On the Learnability of Z_{N}-DNF Formulas

(Extended Abstract)

Nader H. Bshouty*

Zhixiang Chen ${ }^{\dagger}$
Scott E. Decatur ${ }^{\ddagger}$
Steven Homer ${ }^{\text {§ }}$

Abstract

Although many learning problems can be reduced to learning Boolean functions, in many cases a more efficient learning algorithm can be derived when the problem is considered over a larger domain. In this paper we give a natural generalization of DNF formulas, Z_{N}-DNF formulas over the ring of integers modulo N. We first show using elementary number theory that for almost all larger rings the learnability of Z_{N}-DNF formulas is easy. This shows that the difficulty of learning Boolean DNF formulas lies in the fact that the domain is small. We then establish upper and lower bounds on the number of equivalence queries required for the exact learning of Z_{N}-terms. We show that $\alpha(N) n+1 \leq(\log N) n+1$ equivalence queries are sufficient and $\gamma(N) n$ equivalence queries are necessary, where $\alpha(N)$ is the sum of the exponents in the prime decomposition of N, and $\gamma(N)$ is the sum of logarithms of the exponents in the prime decomposition of N. We also demonstrate how the additional power of membership queries allows improved learning in two different ways: (1) more efficient learning for some classes learnable with equivalence

[^0]queries only, and (2) learnability of other classes not known to be learnable with equivalence queries only. Classes which we show learnable with substantially fewer equivalence queries by using membership queries include diagonal Z_{N} terms and binary weighted read-once Z_{N}-terms. Classes which we show learnable with the additional power of membership queries include (1) monotone Z_{N}-DNF formulas and (2) conjunctions of a bounded number of negated counting functions with a prime modulus.

1 Introduction

Symmetric Boolean functions, especially parity functions and modulo functions, have received much attention in computational learning theory. It is known that the class of single parity functions (see Helmbold et al.[HRS92]) and the class of single modulo functions with modulus p for any given prime number p (see Blum et al. [BCJ93]) are pac-learnable. In Fisher and Simon [FS92] it was proved that parity functions of monomials with at most k literals are pac-learnable, while given the assumption that $R P \neq N P$ parity functions of k monomials are not pac-learnable with the same type of functions as hypotheses, for any fixed $k \geq 2$. In Blum and Singh [BS90] it was proved that for any constant k, Boolean functions of k monomials are pac-learnable by the more expressive hypothesis class of general DNF formulas. They also showed that, for any $k \geq 2$, for any fixed symmetric function f on k inputs, f consisting of k monomials is not pac-learnable with the same type of functions as hypothesis under the assumption that $R P \neq N P$.
In the on-line learning model with queries, It is known (see Angluin et al. [AHK93]) that read-once Boolean functions over the basis ($A N D, O R, N O T$) are polynomial time learnable with equivalence and membership queries. This result was extended in Hancock and Hellerstein [HH91] to Boolean functions over a larger basis including arbitrary threshold functions and parity functions. Further, it was shown in Bshouty et al. [BHH92a, b] that read-once functions over the basis of arbitrary symmetric functions are polynomial time
learnable with equivalence and membership queries. However, it was also proved in [BHH92b] that read-twice functions over the same basis are not learnable under standard cryptographic assumptions.
In this paper, by introducing counting functions which include parity and modulo functions, we investigate the learnability of a much larger class of functions defined over the domain Z_{N}^{n}, the class of Z_{N}-DNF formulas. This is a broad class of functions and in essence includes all Boolean functions, and especially Boolean DNF formulas, as special cases. Our goal in this approach is to develop new techniques in this setting by means of number theory and algebra and thus derive general results that extend learnability over Boolean domains.
The study of learnability of extensions of Boolean functions to arbitrary domains has also been proposed and investigated by many other researchers (see, for example, [SS93] and [B93]). Schapire and Sellie [SS93] designed efficient algorithms for learning multilinear polynomials over the domain F^{n} for any finite field F, and for learning polynomials over any semilatice of finite height. Bshouty [B93] extended DNF and CNF formulas to an arbitrary domain Σ^{n} for any finite abelian group Σ and, he proved that any polynomial size decision tree over Σ^{n} is learnable. The learnability of counting functions over the domain Z_{N}^{n} was initially proposed by Chen and Homer in [CH93] and many preliminary results were obtained there.
This paper is organized as follows. In section 2, we define Z_{N}-terms, Z_{N}-DNF formulas, and the learning models as well as parameters $\alpha(N)$ and $\gamma(N)$. In section 3 , we show using elementary number theory that the learnability of Z_{N}-DNF formulas is easy for almost all larger rings. This shows that the difficulty of learning Boolean DNF formulas lies in the fact that the domain is small. In section 4, we determine the number of equivalence queries sufficient and necessary for learning any Z_{N}-terms over the domain Z_{N}^{n}. In section 5 , we demonstrate how the additional power of membership queries allows more efficient learning for some classes learnable with equivalence queries only. Those classes are diagonal Z_{N}-terms and binary weighted read-once Z_{N}-terms. In section 6 , we investigate the problem of learning conjunctions of negated counting functions with equivalence and membership queries. We show that this is in general harder than learning DNF formulas. On the other hand, we show that this problem is learnable when the modulus is prime and the number of negated counting functions in the conjunction is $O\left(\frac{n}{\log (N-1)}\right)$. In section 7, We show that monotone Z_{N}-DNF formulas, which are generalizations of monotone DNF formulas, are learnable using equivalence and membership queries. We conclude the paper by listing several open problems in section 8 .

