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Abstract

We examine the learnability of concepts based on counting functions. A counting func-
tion is a generalization of a parity function in which the weighted sum of n inputs is
tested for equivalence to some value k modulo N . The concepts we study therefore
generalize many commonly studied boolean functions.

We first show that disjunctions of counting functions (DOCFs) with modulus N
are learnable by equivalence queries and determine the number of queries sufficient
and necessary. We show that α(N)n + 1 equivalence queries are sufficient where
α(N) = O(logN) is the sum of the exponents in the prime decomposition of N . When
counting functions in the disjunction have distinct counting moduli {Ni}, we show that
α(lcm(Ni))n + 1 equivalence queries are sufficient. We also give lower bounds on the
number of equivalence queries required to learn diagonal DOCFs (and therefore general
DOCFs) and provide a matching upper bound in the case of diagonal DOCFs.

We then demonstrate how the additional power of membership queries allows im-
proved learning in two different ways: (1) more efficient learning for some classes learn-
able with equivalence queries only, and (2) learnability of other classes not known to
be learnable with equivalence queries only.
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1 Introduction

One of the central problems in machine learning is to study the learnability of boolean
functions, in particular, DNF formulas, using equivalence and membership queries.
Many results regarding this problem have been obtained and can be divided into three
categories: (1) Many results show that subclasses of boolean functions that are learn-
able, such as monotone DNF formulas [1], read-twice DNF formulas [7], Horn DNF
formulas [3], k-DNF formulas [29], O(log n)-term DNF formulas [12], and disjoint DNF
[16]. (2) Some results provide witnesses that the problem of learning boolean functions
as DNF formulas is hard (see, for example, [4] and [6]). (3) In contrast to the hardness
witness given by the results in the second category, the problem of learning boolean
formulas using representations other than DNF formulas were studied in [28], [15] and
[14]. It was shown in [15] that boolean functions are learnable as multivariate polyno-
mials (XOR of terms). In [14], Bshouty proved that boolean functions are learnable in
polynomial time in the DNF size and the CNF size of the target formula. One should
note that here learnable in polynomial time as a class of certain type of functions means
learnable in polynomial time in the number of variables and in the minimal size of the
target function to be learned using functions in the class as hypotheses.

On the other hand, symmetric boolean functions, especially parity functions and
modulo functions, have also received much attention in machine learning. It is known
that the class of single parity functions (see [26]) and the class of single modulo functions
with modulus p for any given prime number p (see [11]) are pac-learnable. It was also
proved in [24] that parity functions of monomials with at most k literals are pac-
learnable, while given the assumption that RP 6= NP parity functions of k monomials
are not pac-learnable with the same type of functions as hypotheses for any fixed k ≥
2. Meanwhile, it was shown in [13] that, for any constant k, boolean functions of k
monomials are pac-learnable by the more expressive hypothesis class of general DNF
formulas and, for any k ≥ 2, for any fixed symmetric function f on k inputs, f consisting
of k monomials is not pac-learnable with the same type of functions as hypothesis under
the assumption that RP 6= NP .

In the on-line model with queries, it was shown in [2] that read-once boolean func-
tions over the basis (AND,OR,NOT ) are polynomial time learnable with equivalence
and membership queries. This result was extended in [25] to a larger basis includ-
ing arbitrary threshold functions and parity functions. Further, it was shown in [20]
that read-once functions over the basis of arbitrary symmetric functions are polynomial
time learnable with equivalence and membership queries. However, they also proved
that read-twice functions over the same basis are not, under standard cryptographic
assumptions.

In this paper, by introducing counting functions that includes parity and modulo
functions, we investigate the learnability of a much larger class of functions defined over
the domain Zn

N , the class of conjunctions of disjunctions of counting functions. This
class in essence includes all boolean functions, and especially DNF formulas, as special
cases. Our goal along this approach is to develop new techniques (say, from algebra)
and thus to derive general results that imply learnability over boolean domains. A
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careful reader may have noted that a disjunction of counting functions is equivalent to
a system of linear equations over the domain Zn

N .

The study of learnability of extensions of boolean functions to arbitrary domains has
also been proposed and investigated by many other researchers (see, for example, [28]
and [14]). Schapire and Sellie [28] designed efficient algorithms for learning multilinear
polynomials over the domain Fn for any finite field F , and for learning polynomials
over any semilattice of finite height. Bshouty [14] extended DNF and CNF formulas
to an arbitrary domain Σn for any finite field Σ and, he proved that any polynomial
size decision tree over Σn is learnable. The learnability of counting functions over the
domain Zn

N was initially proposed by Chen and Homer in [22] and [23], and many
preliminary results have been obtained there.

This paper is organized as follows. In Section 2 we define counting functions and
two parameters α(N) and γ(N) for positive integer N . In Section 3 we introduce learn-
ing models. In Section 4 we give upper and lower bounds on the number of equivalence
queries required for learning disjunctions of counting functions. We show that α(N)n+1
equivalence queries are sufficient for learning disjunctions of counting functions, where
α(N) = O(logN) is the sum of the exponents in the prime decomposition of N . When
counting functions in the disjunction have distinct counting moduli {Ni}, we show that
α(lcm(Ni))n + 1 equivalence queries are sufficient for learning the disjunction. We
also give lower bounds on the number of equivalence queries required to learn diago-
nal disjunctions of counting functions (and therefore general disjunctions of counting
functions) and provide a matching upper bound in the case of diagonal disjunctions of
counting functions. In Section 5, 6 and 7, we demonstrate how the additional power of
membership queries allows improved learning in two different ways: (1) more efficient
learning for some classes learnable with equivalence queries only, and (2) learnability
of other classes not known to be learnable with equivalence queries only. In Section 5
we show that the class of diagonal disjunctions of counting functions and the class of
boolean weighted read-once disjunctions of counting functions are learnable with fewer
equivalence queries by using membership queries. For both classes the number of equiv-
alence queries is linear in n and has no dependence on the counting modulus N . For the
latter class the number of membership queries is also independent of N , while for the
former class the number of membership queries has only a sub-logarithmic dependence
on N . In Section 6, we show that disjunctions of no more than O( log n

log(P−1)) negated
counting functions with prime modulus P > 2 over the domain Zn

P are learnable with
equivalence and membership queries. However, we also show that if the number of
counting functions which may be negated is unbounded, then learning such disjunc-
tions of counting functions is as hard as learning boolean DNF formulas. In Section 7,
we study the learnability of conjunctions of disjunctions of counting functions (a gen-
eralization of boolean DNF/CNF). We first show that a conjunction of k disjunctions
of counting functions with k < δ(N), where δ(N) is the minimal prime that divides N ,
is learnable with the number of queries (membership and equivalence queries) that is

polynomial in k, the number of variables n, and δ(N)
(δ(N)−k) . In Section 8, we show that

monotone conjunctions of diagonal disjunctions of counting functions are learnable. In
Section 9, we list a number of open problems for further study.
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2 Preliminaries

2.1 Counting Functions

We assume that Z is the set of all integers. Let Zq = {0, . . . , q − 1} for any integer
q ≥ 2, and Zn

q = {0, . . . , q− 1}n. Examples in Zn
N are viewed as 1× n vectors. For any

example ~a ∈ Zn
N , we use ai to denote its i-th component for i ∈ {1, . . . , n}. A counting

function with a modulus N ≥ 2 is defined (see [22, 23]) as follows:

CN
~a,b(x1, . . . , xn) =

{

0 if
∑n

j=1 aixj ≡ b (mod N),

1 otherwise,

where ~a = (a1, . . . , an) ∈ Zn
N and b ∈ ZN . For convenience, we may use CN

~a,b to stand

for CN
~a,b(x1, . . . , xn). A disjunction of counting functions (denoted by DOCF) CN

~a1,b1
, . . .,

CN
~am,bm

is

OR(CN
~a1,b1

, . . . , CN
~am,bm

) = CN
~a1,b1

∨ · · · ∨ CN
~am,bm

.

We say that a counting function CN
~a,b is diagonal if there is exactly one i ∈ {1, . . . , n}

such that ai 6= 0. We say that a DOCF is diagonal if all counting functions in it are
diagonal. A conjunction F of DOCFs is defined as

F =
m
∧

i=1

Li, where Li = OR(CN
~ai1,bi1

, . . . CN
~aimi

,bimi
).

An example ~x ∈ Zn
N makes F zero (denoted by F (~x) = 0) if and only if it makes at

least one Li zero, i.e.,

n
∑

l=1

aijlxl ≡ bij(mod N), for j = 1, . . . ,mi.

We call ~x a negative example for F when F (~x) = 0, and a positive example (denoted
by F (~x) = 1) otherwise. Let S(Li) and S(F ) denote the sets of all examples in Zn

N that
make Li and F zero, respectively. It is obvious that

S(F ) =
m
⋃

i=1

S(Li).

