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Abstract

Although many learning problems can be re-

duced to learning Boolean functions, in many

cases a more efficient learning algorithm can be

derived when the problem is considered over a

larger domain. In this paper we give a natu-

ral generalization of DNF formulas, ZN-DNF

formulas over the ring of integers modulo lV.

We first show using elementary number theory

that for almost all larger rings the learnability

of ZjV-DNF formulas is easy. This shows that

the difficulty of learning Boolean DNF formu-

las lies in the fact that the domain is small.

We then establish upper and lower bounds on

the number of equivalence queries required for

the exact learning of Z~-terms. We show that
a(lV)n + 1 < (log AJ)n + 1 equivalence queries

are sufficient and y(lV)n equivalence queries
are necessary, where a(lV) is the sum of the
exponents in the prime decomposition of N,
and Y(N) is the sum of logarithms of the ex-
ponents in the prime decomposition of N. We
also demonstrate how the additional power of
membership queries allows improved learning
in two different ways: (1) more efficient learn-
ing for some classes learnable with equivalence
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queries only, and (2) learnability of other classes

not known to be learnable with equivalence

queries only. Classes which we show learnable

with substantially fewer equivalence queries by

using membership queries include diagonal ZN-

terms and binary weighted read-once .ZN-terms.

Classes which we show learnable with the addi-

tional power of membership queries include (1)

monotone ZN-DNF formulas and (2) conjunc-

tions of a bounded number of negated counting

functions with a prime modulus.

1 Introduction

Symmetric Boolean functions, especially parity func-

tions and modulo functions, have received much at-

tention in computational learning theory. It is known

that the class of single parity functions (see Helmbold

et al. [H RS92]) and the class of single modulo functions

with modulus p for any given prime number p (see Blum

et al. [B CJ93] ) are pat-learnable. In Fisher and Simon

[FS92] it was proved that parity functions of monomials

with at most k literals are pat-learnable, while given

the assumption that RP # NP parity functions of k

monomials are not pat-learnable with the same type of

functions as hypotheses, for any fixed k > 2. In Blum

and Singh [BS90] it was proved that for any constant

k, Boolean functions of k monomials are pat-learnable

by the more expressive hypothesis class of general DNF

formulas. They also showed that, for any k >2, for any

fixed symmetric function ~ on k inputs, ~ consisting of

k monomials is not pat-learnable with the same type

of functions as hypothesis under the assumption that

RP # NP.

In the on-line learning model with queries, It is known

(see Angluin et al. [AHK93]) that read-once Boolean
functions over the basis (AND, OR, NOT) are poly-

nomial time learnable with equivalence and member-

ship queries. This result was extended in Hancock and

Hellerstein [HH91] to Boolean functions over a larger

basis including arbitrary threshold functions and par-

ity functions. Further, it was shown in Bshouty et al.

[BHH92a, b] that read-once functions over the basis

of arbitrary symmetric functions are polynomial time
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learnable with equivalence and membership queries. How-

ever, it was also proved in [BHH92b] that read-twice

functions over the same basis are not learnable under

standard cryptographic assumptions.

In this paper, by introducing counting functions which

include parity and modulo functions, we investigate the

learnability of a much larger class of functions defined

over the domain Zfi, the class of ZN-DNF formulas.

This is a broad class of functions and in essence includes

all Boolean functions, and especially Boolean DNF for-

mulas, as special cases. Our goal in this approach is to

develop new techniques in this setting by means of num-

ber theory and algebra and thus derive general results

that extend learnability over Boolean domains.

The study of learnability of extensions of Boolean func-

tions to arbitrary domains has also been proposed and

investigated by many other researchers (see, for exam-

ple, [SS93] and [B93]). Schapire and Sellie [SS93] de-

signed efficient algorithms for learning multilineal poly-

nomials over the domain Fn for any finite field F, and
for learning polynomials over any semilattice of finite
height. Bshouty [B93] extended DNF and CNF formu-
las to an arbitrary domain IT for any finite abelian
group X and, he proved that any polynomial size deci-
sion tree over En is learnable. The learnability of count-
ing functions over the domain Z; was initially proposed
by Chen and Homer in [CH93] and many preliminary
results were obtained there.

