unknown (to the learner) fixed distri-
bution D over the points in the domain. The goal of
the learner is to find a hypothesis H that, with prob-
ability at least 1/2, e-approximate G with respect to
the distribution D. That is, the learner should output
a hypothesis H C X such that

> Dlx]<e

ceHAG

Pr

1
> —.
2

The algorithm must run in time polynomial in the
size of the target concept log|X| and 1/e. The
probability 1/2 can be replaced with any probabil-
ity 1/poly(size(G),log|X|,1/€). Such an algorithm
can be changed to a PAC-learning algorithm that
runs in time polynomial in size(G),log|X|,1/e and
log(1/4) and with probability at least 1 — ¢ output an
e-approximation of G.

A probability p-liar teacher will lie on the labels
of the examples G[z] with probability p. A 1/2-liar
teacher is a teacher that gives examples with random
labels for each point.

4 The Online Learning Algorithm

In this section we present the online algorithm. The
hypotheses we used here, as introduced in [GGM94],
is obtained by dividing the domain into regions (or
connected components) based on a set of hyperplanes
selected that cut through the whole domain. However,
we modify their basic technique by replacing the mem-
bership queries, used as part of a binary search to find
a hyperplane to add to the hypothesis that defines a
side of the target, with the introduction of additional
hyperplanes selected using equivalence queries as de-
cribed below.

The idea of the algorithm is simple. The algorithm
starts with a positive and a negative counterexample a
and ¢, respectively. (We ask equivalence queries with
§ and NZ.) Since a is positive and c is negative the
straight line between a and ¢ must intersect one of the
hyperplanes. Since we cannot ask membership queries
we cannot tell where is the intersection and even if we
can tell we cannot know the slope of the hyperplane
that pass through that intersection. Our algorithm
will assume that the intersection is in the point (a +
¢)/2 and will assume that all the hyperplanes with
all the slopes pass through this point. This generous
assumption turns to be not “very dramatic”. We split

the space in the point (a + ¢)/2 using hyperplanes
with all possible slopes. Then we recursively run the
algorithm for each region.

A set of slopes S ={ay,...,as}
OnlineLearn(S)
1)Bi+0,i=1,...,8;E + 0; H < 0;
2) EQ(H) — a; If the answer is “YES”
then output H;
3) B« EU{(a, H())};
4) If there is (¢,y) € E such that a and ¢ are
in the same component then
u <+ (a+c)/2;
for i =1 to s do B; + B; | J{auT};
5) H + H(G(S,B), E);
6) Goto 2;

In the algorithm S is the set of the possible slopes
of the hyperplanes. We first assume that the geomet-
ric concept is empty (B; < 0,H « 0). The target
concept G is regarded as a boolean function fs where
G = {z|fe(x) = 1}. Therefore, the hypothesis in
the algorithm is a boolean function H : N¢ — {0,1}.
We ask equivalence query with H and add the coun-
terexample a to E. If this counterexample is the first
counterexample in the component it belongs to (in
G(S,B)) then we just update G(S, B). If this coun-
terexample is in some component that already con-
tains a point in E then a and c¢ have different values
in G and the line that pass through the two points
must intersect a hyperplane in G. We then define
u = (a+ ¢)/2 and add all possible hyperplanes that
pass through u to the hypothesis H.

5 Correctness and the Complexity of
the Online Algorithm

In this section we prove the correctness of the algo-
rithm and prove the following:

Theorem. Let G be a discretized geometric con-
cept in N? where d is constant. Let S be a set of
slopes. There is an online algorithm that learns G in
time poly(|IS||, Cs(G), logn).