One may also consider redefining counting functions by switching 0 and 1 in the
above definition. However, by duality, the representation capacity of disjunctions of
conjunctions of such functions will be the same as that of conjunctions of disjunctions
of counting functions in our definition.

2.2 Counting Functions via DNF Formulas

Given any DNF formula F = T1 ∨ · · · ∨ Tm with terms

Ti = xi1 · · · xijxij+1
· · · ximi

,
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For l = 1, . . . ,mi, define ~ail to be the vector with its il-th component 1 and all the
other components 0. We also define bil to be 1 for l = 1, . . . , j, and bil to be 0 for l =
j + 1, . . . ,mi. Let Li be the DOCF of CN

~ai1,bi1
, . . . , CN

~aimi
,bimi

, and L be the conjunction

of Li for i = 1, . . . ,m. It is easy to see that for any example ~x ∈ Zn
2 ,

F (~x) = 1⇐⇒ ~x ∈ Zn
2 ∩ S(L).

Thus, any DNF formula can be represented by a conjunction of DOCFs when restricted
on the boolean domain Zn

2 .

2.3 Counting Functions via Modules

Let R be a ring with an identity element 1R. A R-module is an additive abelian group
A together with a function R ×A → A (the image of (r, a) being denoted by ra) such
that for all r, s ∈ R and a, b ∈ A:

1. r(a+ b) = ra+ rb.

2. (r + s)a = ra+ sa.

3. r(sa) = (rs)a.

4. 1Ra = a.

When R is a field, then A is called a vector space. Given a R-module A, a nonempty
subset B ⊆ A is called a submodule of A, if B is an additive subgroup of A and for all
r ∈ R, b ∈ B, rb ∈ B. Recall that ZN is a ring with the identity 1. When N is prime,
ZN is a field. Recall also that Zn

N is an additive abelian group. We will only consider
ZN -modules (or modules for short) throughout this paper. The reader may refer [27]
for more details about rings and modules.

For any a, b ∈ ZN , let ab denote (ab mod N). Given b ∈ ZN and ~r ∈ Zn
N , define

ZNb = {ab | a ∈ ZN} and ZN~r = {a~r | a ∈ ZN},

where a~r = (ar1, ar2, . . . , arn). For subsets A,B ⊆ Zn
N , for any ~w ∈ Zn

N , define

A+ ~w = {~a+ ~w | ~a ∈ A}, and A+B = {~a+~b | ~a ∈ A and ~b ∈ B}.

Consider a DOCF L = OR(CN
~a1,b1

, . . . CN
~am,bm

). It is easy to see that for any ~x ∈ Zn
N ,

~x ∈ S(L) if and only if ~x is a solution to the following system of linear equations over
the domain Zn

N

(∗)



















∑n
i=1 a1ixi ≡ b1 (mod N)

∑n
i=1 a2ixi ≡ b2 (mod N)

......
∑n

i=1 amixi ≡ bm (mod N)
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Let (∗∗) be the following homogeneous system of (∗)

(∗∗)



















∑n
i=1 a1ixi ≡ 0 (mod N)

∑n
i=1 a2ixi ≡ 0 (mod N)

......
∑n

i=1 amixi ≡ 0 (mod N)

Then, one can verify that the set of all solutions over the domain Zn
N to (∗∗) formed

a module, that is denoted by M(L). One can further verify that, given any ~y ∈ S(L),
i.e., a solution to (∗), S(L) = M(L) + ~y. In general, for any conjunction of DOCFs
F = L1 ∧ · · · ∧ Lm, we have

S(F ) =
m
⋃

i=1

(M(Li) + ~yi), where ~yi ∈ S(Li).

2.4 Parameters α(N) and γ(N)

We will use parameters α(N) and γ(N) to describe query complexity of learning algo-
rithms in later sections.

Given any integer N ≥ 2, let N = pr1

1 p
r2

2 · · · p
rt
t , where pi are distinct primes and

ri ≥ 1 for i = 1, . . . , t. We define

α(N) =
t

∑

i=1

ri,

γ(N) =
t

∑

i=1

⌈log(ri + 1)⌉.

Lemma 2.4.1. For any integer N ≥ 2,

1 ≤ γ(N) ≤ α(N) ≤ logN.

Proof. The only nontrivial relationship is α(N) ≤ logN which follows by noting

N = pr1

1 p
r2

2 · · · p
rt
t ≥ 2r1+r2+···+rt = 2α(N).

2

3 Learning Models

In 1984, Valiant [29] proposed the pac-learning model and thus founded the modern
computational learning theory. Later, Angluin [1] proposed the on-line learning with
queries and then initiated the study of exact learning. According to Angluin [1] and
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Blum [10], on-line learning with equivalence queries (and with membership queries)
implies pac-learning (with membership queries), and there are cases such that on-line
learning with equivalence queries is strictly harder than pac-learning.

In this paper, we will focus ourselves on the on-line learning with queries. Our first
model is the on-line learning model with equivalence queries. The goal of a learning
algorithm (or learner) for a class C of boolean-valued functions over a domain Xn

is to learn any unknown target function f ∈ C that has been fixed by a teacher.
In order to obtain information about f , the learner can ask equivalence queries by
proposing hypotheses h from a fixed hypothesis space H of functions over Xn with
C ⊆ H to an equivalence oracle EQ(). If h = f , then EQ(h) = “yes”, so the learner
succeeds. If h 6= f , then EQ(h) = ~x for some ~x ∈ Xn, called a counterexample, such
that h(~x) 6= f(~x). x is called a positive counterexample if f(~x) = 1 and a negative
counterexample otherwise. Each new hypothesis issued by the leaner may depend on
the earlier hypotheses and the received counterexamples. A learning algorithm exactly
learns C, if for any target function f ∈ C, it can find a h ∈ H that is logically
equivalent to f . A learning algorithm exactly learns C with high probability, if for any
target function f ∈ C, it can infer a hypothesis h ∈ H that is logically equivalent to f
on all inputs with probability at least 1 − δ, where 0 < δ < 1, and the probability is
taken over examples in the domains. We say that a class C is polynomial time learnable
(with high probability) if there is a learning algorithm that exactly learns any target
function in C (with probability at least δ) and runs in time polynomially in the size of
the domain, the size of the target function, and the size of the largest counterexample
received during its learning process (and in 1

δ
as well).

Our second model is the on-line learning model with equivalence and membership
queries. This model is the same as the first, but in addition to equivalence queries, the
learner can also ask membership queries by presenting examples in the domain to a
membership oracle MQ(). For any example ~x, MQ(~x) = “yes” if f(~x) = 1, otherwise
MQ(~x) = “no”.

4 Learning DOCFs

In this section we give upper and lower bounds on the number of equivalence queries
required for learning DOCFs.

4.1 An Upper Bound for Learning DOCFs with Modulus N

For two integers a and b we write a|b if b is divisible by a. For an element a ∈ ZN , the
set ZNa has the following properties:

Property 4.1.1. ZNa = ZNgcd(a,N).

Property 4.1.2. If a|N then for every b ∈ ZNa we have a|b.
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Property 4.1.3. ZNa1 + · · ·+ ZNam = ZN gcd(a1, . . . , am,N).

Property 4.1.4. If a|N and the elements of A and B are divisible by a then the
elements of A+B are divisible by a.

Property 4.1.5. We have a 6∈ ZNb if and only if gcd(b,N) 6 | gcd(a,N).

A sequence (~a1, . . . ,~am) of elements in Zn
N is called an independent sequence if

~a1 6= ~0, · · · ,~ai 6∈ ZN~a1 + · · ·+ ZN~ai−1, · · · ,~am 6∈ ZN~a1 + · · ·+ ZN~am−1.

The integer m is called the length of the sequence. The length of the longest independent
sequence in Zn

N is denoted by len(n,N). Notice that when N is prime then len(n,N) =
n. The following lemmas can be easily verified:

Lemma 4.1.6. If (~a1, . . . ,~am) is an independent sequence in Zn
N then, for any λ1, . . . , λi−1 ∈

ZN ,
(~a1, . . . ,~ai−1,~ai + λ1~a1 + · · ·+ λi−1~ai−1,~ai+1, . . . ,~am)

is an independent sequence in Zn
N .

Lemma 4.1.7. Any subsequence (with the same order) of an independent sequence is
an independent sequence.

We first prove some properties of the function len(n,N), then give the learning
algorithm, and finally prove the correctness of the algorithm.

Lemma 4.1.8. len(1, N) = α(N).