2 Preliminaries

$2.1 Z_{N}$-Terms and Z_{N}-DNF formulas

We assume that Z is the set of all integers. Let $Z_{N}=$ $\{0, \ldots, N-1\}$ for any integer $N \geq 2$. For any example $\vec{a} \in Z_{N}^{n}$, we use a_{\imath} to denote the i-th component of \vec{a} for $i \in\{1, \ldots, n\}$. A counting function with a modulus $N \geq 2$ is defined as follows ${ }^{1}$:

$$
C_{\bar{a}, b}^{N}\left(x_{1}, \ldots, x_{n}\right)= \begin{cases}1 & \text { if } \sum_{j=1}^{n} a_{i} x_{j} \equiv b \quad(\bmod N) \\ 0 & \text { otherwise },\end{cases}
$$

where $\vec{a}=\left(a_{1}, \ldots, a_{n}\right) \in Z_{N}^{n}$ and $b \in Z_{N}$. For convenience, we may use $C_{\vec{a}, b}^{N}$ to stand for $C_{\vec{a}, b}^{N}\left(x_{1}, \ldots, x_{n}\right)$. A Z_{N}-term T is a conjunction of counting functions as follows:

$$
T=C_{a_{1}, b_{1}}^{N} \wedge \cdots \wedge C_{a_{m}, b_{m}}^{N} .
$$

We say that a counting function $C_{\tilde{a}, b}^{N}$ is diagonal if there is at most one $i \in\{1, \ldots, n\}$ such that $a_{i} \neq 0$. We say that a Z_{N}-term is dragonal if all counting functions in it are diagonal. A Z_{N}-DNF formula F is a disjunction of Z_{N}-terms.
For any $a, b \in Z_{N}$, let $a b$ denote $(a b \bmod N)$. Given $b \in Z_{N}$ and $\vec{r} \in Z^{n}$, define

$$
\begin{gathered}
Z_{N} b=\left\{a b \mid a \in Z_{N}\right\} \text { and } \\
Z_{N} \vec{r}=\left\{a \vec{r} \mid a \in Z_{N}\right\},
\end{gathered}
$$

where $a \vec{r}=\left(a r_{1}, a r_{2}, \ldots, a r_{n}\right)$. For subsets $A, B \subseteq Z_{N}^{n}$, for any $\vec{b} \in Z_{N}^{n}$, define

$$
\begin{gathered}
A+\vec{b}=\{\vec{a}+\vec{b} \mid \vec{a} \in A\} \text { and } \\
A+B=\{\vec{u}+\vec{v} \mid \vec{u} \in A \text { and } \vec{v} \in B\} .
\end{gathered}
$$

2.2 Parameters $\alpha(N)$ and $\gamma(N)$

Given any integer $N \geq 2$, let $N=p_{1}^{r_{1}} p_{2}^{r_{2}} \cdots p_{t}^{r_{t}}$, where p_{i} are distinct primes and $r_{i} \geq 1$ for $i=1, \ldots, t$. We define

$$
\begin{gathered}
\alpha(N)=\sum_{i=1}^{t} r_{i} \text { and } \\
\gamma(N)=\sum_{i=1}^{t}\left\lceil\log \left(r_{i}+1\right)\right\rceil .
\end{gathered}
$$

[^1]It is easy to see that, for any integer $N \geq 2$,

$$
1 \leq \gamma(N) \leq a(N) \leq \log N
$$

2.3 Learning Models

Our first model is the on-line learning model with equivalence queries. The goal of a learning algorithm (or learner) for a class of Boolean-valued function \mathbf{C} over a domain X^{n} is to learn any unknown target function $f \in C$ that has been fixed by a teacher. In order to obtain information about f, the learner can ask equivalence queries by proposing hypotheses h from a fixed hypothesis space \mathbf{H} of functions over X^{n} with $C \subseteq H$ to an equivalence oracle $E Q()$. If $h=f$, then $E Q(h)=$ "yes", so the learner succeeds. If $h \neq f$, then $E Q(h)=\vec{x}$ for some $\vec{x} \in X^{n}$ such that $h(\vec{x}) \neq f(\vec{x})$, called a counterexample. x is called a positive example if $f(\vec{x})=1$ and a negative example otherwise. A learning algorithm exactly learns C, if for any target function $f \in C$, it can find a $h \in H$ that is logically equivalent to f. A learning algorithm exactly learns C with high probability, if for any $f \in C$, it can infer a hypothesis $h \in H$ that is logically equivalent to f on all inputs with probability at least $1-\delta$, where $0<\delta<1$, and the probability is taken over all examples in the domains. We say that a class C is polynomial time learnable (with high probability) if there is a learning algorithm that exactly learns any target function in \mathbf{C} (with probability at least $1-\delta$) and runs in time polynomial in the logarithm of the size of the domain and the size of the target function (and in $\frac{1}{\delta}$ as well).
Our second model is the on-line learning model with equivalence and membership queries. This model is the same as the first, but in addition to equivalence queries, the learner can also ask membership queries by presenting examples in the domain to a membership oracle $M Q()$. For any example $\vec{x}, M Q(\vec{x})=$ "yes" if $f(\vec{x})=1$, otherwise $M Q(\vec{x})=" n o$ ".

3 Learning Z_{N}-DNF formulas

Our main result in this section is

Theorem 3.1. The class of k-term Z_{N}-DNF formulas is learnable for all k and N such that $k<p(N)$ where $p(N)$ is the minımal prome that divides N in

$$
O\left(\frac{p(N)}{p(N)-k} k n \log N\right)
$$

expected time and queries.
Notice that our algorithm is efficient for N s that have large prime factors and $k<c p(N)$ for some constant c. In particular our result gives an efficient learning algorithm for k-term Z_{N}-DNF for prime N and $k \leq c N$ for some constant c. The algorithm we present here is
a Las Vegas algorithm that guarantees learning after expected polynomial time.
We can regard the set of ones of the target as union of cosets. I.e., for a k-term Z_{N-} DNF f there are linear spaces L_{1}, \ldots, L_{k} and vectors $\vec{a}_{1}, \ldots, \vec{a}_{k}$ such that

$$
f^{-1}(1)=L_{1}+\vec{a}_{1} \cup \cdots \cup L_{k}+\vec{a}_{k} .
$$

Each $L_{i}+\vec{a}_{i}$ is a coset and we will call \vec{a}_{i} the coset leader.