5.1 Correctness of the Algorithm

Since the size of S is ||S|| we have S =
{a1,...,as} C ZZdHS”. Let dia’ =b;,i=1,....,m =

Cs(G), d; € S, be a minimal set of hyperplanes that
generates the boundary of the geometric concept G.
Let fg : N4 — {0,1} be the boolean function of G,
ie, G = {z|fa(z) = 1}. Since all the hyperplanes
d;zT = b, pass through ./\/ff there are z; € fo such
that d;z] > b;. Therefore

|bi] < |dizT] <~y = dn2!I51I,

Let BE(S),E(‘S) and H©® be the variables of the al-
gorithm at the o0-th iteration. For each hyperplane
d;zT = b; let zl@ <b; < ygé) be the closest two points
in BJ(-é) U{=7,7} to b; where d; = a; and v = dn2lI..
Consider A(dl) = ygé) — b; and AE?Q) =b; — zl@. Since

/L7

B = ... = BY = () and since |b;| < dn2!IS| we have
Al <v Al <y (1)
foralli=1,...,m.

Suppose a is a counterexample to H® and ¢ and
a are in the same component where (¢,y) € E. Then
fa(a) # fa(c). Therefore the line that pass through
the two points a and ¢ must intersect some hyperplane
di,x = b;,. Since a and c are in the same component
we must have
s]
Zl(o) S diocT S bio S dioaT < 3/,(0)7
or
é]
ZZ(O) < diOaT <by < diocT < yEO).
Suppose we have the former case. Now at the (6 + 1)-
iteration we have two cases: if dEg)uT > b;, where

u = (a + ¢)/2 then zgﬂ) = zg) and yl(gﬂ) = d;jyu”
and then
o+1 5+1 d 4
5072) = biO - Zi(o) = biO - Zl(o) = AEO?Z
and
5 5
gojl) = yz(o—i_l) —biy, = diu’ = by
di.a¥ d; T
= ZOT + ZE - bio
5
< yz(o) - bio + dio CT — bio
- 2 2
5 5
b, Al
- 2 2

The second case is when d;,u? < b;,, and then

(6)
AGFD _ A() AGHD Aio,Q‘

t0,1 t0,1? 0,2 9

This proves that at any iteration ¢ if a and ¢ are in
the same component then there is 7¢ such that
(8) (8)

@+1) _ Dot A6+ _ Big @

9,1 2 i0,2 2 .
Now the hyperplane d;,z” = b;, can be changed to any
hyperplane d;, 27 = b;, + 7, 7 < 1 or d;,z’ = b;, — T,
7 < 1 (depending on whether G also contains the point

on di,z’ = b;, or not). Therefore, when Agg?l <1
and Agg?z < 1 then the algorithm has determined the
hyperplane d;,#! = b;, and no other hyperplanes will
be added for d;,zT = b;,.

Now we will show that if Ag , < 1and Agg?l >1

then Agg?z will stop changing. If Agg?z < 1 then since

s)
0

diOCT — bio < A((S) <1

10,2
we must have d;,c¢’ = b;,. Then

UT _ diocT +dioaT > d. CT — b,

io 2 jtl 10 10

d

and therefore AE§)1 will be changed.

)

Therefore, by (1) and (2) the number of iterations
that change Ag? is finite and the number of iterations

that do not change AE(SJ) is bounded by the number
of components of the hypothesis which is also finite.
Therefore the algorithm must stop with the target con-

cept.
5.2 The Complexity of the Algorithm

By (1) and (2) the number of iterations in the al-
gorithm to find one hyperplane is

[2log(7))] = O([|S]| + log n).

The number of hyperplanes is m = Cs(G) and at each
iteration we add s = |S| < ||S|| hyperplanes to the hy-
pothesis. Therefore the number of hyperplanes gen-
erated in the algorithm is O(Cs(G)||S||(||S]| + log n)).
By lemma 1 the number of connected components of
the hypothesis is at most

O((Cs(@ISIINISI +logn))®).

The number of iterations that do not change AE(SJ)
is bounded by the number of connected components.
Since by lemma 1 this number does not exceed
O((Cs(@)ISI|(]IS]] + logn))?), the complexity of the

above algorithm is

O((Cs(@ISIINISII +logn))®).