This paper is organized as follows. In section 2, we
define ZN-terms, ZN-DNF formulas, and the learning

models as well as parameters a(N) and Y(N). In sec-
tion 3, we show using elementary number theory that
the learnability of ZN-DNF formulas is easy for almost
all larger rings. This shows that the difficult y of learn-
ing Boolean DNF formulas lies in the fact that the do-
main is small. In section 4, we determine the number of
equivalence queries sufficient and necessary for learning
any ,ZN-terms over the domain Z;. In section 5, we
demonstrate how the additional power of membership
queries allows more efficient learning for some classes
learnable with equivalence queries only. Those classes
are diagonal .ZN-terms and binary weighted read-once
Z’N-terms. In section 6, we investigate the problem
of learning conjunctions of negated counting functions
with equivalence and membership queries. We show
that this is in general harder than learning DNF for-
mulas. On the other hand, we show that this problem
is learnable when the modulus is prime and the num-
ber of negated counting functions in the conjunction

is o(log(;_l) ). In section 7, We show that monotone

ZN-DNF formulas, which are generalizations of mono-
tone DNF formulas, are learnable using equivalence and
membership queries. We conclude the paper by listing
several open problems in section 8.

2 Preliminaries

2.1 ZN-Terms and ZN-DNF formulas

We assume that Z is the set of all integers. Let ZN =

{o,..., N – 1} for any integer N >,2. For any example
d E .Z~, we use a% to denote the z-th component of d

fori E{l, ..., n}. A counting function with a modulus

N >2 is defined as followsl:

C[b(za, . . .,%) =
{

1 if ~~=1 aiirj =– b (mod N),

O otherwise,

where d = (al, ., an) c Z; and b E ZN. For conve-

nience, we may use ca~b to stand for Cjb(zl, . . . . $n).

A ZN-term T is a conjunction of counting functions as

follows:

T= C~,b, A ...AC:~,b~.

We say that a counting function Ctb is diagonal if there

isatmost onei E{l, ..., n} such that a~ # O. We say

that a Zfv-term is dzagon al if all counting functions in

it are diagonal. A ZN-DNF formula F is a disjunction

Of ZN-terms.

For any a, b G ZN, let ab denote (ab mod N). Given

b E ZN and F E Zn, define

,ZNb={ab I a~zjv} and

where aF = (arl, arz, . . ., urn), For subsets A, B ~ Zfi,

for any ; E Zfi, define

2,2 Parameters a(N) and Y(N)

Given any integer N >2, let N = p~’p~ . . . p;’, where

pi are distinct primes and r~ > 1 for i = 1, . . . . t. We
define

t
a(N) = ~ r, and

8=1

t
7(A9 = ~(log(r, + 1)1.

1For convenience, we define counting function by switch-
ing 1 and O in the definition in [CH94]. However, both defi-
nitions in essence have the same representation capacity.
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It is easy to see that, for any integer N >2,

1< Y(N) < O(N) < log N.

2.3 Learning Models

Our first model is the on-line learning model with equiv-

alence queries. The goal of a learning algorithm (or

learner) for a class of Boolean-valued function C over

a domain Xn is to learn any unknown target function

.f E C that has been fixed by a teacher. In order to
obtain information about ,f, the learner can ask equiva-

lence queries by proposing hypotheses h from a fixed hy-

pothesis space H of functions over X’ with C C H to an

equivalence oracle EQ(). If h = ~, then EQ(h) = “yes”,

so the learner succeeds. If h # ~, then EQ(h) = 2 for

some i? 6 X“” such that h(Z) # f(7), called a counterex-

ample. x is called a positive example if ~(~) = 1 and

a negative example otherwise. A learning algorithm ex-

actly learns C, if for any target function ~ C Cl it can

find a h c H that is logically equivalent to ~. A learning

algorithm exactly learns C with high probability, if for

any f c C, it can infer a hypothesis h E H that is log-

ically equivalent to ~ on all inputs with probability at

least 1 – 6, where O <6<1, and the probability is taken

over all examples in the domains. We say that a class

C is polynomial time learnable (with high probability)

if there is a learning algorithm that exactly learns any

target function in C (with probability at least 1 – 6)

and runs in time polynomial in the logarithm of the size

of the domain and the size of the target function (and

in ~ as welI).