Proof. Let N = pr1

1 · · · p
rt
t . The sequence

(a1, . . . , aα(N)) = (pr1−1
1 pr2

2 · · · p
rt−1

t−1 p
rt
t , . . . , p0

1p
r2

2 · · · p
rt−1

t−1 p
rt
t ,

p0
1p

r2−1
2 · · · p

rt−1

t−1 p
rt
t , . . . , p0

1p
0
2 · · · p

rt−1

t−1 p
rt
t ,

...
...

p0
1p

0
2 · · · p

0
t−1p

rt−1
t , . . . , p0

1p
0
2 · · · p

0
t−1p

0
t )

is an independent sequence of length α(N). To show that the sequence is independent,
notice that as = p0

1 · · · p
0
i p

j
i+1p

ri+2

i+2 · · · p
rt
t is not divisible by pj+1

i+1 but a1, . . . , as−1 are

divisible by pj+1
i+1 . Therefore

as 6∈ ZNa1 + · · ·+ ZNas−1

because all the integers in ZNa1 + · · ·+ZNas−1 are divisible by pj+1
i+1 . (Notice here that

we would not have this property if N were not divisible by pj+1
i+1 .) This proves that

len(1,N) ≥ α(N).

To show that len(1, N) ≤ α(N) we suppose there is a sequence

(a1, . . . , as), s > α(N)
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that is independent. By Property 4.1.3 we have

ai 6∈ ZNa1 + · · ·+ ZNai−1 = ZNgcd(a1, . . . , ai−1,N).

Therefore if N = pr1

1 · · · p
rt
t and aj = bjp

rj,1

1 · · · p
rj,t

t where gcd(bj ,N) = 1 then

ai 6∈ ZNgcd(a1, . . . , ai−1,N) = ZNp
min0≤j<i rj,1

1 · · · p
min0≤j<i rj,t

t

where r0,k = rk. By Property 4.1.5

p
min0≤j<i rj,1

1 · · · p
min0≤j<i rj,t

t 6 | p
min(r0,1,ri,1)
1 · · · p

min(r0,t,ri,t)
t .

Therefore there must be a k such that min(r0,k, ri,k) < min0≤j<i rj,k which implies that

ri,k < min
0≤j<i

rj,k.

Thus s can be at most α(N). 2

Lemma 4.1.9. len(n,N) = α(N)n.

proof. The proof is by induction on n. For n = 1 the previous lemma shows that
len(1, N) = α(N). For any n > 1 we first prove that len(n,N) ≥ α(N)n. Since
by the induction hypothesis len(n − 1,N) = α(N)(n − 1) there is an independent
sequence (~a1, . . . ,~alen(n−1,N)) in the (n − 1)-dimensional space. It can be easily shown
that the following sequence is independent in the n-dimensional space and is of length
len(n,N) = α(N)n

((~a1, 0), . . . , (~alen(n−1,N), 0), (~0n−1, b1), . . . , (~0n−1, bα(N)))

where ~0n−1 is the (n− 1)-dimensional zero vector and (b1, . . . , bα(N)) is an independent
sequence in ZN .

We now show that len(n,N) ≤ α(N)n. Suppose

(~c1, . . . ,~ct), t > α(N)n

is an independent sequence in Zn
N . Let ~̂cj be the (n− 1)-dimensional vector that is the

first n− 1 entries of ~cj and ~cnj is the last entry (the n-th entry) of ~cj. By the induction

hypothesis (~̂c1, . . . , ~̂ct) is dependent and therefore let w be the minimal integer such
that

~̂cw ∈ ZN ~̂c1 + · · ·+ ZN~̂cw−1.

Therefore ~̂cw = λ1~̂c1 + · · · + λw−1~̂cw−1. Now we change ~cw in the sequence to ~dw =
~cw − λ1~c1− · · · −λw−1~cw−1 and by Lemma 4.1.6 we again get an independent sequence

(~c1, · · · ,~cw−1, ~dw,~cw+1, . . . ,~ct)

and notice that ~̂dw = ~0n−1. This can be done again and again as long as the number of ~̂ci
that are not ~0n−1 is greater than len(n−1,N). At the end we have s = t−α(N)(n−1) >
α(N) vectors

~dw1
, . . . , ~dws , w1 < · · · < ws

10



in the sequence that are independent and that satisfy ~̂dwj
= ~0n−1. Therefore ~dn

w1
, . . . , ~dn

ws

must be independent. Since s > α(N) we have a contradiction to Lemma 4.1.8. 2

We now describe the algorithm used to learn DOCFs. For a sequence s = (~a1, . . . ,~am)
define the boolean function

fs(~x) =

{

0 if ~x ∈ ~a1 + ZN (~a2 − ~a1) + · · ·+ ZN (~am − ~a1)
1 otherwise.

For the empty sequence s = () define f()(~x) = 1.

The Learning Algorithm

Step 1. s← ().

Step 2. While EQ(fs)→ ~a does not answer “YES” do s← (s,~a).

Theorem 4.1.10. The above algorithm learns a DOCF with modulus N using

α(N)n + 1 ≤ (logN)n+ 1

equivalence queries.

Proof. Let f be the target formula. Let ~a1, . . . ,~am be the counterexamples in the
algorithm and si = (~a1, . . . ,~ai) and fi = fsi

. The zeros of a DOCF are the solutions of
some linear system of equations

AX = B

where X = (x1, . . . , xn)T and A is a t×n matrix and B is a column t-vector both with
entries from ZN . We prove that for all i ∈ {1, . . . ,m}:

C1: ~ai is a negative counterexample.

C2: A(ai)
T = B.

C3: f ⇒ fi.

C4: (~a2 − ~a1, . . . ,~ai − ~a1) is an independent sequence.

For i = 1, s1 = () and f() = 1. Therefore EQ(f()) gives negative counterexample
~a1 and f(~a1) = 0. This proves condition (C1) for i = 1. Since f(~a1) = 0 we have
A(~a1)

T = B which proves (C2) for i = 1. Now since

f(~a1)(~x) =

{

0 if ~x = ~a1

1 otherwise

we get (C3) for i = 1. Condition (C4) follows because, by definition, () is an independent
sequence.
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Suppose (C1-C4) are true for i− 1. Since f ⇒ fi−1 the counterexample ~ai will be
negative. This implies (C1) for i. Since ~ai is a negative counterexample f(~ai) = 0 and
A(~ai)

T = B. This proves (C2) for i. Now

fi(~x) =

{

0 if ~x = ~a1 + ZN (~a2 − ~a1) + · · ·+ ZN (~ai − ~a1)
1 otherwise

If fi(~x) = 0 then ~x = ~a1 + λ1(~a2 −~a1) + · · ·+ λi−1(~ai −~a1) for some λ1, . . . , λi−1 ∈ ZN

and then by (C2)

A(~x)T = A(~a1)
T + λ1A(~a2 − ~a1)

T + · · ·+ λi−1A(~ai − ~a1)
T

= B.

Therefore, f(~x) = 0. This implies f ⇒ fi and proves (C3) for i.

Since ~ai is a negative counterexample for fi−1 we have

~ai 6∈ ~a1 + ZN (~a2 − ~a1) + · · ·+ ZN (~ai−1 − ~a1)

and therefore
~ai − ~a1 6∈ ZN (~a2 − ~a1) + · · · + ZN (~ai−1 − ~a1).

This implies (C4) for i. Thus, we have shown that all the four conditions hold for all i.

Now since the longest independent sequence is

len(n,N) = α(N)n

we have that the number of counterexamples can be at most

m ≤ α(N)n + 1.

This implies the theorem. 2

We note that this algorithm works whether the components of the input vectors are
either boolean or from ZN .

4.2 An Upper Bound for Learning DOCFs with Different Moduli

In this section, we show that one can also learn a DOCF even if it has different counting
moduli provided that the least common multiple of all moduli is known. Thus, we
consider the problem of learning a DOCF of the following form:

f = OR(CN1

~a1,b1
, CN2

~a2,b2
, . . . , CNm

~am,bm
)

when the learner knows the value N = lcm(N1,N2, . . . ,Nm). Note that for all ~x,
f(~x) = 0 if and only if all of the following equations hold:
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~a1 ·X ≡ b1 (mod N1)
~a2 ·X ≡ b2 (mod N2)

...
~am ·X ≡ bm (mod Nm)

(1)

where X = (~x)T . For each i, let integer di = N/Ni and consider the new system of
equations:

(d1~a1) ·X ≡ d1b1 (mod N)
(d2~a2) ·X ≡ d2b2 (mod N)

...
(dm~am) ·X ≡ dmbm (mod N)

(2)

Note that for all ~x, ~x is a solution to all equations in system (1) if and only if it is
a solution to all equations in system (2). Thus the function which is 0 on the solutions
to system (1) is identical to the function which is 0 on the solutions to system (2). It
is therefore sufficient to learn the function f ′ = f :

f ′ = OR(CN
d1~a1,d1b1

, CN
d2~a2,d2b2

, . . . , CN
dm~am,dmbm

).