5.3 [-liar teacher

If the equivalence oracle lies on [counterexamples
then we add to the set of slopes S the elementary
vectors {e; }. Then those faulty points will be bounded
by hyperplanes and at the end the oracle must give the
real value of those faulty points. This changes Cg(G)
to Cs(G) +dl, ||S|| to ||S|| + d and the complexity to

O(((Cs(G) +dn) (ISl + d)(|IS| + d +logn))®).

6 The PAC-learning Algorithm

In this section we sketch the PAC-learning algo-
rithm when the example oracle lies on the labels of
the examples with a fixed probability p < % — %

Let C; be t disjoint components of a geometric con-
cept G and C;r C () be the set of all positive points in
C;. If each component is learned with approximation
€ and probability greater than 1 — ¢/t then with prob-
ability greater than 1 — § we get an e-approximation
of U;@:le' . Formally, if we learn H; C C; such that
Prplz € Hz-ACﬂm € C;] < € then since H; C C; are
disjoint

< (Yn)2(9e)

t
ZP’I“D
i=1

t
Z (PTD [:1: € HiACj' |z € Ci] X

i=1

PTD

t
x € UCz
i=1

t
T € C;
i=1

t
Prp mECZmEUCz]) <
i=1
t t
EZPTD z € C; JTEUCi = e
i=1 i=1

Let C C N¢ be a component in some hypothesis H of
the target geometric concept G. Let C* (resp. C7)
be the set of all positive points (resp. negative points)
in C for G. Suppose D is a distribution on N'¢. If the
example oracle £ X lies with a fix probability p then

PrplEX(z) = 1|z € C] = pPrplz € C~ |z € C]+
(1—=p)Prp[z € CT|z € C).
This implies

PrplEX(z) =1z e C]—p
1-2p)

Prplz e Ctlz e C] =

Suppose the learner knows p. If the EX oracle gives
“enough” examples from C then using Chernoff bound
the learner can estimate Prp[EX (z) = 1|z € C] up
to error € = 2¢/r with high probability (exponentially
close to 1). Now since 1—2p > % this gives €/2 approx-
imation of ¢ = Prplz € CT|z € C]. If ¢ > 1 — € then
we can assume that all the points in C in the target
are positive and if ¢ < e then we can assume that all
the points in C' in the target are negative. Otherwise,
we have

Prplr€eCTlreC]>¢ or PrplzeC |z eC]>e.

In this case we randomly choose one positive point a
and one negative point ¢ and make the split as in the
online algorithm. We call this split “success” if a is
really a positive point and c is really a negative point.
The probability of success is

Pr] success| =

Prla is pos. & b is neg.] = Pr[a is pos.]Pr[b is neg.].

and

Prla is pos.] =
Prplr € CTIEX(z) =1Az €] =
Prp[EX(z) = 1|z € Ct]|Prplz € Ct|z € O]
Prp[EX(z) = 1|z € C)
(1-p)PrplreCtlzeC]
(1-2p)Prplzr € Ctlz €Cl+p

(1-p) S
p i
(1 =2p) + pryecTeny
1 S Prplz € CTlz € C]
1 = 4 '
2 (1 + PrD[z€C+|w€O})
Therefore,

Prplz € Ct|z € C] Prplz € C™ |z € C]

P >
r[success] > 1 1

> =
- 32
This shows that the average number of hyperplanes
generated in the hypothesis is 32/¢ times the number
of the hyperplanes generated by the online algorithm.
If the learner cannot get enough points in C' then
the total distribution of the component C' is “small”
and we can assign random value to C. Therefore,
the algorithm generates in average O(msd(1/¢)logn)?
connected components.
Now what happen if the learner does not know
p. First, it can be shown that if the learner uses p’

“enough” close to p then the algorithm can still find
a good approximation of the target formula. If the
learner uses p' that is not close to p, say [p —p'| > n
then when Prplz € CTlz € C] = 1 (or close to 1)
then Prp[EX(z) = 1|z € C] =1 — p and then

Prpl[EX(z) =1z € C]-p" 1-p—p
1—2p 1=

_ ,_p=V

1—2p

_ [l p>Y
I+ =5 p<p

1—2p’

So the algorithm will run forever when p’ < p and
will give probability not from [0,1] if p' > p. There-
fore, a good approximation of p can be found using a
binary search.