Our algorithm guarantees with high probability that the examples received from the equivalence queries are positive.

We first prove the following
Lemma 3.2. Let $L_{1}, L_{2} \subseteq Z_{N}^{n}$ be linear spaces over Z_{N}. If $L_{2}+\vec{a}_{2} \nsubseteq L_{1}+\vec{a}_{1}$ then under the uniform distributıon

$$
\operatorname{Pr}\left[L_{1}+\vec{a}_{1} \mid L_{2}+\vec{a}_{2}\right] \leq \frac{1}{p(N)}
$$

Proof. Notice first that for any coset $L+\vec{a}$ we have $|L+\vec{a}|=|L|$. Since L is a subgroup of Z_{N}^{n} we must have $|L|$ divides $\left|Z_{N}^{n}\right|=N^{n}$. Therefore we have $\left|L_{2}+\vec{a}_{2}\right|$ divides N^{n}. Now since intersection of cosets is a coset and since $L_{2}+\vec{a}_{2} \nsubseteq L_{1}+\vec{a}_{1}$ we also have $\mid L_{2}+\vec{a}_{2} \cap L_{1}+$ $\vec{a}_{1} \mid$ divides N^{n} and is (strictly) smaller than $\left|L_{2}+\vec{a}_{2}\right|$. Therefore we can have two cases. Either $\left|L_{2}+\vec{a}_{2}\right|=1$ and $\left|L_{2}+\vec{a}_{2} \cap L_{1}+\vec{a}_{1}\right|=0$ or $\left|L_{2}+\vec{a}_{2} \cap L_{1}+\vec{a}_{1}\right| /\left|L_{2}+\vec{a}_{2}\right|$ is at least $p(N)$, the smallest prime that divide N. In both cases we have

$$
\begin{aligned}
\operatorname{Pr}\left[L_{1}+\vec{a}_{1} \mid L_{2}+\vec{a}_{2}\right] & =\frac{\left|L_{2}+\vec{a}_{2} \cap L_{1}+\vec{a}_{1}\right|}{\left|L_{2}+\vec{a}_{2}\right|} \\
& \leq \frac{1}{p(N)} \cdot
\end{aligned}
$$

The key idea in the learning algorithm is the following. Suppose we get two positive examples \vec{x}_{1} and \vec{x}_{2}. If \vec{x}_{1} and \vec{x}_{2} are in the same coset $L+\vec{a}$ then

$$
\vec{x}_{1}+\lambda\left(\vec{x}_{2}-\vec{x}_{1}\right) \in L+\vec{a}
$$

for any $\lambda \in Z_{N}$ and therefore is positive in the target for every λ. Now if \vec{x}_{1} and \vec{x}_{2} are not in the same coset for all $L_{\imath}+\vec{a}_{\imath}, i=1, \ldots, k$, then for a random uniform λ we have

$$
\begin{aligned}
& \operatorname{Pr}_{\lambda}\left[\vec{x}_{1}+\lambda\left(\vec{x}_{2}-\vec{x}_{1}\right) \text { is positive }\right] \\
& \quad=\operatorname{Pr}_{\lambda}\left[(\exists i) \vec{x}_{1}+\lambda\left(\vec{x}_{2}-\vec{x}_{1}\right) \in L_{2}+\vec{a}_{2}\right] \\
& \quad \leq k \operatorname{Pr}_{\lambda}\left[\vec{x}_{1}+\lambda\left(\vec{x}_{2}-\vec{x}_{1}\right) \in L_{\imath}+\vec{a}_{\imath}\right] \\
& \quad=k \operatorname{Pr}\left[L_{\imath}+\vec{a}_{\imath} \mid L+\vec{x}_{1}\right],
\end{aligned}
$$

where $L+\vec{x}=\left\{\vec{x}_{1}+\lambda\left(\vec{x}_{2}-\vec{x}_{1}\right) \mid \lambda \in Z_{N}\right\}$. Since
$L+\vec{x}_{1} \nsubseteq L_{i}+\vec{a}_{i}$ by the lemma we have

$$
\underset{\lambda}{\operatorname{Pr}}\left[\vec{x}_{1}+\lambda\left(\vec{x}_{2}-\vec{x}_{1}\right) \text { is positive }\right] \leq \frac{k}{p(N)} .
$$

Therefore to decide whether or not \vec{x}_{1} and \vec{x}_{2} are in the same coset we randomly uniformly choose $\lambda \in Z_{N}$ and ask membership queries with $\vec{x}_{1}+\lambda\left(\vec{x}_{2}-\vec{x}_{1}\right)$. If the answer is negative then \vec{x}_{1} and \vec{x}_{2} are not in the same coset. If they are not in the same coset then with probability at least $1-k / p(N)$ we get a negative counterexample. Therefore this algorithm run in expected time

$$
O\left(\frac{p(N)}{p(N)-k} \log \frac{1}{\delta}\right)
$$

to get confidence at least $1-\delta$.
Now we may have three positive examples \vec{x}_{1}, \vec{x}_{2} and \vec{x}_{3} where each pair is in the same coset but not all of them are. Therefore we need the following lemma. The proof is similar to the above

Lemma 3.3. Suppose $\vec{x}_{1}, \ldots, \vec{x}_{j}$ are in the same coset $L+\vec{a}$. If \vec{x}_{j+1} is not in the same coset $L+\vec{a}$ then with probability at least $1-\frac{k}{p(N)}$ we have for random unvform $\lambda_{2}, \ldots, \lambda_{j+1}$ from Z_{N}
$f\left(\vec{x}_{1}+\lambda_{2}\left(\vec{x}_{2}-\vec{x}_{1}\right)+\cdots+\lambda_{j}\left(\vec{x}_{j}-\vec{x}_{1}\right)+\lambda_{j+1}\left(\vec{x}_{j+1}-\vec{x}_{1}\right)\right)$ $=0$.