But since the learner knows N , this is simply the problem of learning a DOCF with
an identical modulus N . By Theorem 4.1.10, such a function is learnable with at most
α(N)n + 1 equivalence queries.

4.3 A Lower Bound for (Diagonal) DOCFs

We give a lower bound for diagonal DOCF which therefore holds for general DOCF.

Theorem 4.3.1. To learn a DOCF from equivalence queries we need at least γ(N)n
equivalence queries.

Proof. We give a lower bound for diagonal DOCFs which therefore holds for general
DOCF. Let N = pr1

1 · · · p
rt
t . Consider the class of functions fλ1,...,λn

where λ1, . . . , λn|N
and

f−1
λ1,...,λn

(0) = {~x|xi = 0 mod λi, i = 1, . . . , n}.

Suppose the learner already knows λ1, . . . , λs−1 and knows that

pq1

1 · · · p
qj

j p
δ1
j+1 ≤ λs ≤ p

q1

1 · · · p
qj

j p
δ2
j+1p

rj+2

j+2 · · · p
rt
t

and knows nothing about λs+1, . . . , λn.

Suppose the learner asks equivalence queries with h. Let A = h−1(0). Let

L1 = {(x1, . . . , xn)|xi = 0 mod λi, i = 1, . . . , s − 1}

13



and let

L2 = {(x1, . . . , xn)|xs = 0 mod pq1

1 · · · p
qj

j p

⌊

δ1+δ2
2

⌋

j+1 }.

If A 6⊆ L1 then the adversary can give the learner x ∈ A\L1 as a counterexample and
the learner cannot gain any information from this counterexample.

If A ⊆ L1 but A 6⊆ L2 then the adversary will return an element from A\(L1 ∩ L2)
and the learner gains only the additional information that

λs ≥ p
q1

1 · · · p
qj

j p

⌊

δ1+δ2
2

⌋

j+1 .

If on the other hand if A ⊆ L1 ∩ L2 then the adversary will return

(0, s−1. . . , pq1

1 · · · p
qj

j p

⌊

δ1+δ2
2

⌋

−1

j+1 , 0, . . . , 0)

and the only information that the learner gains is that

λs ≤ p
q1

1 · · · p
qj

j p

⌊

δ1+δ2
2

⌋

−1

j+1 .

Now by induction the result follows. 2

4.4 Matching Upper Bounds for Diagonal DOCFs

Using a similar strategy as described in Theorem 4.3.1 for the learner we get Theorem
4.4.1 and Corollary 4.4.2.

Theorem 4.4.1. Homogeneous diagonal DOCFs can be learned from γ(N)n equiva-
lence queries.

Corollary 4.4.2. (Non-homogeneous) diagonal DOCFs can be learned from γ(N)n+1
equivalence queries.

5 Reducing the Number of Equivalence Queries by Asking
Membership Queries

One can use membership queries to reduce the number of equivalence queries. Here we
show how to reduce the number of equivalence queries using membership queries when
learning certain restricted classes of DOCFs.

5.1 Reduced Queries for Diagonal DOCFs

We have shown in Section 4 that there is an algorithm for learning diagonal DOCFs
using at most γ(N)n + 1 equivalence queries. On the other hand, we have also shown
that any algorithm for learning diagonal DOCFs requires at least γ(N)n equivalence

14



queries. We will design a new learning algorithm that substantially decrease the number
of equivalence queries by using membership queries as well.

We first give some easy facts about the structures of submodules of ZN .

Lemma 5.1.1 For any submodule S of ZN , there is an element d ∈ ZN such that
S = ZNd.

Proof. If S = {0}, then S = ZN0. Now assume that S 6= {0}. Fix d1 ∈ S such
that d1 6= 0. If S = ZNd1 then we are done. Otherwise, fix t1 ∈ S − ZNd1. Set
d2 = gcd(d1, t1, N). Then, ZNd1 + ZN t1 = ZNd2. t1 6∈ ZNd1 implies that d2 6∈ ZNd1.
If S = ZNd2, then we are done, otherwise fix t2 ∈ S − ZNd2. Let d3 = gcd(d2, t2,N).
Then, ZNd2 + ZN t2 = ZNd3, and d3 6∈ ZNd2. Repeat the above procedure. Because
ZN contains N elements, the above procedure must terminate at an element dm with
m ≤ N − 1. Hence, S = ZNdm. 2

Given any ~x ∈ Zn
N , for i = 1, . . . , n, let ~x[i] denote the example obtained by changing

all its components into 0 except the i-th component.

Lemma 5.1.2. For any diagonal DOCF F, there exist di ∈ ZN , i = 1, . . . , n, such that

M(F ) = (ZN (d1, . . . , 0) + · · ·+ ZN (0, . . . , dn)),

where M(F ) is the set of all solutions over Zn
N to the homogeneous system of linear

equations derived from counting functions in F .

Proof. Define
Mi(F ) = {~x[i]|~x ∈M(F )}, i = 1, . . . , n.

Then, M(F ) = M1(F ) + · · · +Mn(F ). It is easy to see that Mi(F ) is a submodule of
Zn

N . This means that {xi|~x ∈ Mi(F )} is a submodule of ZN . By Lemma 5.1.1, there
exists di ∈ ZN such that {xi|~x ∈Mi(F )} = ZNdi. Thus, Mi(F ) = ZN (0, . . . , di, . . . , 0).
2

Theorem 5.1.3. There is an algorithm for learning diagonal DOCFs with modulus N
over the domain Zn

N using n+ 1 equivalence queries and nγ(N) membership queries.

Proof. Given a diagonal DOCF F , by Lemma 5.1.2, there are di ∈ ZN , i = 1, . . . , n,
such that

S(F ) = M(F ) + ~y = ZN (d1, . . . , 0) + · · ·+ ZN (0, . . . , dn) + ~y

for any ~y ∈ S(F ). Thus, in order to learn S(F ), we only need to find an example
~y ∈ S(F ) and the elements d1, . . . , dn in ZN . Since ZNdi = ZNgcd(di,N), we assume
without loss of generality that di|N . The learning algorithm issues hypotheses for S(F )
and works as follows.

Factor N to obtain N = pr1

1 p
r2

2 · · · p
rt
t . Ask an equivalence query for H−1(0) = φ.

If yes then stop, otherwise we obtain a counterexample denoted by ~y.

Ask an equivalence query for H−1(0) = {~y}. If yes then stop, otherwise we receive
a counterexample ~x1. Then, ~z1 = ~y − ~x1 ∈ M(F ), and ~z1 6= ~0. Thus, there is at least
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one i1 such that the i1-th component z1
i1
6= 0 and z1

i1
∈ ZNdi1 . Factor z1

i1
, let z1

i1
=

a1p
ki11

1 p
ki12

2 · · · p
ki1t

t , where gcd(a1, pj) = 1, for j = 1, . . . , t. Suppose

di1 = p
qi11

1 p
qi12

2 · · · p
qi1t

t .

Then, 0 ≤ qi1j ≤ ki1j ≤ rj . Now, for each j ∈ {1, . . . , t}, use the binary search with
membership queries to find the qi1j among integers 0, 1, . . . , ki1j . Thus, with at most
γ(N) membership queries, we can find qi1j, for j = 1, . . . , t, hence we find di1 .

At next step, ask an equivalence query for H−1(0) = ZN (0, . . . , di1 , . . . , 0)+~y. If yes
then stop, otherwise we receive a counterexample ~x2. Let ~z2 = ~y − ~x2. Then, there is
at least one i2 6= i1 such that the i2-th component z2

i2
6= 0 and it is in ZNdi2 . With the

same manner, we can find di2 using at most γ(N) membership queries. Next time, we
ask an equivalence query for H−1(0) = ZN (0, . . . , di1 , . . . , 0)+ ZN (0, . . . , di2 , . . . , 0)+~y.
Repeat the above procedure. Hence, we can find d1, . . . , dn (thus, S(F )) using at most
n+ 1 equivalence queries and at most nγ(N) membership queries. 2

5.2 Reduced Queries for Boolean Weighted Read-Once DOCFs

A read-once disjunction of boolean weighted counting functions is a DOCF in which all
weight vectors ~ai are boolean valued vectors and for any component, no two distinct
vectors have a 1 in it. Although this class of functions can be learned with α(N)n +
1 equivalence queries by the algorithm in Section 4.1, we show here that with the
addition of n2 membership queries, this restricted class can be learned using at most
2n equivalence queries. Thus, the number of queries is independent of the counting
modulus N . This result holds for any input domain Zn

M where M need not be the same
as N . If the input domain is Zn

N (or even Zn
M for any M > N), then n2 membership

queries and one equivalence query and sufficient. Note that results of Bshouty, Hancock
and Hellerstein [20] also show this class of functions to be learnable, but their algorithm
uses O(n3) equivalence queries.