7 The Bounded
Method

Injury Priority

In a typical finite injury priority argument (see,
Soare [S]), one needs to achieve a “goal”. One divides
this “goal” A into a sequence of infinitely many “re-
quirements” {R;};en such that A is achieved if all the
requirements R; are met or satisfied. Normally, one
also assigns priority to the requirements. If n < m,
then the requirement R, is assigned priority over R,,,
and we say that R, has higher priority than R,,. One
then constructs a procedure which runs in stages. At
each stage, one will take certain action to satisfy some
requirement(s). However, actions taken at some stage
s for satisfying R,, may at a later stage t > s be un-
done when action is taken for satisfying R,. In this
case, we say that R,, is injured at stage t. The crucial
feature of all finite injury priority methods is that each
requirement is injured finitely often and so comes to a
limit.

Consider designing a learning algorithm for a given
concept class C over a domain X. For each target
concept C; € C, the goal of the learner is to identify
Cy. One can design a sequence of requirements {R;}
such that C; is learned if all the requirements R; are
satisfied. However, substantial difficulties exist in this
approach. First, one would like the complexity of the
algorithm A to be bounded by a reasonable function
f(n,|C¢],m) (usually, f is a polynomial, or at worst
exponential), where n is the size of the domain, |C}|
is the size of the target concept, and m is the size of
the largest CE’s received by the learner. Thus, the
number of requirements designed by the learner must

be bounded by f(n,|C¢|,m). Similarly, the number
of injuries received by each requirements must also be
bounded by f(n,|Ct|,m). Second, in the finite injury
priority method, the domain is infinite. Once a re-
quirement is injured, one can search the domain to
find a new element with which to “remedy” the in-
jury, i.e., to satisfy the requirement again. However,
in designing the learning algorithm A, the domain X is
finite. Hence, once a requirement is injured, it is more
difficult to remedy the injury within the domain X.
Finally, during the construction of a finite injury pri-
ority method, one can decide whether a requirement
is injured at each stage, because one can simply trace
the entire (but finite) construction up to the current
stage. However, this may not be true in designing a
learning algorithm because of the desired complexity
bound on the algorithm.

8 The Design of Algorithms with the
Bounded Injury Priority Method

In this section we begin with several basic results
whose proofs exploit the ideas of an injury construc-
tion. The methods and techniques used indicate how
the problems mentioned here can be dealt with by
injury arguments in this setting. Furthermore, they
form the basis for the more complex constructions in
section 9 where priority is essentially needed.

Vi,j € N, we use [i,j] to denote the set {i,...,j}
when i < j or ¢ otherwise. Let BOX? =
(% Jai |0 < a; < b; < n— 1,¥i € [1,d]} U{o}.
We consider the following concept class of unions of
rectangles over the domain X = [0,n — 1]¢

|JBOXE={Ciu---UCyli € [1,k],C; € BOX{}.
k

Consider the following interval concept class
HEAD(n) ={[0,j]J0 <j <n—1}

over the domain [0, n—1]. We now design an algorithm
S to learn any target concept C; = [0, j] € HEAD(n).
Here, we consider an extended environment which may
responds with an NCE outside C; (called a true NCE)
or an NCE in C; (called a false NCE) for a given hy-
pothesis. Algorithm S runs in stages. At each stage s,
S decides a value for j, denoted by RS(s), and issues
a hypothesis H; = [0, RS(s)]. Let x5 be the coun-
terexample received by the learner at stage s for the
hypothesis H;. Define

PS(s) = maz({0} U {z.|r € [1,s],z, is a PCE}),

NS(s) =min({n} U {z,|r € [1,s],2, is an NCE
and z, > PS(s)}).