Now we can write the algorithm. The algorithm starts by asking equivalence queries with 0 to get a positive example. At the i th stage of the algorithm we have positive examples in $S_{1}, S_{2}, \ldots, S_{r}$ where each set of examples contains bases from the same coset. For each set we also have a leader $l\left(S_{i}\right)$ for this set. The leader is the leader of the coset and is the first positive example that we obtained in this set. Let

$$
f_{S}^{-1}(1)=l(S)+\sum_{s \in S \backslash\{l(S)\}} Z_{N}(s-l(S))
$$

Notice that since S_{2} is in the same coset we have (with high probability) $f_{S_{2}}^{-1}(1)$ is a subset of the target. At stage $i+1$ we ask equivalence queries $h=f_{S_{1}} \vee \cdots \vee f_{S_{r}}$. Since $h^{-1}(1)$ is a subset of the target we will get a positive counterexample x_{i+1}. We now use the membership queries to test whether \vec{x}_{2+1} belong to the coset S_{j} for all j using Lemma 3.3. It may happen that \vec{x}_{i+1} belongs to many cosets in which case we add it to each one and it may also happen that \vec{x}_{i+1} is not in any of them in which case we create a new set S_{r+1} and put \vec{x}_{i+1} in it and make it the leader of the new set.

4 Learning Z_{N}-Terms

We give upper and lower bounds on the number of equivalence queries required for learning Z_{N}-terms by
proving following theorems.

Theorem 4.1. There is an algorithm for learning any Z_{N}-term over the domain Z_{N}^{n} using at most $\alpha(N) n+$ $1 \leq(\log N) n+1$ equivalence queries.

Theorem 4.2. To learn a diagonal Z_{N}-term (and hence a Z_{N}-term) we need at least $\gamma(N) n$ equivalence queries.

Theorem 4.3. Any term (i.e., a conjunction of counting functions) with distinct moduli $\left\{N_{i}\right\}$ are learnable using at most $\alpha\left(\operatorname{lcm}\left(N_{2}\right)\right) n+1$ equivalence queries provided that lcm $\left(N_{l}\right)$ is known a prior to the learner, where $\operatorname{lcm}\left(N_{i}\right)$ is the least common multiple of N_{i}.

Theorem 4.4. Diagonal Z_{N}-terms are learnable using at most $\gamma(N) n+1$ equivalence queries.

Here, we only prove the first two theorems. For two integers a and b we write $a \mid b$ if b is divisible by a.

Lemma 4.5. For an element $a \in Z_{N}$, the following properties hold.

1. $Z_{N} a=Z_{N} g c d(a, N)$.
2. If $a \mid N$ then $\forall b \in Z_{N} a, a \mid b$.
3. $Z_{N} a_{1}+\cdots+Z_{N} a_{m}=Z_{N} \operatorname{gcd}\left(a_{1}, \ldots, a_{m}, N\right)$.
4. If $a \mid N$ and the elements of A and B are divisible by a then the elements of $A+B$ are divesible by a.
5. $a \notin Z_{N} b$ if and only if $\operatorname{gcd}(b, N) \nmid \operatorname{gcd}(a, N)$.

A sequence $\left(\vec{a}_{1}, \ldots, \vec{a}_{m}\right)$ of elements in Z_{N}^{n} is called an independent sequence if

$$
\begin{aligned}
& \vec{a}_{1} \neq \overrightarrow{0}, \cdots, \vec{a}_{i} \notin Z_{N} \vec{a}_{1}+\cdots+Z_{N} \vec{a}_{2-1}, \cdots, \\
& \vec{a}_{m} \notin Z_{N} \vec{a}_{1}+\cdots+Z_{N} \vec{a}_{m-1}
\end{aligned}
$$

The integer m is called the length of the sequence. The length of the longest independent sequence in Z_{N}^{n} is denoted by len (n, N).

Lemma 4.6. $\operatorname{len}(1, N)=\alpha(N)$.
Proof. Let $N=p_{1}^{r_{1}} \cdots p_{t}^{r_{t}}$. The sequence

$$
\begin{aligned}
&\left(a_{1}, \ldots, a_{\alpha(N)}\right) \\
&=\left(p_{1}^{r_{1}-1} p_{2}^{r_{2}} \cdots p_{t-1}^{r_{t-1}} p_{t}^{r_{t}}, \ldots, p_{1}^{0} p_{2}^{r_{2}} \cdots p_{t-1}^{r_{t-1}} p_{t}^{r_{t}},\right. \\
& p_{1}^{0} p_{2}^{r_{2}-1} \cdots p_{t-1}^{r_{t-1}^{1}} p_{t}^{r_{t}}, \ldots, p_{1}^{0} p_{2}^{0} \cdots p_{t-1}^{r_{t-1}} p_{t}^{r_{t}} \\
& \vdots \\
&\left.p_{1}^{0} p_{2}^{0} \cdots p_{t-1}^{0} p_{t}^{r_{t}-1}, \ldots, p_{1}^{0} p_{2}^{0} \cdots p_{t-1}^{0} p_{t}^{0}\right)
\end{aligned}
$$

is an independent sequence of length $\alpha(N)$. To show that the sequence is independent, notice that

$$
a_{s}=p_{1}^{0} \cdots p_{i}^{0} p_{\imath+1}^{j} p_{i+2}^{r_{i+2}} \cdots p_{t}^{r_{t}}
$$

is not divisible by $p_{\imath+1}^{j+1}$ but a_{1}, \ldots, a_{s-1} are divisible by p_{i+1}^{j+1}. Therefore