Our second model is the on-line learning model with

equivalence and membership queries. This model is the

same as the first, but in addition to equivalence queries,

the learner can also ask membership queries by pre-

senting examples in the domain to a membership oracle

MQ(). For any example Z, MQ(Z) = “yes” if f(;) = 1,

otherwise MQ(Z) = “no”.

3 Learning Z~-DNF formulas

Our main result in this section is

Theorem 3.1. The class of k-term ZN-DNF formulas
IS learnable for all k and N such that k < p(N) where

p(N) is the mznlmal prtme that dluzdes A’ ~n

o ( ‘(N) kn log N
p(N) – k )

expected time and querzes.

Notice that our algorithm is efficient for Ns that have

large prime factors and k < cp(N) for some constant

c. In particular our result gives an efficient learning

algorithm for k-term ZN-DNF for prime N and k < CN
for some constant c. The algorithm we present here is

a Las Vegas algorithm that guarantees learning after

expected polynomial time.

We can regard the set of ones of the target as union

of cosets. I.e., for a k-term ZN-DNF ~ there are linear

spaces Ll, . . ., L~ and vectors dl, . . . . ii~ such that

f-l(l) =Ll+dlu”.. uLk+d~.

Each L; + d; is a coset and we will call d; the coset

leader.

Our algorithm guarantees with high probability that the

examples received from the equivalence queries are pos-

itive.

We first prove the following

Lemma 3.2. Let Ll, Lz ~ Z; be lznear spaces over

ZN. If L2 + ii2 ~ L1 + dl then under the uniform dis-

trzbut~on

1
Pr[L1 + d11L2 + d:]] ~ —

p(N)

Proof. Notice first that for any coset L + d we have

IL+ dl = ILI. Since L is a subgroup of Z~ we must

have IL I divides lZ~ I = Nn. Therefore we have lLz+dz I

divides IVn. Now since intersection of cosets is a coset

and since L2+d2 Q L1 +dl we also have IL2 +ilz nL1 +
dl I divides Nn and is (strictly) smaller than IL2 + d21.

Therefore we can have two cases. Either IL2 + Ii2 \ = 1
and lLz+dznLl+dll = Oor lLz+dznLl+dll/lLz+dzl
is at least p(N), the smallest prime that divide N. In

both cases we have

The key idea in the learning algorithm is the following.

Suppose we get two positive examples ;I and iz. If Z1

and ;2 are in the same coset L + d then

;l+.A(22-21)EL+d

for any A E ZN and therefore is positive in the target
for every A. Now if il and ti2 are not in the same coset

for all L% + d,, i = 1,....k, then for a random uniform

~ we have

where L + 2 = {21 + A(.22 — 21)IA c Z~}. Since
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L + ;I ~ Li + iii by the lemma we have

Therefore to decide whether or not ZI and i?z are in

the same coset we randomly uniformly choose A E ZN

and ask membership queries with 71 + ~(iz – 21). If

the answer is negative then &l and 22 are not in the

same coset. If they are not in the same coset then with

probability at least 1 – k/p(N) we get a negative coun-

terexample. Therefore this algorithm run in expected

time

to get confidence at least 1 – 6.

Now we may have three positive examples 21, 22 and @3

where each pair is in the same coset but not all of them

are. Therefore we need the following lemma. The proof

is similar to the above

Lemma 3.3. Suppose 21, . . . . ~j are tn the same coset

L + ii. If 23+1 M not m the same coset L + z then wzth

pro babtltty at least 1 – -& we have for random untform

/12, . ... Aj+l from ZN

=0

Now we can write the algorithm. The algorithm starts

by asking equivalence queries with O to get a positive

example. At the ith stage of the algorithm we have

positive examples in ,Sl, S2, . . . . S’r where each set of ex-

amples contains bases from the same coset. For each set

we also have a leader l(Si ) for this set. The leader is

the leader of the coset and is the first positive example

that we obtained in this set. Let

fil(l) = 1(S) + ~ ZN(S - 1(s)).

sEs\{/(s)}

Notice that since ,S8 is in the same coset we have (with

high probability y) fj 1 ( 1) is a subset of the target. At

stage i+ 1 we ask equivalence queries h = fsl V. V fs~.