In order to learn C}, one only needs to satisfy the fol-
lowing requirement

R: 3s (Vs'>s (RS(s') =3j))-

We say that R is injured (or receives an injury) at stage
s, if PS(s) < NS(s) < j. When R receives an injury
at stage s, the learner has received false NCE’s and
will be fooled by them until he proves that they are
false by receiving a PCE greater than their maximum.

Learning Algorithm S

Stage 1. Set RS(1) = 0. Ask an equivalence query
for the hypothesis H; = [0, RS(1)]. If yes then
stop. Otherwise, one receives a PCE x;.

Stage s+ 1 > 2. We consider three cases: (1) If z; is
an NCE and z; < PS(s), then set RS(s+ 1) =
RS(s). (2) If x5 is an NCE but =5 > PS(s), then
set RS(s + 1) = PS, + | N5ELPS06) | (3) 1f 4,
is a PCE, then set RS(s + 1) = min({NS(s) —
1JU{RS(r)]1 < r < s & PS(s) < RS(r) <
NS(s)}). Finally, one asks an equivalence query
for the hypothesis Hys11 = [1, RS(s + 1)]. If yes
then stop, otherwise one receives a CE x441.

For an NCE z4, we say that x; is an invalid NCE if
zs < PS(s), otherwise we say that z; is a valid NCE3.
The following theorems are slightly improvements on
two results in [CM92].

Theorem 8.1. Assume that R has received i in-
juries and g invalid NCE’s have been received during a
learning process of S. Then, at most logn true NCE’s
and at most 2(logn+g+14) +i+1 CE’s occur in this
learning process.

Theorem 8.2. Assume f false NCE’s are received
during a learning process for S. Then, requirement R
will receive at most 3f injuries.

We can design a learning algorithm S* using
the similar injury construction for the concept class
TAIL(n) = {[j,n —1]|7 € [0,n — 1]} over the domain
X = [0,n—1] such that analogous versions of Theorem
8.1 and 8.2 hold for S*. With direct transformation,
we know that, Va,b, Algorithm S and S* works on
the concept classes HEAD(a,b) = {[a,j]|lj € [a,b]}
and TAIL(a,b) = {[4,b]|j € [a,b]}, respectively. For

30bviously, the extended environment cannot cheat the
learner by giving an invalid NCE. In other words, Requirement
R will never be injured by an invalid NCE. We consider in-
valid NCE’s for the completeness of Algorithm S. In this paper,
however, invalid NCE’s can be technically ignored in all the
applications of Algorithm S.

convenience, we will use S and S* (or with subscrip-
tions in most cases) throughout this paper to stand
respectively for copies of Algorithm S and S*. We
also use RS(s),NS(s), PS(s) and, RS*(s), NS*(s),
and PS*(s) (again, with subscriptions in most cases)
to denote the corresponding parameters as defined in
the constructions of Algorithm S and S*.

For any S C [0,n — 1]¢, let min;(S) =
min{z;lz € S & z = (z1,...,24)}, maz;(S) =
maz{z;lr € S & x = (x1,...,24)}. Define rec(S) =
1L, [mini(S), max;(S)]. Given C; € |J, BOX{, for
any example r € [0,n—1]¢ and S C [0,n — 1]¢, we say
that (r,S) is a witness for C if and only if, (1) r ¢ C;
and S C C%, and (2) r € rec(S). It is obvious that
VC, € U, BOXZ, Cy ¢ BOXZ if and only if there is a
witness (r, S) for it.

Theorem 8.3. Given k > 2. For any C; €
U, BOXZ, with O(d*logn) CE’s one learns it if it
is a rectangle or finds a witness otherwise.