$$
a_{s} \notin Z_{N} a_{1}+\cdots+Z_{N} a_{s-1}
$$

because all the integers in $Z_{N} a_{1}+\cdots+Z_{N} a_{s-1}$ are divisible by p_{i+1}^{j+1}. (Notice here that we would not have this property if N were not divisible by $p_{\imath+1}^{j+1}$.) This proves that

$$
\operatorname{len}(1, N) \geq \alpha(N)
$$

To show that len $(1, N) \leq \alpha(N)$ we suppose there is a sequence

$$
\left(a_{1}, \ldots, a_{s}\right), \quad s>\alpha(N)
$$

that is independent. By Property 2 of Lemma 4.5 we have

$$
\begin{aligned}
& a_{\imath} \notin Z_{N} a_{1}+\cdots+Z_{N} a_{\imath-1} \\
& \quad=Z_{N} g c d\left(a_{1}, \ldots, a_{\imath-1}, N\right)
\end{aligned}
$$

Therefore if $N=p_{1}^{r_{1}} \cdots p_{t}^{r_{t}}$ and $a_{j}=b_{j} p_{1}^{r_{3,1}} \cdots p_{t}^{r_{3, t}}$ where $g c d\left(b_{j}, N\right)=1$ then

$$
\begin{aligned}
a_{i} & \notin Z_{N} g c d\left(a_{1}, \ldots, a_{i-1}, N\right) \\
& =Z_{N} p_{1}^{\min _{0 \leq 3<2} r_{2,1}} \cdots p_{t}^{\min _{0 \leq J<t} r_{j, t}}
\end{aligned}
$$

where $r_{0, k} \doteq r_{k}$. By Property 5 of Lemma 4.5

$$
\begin{aligned}
& p_{1}^{\min _{0 \leq 3<1} r_{3,1}} \cdots p_{t}^{\min _{0 \leq \jmath<\downarrow} r_{3, t}} \\
& X p_{1}^{\min \left(r_{0,1}, r_{2,1}\right)} \cdots p_{t}^{\min \left(r_{0, t}, r_{1, t}\right)}
\end{aligned}
$$

Therefore there must be a k such that $\min \left(r_{0, k}, r_{2, k}\right)<$ $\min _{0 \leq j<i} r_{j, k}$ which implies that

$$
r_{i, k}<\min _{0 \leq j<i} r_{j, k}
$$

Thus s can be at most $\alpha(N)$.
Lemma 4.7. len $(n, N)=\alpha(N) n$.
Lemma 4.7 can be proved by Lemma 4.6 and by induction on n.

Proof of Theorem 4.1. Let f be a Z_{N}-DNF formula. Let $\vec{a}_{1}, \ldots, \vec{a}_{m}$ be the counterexamples and $s_{i}=$ $\left(\vec{a}_{1}, \ldots, \vec{a}_{i}\right)$. Define the Boolean functions $f_{0}(x)=0$ and, for $i \geq 1$,
$f_{i}(x)= \begin{cases}1 & x \in a_{1}+Z_{N}\left(\vec{a}_{2}-\vec{a}_{1}\right)+\cdots+ \\ & Z_{N}\left(\vec{a}_{m}-\vec{a}_{1}\right) \\ 0 & \text { otherwise } .\end{cases}$

The Learning Algorithm

Step 1. $s \leftarrow()$.
Step 2. While $E Q\left(f_{s}\right) \rightarrow a$ does not answer "YES" do $s \leftarrow(s, \vec{a})$.

Positive examples of f are the solutions to some linear system of equations $A X=B$ where $X=\left(x_{1}, \ldots, x_{n}\right)^{T}$ and A is a $t \times n$ matrix and B is a column t-vector both with entries from Z_{N}. Now, Theorem 4.1 follows from Lemma 4.7 and the following claims which can be verified easily.

C1: \vec{a}_{i} is a positive counterexample.
C2: $A \vec{a}_{i}=B$.
C3: $f_{i} \Rightarrow f$.
C4: $\left(\vec{a}_{2}-\vec{a}_{1}, \ldots, \vec{a}_{i}-\vec{a}_{1}\right)$ is an independent sequence.

Proof of Theorem 4.2. Let $N=p_{1}^{r_{1}} \cdots p_{t}^{r_{t}}$. Consider the class of functions $f_{\lambda_{1}, ~, \lambda_{n}}$ where $\lambda_{1}, \ldots, \lambda_{n} \mid N$ and

$$
f_{\lambda_{1}, ., \lambda_{n}}^{-1}(1)=\left\{\vec{x} \mid x_{i}=0 \bmod \lambda_{i}\right\}
$$

Suppose the learner already knows $\lambda_{1}, \ldots, \lambda_{s-1}$ and knows that

$$
p_{1}^{q_{1}} \cdots p_{j}^{q_{j}} p_{j+1}^{\delta_{1}} \leq \lambda_{s} \leq p_{1}^{q_{1}} \cdots p_{j}^{q_{3}} p_{j+1}^{\delta_{2}} p_{j+2}^{r_{3+2}} \cdots p_{t}^{r_{t}}
$$

and knows nothing about $\lambda_{s+1}, \ldots, \lambda_{n}$. Suppose the learner asks equivalence queries with h. Let $A=h^{-1}(1)$. Let

$$
L_{1}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i}=0 \bmod \lambda_{i}, i=1, \ldots, s-1\right\}
$$

and let

$$
L_{2}=\left\{\left(\left(x_{1}, \ldots, x_{n}\right) \left\lvert\, x_{s}=p_{1}^{q_{1}} \cdots p_{j}^{q_{3}} p_{j+1}^{\left\lfloor\frac{\delta_{1}+\delta_{2}}{2}\right\rfloor} \bmod N\right.\right\}\right.
$$