Since h-1 (1) is a subset of the target we will get a posi-

tive counterexample Zi+l. We now use the membership

queries to test whether Z,+l belong to the coset SJ for

all j using Lemma 3.3. It may happen that ?i+l belongs

to manv cosets in which case we add it to each one and

it may also happen that E,+l is not in any of them in

which case we create a new set Sr+l and put Zi+l in it

and make it the leader of the new “set

4 Learning Z~-Terms

We give upper and lower bounds on the number of

equivalence queries required for learning Z~-terms by

proving following theorems,

Theorem 4.1. There w an algorithm for learning any

ZN-term over the domain Z; using at most a(N)n +
1< (log N)n + 1 equivalence querzes.

Theorem 4.2. To learn a diagonal zN-term (and hence

a zN-term) we need at least y(N)n equivalence queries,

Theorem 4.3. Any term (i. e., a conjunction of count-

ing functions) wzth dzstznct modulz {N, } are learnable

using at most ~(lcm(N2))n + 1 equivalence queries pro-

vzded that lcm(NL ) zs known a prior to the learner, where

lcm(N$) is the least common multiple of Ni.

Theorem 4.4. Dtagonal .zN-ferms are learnable uszng

at most y(N)n + 1 equwalence queries.

Here, we only prove the first two theorems. For two

integers a and b we write a lb if b is divisible by a.

Lemma 4.5. For an element a E ZN, the following

properties hold.

i. zNa = zNgcd(a, N).

2. IfalN then Vb E ZNa, alb.

3..zNal+.. +.zNam= ZNgcd(a~, . . ..am. N).

4. If alN and the elements of A and B are dnnsible

by a then the elements of A + B are dwwible by a.

5. a @ zNb if and only if gcd(b, N) ~gcd(a, N).

A sequence (dl, . . . . dm ) of elements in Zfi is called an

independent sequence if

(?l#o,...,a~#zNal+ ...+zNa~–lj...,

(im @ zAIfil +.. .+ ZNiiI-I.

The integer m is called the length of the sequence. The

length of the longest independent sequence in Z~ is de-

noted by ien(n, N).

Lemma 4.6. len(l, N) = a(N)

Proof. Let N = p;’ ~p~f. The sequence
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is an independent sequence of length a(N). To show

that the sequence is independent, notice that

a$=p~. . “P;d+lP;;+; ““”P;’

is not divisible by p~~~ but al, . . ., as-l are divisible by

~$~. Therefore

as @Z~al +..+Z~a,-l

because all the integers in Z~al + ~~. + Zjva,-l are di-

visible by ~’~~. (Notice here that we would not have

this property if N were not divisible by ~’~~.) This

proves that

ien(l, N) ~ CY(N).

To show that len(l, N) ~ a(N) we suppose there is a

sequence

(al,..., a,), s> a(N)

that is independent. By Property 2 of Lemma 4.5 we

have

at @ZNal + ...+Z~a8_l

= ZNgcd(Ul, . . .,at._l, N).

Therefore if N = p~’ ~~.p~’ and aj = bjp~’” . . p~”

where gcd(bj, N) = 1 then

ai @ Z~gcd(al, . ,ai–l, N)

= ZNp~’nOs’<’ ““ ~p~’nos’<’ ‘“i.

where ro, ~ + r~. By Property 5 of Lemma 4.5

min O<j<, ~J,I
PI - “P7’nO<’<’ ““

~ p~infrOlrt,l] . . .P;ln(m,t)rl,t),

Therefore there must be a k such that min(ro,~, r,,k) <

mino<j <i rj,~ which implies that—

1“~,~ < min rj, k,
0<j<2

Thus s can be at most a(N). ❑

Lemma 4.7. len(n, N) = a(N)n.

