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Abstract

We develop a bounded version of the finite injury priority method in recursion theory.
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1}¢ with only equivalence queries. Applying this method, we show three main results:
(1) The class of unions of rectangles is polynomial time learnable for constant dimension
d. (2) The class of unions of rectangles whose projections at some unknown dimension
are pairwise-disjoint is polynomial time learnable. (3) The class of unions of two disjoint

rectangles is polynomial time learnable with unions of two rectangles as hypotheses.
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1 Introduction

We study a central problem in the field of computational learning theory and the first
application of finite injury priority arguments from recursion theory in this area. Mod-
ern computational learning theory studies the existence and efficiency of “learning al-
gorithms” for various computational problems. Most often these problems arise in
complexity theory and have interesting hard combinatorial properties. Results in this
field give further insight into these fundamental problems, providing evidence as to their

algorithmic properties and to their computational complexity.

We consider the on-line learning model, one of the two standard models in this field (the
other being PAC learning [V], [BEHW]). On-line learning is formally defined in the next
section. (See also Angluin [Aa], [Ab].) The basic idea is that an algorithm acts to learn a
concept C from among a large set of possible concepts. The algorithm takes no input but
works by issuing a series of hypotheses H which are attempts to extensionally specify
C’s identity. These hypotheses are responded to by an environment which provides
counterexamples to a hypothesis if it is wrong or says “correct” if the concept has been
identified. A counterexample consists of an element in the symmetric difference of the
hypothesis and the concept to be learned. (In the parlance of computational learning

theory this is called on-line learning with equivalence queries.)

In this paper we consider the problem of learning unions of rectangles of arbitrary
dimensions. This problem has been well-studied in learning theory, as an interesting
problem in its own right and because it generalizes several of the most fundamental
concept classes studied in this field (see [Aa], [R]). In particular, (1) it is a generalization
of learning DNF formulas, (2) it is a special case of unions of intersections of half-spaces
over the domain [0,n — 1]¢, and (3) unions of pairwise-disjoint rectangles are general

cases of Boolean-decision trees over bounded integer domains.

In order to make these relationship precise we first need to define the class of rectangles
we consider. Let N be the set of natural numbers. Vi, j € N, we use [i, j] to denote the

set {4,...,7} if i < j or ¢ otherwise. We define the class of all discretized azis-parallel



rectangles (or rectangles for short) over the domain [0,n — 1] as follows,
d
BOX{ = {]]lai,bi]|0 < a; < b; < —1,Vi € [1,d]} U{4}.
i=1
We consider the following concept class of unions of rectangles over the domain [1,n—1]¢

U,BOXS = {CyU---UC|Vi € [1,k],C; € BOX2}.

Now given a DNF formula
F =2x1290V T3%T4 V 2122%3T4,

we view learning F' as a special case of learning rectangles as follows. For any example

x €[0,1]*, F(z) = 1 if and only if z satisfies the following condition
(x1=1Aze=1)V(z3=0A24=0)V(z1 =1Az2=1A23=0A24 =0).
i.e., z is in Cy U Cy U C5, where
Cy =1[1,1] x [1,1] x [0,1] x [0, 1],

Cy =[0,1] x [0,1] x [0,0] x [0,0],
C3 =[1,1] x [1,1] x [0,0] x [0, 0].

Thus, z is in a union of three rectangles C7,Co,andCs. In general, a k-term DNF

formula can be represented as a union of k£ rectangles.

Define a halfspace over the domain [0, — 1]¢ to be the set of all examples in [0, n — 1]¢
satisfying the condition

a121 + -+ aqgxTq = G441,

where g; are real numbers, and (aq, ..., aq) is called the weight of the halfspace. Learn-
ing half-spaces has previously been considered in computational learning theory by
Littlestone and Maass and Turdn ([L], [MTf]). Given any intersection of halfspaces,
when any weight in any of those halfspaces contains exactly one nonzero component,
then the intersection of the halfspaces is a rectangle. So learning rectangles is a special

case of learning unions of intersections of half-spaces.