If $A \nsubseteq L_{1}$ then the adversary can give the learner $\vec{x} \in$ $L_{1}-A$ as a counterexample and the learner cannot gain any information from this counterexample. If $A \subseteq L_{1}$ but $A \nsubseteq L_{2}$ then the adversary will return an element from $A-\left(L_{1} \cap L_{2}\right)$ and the learner gains only the additional information that

$$
\lambda_{s} \geq p_{1}^{q_{1}} \cdots p_{\jmath}^{q_{s}} p_{j+1}^{\left\lfloor\frac{\delta_{1}+\delta_{2}}{2}\right\rfloor}
$$

If on the other hand if $A \subseteq L_{1} \cap L_{2}$ then the adversary will return

$$
\left(0, s-1, p_{1}^{q_{1}} \cdots p_{j}^{q_{3}} p_{j+1}^{\left\lfloor\left\lfloor\frac{\delta_{1}+\delta_{2}}{2}\right\rfloor\right.}, 0, \ldots, 0\right)
$$

and the only information that the learner gains is that

$$
\lambda_{s} \leq p_{1}^{q_{1}} \cdots p_{j}^{q_{J}} p_{j+1}^{\left\lfloor\frac{\delta_{1}+\delta_{2}}{2}\right\rfloor+1}
$$

Now by induction the result follows.

5 Reducing the Number of Equivalence Queries by Using Membership Queries

As suggested in [BGHM93], it is reasonable to believe that an equivalence query is more expensive than a membership query. A pratically ideal learning algorithm will use as few equivalence queries as possible. Here we show how to reduce the number of equivalence queries using membership queries when learning certain restricted syntax classes. A read-once Boolean weighted Z_{N}-term is a Z_{N}-term in which all weight vectors are Boolean valued vectors and for all components j, no two distinct vectors have a 1 in component j.

Theorem 5.1. There is an algorithm for learning diagonal Z_{N}-terms over the domain Z_{N}^{n} using 1 equivalence query and at most $\gamma(N) n$ membership queries.

One first notes that, given a diagonal Z_{N}-term T, there are $d_{i} \in Z_{N}, i=1, \ldots, n$, such that the set of all examples making T true is $Z_{N}\left(d_{1}, \ldots, 0\right)+\cdots+Z_{N}\left(0, \ldots, d_{n}\right)+$ \vec{y} for any \vec{y} making T true. One can ask the first equivalence query for ϕ to get \vec{y}. Let $N=p^{r_{1}} p^{r_{2}} \cdots p^{r_{i}}$. Since $Z_{N} d_{i}=Z_{N} g c d\left(d_{i}, N\right)$, to learn d_{i} we only need to determine u_{j} such that $d_{i}=p^{u_{1}} p^{u_{2}} \cdots p^{u_{t}}$ with $0 \leq u_{j} \leq r_{j}$. Thus, we can find u_{j} using the binary search with membership queries among integers $0,1, \ldots, r_{j}$. Hence, with at most $\gamma(N) n$ membership queries, we can find all the d_{i}.

Theorem 5.2. There is an algorithm for learning readonce Boolean weighted Z_{N}-terms over the domain Z_{M}^{n} using 1 equivalence query and at most n^{2} membership queries when $M \geq N$, while at most $2 n$ equivalence querıes are needed of $2 \leq M<N$.

It is worth noting that in Theorem 5.2 the bounds on the number of membership queries and equivalence queries are respectively independent of N.

To prove Theorem 5.2 , note that it is sufficient to determine the relevant variables in each of the counting functions which compose the Z_{N}-term. When the domain is Z_{M}^{n} for $M \geq N$, one need only obtain a single positive example \vec{x} (using an equivalence query) and for each pair of variables, use \vec{x} to test whether the pair of variables appear in the same counting function. The test for any two variables entails a membership query on an example obtained from \vec{x} by incrementing (mod N) one variable and decrementing $(\bmod N)$ the other.

If the variables appear in the same counting function, then this new example is also positive, otherwise it is negative.

When the domain is Z_{M}^{n} for $M<N$, then it is possible that the positive example \vec{x} cannot be used to test all pairs of variables, e.g. when both variables are set to 0 in \vec{x}. However, after making all possible tests with \vec{x}, one can formulate an equivalence query that will result in a new example which allows progress to be made. Such a strategy uses at most $2 n$ equivalence queries.

6 Learning Conjunctions of Negated Counting Functions

One open problem proposed by A. Blum [B94] and R. Rivest [R94] regarding learning conjunctions of counting functions is whether conjunctions of negated counting functions with a modulus N over the domain Z_{N}^{n} are poly-time learnable. When $N=2$, it is easy to see that a positive answer to the problem exists. In this section, we will prove two related results.

Theorem 6.1. If conjunctions of negated counting functions with modulus $N>n$ over the domain Z_{N}^{n} are polynomial time learnable, then CNF (and thus DNF) formulas are polynomial time learnable.

Given a CNF formula $F=\bigwedge_{\imath=1}^{m} F_{i}$, where F_{i} are clauses. we can construct a conjunction of negated counting functions $C(F)$ such that $F(\vec{x})=1$ if and only if $C(F)(\vec{x})=$ 1. In order to do so, for each clause F_{i}, define a vector $\vec{a}_{i}=\left(a_{21}, \ldots, a_{i n}\right)$ such that $a_{i j}=1$ if x_{j} appears at $F_{i}, a_{i j}=(N-1)$ if \bar{x}_{j} appears and, $a_{i j}=0$ otherwise, where $i \in\{1, \ldots, m\}$ and $j\{1, \ldots, n\}$. We also define, for any $i \in\{1, \ldots, m\}, b_{i}$ as the difference of N and the number of negated variables appearing at F_{i}. Then, $C(F)=\neg C_{\vec{a}_{1}, b_{1}}^{N} \wedge \cdots \wedge \neg C_{\vec{a}(m), b_{m}}^{N}$ satisfies the requirement.