The strategy of our algorithm is to determine which variables are relevant, and for
those which are, to determine which variables are in the same counting functions. Note
that if two variables occur in the same counting function, this can be detected by making
a membership query on an example obtained from a negative example by incrementing
one of the two variables and decrementing the other. This detection works since if they
are in the same counting function, then the sum of variables modulo N remains the
same, and the example is still negative. If they are in different counting functions, then
on this example both of these counting functions no longer equal their count values,
and therefore the example is positive. Thus, by making n(n−1)/2 membership queries,
each pair can be examined in this manner.

When the input domain is Zn
M for M ≥ N , then a single negative counterexample ~y

can be used to create all required membership queries, since one can always increment
one variable and decrement the other. This is nontrivial only when both variables are
either 0 or both areN−1, and although one cannot increment and decrement in absolute
terms, one can do so with modulo N operation while not affecting the sum of variables
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modulo N . Specifically, for an example ~y ∈ Zn
M let ~yi+ be the example identical to ~y

except that its i-th component is incremented by 1 modulo N . Let ~yij± be the example
identical to ~y except that its i-th component is incremented by 1 modulo N and its j-th
component is decremented by 1 modulo N . One first asks an equivalence query with
the always TRUE hypothesis in order to get a negative counterexample ~y. Then the set
of relevant variables can be determined by asking a membership query on ~yi+ for each
i ∈ {1, . . . , n}. The membership query response for ~yi+ is “yes” if and only if the i-th
variable is relevant. For each pair of relevant variables xi and xj, a membership query
is made with ~yij±. These variables are in the same counting function if and only if the
response to the membership query is “no”

If the input domain is Zn
M for some M < N , then the algorithm becomes more com-

plicated, since there may be cases in which ~yij± is not in Zn
M . The learner must instead

force the equivalence query oracle to provide counterexamples on which these incre-
ments and decrements can be made. Recall that we need only make one membership
query for each pair of variables. Once this query is made, we definitively know whether
or not the pair of variables is in the same counting function. We will therefore keep
track of which pairs of variables have not yet been compared. After the first equivalence
query, using counterexample ~y, all relevant variables can be compared except for two
classes: All variables assigned 0 in ~y cannot be compared against each other (although
they can be compared against all others) and similarly all variables assigned M − 1 in
~y cannot be compared against each other.

Let R be the set of variables whose counting functions have not been found after
all possible comparisons of ~y. Consider the subset of variables in R assigned M − 1
in ~y and the subset of variables in R assigned 0 in ~y. Let the set S contain these two
subsets, unless either of these two sets is empty or contains only one variable, in which
case that set is not placed in S. We evolve S according to the following invariants:

• The sets in S are disjoint subsets of R and each set in S has cardinality at least
2.

• For any set s ∈ S, and any variables xi ∈ s and xj 6∈ s, xi and xj are known not
to be in the same counting function.

This evolution of S is done in stages. At each stage we remove from S at least one
set s and replace it by either two disjoint subsets of s, one proper subset of s, or no
sets. Since |R| ≤ n, there can be at most n − 1 such stages. The variables in a set
s removed from S which are not in sets reinserted to S are the variables of counting
functions which were found at that stage. The sets that are reinserted to S denote sets
of variables which have had the same assignment in every negative counterexample and
have therefore not yet been compared.

Each set s ∈ S has associated with it a nonempty set ts ⊆ {0,M − 1}. This
set denotes the values v for which all elements of s were set to v in some negative
counterexample seen so far. Therefore, when a set s splits, each of its children s′

inherits the set ts (i.e. ts′ ⊇ ts).
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We describe the hypothesis submitted to the equivalence query oracle as a general
program, and note that such a hypothesis may be stated as a hypothesis from the class
of “OR’s of AND’s of OR’s of counting functions.” Given S, we construct a hypothesis
h which classifies an example as negative only if it is in all of the sets described below:

• For each counting function Ci found so far, let N(Ci) be the set of examples which
are negative for this counting function.

• For each set s ∈ S, let E(s) be the set of examples for which there exists a v ∈ ts
such that each of the examples assigns v to all variables in s.

Note that any example classified negative by h is a negative example of the target
function. This is because such examples are negative examples of all counting functions
found so far, and for the variables in the remaining counting functions, the example
has the same values as in some previous negative example. Therefore, an equivalence
query made with this hypothesis must either return “yes”, in which case learning is
complete, or else return a new negative counterexample ~y. If a negative counterexample
is returned, then since it is in all N(Ci) sets by definition, it must not be in at least
one of the E(s) sets. Therefore, there exists an s ∈ S such that either:

(1). The set s contains two variables assigned different values in ~y, or

(2). The negative counterexample ~y causes ts equal to {M − 1} or {0} to be set to
{0,M − 1}.

Note that case (2) can occur at most n times since each variable in s inherits ts
whenever s is split and each variable can add an element to its t set only once. Whenever
case (2) occurs, we create a new hypothesis (based on the new ts sets), make another
equivalence query, and get a new negative counterexample. This does not count as a
new stage. Only when in case (1) do we move to the next stage.

Once in case (1), for each set s which contains two variables assigned different
values, we remove s from S and perform all comparisons between variables in s with
different values. The variables in the newly discovered counting functions will not be in
sets reinserted to S. All remaining variables in s set to M −1 in ~y form a single new set
s′. If there is only one variable in this set, a counting function is constructed using only
this variable. Otherwise, if s′ is nonempty, it is inserted into S and ts′ = ts ∪ {M − 1}.
Similar work can be done for all variables set to 0 in ~y.

We ask one equivalence query to start the algorithm, nmore equivalence queries may
result in case (2) and n− 1 more equivalence queries may result in case (1). Therefore,
this algorithm makes at most 2n equivalence queries.

Putting all analysis together proves the following result.

Theorem 5.2.1. When M ≥ N , a boolean weighted read-once DOCF over Zn
M is learn-

able using one equivalence query and at most n2 membership queries. When M < N ,
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a boolean weighted read-once DOCF over Zn
M is learnable using at most 2n equivalence

queries and at most n2 membership queries.

6 Learning DOCFs with Negated Counting Functions

One open problem regarding learning DOCFs is whether disjunctions of negated count-
ing functions with modulus N over the domain Zn

N are poly-time learnable. Because
this problem is substantially related to the problem of learning conjunctions of DOCFs
with modulus N , it seems very difficult to resolve it. However, when N = 2, it is easy
to see that a positive answer to the problem exists.

In this section, we will prove two results. First, we will provide a partial solution to
the problem by showing that disjunctions of no more than O( log n

log(P−1)) negated counting
functions with prime modulus P > 2 over the domain Zn

P are poly-time learnable with
equivalence and membership queries. Secondly, we will show that in general learning
disjunctions of negated counting functions is harder than learning CNF formulas, i.e.,
if one can learn disjunctions of negated counting functions with modulus N over the
domain Zn

N in polynomial time using equivalence and membership queries, then one
can learn CNF formulas in polynomial time using equivalence and membership queries.

When P is a constant prime, it was shown in [21] that disjunctions of negated count-
ing functions with modulus P is polynomial time learnable using equivalence queries.
The technique used in [21] is an extension of the linear transformation developed in [9].

6.1 A Positive Result for Bounded Negations

Assume that K is a field with Q elements. For any m× n matrix Am,n = (aij)m,n and
m×1 vector B = (b1, . . . , bm)T with elements from K, consider the following expression

(6.1)
m
∧

i=1

(
n

∑

j=1

aijxj 6= bi).

Let N(Am,n, B) denote the set of examples in Kn satisfying (6.1). By simple analysis,
we know that (6.1) is equivalent to

(6.2)

(Q−1)m
∨

i=1

Am,nX = Di,

where Di = (di1, . . . , dim)T are distinct and dij ∈ (K − {bi}). In other words,

N(Am,n, B) =

(Q−1)m

⋃

i=1

S(Am,n,Di),

where S(Am,n,Di) denotes the set of all examples in Kn satisfying the system of linear
equations Am,nX = Di. Now, we prove the following lemma.
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Lemma 6.1.1. Given any two examples ψ = (ψ1, . . . , ψn)T and ω = (ω1, . . . , ω2)
T in

N(Am,n, B), define
ξ(u) = u(ω − ψ) + ψ, ∀u ∈ K.

Then, there is an i such that ψ and ω are both in S(Am,n,Di) if and only if ξ(u) ∈
N(Am,n, B), ∀u ∈ K.

Proof. Suppose that both ψ and ω are in S(Am,n,Di) for some i. Then, for any u ∈ K,
ξ(u) ∈ S(Am,n,Di), because

Am,nξ(u) = u(Am,nω −Am,nψ) +Am,nψ = u(Di −Di) +Di = Di.