Proof Sketch. For any target concept C; €
U, BOXZ, we assume that it is a rectangle Hle [ai, bi]
(of course, this may not true). Then, Vi € [1,d], at
the i-th dimension we use two procedures S; and S}
to search for the parameters b; and a;, respectively.
Our learning algorithm LR runs in stages. At stage s,
the learner issues the hypothesis

H(s) = [1L_,[RS;(s), RSi(s)].

Let x5 = (241,...,75q) be the CE received for H(s)?,
W (s) be the set of all CE’s received by the end of stage
s and, P(s) be the set of all PCE’s in W(s). In order
to learn CY%, one only needs to satisfy the following 2d
requirements, i € [1,d],

R(i,1): 3s (Vs' > s (RSi(s') = b)),
R(i,2): 3s (Vs' > s (RS} (s') = a;)),

We say that R(i,1) is injured at stage s, if either
PS;(s) < NS;(s) < b;, or by < PSi(s). In the first
case, we say that R(i,1) receives a negative injury. In
the latter case, we say that R(i,1) receives a positive
injury. Similarly, we define injury, positive injury and
negative injury for requirement R(i,2).
Learning Algorithm LR
Stage 0. Set H(0) = ¢. Ask an equivalence query. If
yes then stop. Otherwise one receives a PCE zg.
Let W(0) = {zo}-

Stage s+ 1> 1. Decide whether 3r;, € (W(s) —
P(s)) such that (rs, PS(s)) is a witness. If yes

40One should note that, although z is a CE for the hypoth-
esis Hs, s; may not necessarily a CE for the hypothesis issued
by procedure S; or S}, i € [1,d]. If z5; is an NCE, it may be
false. However, z4; will always true, if it is a PCE.

then output it and stop. Otherwise, on the re-
ceived CE z,. Vi € [1,d], do: (1) Search for
b; using S; in the domain [z¢;,n], i.e., if z4 is
a CE for the current hypothesis RS;(s) of S,
then S; issues a new hypothesis RS(s + 1), or
sets RS(s+1) = RS(s) otherwise. (2) Search for
a; using S7 in the domain [1,zg;] with the same
manner as that in (1).

Ask an equivalence query for Hgy;. If yes then
stop, otherwise a CE x4 is received. Set W(s+
1) =W(s)U{xst1}-

Claim 8.4. Assume that C; € BOX2. Then, Vi €
[1,d], neither R(i,1) nor R(i,2) will receive a positive-
injury. Furthermore, each of the procedures S; and S}
receives at most 2(d—1)logn invalid NCE'’s, and each
of R(i,1) and R(i,2) receives at most 6(d — 1)logn
negative injuries.

With Claim 8.4 and Theorem 8.1 and 8.2, one can
show the following: If C; € BOXY, then with at most
4dlogn +44d(d — 1) logn + 2d CE’s the learner learns
Cy. If C; ¢ BOXZ. then with at most 4dlogn +
44d(d — 1) logn + 2d + 1 CE’s, the learner will find a
witness.

We now present three theorems which depend on
the techniques and the proofs of Theorems 8.1, 8.2
and 8.3. Due to the limited space, we only give proof
sketch for Theorem 8.7.

Theorem 8.5. There is an algorithm for learn-
ing unions of two disjoint rectangles over the domain
[0,n—1]% by unions of two rectangles with O(d* log® n)
equivalence queries and in time poly(d,logn).

Theorem 8.6. There is an algorithm for learning
unions of k > 3 rectangles over the domain [0,n —
1]? whose projections on some dimension are pairwise-
disjoint with O(k*d®log® n) equivalence queries and in
time poly(k,d,logn), where the hypotheses are unions
of at most (k — 1)(logn + 1) rectangles.