Theorem 6.2. We can learn conjunctions of megated counting functions with a prime modulus $N>2$ over the domain Z_{N}^{n} using at most $n+(N-1)^{m}$ equivalence queries and at most $N\left(n+(N-1)^{m}\right)(N-1)^{m}$ membership queries. (Hence, when $m=O\left(\frac{\log n}{\log (N-1)}\right)$, the algorithm is polynomaal.)

One can verify that a conjunction of m negated counting functions F is equivalent to the "union" of the systems $A_{m, n} X=D_{\imath}, i=1, \ldots,(N-1)^{m}$, where $D_{\imath}=$ $\left(d_{\imath 1}, \ldots, d_{i m}\right)^{T}$ are distinct and $d_{\imath \jmath} \in\left(Z_{N}-\left\{b_{\imath}\right\}\right) . A_{m, n}$ and b_{i} are determined by F. Thus, to learn F, we only need to learn all the systems $A_{m, n} X=D_{i}$ over the vector space Z_{N}^{n}. The only difficulty involved in this task is how to decide whether two positive examples for F are solutions to the same system. However, this difficulty is overcome by the following lemma.

Lemma 6.3. Given any two examples $\vec{\psi}=\left(\psi_{1}, \ldots, \psi_{n}\right)$ and $\vec{\omega}=\left(\omega_{1}, \ldots, \omega_{2}\right)$ making F true, then both $\vec{\psi}$ and $\vec{\omega}$ are solutions to the same system if and only if, for all $u \in Z_{N}, u(\vec{\omega}-\vec{\psi})+\vec{\psi}$ makes F true.
A recent result obtained by Bertoni et al. in [BCF95] implies that any conjunction of negated counting functions $C=\neg C_{\vec{a}_{1}, b_{1}}^{N} \wedge \cdots \wedge \neg C_{\vec{a}(m), b_{m}}^{N}$ over the domain Z_{N}^{n} is poly-time learnable with at most $n^{N-1}+1$ equivalence queries, provided that when N is a constant prime and $b_{i}=0$ for all $i=1, \ldots, m$. Enlightened by this result, Chen [C95] further proved that for any constant prime N, conjunctions of counting functions and negated counting function with modulus N over the domain Z_{N}^{n} are poly-time learnable with at most $(n+1)^{N-1}+1$ equivalence queries.

7 Learning Monotone Z_{N}-DNF formulas

A monotone concept (see the formal definition in [B93]) is uniquely determined by one element based on a partial order. This relatively simple structure limits the representation capacity of monotone concepts. There are natural concept classes that can not be represented as disjunctions (or conjunctions) of monotone concepts, for example, unions of axis parallel discretized rectangles (as noted in [B93]), unions of discretized polytopes, and unions of modules over a finite ring. Thus, in order to learn those concepts, new techniques are required. As a first step along this line, we prove Theorem 7.1 that is an extension of Angluin's algorithm for learning monotone DNF formulas [A88]. For any Z_{N}-DNF formula

$$
F=\bigvee_{i=1}^{m} L_{i}, \text { where } L_{i}=C_{\vec{a}_{21}, b_{i 1}}^{N} \wedge \cdots \wedge C_{\vec{a}_{1 m_{2}}, b_{2 m_{2}}}^{N}
$$

We say that F is monotone if, (1) for any $i \in\{1, \ldots, m\}$ and $j \in\left\{1, \ldots, m_{2}\right\}, L_{i}$ is diagonal and $b_{i j} \neq 0$, (2) for any two distinct $i, j \in\{1, \ldots, m\}, L_{i}$ and L_{j} have different sets of relevant variables. One should note that a monotone Z_{N}-DNF formula is equivalent to a union of cosets of Z_{N}^{n} and the method developed in [B93] can not be applied to learn it.

Theorem 7.1. There is an algorthm for learning any monotone $Z_{N}-D N F$ formula F over the domain Z_{N}^{n} using at most $m(n \alpha(N)+1)$ equivalence queries and at most $m n(n \alpha(N)+1)$ membership queries.

Given a positive example \vec{x}, let $R(\vec{x})$ be the example obtained by flipping all the components in \vec{x} to 0 such that each flipping still makes F true. Let $V(\vec{x})$ denote the set of all the variables x_{i} such that the i-th component in $R(\vec{x})$ is not zero. The algorithm works in stages. At any stage s, let $W(s)$ be the class of the sets of relevant variables, $E(s)$ be the set of all the examples received. For each $\psi \in W(s)$, let (ψ) be the set of all $\vec{x} \in E(s)$ such that $V(\vec{x})=\psi$. For $(\psi)=\left\{\vec{x}_{i_{1}}, \ldots, \vec{x}_{i_{k}}\right\}$ with $i_{1}<\cdots<$
i_{k}, define $H(s, \psi)=\vec{y}_{1}+Z\left(\vec{y}_{2}-\vec{y}_{1}\right)+\cdots+Z\left(\vec{y}_{k}-\vec{y}_{1}\right)$, where $\vec{y}_{j}=R\left(\vec{x}_{i_{j}}\right)$. The hypothesis issued by the learner at stage s is $H(s)=\bigcup\{H(s, \psi) \mid \psi \in W(s)\}$.

The Learning Algorithm:

Stage 0. Set $H(0)=W(0)=E(0)=\phi$.
Stage $s+1 \geq 1$. Ask an equivalence query for the hypothesis $H(s)$. If yes then stop. Otherwise the learner receives a counterexample \vec{x}_{s}. Set $E(s+$ 1) $=E(s) \cup\left\{\vec{x}_{s}\right\}$. Set $W(s+1)=W(s) \cup\left\{V\left(\vec{x}_{s}\right)\right\}$, if $V\left(\vec{x}_{s}\right) \notin W(s)$. Otherwise, set $W(s+1)=W(s)$.

8 Open Problems

We list some open problems.