A Boolean decision tree is a binary tree where each non-leaf node represents a Boolean
question and has a “true” and a “false” successor node, and where the leaves are labelled
with a Boolean value classifying the input as being accepted or rejected. Decision trees
in learning theory have previously been studied by Rivest [R]. Any Boolean decision
tree with k leaf-nodes is equivalent to a k-term DNF formula such that any two of those
terms are disjoint, i.e., no examples satisfy more than one term. As we observed before
that a k-term DNF formula can be represented as a union of k-rectangles. Hence, any

Boolean decision tree can be represented as a union of pairwise disjoint rectangles.

Relevant research on the problem of learning unions of rectangles in the pac-model (see
[V]) was done by Blumer et al [BEHW] and, Long and Warmuth [LW]. Blumer et al
proved that for constant dimension d, unions of non-discretized rectangles over the d
dimensional Euclidean space are pac-learnable. Long and Warmuth proved that for
constant k, unions of k£ non-discretized rectangles over arbitrary dimensional Euclidean
space are pac-learnable. Recently, Jackson [J] proved that any union of polynomially
many discretized rectangles over the domain [0, n—1]¢ such that each of those rectangles
is bounded on O(Flgolgog—n) sides is strongly pac-learnable with respect to the uniform

distribution and using membership queries as well.

In the on-line learning model with only equivalence queries, problems of learning BOX ¢
by BOX? and many other discretized geometric concepts have been studied in Maass
and Turdn [MTb, c, d, e] and, Bultman and Maass [BM]. They showed that the query
complexity of learning BOX? by BOX? is Q(dlogn) [MTc, d]. They also exhibited an
algorithm that learns BOXY by BOX? using O(2%logn) queries [MTc, d]. In contrast
to Maass and Turan’s O(2%logn) upper bound, an O(dn) upper bound can be derived
from Valiant’s work [V] on learning monomials. Finally, an O(d? logn) upper bound and
an Q(diTl‘gd—") lower bound were obtained respectively in Chen and Maass [CMa, b] and
Auer [AU]. It is still open whether one can close the “(logd)-gap” between the upper
and lower bounds (see also Maass [M]). One should note that it follows from Angluin
[ADb] that on-line learning with only equivalence queries implies pac-learning under any
distribution. When the learner is allowed to use both equivalence and membership

queries, Chen and Homer [CH] first proved that unions of k rectangles over the domain



[0, n—1]? are learnable with O(k3 log n) queries. Later, Goldberg, Goldman and Mathias
[GGM] proved that for any fixed d, unions of rectangles over the domain [0,n — 1]¢ are
polynomial time learnable with equivalence and membership queries. They also proved
that for any constant k& but arbitrary dimension d, unions of k£ rectangles are polynomial

time learnable with equivalence and membership queries.

In constructing algorithms to learn unions of rectangles with only equivalence queries,
obvious approaches tend to fail because one faces two “credit assignment problems”. The
fundamental problem is in which dimension or to which rectangle can the information
given by a counterexample be correctly used. On the one hand, to which rectangle in
the target concept should a positive counterexample belong? On the other hand, in
which dimension is the projection of a negative counterexample true for any rectangle
in the target concept? A more precise and detailed explanation of these issues is given
in Section 3. There is a potential relation between the “credit assignment problem” and
the “injury” in an injury constructions in recursion theory. When one makes a wrong
assignment, then one’s goal is “injured” in the sense that one would never achieve his
goal unless the assignment is undone. A solution to the credit assignment problem
related to rectangle learning given by Chen and Maass [CMb] is reminiscent of the
finite injury priority method. The injury constructions in this paper can be viewed as a
new method to solve the credit assignment problem by applying priority methods from

recursion theory in order to construct concrete algorithms.

Previous work on learning unions of rectangles with equivalence queries was able to
overcome the related credit assignment problem by employing local search strategies
that could tolerate certain types of one-sided errors (see [CMb]). Based on this design
technique and certain more powerful local search strategies that can tolerate some two-
sided errors, Chen [C] exhibited an algorithm for learning unions of two rectangles
over the domain [0,n — 1]? with O(log?n) equivalence queries and using unions of two

rectangles as hypotheses.

In this paper we make the analogy with injury methods from recursion theory explicit in
our proofs. This enables us to give a more precise analysis of methods present in earlier

work in this area. And as well, it provides a more general and canonical construction



of learning algorithms which can be used for new cases of learning of rectangles which
were not possible before. The methods developed here are far from the full strength
of finite injury arguments in modern recursion theory. They make essential and strong
use of the notion of requirements and of their (bounded) injury, but only little use of
priorities assigned to these requirements. Nonetheless they provide a new and useful

method with which to explain several complicated constructions and proofs.