Lemma 4.7 can be proved by Lemma

tion on n. ❑

4.6 and by induc-

Proof of Theorem 4.1. Let f be a Z~-DNF for-

mula. Let dl, . . . . tim be the counterexamples and Si =

(G1, . . . . d~). Define the Boolean functions $O(z) = O

and, for i z 1,

{

1 z6a~+Z~(d~–ii~)+.+

fi(X) = z~(iim – d~)

O otherwise.

The Learning Algorithm

Step 1. s +-- ().

Step 2. While EQ(~$) ~ a does not answer

‘[YES” do S e ($, d).

Positive examples of j are the solutions to some linear

system of equations AX = B where X = (zl, . . . . Zn)T

and A is a t x n matrix and B is a column t-vector

both with entries from ZN. Now, Theorem 4.1 follows

from Lemma 4.7 and the following claims which can be

verified easily.

C 1: iii is a positive counterexample.

C2: Adi = B.

C3~ f; * f.

C4: (72–;1, ..., iii – til ) is an independent se-

quence. U

Proof of Theorem 4.2. Let N = p~’ ~~.p~’. Consider

the class of functions ~Jl, ,~n where Al, . . . . An IN and

~~,~, ,~~(1) = {I\~i = O mod J,}.

Suppose the learner already knows Al, . . . . ~~- ~ and knows

that

P:’ ‘ “ ‘Py P:\l < JS s P? “ “ “P; ’P;;lP;I+; “ “ ‘P:*

and knows nothing about ~~+1, . . . . An. Suppose the

learner asks equivalence queries with h. Let A = h-1(1).

Let

Ll={(xl,.. ., Z~)lZ; =Omod&, i= 1,. ... s–1}

and let

,*,

L2 = {((zI, . . .,zn)lrs =P~’ P~pj+l mod N}.

If A ~ L1 then the adversary can give the learner & E

L1 – A as a counterexample and the Iearner cannot gain

any information from this counterexample. If A ~ L1

but A ~ L2 then the adversary will return an element

from A – (Ll n L2 ) and the learner gains only the addi-

tional information that

[+]
& > p~’ . ~.p:’pj+l

If on the other hand if A ~ L1 n L2 then the adversary

will return
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If the variables appear in the same counting function,

and the only information that the learner gains is that then this new example is also positive, otherwise it is

l*J+,
negative.

& <p;’ ..p; pj+l . When the domain is Z& for A4 < N, then it is possible

that the positive example F cannot be used to test all

Now by induction the result follows. ❑ pairs of variables, e.g. when both variables are set to O

in Z. However, after making all possible tests with 7,

5 Reducing the Number of Equivalence
one can formulate an equivalence ‘query that will result

in a new example which allows progress to be made,

Queries by Using Membership Such a strategy uses at most 2n equivalence queries.

Queries

As suggested in [BGHM93], it is reasonable to believe

that an equivalence query is more expensive than a

membership query. A practically ideal learning algo-

rithm will use as few equivalence queries as possible.

Here we show how to reduce the number of equivalence

queries using membership queries when learning certain

restricted syntax classes. A read-once Boolean weighted

Z~-term is a Z~-term in which all weight vectors are

Boolean valued vectors and for all components j, no two

distinct vectors have a 1 in component j.

Theorem 5.1. There is an algorithm for learning diag-

onal .zN-terms over the domam Z~ using 1 equivalence

query and at most y(N)n membership quertes.

(he first notes that, given a diagonal .zN-term T, there

are di G Z~, i = 1, . . . . n, such that the set of all exam-

plesmaking Ttrueis ZN(dl, . . .,0)+. +Z~(O, . . .,dn)+

~ for any ~ making T true. One can ask the first equiva-
lence query for + to get ~. Let N = pup”’ p“. Since
ZNdi = zNgcd(d~, N), to learn di we only need to deter-
mine uj such that di = p“lpu~ . .p”* with O ~, Uj ~ rj.

Thus, we can find UJ using the binary search with mem-

bership queries among integers O, 1,..., rj. Hence, with

at most y(~)n membership queries, we can find all the

di .