Theorem 8.7. There is an algorithm for learn-
ing unions of k rectangles over the domain [0,n —
1]¢ using O((4kdlogn)?T1d? logn) equivalence queries
and in time poly(kd,dd,logd n), where the hypotheses
are unions of at most rectangles ((4kd(logn — 1) —
2k(logn — 3))?%) rectangles.

Proof Sketch of Theorem 8.7. Given C; =
Uleci S Uk BOXg Let C; = H(;:l[ai,j,bm], Vi €
[1, k]. Our learning algorithm LU R runs in stages. At
stage s, Vi € [1,d], we divide the i-th dimension into a
set I(i,s) of pairwise-disjoint intervals such that their
union is [0,n — 1]. Based on I(i,s), we divide the
domain [0,n — 1]¢ into a set of pairwise-disjoint sub-
domains D(s) = H?:l I(i,s). Inside each B € D(s),
Vi € [1,d], at the i-th dimension, we use Sp; and S} ;

to search for the right and left parameters rp ; and (g ;
of C¢ N B, respectively. Here, we assume that C; N B
is a rectangle (again, this may not be true). At stage
s, VB € D(s), we issue a hypothesis

Hp(s) =TT, [RS i(5), RSp.i(s)],
and the hypothesis issued for the target concept is
H(s) = U{HBp(s)|B € D(s)}.

In order to learn C}, we only need to satisfy the fol-
lowing requirements, j € [1,d],

R(0):3s (Vs' > s (VB € D(s') (C; N B € BOXY))),
R(j,1):3s (Vs' > s (VB € D(s')
(RSp.j(s') =78,5)));
R(j,2):3s (Vs' > s (VB € D(s')
(BSE ;(s') =1B))),
The priority of the requirements is
R(0) > R(j1,1) = R(j2,2), Yj1,J2 €[1,d].

We say that R(0) is injured at stage s, if 3B €
D(s) (Cyn B ¢ BOXY). V(j,k) € [1,d] x [1,2],
in the same manner as we did in the construction of
Algorithm LR, we define injury, positive injury and
negative injury for R(j, k). Let W (s) be the set of all
the CE’s received by the end of stage s, and P(s) be
the set of all PCE’s in W(s). Fix an integer-pairing
function <-,->.
Learning Algorithm LUR
Stage <0,0>. Vi € [1,d], set 1(i,<0,0>) = {[0,n — 1]}.
Let H(<0,0>) = W(<0,0>) = ¢. Go to stage
<1,0>.

Stage <s,m> > 0. Ask an equivalence query for
H(<s — 1,m>). If yes then stop, otherwise one
receives a CE <¢;_q ;,>. Set Z; = W(<s —1,m>)
U{z<s—1,m>} and Z, be the set of all PCE’s in
Z,. Decide whether 3B = H?Zl[e,-,f,-] € D(<s —
1,m>) such that, 3rs € (Z; — Z2) N B such that
(rs, Za N B) is a witness. If yes then execute Case
(i), or execute Case (ii).

Case (i). Vi € [1,d], let z; = e;+ Lf’g—e’J
If e, < fi then set I(i,<s,m>) = (I(i,
<s—1,m>) —{le;, fil}) U{les, zi], [z + 1, fi] },
or set I(i,<s,m>) = I(i,<s — 1,m>). Set
W(<s,m>) = Z;. Undo all procedures by
setting Hr(<s,m>) = rec(E N P(<s,m>)),
VE € D(<s,m>). Go to stage <s + 1, m>.

Case (i). Within B = T[[%,[e; f;] with
T<s_1,m> € B, in the same manner as one
did in Algorithm LR, Vi € [1,d], search for

rg,i and lp; using Sp,; and Sp ;, respec-
tively. No actions will be taken for all the
other subdomains in D(<s — 1,m>). Set
W(<s—=1,m+1>)=2Z; and, I(i,<s—1,m+
1>) = I(i,<s—1,m>). Go to stage <s, m+1>.