Using our methods we obtain the first efficient and exact learning algorithms for three
classes of unions of rectangles using equivalence queries. In Section 4 we show how to
learn unions of two disjoint rectangles in polynomial time, with unions of two rectangles
as hypotheses. This improves the previously known algorithm which works only for
two dimensional rectangles. Improving this algorithm to apply to any pair of rectangles
would imply P = NP [PV]. In Section 5 we extend the methods of Section 4 to obtain an
algorithm which learns unions of £ > 3 rectangles whose projections on some unknown
dimension are pairwise-disjoint in polynomial time and using unions of at most (k —
1)(logn + 1) rectangles as hypotheses. Finally, in Section 6, we present an algorithm
which learns for constant d, unions of k rectangles in poly(k,logn) time and using

unions of at most (4kd(logn — 1) — 2k(logn — 3))? rectangles as hypotheses.

Almost at the same time and in work independent from ours, Bshouty [Bb] (see also
[BGGM]), and Maass and Warmuth [MW] also proved that for fixed d, unions of rect-
angles over the domain [0,n — 1]¢ are polynomial time learnable using only equivalence
queries. All three approaches are different in hypothesis representations and, more im-
portantly, in their proof techniques. Maass and Warmuth’s algorithm is the strongest
in the sense that its query complexity matches the lower bound. Bshouty’s algorithm
can also cope with certain misclassified CE’s. Our approach uses unions of rectangles
as hypotheses and, with introduction of priority arguments in this setting, opens the

possibility that other concrete algorithms can make good use of priority arguments.



2 The Learning Model

Our learning model is the standard model for on-line learning with equivalence queries
(see Angluin [Ab], Littlestone [L], Maass and Turdn [MTal]). A learning algorithm for
a concept class C over a domain X is viewed as a dialogue between a learner and an
environment. The goal of the learner is to learn an unknown target concept Cy € C
that has been fixed by the environment. In order to obtain information about C; the
learner proposes hypotheses H from a fixed hypothesis space H with C C H C 2% to
the environment. If H = C}, the environment will answer yes so the learner learns it.
Whenever H # Cy, the environment responds with a counterezample (CE) g € HAC.
g is called a positive counterezample (PCE) ifg € Cy,— H, and a negative counterezample
(NCE) if g € H — C;. Each new hypothesis issued by the learner may depend on the
earlier hypotheses and the received CE’s. The learning complexity of the concept class
C is in the worst case the minimum number of CE’s required by the learner to learn
any target concept in it. We say that a learning algorithm is polynomial if its time
complexity is polynomial in the logarithm of the size of the domain and the size of the

target concept.

It is known that on-line learning implies pac-learning [Ab]. It also known that there

are cases in which on-line learning is strictly harder than pac-learning [B].

3 The Credit Assignment Problems

The “credit assignment problem” may be defined as “the problem of assigning credit or
blame to the individual decisions that led to some overall results” (Cohen and Feigen-
baum [CF]). Obviously, this problem is ubiquitous not only in Artificial Intelligence,
but also in the study of adaptive neural networks, where credit or blame for the overall
performance of the network has to be distributed to the individual components of the

network.

In the study of learning unions of rectangles with equivalence queries, obvious ap-

proaches tend to fail because one would face two credit assignment problems: On the



one hand, in which dimension is the projection of a negative counterexample true, that
is, outside of the bounds of the rectangle in that dimension ? (This occurs in the single
rectangle case as well.) On the other hand, to which rectangle in the target concept
does a positive counterexample belong? (This never occurs in the single rectangle case.)

We illustrate those two kinds of problems in figure 1.A and 1.B, respectively.

In figure 1.A, the target concept is a rectangle Cy = [[%[ai,b;]. In order to learn it,
we only need to learn the four parameters a1, a2, b; and bs. To do this, we can design
a global algorithm which employs four local search procedures to search for the four
parameters, respectively. However, when the learner receives a NCE z = (z1,z2) as
shown in the figure, the learner does not know to which of the procedures a component
of = should be assigned as a true negative counterexample. In this case, the component
29 should not be assigned to the procedures searching for the parameters ay and by,
because it is lies inside the interval [ag, bo], unfortunately the learner does not know

this.