Theorem 5.2. There M an algorithm for learning read-

once Boolean wetghted ZiV-terms over the domam Z~
using 1 equivalence query and at most n2 membership
quertes when M ~ N, while at most 2n equivalence

quertes are needed zf2 ~ M < N.

It is worth noting that in Theorem 5.2 the bounds on the

number of membership queries and equivalence queries

are respectively independent of N.

To Drove Theorem 5.2. note that it is sufficient to de-

termine the relevant variables in each of the counting

functions which compose the .zN-term. When the do:

main is Z~ for JM > N, one need only obtain a single. .
positive example L? (using an equivalence query) and for
each pair of variables, use 2 to test whether the pair

of variables appear in the same counting function. The

test for any two variables entails a membership query

on an example obtained from i by incrementing (mod

N) one variable and decrementing (mod N) the other.

6 Learning Conjunctions of Negated

Counting Functions

One open problem proposed by A, Blum [B94] and R.
Rivest [R94] regarding learning conjunctions of counting
functions is whether conjunctions of negated counting
functions with a modulus N over the domain Z; are
poly-time learnable. When N = 2, it is easy to see that
a positive answer to the problem exists. In this section,
we will prove two related results.

Theorem 6.1. If conjunctions of negated countzng func-

tions with modulus N > n over the domain Z~ are

polynomial time learnable, then CNF (and thus DNF)

formulas are polynomial time learnable.

Given a CNF formula F = A~l Fi, where Fi are clauses.

we can construct a conjunction of negated counting func-

tions C(F) such that F(Z) = 1 if and only if C(F)(Z) =

1. In order to do so, for each clause Fi, define a vec-

tor d, = (a,l, . . ..azn ) such that aij = 1 if xj appears

at Fi, aij = (N – 1) if ~j appears and, a~j = O oth-
erwise, where i E {1, . . ..rn} and j{l, ... n}. We also
define, for any i c {1,. . . . m}, bi as the difference of N

and the number of negated variables appearing at F;.

Then, C’(F) = 7C~,b, A ~. . A TC~ml,bn satisfies the

requirement.

Theorem 6.2. We can learn conjunctions ofrn negated

counting functions with a prime modulus N > 2 over

the domazn Z% using at most n + (N – l)m equivalence

queries and at most N(n + (N – l)~)(N – 1)~ mem-

bership quertes. (Hence, when m = O(IO$NEI)), the1?

algorithm is polynomial.)

One can verify that a conjunction of m negated count-

ing functions F is equivalent to the “union” of the sys-

tems Am,nX = D,, i = 1,. ... (N– l)m, where D% =

(d,l, . . . . dim)T are distinct and d,j E (ZN – {b,}). Am,m

and b~ are determined by F. Thus, to learn F, we only

need to learn all the systems Am,n X = Di over the vec-

tor space Z&. The only difficulty involved in this task is

how to decide whether two positive examples for F are

solutions to the same system. However, this difficulty is

overcome by the following lemma.
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Lemma 6.3. Gzven any two examples 6 = (01, . . . . On)

and G=(ul, ..., W2) making F true, then both ~ and G

are solutions to the same system if and only i~ for ail

u ~ z~, U(U — ~) + ~ makes F true.

A recent result obtained by Bertoni et ai. in [BCF95]

implies that any conjunction of negated counting func-

tions C = TC~,~l A”. “A7C~~>,bm over the domain %

is poly-time learnable with at most nN– 1+ 1 equivalence

queries, provided that when N is a constant prime and

bi = O for all i = 1, . . . . m. Enlightened by this result,

Chen [C95] further proved that for any constant prime

N, conjunctions of counting functions and negated count-

ing function with modulus N over the domain Zfi are

poly-time learnable with at most (n+ I) N-l + 1 equiv-
alence queries.