Theorem 8.7 follows from Theorem 8.3 and the fol-
lowing claims

Claim 8.8. During the learning process of Al-
gorithm LUR, Case (i) can be executed at most
2kd(logn — 1) times, and |I(i,<s,m>)| < 4k +
2k(logn — 1) + 4k(d — 1)(logn — 1), Vs > 1,m > 1.

Claim 8.9. Assume that Case (i) was ezvecuted
at stage <s,m'> and <s + 1,m">. Then, m" —m' =
O((4kdlogn)?d®logn).

Claim 8.10. Requirement R(0) will be satisfied
after receiving O((4kdlogn)?*1d? logn) CE’s.

Acknowledgments. The authors thank Sally
Goldman for her helpful comments on the draft of this
paper. The second and third authors thank Wolfgang
Maass for his insights into linking the finite injury pri-
ority method to the problem of learning unions of rect-
angles, Ming Li for valuable discussions on this topic,
and William Gasarch for his encouraging comments
on the use of the bounded injury priority method in
this setting.

References

[A88] D. Angluin. Queries and concept learning.

Machine Learning, 2 (4), (1988), 319-342.

[AL88] D. Angluin and P. Laird. Learning from
noisy examples. Machine Learning, 2 (4),
(1988), 471-479.

[AU93] P. Auer. On-line learning of rectangles in
noisy environment. COLT 1993, 253-261.

[B90] A. Blum. Separating Distribution-Free and

Mistake-Bound Learning Models over the
Boolean Domain, FOCS 1990, 211-218.

[BEHW89] A. Blumer, A. Ehrenfeucht, D. Haussler
and M. K. Warmuth. Learnability and the
vapnik-chervonenkis dimension. JACM, 36
(4), (1989), 929-965.

[Bs93] N. Bshouty. Exact learning via the mono-

tone theory. FOCS 1993.

[BGGM94] N. H. Bshouty, P. W. Goldberg, S. A.
Goldman and H. D. Mathias. Exact learn-
ing of discretized geometric concepts. TR.
Washington university, WUCS-94-19.

[C93]

[CHa93]

[CHbY4]

[CM92]

[GGM94]

L83

[LW90]

[MT90]

[MT91]

[MT92]

[MWO4]

[So87]

[V84]

Z. Chen. Learning union of two rectan-
gles in the plane with equivalence queries.
COLT 1993, 243-252.

Z. Chen, S. Homer. Learning unions of
rectangles with queries. TR BUCS-93-10,
Boston University, 1993.

Z. Chen, S. Homer. The bounded injury pri-
ority method and the learnability of unions
of rectangles. TR BUCS-94-9, Boston Uni-
versity, 1994.

Z. Chen and W. Maass. On-line learning of
rectangles. COLT 1992, 16-27.

P. W. Goldberg, S. A. Goldman and H. D.
Mathias. Learning union of rectangles with
membership and equivalent queries. COLT
1994, 198-207.

N. Littlestone. Learning when irrelevant at-
tributes abound: A new linear threshold al-
gorithm. Machine Learning, 2, (1988), 285-
318.

P. M. Long and M. K. Warmuth. Compos-
ite geometric concepts and polynomial pre-
dictability. COLT 1990, 273-287.

W. Maass and G. Turan. On the complexity
of learning from counterexamples. FOCS
1989, 262-267.

W. Maass and G. Turan. Algorithm and
lower bounds for on-line learning of geomet-
ric concept. TR IIG-Report 316, Technische
Universitat Graz, (1991).

W. Maass and G. Turan. Lower bound
methods and separation results for online
learning models. Machine Learning, 9,
(1992), 107-145.

W. Maass, M. Warmuth. Efficient learning
methods with virtual threshold gates. Tech
Report 395 of the Institutes for Information
Processing Graz (August 94).

R. Soare. Recursively Enumerable Sets and
Degrees. Springer-Verlag, 1987.

L. Valiant. A theory of the learnable.
JACM, 27, (11), (1984), 1134-1142.