In figure 1.B, the target concept C; = AU B with A = H?Zl[ai, b;] and B = H%Zl[ei, fil-
In order to learn C;, the learner needs to learn the parameters a;,b;,e; and f;, for
1 = 1,2. As above, the learner will be a global algorithm that employs local search
procedures to search for each of the eight parameters. In addition to the credit problem
present in learning one rectangle, when the global algorithm receives a PCE y = (y1, y2)
as in figure 1.B, the learner does not know to which of the procedures a component
of y should be assigned. In this case, the component y; should not be assigned to the
procedures searching for the parameters a; and b; associated with retangle A because
it lies outside the interval [a1, b1], unfortunately the learner does not know this is the

case. (This is similarly true for y,, ao and be.)

4 The Bounded Injury Priority Method

The finite injury priority method in modern recursion theory was invented by Friedberg
[F] in 1957 and independently by Muchnik [MU] in 1956, in their solutions to Post’s

Problem. Since then, injury arguments with priority have become the most powerful
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Figure 1: How to Assign a Counterexample

and dominant design technique in modern recursion theory. In a typical finite injury
priority argument (see, Soare [S]), one needs to achieve a “goal” (which is usually the
construction of a set with certain properties). One divides this “goal” A into a sequence
of infinitely many “requirements” {R;}icn such that A is achieved if all the requirements
R; are met or satisfied. Normally, one also assigns priority to the requirements. For
example, if n < m, then the requirement R,, is assigned priority over R,,, and we say
that R, has higher priority than R,,. One then constructs a procedure which runs
in stages. At each stage, one will take certain action to satisfy some requirement(s).
However, actions taken at some stage s for satisfying R, may at a later stage t > s be
undone when action is taken for satisfying R, of higher priority. In this case, we say
that Ry, is injured at stage t. The crucial feature of all finite injury priority methods

is that each requirement is injured finitely often and so comes to a limit.

Consider designing a learning algorithm for a given concept class C over a domain X.
For each target concept C; € C, the goal of the learner is to identify C;. One can
design a sequence of requirements {R;} such that C; is learned if all the requirements
R; are satisfied. However, there are substantial difficulties when one applies an injury
argument with priority to design a learning algorithm A for a concept class C over a
domain X. First, one would like the complexity of the algorithm A to be bounded by
a reasonable function f(n,|C|) (usually f is a polynomial, or at worst exponential),

where n is the size of the domain, and |Cy| is the size of the target concept. Thus,



the number of requirements designed by the learner must be bounded by f(n,|Cy|).
Similarly, the number of injuries received by each requirements must also be bounded
by f(n,|Ct|). Second, in the finite injury priority method the domain is infinite. Once
a requirement is injured, one can search the domain to find a new element with which
to “remedy” the injury, i.e., to satisfy the requirement again. However, in designing
the learning algorithm A, the domain X is finite. Hence, once a requirement is injured,
it is more difficult to remedy the injury within the domain X. Finally, in a construction
using the injury method, one can decide whether a requirement is injured at each stage,
because one can simply trace the entire (but finite) construction up to the current stage.
However, this may not be true in designing a learning algorithm because of the desired

complexity bound on the algorithm.

5 From One Interval to One Rectangle

In this section we begin with several basic results whose proofs exploit the ideas of
an injury construction. The methods and techniques used illustrate how the problems
mentioned here can be dealt with by injury arguments in this setting. Furthermore,
they form the basis for the more complex constructions in the later sections of this

paper where priority is essential.

Consider the following interval concept class
HEAD(n) ={[0,k]|0 <k <n-—1}

over the domain [0,n — 1]. We now design an algorithm S to learn any target concept
Cy = [0,5] € HEAD(n). Here, we consider an extended environment which may
respond with an NCE outside C; (called a true NCE) or an NCE in C; (called a false
NCE) for a given hypothesis. We do this because, when we later consider rectangles of

higher dimension, such false NCE’s will be of concern in our algorithms.