Now assume that ξ(u) ∈ N(Am,n, B) for any u ∈ K. Suppose by contradiction that
there are i and j with i 6= j such that ψ ∈ S(Am,n,Di) and ω ∈ S(Am,n,Dj). Since
Di 6= Dj, there is at least one e such that

n
∑

r=1

aerψr = die 6= dje =
n

∑

r=1

aerωr.

Since K is a field, (dje − die)
−1 exists. By (6.1)

n
∑

r=1

aerψr = die 6= be.

We now choose u = (be − die)(dje − die)
−1. Then, u ∈ K and u 6= 0. Note that

Am,nξ(u) = u(Am,nω −Am,nψ) +Am,nψ = u(Dj −Di) +Di.

Thus, the e-th element of the above vector is

u(dje − die) + die = (be − die)(dje − die)
−1(dje − die) + die = be.

This means that
n

∑

r=1

aer ξ(u)r = be,

where ξ(u)r is the r-th element of ξ(u). Hence, ξ(u) doesn’t satisfy (6.1), this contradicts
to the assumption that ξ(u) ∈ N(Am,n, B). 2

Remark 6.1.2. By Lemma 6.1.1, for any given two examples satisfying (6.1), we can
use at most Q membership queries to decide whether they satisfy the same linear system
derived from (6.2). It is also easy to see that for any Di and Dj ,

S(Am,n,Di)
⋂

S(Am,n,Dj) = φ.

Remark 6.1.3. Assume that ψ and ω are in S(Am,n,Di). Then, both ψ−ω and ω−ψ
are in S(Am,n,~0).
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Theorem 6.1.4. Given any m × n matrix Am,n and any m × 1 vector B with their
elements in K, one can learn N(Am,n, B) over the domain Kn using at most n+(Q−1)m

equivalence queries and at most Q(n+(Q−1)m)(Q−1)m membership queries. Moreover,
if addition and multiplication operations of elements in K are of poly-time complexity,
then the learning process runs in time polynomial in logQ, n, and (Q− 1)m.

Proof. By (6.2), in order to learn N(Am,n, B), one only needs to learn all the linear
systems Am,nX = Di, i.e., S(Am,n,Di), for i = 1, . . . , (Q − 1)m. We will design a
learning algorithm running in stages. Define W (s) to be the set of all linear systems
constructed by the end of stage s. Define Z(s), which is constructed by the end of
stage s, to be the set of all linearly independent solutions to the homogeneous system
Am,nX = ~0. Define R(s) to be the set of all examples obtained by the end of stage s
that are solutions to different linear systems contained in (6.2). Each linear system L
in W (s) is uniquely defined by Z(s) and one element in R(s) in the sense that the set
of all solutions to L is exactly the following

sol(L) = lspan(Z(s), µL) = {k1ψ1 + · · ·+ klψl + µL|ki ∈ K},

where Z(s) = {ψ1, . . . , ψl}, and µL ∈ R(s) is a solution to the system L. In particular,
when Z(s) = φ, sol(L) = {µL}. The hypothesis H(s) issued at stage s is the disjunction
of all linear systems in W (s). In other words, H(s) is the union of all solutions to all the
linear systems in W (s). Let ω(s) denote the counterexample received for the hypothesis
H(s).

Learning Algorithm.

Stage 0. Set W (0) = Z(0) = R(0) = H(0) = φ. Ask an equivalence query
for H(0). If yes then stop, otherwise one receives a counterexample ω0.

Stage s + 1 ≥ 1. For each solution µ ∈ R(s), decide whether ω(s) and µ
are solutions to the same linear system in (6.2). By Lemma 6.1.1, this can
be done with at most Q membership queries. If they are, then it is easy
to see that ω(s) − µ is linearly independent from all solutions in Z(s) and
ω(s) − µ is a solution to the homogeneous system Am,nX = ~0. Thus, set
Z(s + 1) = Z(s) ∪ {ω(s) − µ}, and R(s + 1) = R(s). If for any µ ∈ R(s),
ω(s) and µ are not solutions to the same linear system in (6.2), then set
R(s+ 1) = R(s) ∪ {ω(s)}, and Z(s+ 1) = Z(s).

Ask an equivalence query for H(s). If yes then stop, otherwise one receives
a new counterexample ω(s+ 1).

According to (6.2), |R(s)| ≤ (Q − 1)m,∀s ≥ 0. Since the homogeneous system
Am,nX = ~0 has at most n linearly independent solutions, |Z(s)| ≤ n,∀s ≥ 0. Hence, at
most n+ (Q− 1)m equivalence queries are required. For each counterexample received
at stage s, we need to decide whether there is one solution in R(s) such that they
are solutions to the same linear system in (6.2). By Lemma 6.1, at most Q(n + (Q −
1)m)(Q − 1)m membership queries are required. In the algorithm, only addition and
multiplication operations of elements in K are involved. So, the algorithm runs in
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time polynomial in logQ, n, and (Q− 1)m, if addition and multiplication operations of
elements in K are of poly-time complexity. 2

We now consider how to apply Theorem 6.1.4 to learn a disjunction of negated
counting functions with a prime modulus P > 2. Note that ZP is a field with P
elements, and addition and multiplication operations of elements in ZP are of poly-
time complexity. Given a disjunction F of negated counting functions

F = OR(¬CP
~a1,b1

, . . . ,¬CP
~am,bm

)

over the domain Zn
P , It is easy to see that F is equivalent to (6.1) in the sense that,

for any example ψ ∈ Zn
P , F (ψ) = 0 if and only if ψ satisfies (6.1). So, in order to learn

F , we only need to learn (6.1). Hence, the following corollary follows directly from
Theorem 6.1.4.

Corollary 6.1.5. We can learn a disjunction of m negated counting functions with
prime modulus P > 2 over the domain Zn

P using at most n + (P − 1)m equivalence
queries and at most P (n+(P −1)m)(P −1)m membership queries. The time complexity
of the learning algorithm is polynomial in logP , n and (P − 1)m. (Hence, when m is
at most O( log n

log(P−1)), the algorithm is of polynomial time complexity.)

6.2 The Hardness Result for Unbounded Negations

Given a CNF formula

(6.3) F =
m
∧

i=1

Ti, where Ti = (xi1 ∨ · · · ∨ xim1
∨ x̄im1+1

∨ · · · ∨ x̄im2
).

We assume without loss of generality that at each clause Ti, any variable can appear
at most once, and no variable and its negation can appear together. For Ti, we define
a vector ~a(i) = (ai1, . . . , ain) such that aij = 1 if xj appears at Ti, aij = n if x̄j appears
and, aij = 0 otherwise. We also define bi as the difference of (n+ 1) and the number of
negated variables appearing at Ti. Now, we define

D(F ) = OR(¬Cn+1
~a(1),b1

, . . . ,¬Cn+1
~a(m),bm

).

Then, D(F ) is a disjunction of negated counting functions.

Lemma 6.2.1. The size of F is of the same order as the size of D(F ). For any example
α = (α1, . . . , αn) ∈ Zn

2 , F (α) = 1 if and only if D(F )(α) = 0.

Proof. The number of clauses in F is the same as the number of counting functions
in D(F ), and the number of variables occurring at each clause of F is the same as the
number of nonzero weights in the corresponding counting functions in D(F ). So, the
size of F is of the same order as the size of D(F ).

F (α) = 1 if and only if T (i)(α) = 1, for i = 1, . . . ,m. T (i)(α) = 1 if and only
∑n

j=1 aijαj 6≡ bi (mod n + 1), if and only if ¬Cn+1
~a(i),bi

(α) = 0. Hence, F (α) = 1 if and

only if D(F )(α) = 0. 2
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Theorem 6.2.2. If one can learn disjunctions of negated counting functions with
modulus N over the domain Zn

N in time poly(n,m′, logN) using equivalence and mem-
bership queries, then one can CNF formulas in time poly(n,m′′) using equivalence and
membership queries, where m′ and m′′ are the sizes of the input disjunctions of negated
counting functions and the input CNF formulas, respectively.

Proof. Given any CNF formula F with n variables. Suppose the size of F is m′′. Con-
vert F to D(F ). If there is an algorithm for learning disjunctions of negated counting
functions with modulus N over the domain Zn

N in time poly(n,m′, logN) using equiva-
lence and membership queries, then we can use it to learn D(F ) (and hence F according
to Lemma 6.2.1). The time complexity for learning D(F ) is poly(n,m′′, log(n + 1)) =
poly(n,m′′), because the size of D(F ) is of the same order as m′′ and the modulus of
D(F ) is (n+ 1). 2

7 Learning Conjunctions of DOCFs

In this section we show that if the target is a conjunction of k DOCFs and k < δ(N)
where δ(N) is the minimal prime that divides N then the target can be learned with
the number of queries (membership and equivalence queries) that is polynomial in
k, the number of variables n and δ(N)/(δ(N) − k). We then show that if the class
of conjunction of k DOCFs over ZN is learnable then the class of conjunction of k
DOCFs over any ZN ′ where N ′|N is learnable. This justifies the use of δ(N) in the
condition k < δ(N) and in the query complexity of the algorithm. It also shows that the
learnability of conjunctions of DOCFs over ZN when N is even implies the learnability
of boolean DNF.