7 Learning Monotone ZN-DPJF

formulas

A monotone concept (see the formal definition in [B93])
is uniquely determined by one element based on a par-
tial order. This relatively simple structure limits the
representation capacity of monotone concepts. There
are natural concept classes that can not be represented
as disjunctions (or conjunctions) of monotone concepts,
for example, unions of axis parallel discretized rectan-
gles (as noted in [B93]), unions of discretized polytopes,
and unions of modules over a finite ring. Thus, in order
to learn those concepts, new techniques are required. As
a first step along this line, we prove Theorem 7.1 that is
an extension of Angluin’s algorithm for learning mono-
tone DNF formulas [A88]. For any ZN-DNF formula

i=l

We say that F is monotone if, (1) for any i E {1, . . . . m}

} L, is diagonal and b~j # O, (2)and j E {1, . . ..mz ,

for any two distinct i,j E {1, . . . . m}, hi and Lj have

different sets of relevant variables. One should note that

a monotone Z~-DNF formula is equivalent to a union

of cosets of Zfi and the method developed in [B931 can

not be applied to learn it.

Theorem 7.1. There is an algorzthm for learning any

monotone ZN-DNF formula F over the domain Z~ US-

ing at most m(na(N) + 1) equivalence queries and at

most mn(na(N) + 1) membership querzes.

Given a positive example i?, let R(Z) be the example ob-

tained by flipping all the components in 5 to O such that

each flipping still makes F true. Let V(E) denote the set

of all the variables xi such that the i-th component in

R(E) is not zero. The algorithm works in stages. At any

stage s, let W(s) be the class of the sets of relevant vari-

ables, E(s) be the set of all the examples received. For

each @ c W(s), let (~) be the set of all Z c E(s) such

that V(Z) = o. For (0) = {ii,, ...,~ik} with ~1 < ““” <

i~, define ll(s, +) =j7+Z(12 –~l)++z(fl~ –~~),
where ~j ~ R(2i7 ). The hypothesis issued by the learner

at stage s is If(s) = U{H(s, @)\@ E W(s)}.

The Learning Algorithm:

Stage O. Set H(O) = W(O) : E(O) = +.
Stage s + 1>1. Ask an eqmvalence query for the hy-

pothesis H(s). If yes then stop. Otherwise the

learner receives a counterexample Z,. Set E(s +

1) = E(s) U{Z, }. Set W(s+l) = W(S) U{ V(Z. )},

if V(Z, ) @ W(s). Otherwise, set W(s+ 1) = W(s).

8 Open Problems

We list some open problems.

1.

2.

3.

4.

5.

6

We have shown that conjunctions of counting func-

tions with modulus N > 2 over the domain Z;

can be learned using at most na(N) + 1 equiva-

lence queries. On the other hand, we have also

proved that any algorithm for learning conjunc-

tions of counting functions with modulus N ~, 2

over the domain Zfi requires at least n-y(N) equiv-

alence queries. Can one close the gap between the

upper and lower bounds of equivalence queries?

Can one substantially decrease the number of equiv-

alence queries required for learning conjunctions of

counting functions with modulus N > 2 over the
domain z;, provided that one is allowed to use

poly(n, log N) many membership queries?

We know that the problem of learning disjunctions

of negated counting functions with modulus N over

the domain Z; is harder than learning DNF formu-

las for arbitrary N > n. On the other hand, a poly-

time algorithm exists for this problem when N is

a constant prime [C95]. However, we do not know

whether this problem is poly-time learnable when

for arbitrary N ~ n or for a constant composite

N>2.

We can extend a decision tree over the domain Z;

in such a way that each node of the tree is a count-

ing function ax ❑ b(mod N). Can one learn the

class of the extended decision trees over the domain

Z; using equivalence and membership queries?

We have proved that monotone ZN-DNF formu-

las over the domain Z; are poly-time learnable US-

ing equivalence and membership queries. Can one

learn this class using equivalence and incomplete

membership queries?

Can one learn the class of disjunctions of conjunc-

tions of diagonal counting functions with modu-

lus N z 2 over the domain Z&? Or in general,

can one learn ZN-DNF formulas over the domain

Z~? One should note that those two problems are

harder than learning DNF formulas. A systematic

approach to the monotone theory has been estab-

lished in [B93], and successfully used to learn any

Boolean functions by decision trees and to learn any
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Boolean functions by DNF formulas or CNF for-
mulas (or both). However, the theory developed in
[B93] can not be used to learn ZN-DNF formulas,
because the algebraic structures of ZN-DNF for-

mulas are more complicated than that of Boolean
functions.
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