Algorithm S runs in stages. At each stage s, S searches a value for j, denoted by RS(s),

and issues a hypothesis Hy = [0, RS(s)]. Let zs be the counterexample received by the

10



learner at stage s for the hypothesis H;. Define
PS(s) =mazx({0} U{z,|1 <r <s & z, is a PCE}),

NS(s) =min({n} U{z,|1 <r <s & z, isan NCE & z, > PS(s)}).

In order to learn C}, one only needs to satisfy the following requirement
R: 3s (Vs >s (RS(s") =7)).

One should observe that even though the learner may issue a hypothesis H; = [0, RS(s)] =
[0, j] at stage s, the environment can still cheat the learner by giving a false NCE z;
for Hy to the learner. We say that R is injured (or R receives an injury) at stage s, if
PS(s) < NS(s) < j. When R receives an injury at stage s, the learner has received
false NCE’s and will be fooled by them until he proves that they are false by receiving

a PCE greater than their maximum.

Learning Algorithm S

Stage 1. Set RS(1) = 0. Ask an equivalence query for the hypothesis H; = [0, RS(1)].

If yes then stop. Otherwise, one receives a PCE 7.

Stage s+ 1 > 2. We consider three cases:
(1) If z5 is an NCE and z; < PS(s), then set RS(s+ 1) = RS(s).

(2) If z5 is an NCE but z5 > PS(s), then set RS(s+1) = PS(s)+ LWJ

(3) If z5 is a PCE, then set RS(s + 1) = min({NS(s) — 1} U{RS(r)|]1 <r <
s & PS(s) < RS(r) < NS(s)}). Finally, one asks an equivalence query for the
hypothesis Hyy1 = [0, RS(s + 1)]. If yes then stop, otherwise one receives a CE

Tg41-

For an NCE z,, we say that x4 is an invalid NCE if z;, < PS(s), otherwise we say
that x; is a valid NCE. Obviously, the extended environment cannot cheat the learner
by giving an invalid NCE. In other words, Requirement R will never be injured by an
invalid NCE. Algorithm S has the following properties that were originally given in
[CMa]:

11



Property 3.1.

(i) Vs > 1, PS(s) + | XEE=LS6) | < N§(s) — 1.

(i) Vs > 1, PS(s) < RS(s +1) < NS(s) — 1.

(iii) Vs > 1, if z; is a (true or false) NCE, then RS(s + 1) < RS(s).

(iv) Assume that z, and z44; are PCE’s. Then, z4.1 > NS(s), or zs4+1 > RS(r) for

some r € [1,s] with PS(s) < RS(r) < NS(s).

Proof.

(i) Note that PS(s) < NS(s) by the definition of NS(s).

(ii) This follows from (i) and the definition of RS(s + 1) in the construction.

(iii) If g < PS(s), then RS(s + 1) = RS(s). Assume that z; > PS(s) and s > 1.
Since RS(s) < NS(s —1) —1 by (ii), we have NS(s) = zs < RS(s). Furthermore,
RS(s+1) = PS(s) + | XL | < N§(s) — 1 by (i). Thus, RS(s + 1) < RS(s).
(iv) By construction one has z51; > RS(s + 1) = min({NS(s) — 1} U{RS(r)|]1 <r <
s & PS(s) < RS(r) < NS(s)}). O

The following two theorems establish relationships between the query complexity of
Algorithm S and the number of injuries received during the learning process of S.

These two theorems are new interpretations of a result in [CMa, b].

Theorem 3.2. Assume that R has received i injuries and, g invalid NCE’s have been
recewed during a learning process of S. Then, at most logn true NCE’s and at most

2(logn+g+1i) +i+ 1 CE’s occur in this learning process.

Proof. We first estimate the number of true NCE’s received in the learning process.
Consider any s’ and s” such that s’ < s” and, 2y and z4» are true NCE’s. NS(s') = zy,
since PS(s' = 1) < zg < RS(s') < NS(s’ — 1) — 1 by Property 3.1 (ii). Similarly,
NS(s") = zgr. Because z¢ is a true NCE, so for any PCE z; with s > ¢, 2, < zy,
thus RS(s + 1) < zg. This implies, by Property 3.1 (iii), NS(s) < zg, Vs > s'. So,
xgr = NS(s") < zg. Since zy is an NCE, RS(s' + 1) = PS(s') + LWJ We

consider the following two cases.