We have noticed before that learning one DOCF is equivalent to learning the set

L = {x ∈ Zn
N | Ax = b}

where A is an m × n matrix over ZN , x = (x1, . . . , xn)T and b = (b1, . . . , bm)T ∈
Zm

N . This is because the set of negative examples of any DOCF is of the above form.
Therefore, learning a conjunction of k DOCFs is equivalent to learning a set

W = L1 ∪ L2 ∪ · · · ∪ Lk

where
Li = {x ∈ Zn

N | A
(i)x = b(i)} i = 1, . . . , k.

To describe our algorithm we give the following definitions. Given examples s1, . . . , sm ∈
W we write ∼ (s1, . . . , sm) if s1, . . . , sm is in the same Lj for some j = 1, . . . , k. For a
set S of examples, we write ∼ S is the ∼ relation holds for all its examples. We have
the following lemma.

Lemma 7.1. Let s1, . . . , sk ∈W . If 6∼ (s1, . . . , sk) then

Pr
λ2,...,λm

[s1 + λ2(s2 − s1) + · · ·+ λm(sm − s1) ∈W ] ≤
k

δ(N)
.
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If ∼ (s1, . . . , sk) then

Pr
λ2,...,λm

[s1 + λ2(s2 − s1) + · · ·+ λm(sm − s1) ∈W ] = 1.

The proof of this lemma is given at the end of this section. We now show how to
use this lemma to learn conjunction of k DOCFs when k < δ(N).

This lemma gives a randomized algorithm that runs with query complexity

O

(

δ(N)

δ(N) − k

)

,

for δ(N) > k to decide whether ∼ (s1, . . . , sm) using a randomized membership queries.

The learning algorithm collects counterexamples in sets S1, S2, . . . where each Si

satisfies ∼ Si. When the algorithm receives a new counterexample si it uses the test in
the above lemma to know to which set it belongs. The learning algorithm then adds it
to the the appropriate set and asks equivalence query with the new hypothesis.

In the following learning algorithm the first hypothesis is Ø (that corresponds to
the constant boolean function 1). For a set S = {s1, . . . , sk} we have

L(S) = {s1 + λ2(s2 − s1) + . . .+ λk(sk − s1)|λ2, . . . , λk ∈ ZN}.

Algorithm.

1. j ← 0.

2. Ask EQ(L(S1) ∪ L(S2) ∪ · · · ∪ L(Sj)))→ s.

3. For the negative counterexample s and for each Si, if ∼ ({s} ∪ Si) then
add s to Sj.

4. If for no i we have ∼ ({s} ∪ Si) do

4.1. j ← j + 1.

4.2. Sj ← {s}.

5. Goto 2.

The correctness of the algorithm is clear. The complexity of the algorithm is at
most kn equivalence queries and

O

(

kn
δ(N)

δ(N) − k
+ log(kn)

)

membership queries.

We now prove Lemma 7.1. We first give the following proposition.

Proposition 7.2. Let

L = {x|Ax = b}, L′ = {x|A′x = b′}
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where A and A′ are m × n and m′ × n′ matrices over Zn and b, b′ ∈ Zm
N s. Suppose

Ø 6= L 6⊆ L′. Then

Pr
x

[x ∈ L′|x ∈ L] ≤
1

δ(N)
.

Proof. If L ∩ L′ = Ø then

Pr
x

[x ∈ L′|x ∈ L] = 0 ≤
1

δ(n)
.

Let x(1) ∈ L ∩ L′. Since L 6⊆ L′ there is x(2) ∈ L′\L. Notice that

A′x(1) = b′, A′x(2) = b′, Ax(1) = b, Ax(2) 6= b.

let y = x(1) − x(2) and consider the following relation on L′. For w1, w2 ∈ L
′

w1 R w2 if and only if w1 − w2 = λy for some λ ∈ ZN .

It is easy to verify that this relation is an equivalence relation. Notice also that for any
w the equivalence class of w is

[w] = {w,w + y,w + 2y, . . . , w + (M − 1)y}

where M is the minimal integer that satisfies My = 0. This is because for any δ ∈ ZN

we have A′(w+ λy) = b′ and therefore w+ λy ∈ L′. Notice also that this M divides N
because y is not 0. Therefore, all equivalence classes are of the same size M . We now
show that in each equivalence class [w] we either have T < M elements in L′ or none
of the elements are in L′ and T |M . If this is true then because all equivalence classes
have the same size this implies that the probability that x ∈ L is also in L′ is at most
the probability that x ∈ [w] is also in L′ in those [w] that contains T elements in L′.
Therefore,

Pr
x

[x ∈ L′|x ∈ L] ≤
T

M
≤

1

δ(N)
.

It remains to show that for any w ∈ L′ we have that |[w] ∩ L| is either 0 or some
T < M where T |M . Suppose |[w] ∩L| 6= 0. Let u ∈ [w]∩L. Then [u] = [w] and u ∈ L.
Consider

u, u+ y, u+ 2y, . . . , u+ (M − 1)y.

We have
A′(u+ λy) = A′u = b′

and
A(u+ λy) = b+A(λy) = b+ λ(b−Ax(2)).

Therefore, u + λy ∈ L′ but u+ λy ∈ L if and only if λz = 0 where z = b− Ax(2) 6= 0.
Now

|[w] ∩ L| = |{λ|λz = 0}| = T |N

and since z 6= 0 we have u + y 6∈ L and therefore T < M . Also if Q is the smallest
integer that satisfies Qz = 0 then T = M/Q of the elements in L′ are in L. Therefore
T |M .2
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8 Learning Monotone Conjunctions of Diagonal DOCFs

Angluin [1] showed that any monotone DNF formula, in which each term contained
no negated variables, is polynomial time learnable using equivalence and membership
queries. In [5] it was further shown that monotone DNF formulas are also polynomial
time learnable with high probability using equivalence and incomplete membership
queries. Bshouty [14] systematically studied the problem of learning those concept
classes that can be represented as conjunctions (or disjunctions) of monotone concepts
in general sense, and he obtained many remarkable results by means of monotone theory.
For example, it was shown that any boolean function is learnable as decision tree.

A monotone concept is uniquely determined by one element (or example) based on
a partially ordered relation. This relatively simple structure limits the representation
capacity of monotone concepts. There are natural concepts classes that can not be
represented as disjunctions (or conjunctions) of monotone concepts, for example, unions
of axis parallel discretized rectangles (as noted in [14]), unions of discretized polytopes,
and unions of vector spaces (or modules) over a finite field (or ring). Thus, in order to
learn those concepts, new techniques are required. As a first step along this line, we will
study the learnability of monotone conjunctions of diagonal DOCFs over the domain
Zn

N , which are direct generalizations of monotone DNF formulas and, in essence, can
be represented as unions of modules over the ring Zn

N .

For any conjunction F of DOCFs over the domain Zn
N , N ≥ 2,

F =
m
∧

i=1

Li, where

Li =
mi
∨

j=1

aijxij ≡ bij(mod N).

We say that F is monotone if, (1) for any i ∈ {1, ...,m} and j ∈ {1, ...,mi}, aij 6= 0,
bij 6= 0 and, (2) for any i, k ∈ {1, ...,m}, the set {xi1 , ..., ximi

} of relevant variables of
Li is different from the set {xk1

, ..., xkmk
} of the relevant variables of Lk. We also say

that Li is a term of F . For simplicity, we may also use L to stand for Li.

Let S(L) denote the set of all examples in Zn
N that make the term L zero, and let

S(F ) denote the set of all examples in Zn
N that make F zero. In order to learn F , we

only need to learn

S(F ) =
m
⋃

i=1

S(Li)

Furthermore, we assume without loss of generality that every relevant variable of any
term of F appears exactly once in the term.

For any example ~x ∈ Zn
N , by flipping its i-th component we mean that we change

its i-th component xi 6= 0 to 0. If xi = 0, then we will not flip it. Given any example ~x
such that F (~x) = 0, let R(~x) be the example obtained by flipping all those components
in ~x such that the obtained example still makes F zero. Let V (~x) denote the set of all
the variables xi such that the i-th component of R(~x) is not zero.
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Lemma 8.1. Given any two negative examples ~xi and ~xj for F , if V (~xi) = V (~xj),
then R(~xi) and R(~xj) make the same term of F zero.