1. We have shown that conjunctions of counting functions with modulus $N \geq 2$ over the domain Z_{N}^{n} can be learned using at most $n \alpha(N)+1$ equivalence queries. On the other hand, we have also proved that any algorithm for learning conjunctions of counting functions with modulus $N \geq 2$ over the domain Z_{N}^{n} requires at least $n \gamma(N)$ equivalence queries. Can one close the gap between the upper and lower bounds of equivalence queries?
2. Can one substantially decrease the number of equivalence queries required for learning conjunctions of counting functions with modulus $N \geq 2$ over the domain Z_{N}^{n}, provided that one is allowed to use poly $(n, \log N)$ many membership queries?
3. We know that the problem of learning disjunctions of negated counting functions with modulus N over the domain Z_{N}^{n} is harder than learning DNF formulas for arbitrary $N>n$. On the other hand, a polytime algorithm exists for this problem when N is a constant prime [C95]. However, we do not know whether this problem is poly-time learnable when for arbitrary $N \leq n$ or for a constant composite $N>2$.
4. We can extend a decision tree over the domain Z_{N}^{n} in such a way that each node of the tree is a counting function $a x \equiv b(\bmod N)$. Can one learn the class of the extended decision trees over the domain Z_{N}^{n} using equivalence and membership queries?
5. We have proved that monotone Z_{N}-DNF formulas over the domain Z_{N}^{n} are poly-time learnable using equivalence and membership queries. Can one learn this class using equivalence and incomplete membership queries?
6. Can one learn the class of disjunctions of conjunctions of diagonal counting functions with modulus $N \geq 2$ over the domain Z_{N}^{n} ? Or in general, can one learn Z_{N}-DNF formulas over the domain Z_{N}^{n} ? One should note that those two problems are harder than learning DNF formulas. A systematic approach to the monotone theory has been established in [B93], and successfully used to learn any Boolean functions by decision trees and to learn any

Boolean functions by DNF formulas or CNF formulas (or both). However, the theory developed in [B93] can not be used to learn Z_{N}-DNF formulas, because the algebraic structures of Z_{N}-DNF formulas are more complicated than that of Boolean functions.

References

[A88] D. Angluin, "Queries and concept learning", Machine Learning, 2, 1988, pages 319-342.
[AHK93] D. Angluin, L. Hellerstein, M. Karpinsky, "Learning learning read-once formulas with queries", J. $A C M, 1,1993$, pages 185-210.
[BCF95] A. Bertoni, N. Cesa-Bianchi, G. Fiorino, "Efficient learning with equivalence queries of conjunctions of modulo functions, submitted to Information Processing Letters, 1995.
[B94] A. Blum, Personal Communications, 1994.
[BR92] A. Blum, S. Rudich, "Fast learning of k-term DNF formulas with queries", STOC, 1992, pages 382-389.
[BCJ93] A. Blum, P. Chalasani, J. Jackson, "On learning embedded symmetric concepts", COLT, pages 337-346, 1993.
[BS90] A. Blum, M. Singh, "Learning functions of k terms", COLT, pages 144-153, 1990.
[B93] N. Bshouty, "Exact Learning via the monotone theory", FOCS, 1993.
[BGHM93] N. Bshouty, S. Goldman, T. Hancock, S. Matar, "Asking queries to minimize errors", COLT, pages 41-50, 1993.
[BHH92a] N. Bshouty, T. Hancock, L. Hellerstein, "Learning arithmetic read-once formulas" STOC, 1992.
[BHH92b] N. Bshouty, T. Hancock, L. Hellerstein, "Learning Boolean read-once formulas with arbitrary symmetric and constant fan-in gates", COLT, pages 1-15, 1992.
[C95] Z. Chen, "Disjunctions of negated counting functions are efficiently learnable with equivalence queries", submitted to $\mathrm{COCOON}^{\prime} 95$, 1995.
[CH94] Z. Chen, S. Homer, "On learning counting functions with queries", COLT, pages 218227, 1994.
[HH91] T. Hancock, L. Hellerstein, "Learning readonce formulas over fields and extended bases", COLT, pages 326-336, 1991.
[HSW92] D. Helmbold, R. Sloan, M. Warmuth, "Learning integer lattices", SIAM J. Comput., 1992, pages 240-266.
[R94] R. Rivest, Personal Communications, 1994.
[SS93] R. Schapire, L. Sellie, "Learning sparse multivariate polynomials over a field with queries and counterexamples", COLT, 1993.
[V84] L. Valiant, "A theory of the learnable", Communications of the ACM, 27, pages 11341142, 1984.

[^0]: *Department of Computer Science, the University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada. bshouty@cpsc.ucalgary.ca.
 ${ }^{\dagger}$ Department of Computer Science, Boston University. Boston, MA 02215. zchen@cs.bu.edu. The author was supported by NSF grants CCR-9103055 and CCR-9400229.
 ${ }^{\ddagger}$ Aiken Computation Laboratory, Harvard University, Cambridge, MA 02138. sed@das.harvard.edu. Supported by an NDSEG Fellowship and by NSF Grant CCR-92-00884.
 ${ }^{\S}$ Department of Computer Science, Boston University, Boston, MA 02215. homer@cs.bu.edu. The author was supported by NSF grants CCR-9103055 and CCR-9400229.
 Permission to make digital/hard copies of all or part of this material without fee is granted provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server notice, the title of the publication and its date appear, and notice is given that copyright is by permission of the Association for Computing Machinery, Inc. (ACM). To copy otherwise, to republish, to post on servers or to redistribute to lists, requires specific permission and/or fee. COLT' 95 Santa Cruz, CA USA ${ }^{\text {c }}$ 1995 ACM 0-89723-5/95/0007.. $\$ 3.50$

[^1]: ${ }^{1}$ For convenience, we define counting function by switching 1 and 0 in the definition in [CH94]. However, both definitions in essence have the same representation capacity.