(1) When PS(s") > RS(s' + 1), we have PS(s") > PS(s') + [NSE-LSE |4 g >
NSEEPSE)  Hence, NS(s") — PS(s") < NS(s') — PS(s") < NS(s') — NSGLELS()

12



NS(s")—PS(s')
— .

(2) Assume that PS(s") < RS(s'+1). Then, z; < RS(s'+1), Vj € [s'+1,5" — 1] such
that z; is a PCE. Hence, RS(j+1) < RS(s'+1) for each such j. Together with Property
3.1 (iii), this implies that RS(j +1) < RS(s'+ 1), Vj € [s' +1,s" — 1]. In particular,
RS(s") < RS(s' + 1), so NS(s") < RS(s' +1). Thus, NS(s") — PS(s") < RS(s' +

1) — PS(s") < PS(s') + | ML | pg(sh) < PS(s') + [NECLSE) | pg(y)

__ NS(s')=PS(s")
=G

NS(s)=PS(s')

Putting the above two cases (1) and (2) together, we have NS(s")—PS(s") < 5

This follows that at most logn true NCE’s occur in the learning process of S.

We say that [r/,7"] is an injury interval if and only if, Vr € [/,7"], Requirement R is

injured at stage r, but not at stages ' — 1 and 7" + 1.

Claim 3.3.
(i) For every true NCE xs, s is not in any injury interval.

(ii) If x5 is a valid and false NCE, then s is in some injury interval.

Proof of Claim 3.3.

(i) Suppose by contradiction that zs is a true NCE but s is in an injury interval [r/, r"].
By Property 3.1 (ii), PS(s — 1) < RS(s) < NS(s —1) — 1. Since z; is a true NCE,
PS(s) =PS(s—1) <zs=NS(s) <RS(s) < NS(s —1) — 1. Because Requirement R
is injured at stage s according to the definition of injury intervals, we have NS(s) < 7,

i.e., 25 < j, a contradiction to that z, is a true NCE. Hence, (i) holds.

(ii) Again by Property 3.1 (ii), PS(s — 1) < RS(s) < NS(s —1) — 1. Assume that z;
is a valid NCE. Then, PS(s) = PS(s — 1) < zg = NS(s) < RS(s) < NS(s —1) — 1.
Since x4 is false, PS(s) < s = NS(s) < j, this implies that Requirement R is injured

at stage s. Thus, s is in some injury interval. O

Claim 3.4. Assume that x4 is a PCE and, s is not in any injury interval. Then, if
Zs+1 is a PCE then there must be an injury interval [r',r"] such that s = r" + 1. In

other words, if s # r" + 1 for any injury interval [r',r"], then x541 must be an NCE.

13



Proof of Claim 3.4. Suppose that both x5 and x,4; are PCE’s. According to the
construction of Algorithm S, RS(s +1) = NS(s) — 1, or RS(s+ 1) = RS(r) for some
r € [1,s] with PS(s) < RS(r) < NS(s). In the first case, 541 > NS(s). By Property
3.1 (ii), PS(s) =25 < RS(s+ 1) < NS(s) < 2541 < j. This implies that Requirement

R receives an injury at stage s, a contradiction to that s is not in any injury interval.

Now, we only need to consider that .41 > RS(s+ 1) = RS(r) for some r € [1, s]. Fix
m = maz{m'|RS(m’) = RS(r) & m' € [r,s]}. If 2, is a PCE, then RS(m) < z, <
RS(m'), Ym' > m. In particular, RS(m) < z,, < RS(s+1) = RS(m), a contradiction.
Hence, z,, is an NCE. Similarly, V' € [m + 1, s], if 2, is PCE then z,, < RS(m).
If there is no m' € [m + 1,s] such that z,, is an PCE and z, < 2z, < RS(m),
then RS(m' 4+ 1) < xy,, Vm' € [m + 1,s]. This implies that RS(s + 1) < RS(m), a
contradiction to the assumption RS(s+ 1) = RS(m). Hence, there is a m' € [m + 1, s]

such that z,, is an PCE and z,, < z,,y < RS(m).