Proof. Suppose that R(~xi) and R(~xj) make respectively two distinct terms Lr and
Lt zero. Because F is monotone, the two sets of relevant variables of Lr and Lt are
different. Say, for example, Lr has a relevant variable x1, but Lt does not. Since Lt

does not have x1, flipping the value of x1 in any example making Lt zero will result in
an example that still makes Lt (and hence F ) zero, thus x1 is not in V (~xj).

Since Lr has the relevant variable x1, let the weight of x1 in Lr is ar1, then we have

ar1x1 ≡ br1(mod N).

Because F is monotone, br1 is not 0, this implies that in order to satisfy the above
linear equation the value of x1 must not be 0. Hence, x1 must be in V (~xi). Since x1 is
not in V (~xj) according to the analysis in the above paragraph, we have a contradiction
to that fact that V (~xi) = V (~xj). Therefore, R(~xi) and R(~xj) make the same term of F
zero. 2

Lemma 8.2. Given any negative example ~x for F , if R(~x) makes a term Li of F zero,
then ~x also makes Li zero.

Proof. Since R(~x) makes Li, R(~x) is a solution to the following linear system

aijxij ≡ bij(mod N), j = 1, . . . ,mi.

Because F is monotone, bij is not 0. This implies that none of xij in ~x have been flipped
in the process to get R(~x). Hence, ~x is still a solution to the above linear system, i.e.,
it still makes Li zero. 2

Theorem 8.3. There is an algorithm for learning a monotone conjunction F of m
diagonal DOCFs over the domain Zn

N using m(nα(N) + 1) equivalence queries and
mn(nα(N) + 1) membership queries.

Proof. The learner will learn S(F ), i.e., the set of all examples making F zero. The
learning algorithm LM works in stages. At any stage s, we use W (s) to denote the
class of the sets of relevant variables that we have learned by the end of stage s. We
also use E(s) to denote the set of all the examples ~x received by the end of stage s.
For each set of the relevant variables ψ ∈ W (s), let [ψ] be the set of all examples
~x ∈ E(s) such that V (~x) = ψ. For [ψ] = {~xi1 , . . . , ~xik} with i1 < · · · < ik, define
H(s, ψ) = ~y1 + ZN (~y2 − ~y1) + · · ·+ ZN (~yk − ~y1), where ~yj = R(~xij ). Define

H̃(s, ψ) = {~x ∈ Zn
N |∃~y ∈ H(s, ψ) such that ∀xi ∈ ψ, xi = yi}.

The idea for us to use H(s, ψ) is to collect all solutions to a linear system derived
from a term L of F . For any example in H(s, ψ), its i-th component is 0 if xi is not a
relevant variable of L. H̃(s, ψ) is an expansion of H(s, ψ) by filling the i-th component
of any example in H(s, ψ) with arbitrary value, where xi is not a relevant variable of
L.
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The hypothesis issued by the learner at stage s is

Hs =
⋃

{H̃(s, ψ)|ψ ∈W (s)}.

Algorithm LM:

1. Stage 0. Set H0 = W (0) = E(0) = φ.

2. Stage s + 1 ≥ 1. Ask an equivalence query for the hypothesis Hs. If yes then
stop. Otherwise the learner receives a counterexample ~xs. Find R(~xs) by asking
at most n membership queries. Set E(s+1) = E(s)∪{~xs}. If V (~x) 6∈W (s), then
set W (s+ 1) = W (s) ∪ {V (~x)}, otherwise set W (s+ 1) = W (s).

We now show the following claim about algorithm LM.

Claim 8.4. For any s ≥ 0, the following holds.

(1). ~xs is a negative counterexample.

(2). Given any ψ ∈ W (s), for any ~xi, ~xj ∈ [ψ], R(~xi) and R(~xj) make the same term
L zero and H(s, ψ) ⊆ S(L).

(3). Assume that V (~xs) = ψ = V (~xi) ∈ Ws and R(~xi) make the term L zero. Then,
R(~xs) ∈ S(L)−H(s, ψ).

(4). Hs+1 ⊆ S(F ).

Proof of Claim 8.4. By induction on s. When s = 0, H0 = φ. Thus, ~x0 6∈ H0

implies ~x0 ∈ S(F ), i.e., F (~x0) = 0. So, (1) is true. (2) and (3) are trivially true, because
W (0) = E(0) = φ. Since W (1) = {V (~x0)} and [V (x0)] = {~x0}, H1 = {R(~x0)}. By (1)
and the definition of R(~x0), H1 ⊆ S(F ), hence (4) is true.

Assume that the above claim is true for the case of s. We now consider the case of
s+ 1. By (4) in the case of s, ~xs+1 ∈ S(F )−Hs+1, so (1) is true in the case of s+ 1.

Given any ψ ∈ Ws+1, for any ~xi, ~xj ∈ [ψ], we have V (~xi) = V (~xj). By Lemma 8.1,
R(~xi) and R(~xj) make the same term L zero. This implies that H(s+ 1, ψ) ⊆ S(L), so
(2) is true in the case of s+ 1.

Assume the condition of (3) is true, i.e., V (~xs+1) = V (~xi), and R(~xi) makes the
term L zero. Then, by Lemma 8.1, R(~xs+1) ∈ S(L). Thus, ~xs+1 ∈ S(L) by Lemma
8.2. Note that ~xs+1 and R(~xs+1) differs at only those components i such that xi are
not relevant variables of L. If R(~xs+1) ∈ H(s + 1, ψ), then ~xs+1 ∈ H̃(s + 1, ψ), a
contradiction to the fact that ~xs+1 is a negative counterexample. Hence, (3) is true in
the case of s+ 1.

By (2), for any ψ ∈W (s+ 1), H(s+ 1, ψ) ⊆ S(L) for a term L of F . According to
the definition of H̃(s+ 1, ψ), H̃(s+ 1, ψ) ⊆ S(L). Hence, Hs+1 ⊆ S(F ). 2

For any ψ ∈ Ws, let [ψ] = {~xi1 , . . . , ~xil}. Then, by (2) and (3) of Claim 8.4,
(R(~xi1), R(~xi2) − R(~xi1), . . . , R(~xil) − R(~xi1)) is an independent sequence over Zn

N .
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Again, according to (3) of Claim 8.4, whenever the learner receives a counterexam-
ple, we either start to construct a new independent sequence, or add one more element
to an existing sequence. We have already known from Lemma 4.1.9 that any indepen-
dent sequence over Zn

N contains at most nα(N) elements. Hence, the total number of
equivalence queries required to learn F is at most m(nα(N) + 1), since F contains at
most m terms. For each counterexample ~xs, the learner needs at most n membership
queries to find R(~xs), hence the total number of membership queries required is at most
mn(nα(N) + 1). 2

9 Open Problems

We list some open problems.

1. We have shown that DOCFs with modulus N ≥ 2 over the domain Zn
N can be

learned using at most nα(N) + 1 equivalence queries. On the other hand, we
also prove that any algorithm for learning DOCFs with modulus N ≥ 2 over the
domain Zn

N requires at least nγ(N) equivalence queries. Can one close the gap
between the upper and lower bounds of equivalence queries?

2. Can one substantially decrease the number of equivalence queries required for
learning DOCFs with modulus N ≥ 2 over the domain Zn

N , provided that one is
allowed to use poly(n, logN) many membership queries? As suggested in [18], it is
reasonable to believe that equivalence queries are practically harder to implement
that membership queries.

3. Although we have shown that the problem of learning disjunctions of negated
counting functions with modulus N ≥ 2 over the domain Zn

N is in general harder
than the problem of learning DNF formulas, we do not know whether this problem
is learnable when N < n (in particular, when N is a constant greater than 2).

4. We can extend a decision tree over the domain Zn
N in such a way that each node

of the tree is a counting function ax ≡ b (mod N). Can one learn the class of the
extended decision trees over the domain Zn

N using equivalence and membership
queries?

5. We have proved that the class of monotone conjunctions of diagonal DOCFs
with modulus N ≥ 2 over the domain Zn

N is learnable using equivalence and
membership queries. Can one learn this class using equivalence and incomplete
membership queries?

6. Can one learn the class of conjunctions of diagonal DOCFs with modulus N ≥ 2
over the domain Zn

N? Or in general, can one learn conjunctions of DOCFs with
modulus N ≥ 2 over the domain Zn

N? One should note that those two problems
are harder than the problem of learning DNF formulas. A systematic approach of
monotone theory has been established in [14] and successfully used to learn any
boolean functions by decision trees and to learn any boolean functions by DNF
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formulas or CNF formulas (or both). However, the theory developed in [14] can
not be used to learn conjunctions of DOCFs, because the algebraic structures of
conjunctions of DOCFs are more complicated than those of boolean functions.
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