Set t = min{m/|m' € [m+1,s] & 2,y is an PCE & 2y, < zy < RS(m)}. According
to the construction of Algorithm S, RS(t+ 1) = RS(m). Note that t+1 > m. If t < s,
ie, t+1 < s, then m > t+ 1 by the definitions of m and t. Thus, ¢t = s. Again,
according to the definitions of ¢t and m, Vm' € [m,t—1] = [m,s—1], PS(m') < ,, < j.
This means that Requirement R receives an injury at stage m'. Let [/, "] be the injury

interval containing all those m/', then "/ = s — 1, since s is not in any injury interval. O

Note that the learner receives ¢ CE’s within all the injury intervals. By Claim 3.3 and
the previous analysis, there are at most logn true NCE and g invalid NCE outside all
injury intervals. So, we only need to estimate how many PCE’s are received outside
all the injury intervals. Since R receives ¢ injuries, there are at most ¢ injury intervals.
Hence, there are at most logn+ g+ ¢+ 1 maximal blocks of successive PCE’s outside all
the injury intervals in the learning process. Comnsider any such maximal block B that
consists of kK + 1 PCE’s zg,...,Zs1r. By Claim 3.4, either kK = 0 or £ = 1. Moreover,
when £ = 1, then the maximal block B is uniquely determined by an injury interval.
Therefore, there are at most logn + g + 2¢ + 1 PCE’s occurring outside all the injury

intervals.
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Putting all together, we know that the learner receives at most 2(logn +¢g+1) +i+1
CE’s. O

Theorem 3.5. Assume [ false NCE’s are received during a learning process for S.
Then, requirement R will receive at most 3f injuries in the process. (Of course, the

number of invalid NCE’s is at most f.)

Proof. We define injury intervals as in the proof of Theorem 3.2. We now analyze
how many CE’s will be received within all the injury intervals. By Claim 3.3, there are
at most f (false) NCE’s received within all the injury intervals. So, we now need to

estimate the number of PCE’s received within all the intervals.

By definition, for any injury interval [/, r"], we know that one receives a false NCE at
stage r’. Suppose that there are [ false NCE’s received within the interval. Then, there
are at most [ maximal blocks of successive PCE’s from stage ' to stage r”’. Hence,
there are at most f such maximal blocks within all the injury intervals. Consider any
such maximal block B that consists of k +1 PCE’s x,...,x4,. By Property 3.1 (iv),
Ts41 > NS(s), or £441 > RS(r) for some r € [1,s]. In the first case, zsy; proves
that NS(s) is a false NCE. This happens at most once for each false NCE. In the later
case, T441 refutes the earlier hypothesis H, = [1, RS(r)]. The learner will never issue
this hypothesis H, again at a later stage t > s + 1, since RS(r) < zs41 < RS(t).
Furthermore, this event can only happen if the original CE z, to H, is a false NCE.
Thus, there are at most f such hypotheses for which this event can occur. It follows from
the above analysis that one receives at most 2f PCE’s within all the injury intervals.
Therefore, there are at most 3 f CE’s received within all the injury intervals, this implies

that Requirement R receives at most 3f injuries. O

Remark 3.6. We can design a learning algorithm S* using a similar injury con-
struction for the concept class TAIL(n) = {[j,n — 1]|j € [0,n — 1]} over the domain
X = [0,n — 1] such that analogous versions of Theorem 3.2 and 3.5 hold for S*. By
a direct transformation, we have that, Ya,b, Algorithm S works on the concept class
HEAD(a,b) = {[a,j]|l7 € [a,b]}, and Algorithm S* works on T AIL(a,b) = {[j,b]|j €
[a, b]}.
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Remark 3.7. For convenience, we will use S and S* (or with subscripts in most cases)
throughout this paper to stand for copies of Algorithm S and S*, respectively. We also
use RS(s), NS(s), PS(s) and, RS*(s), NS*(s), and PS*(s) (again, with subscripts in
most cases) to denote the corresponding parameters as defined in the constructions of

Algorithm S and S*.
For any S C [0,n — 1]¢, let

mini(S) = min{z;|z € S & v = (z1,...,24)},

maxi(S) = max{zilxr € S & x = (z1,...,24)}.
Define p
rec(S) = H [min;i(S), maz;(S)].
i=1

It is obvious that rec(S) is the minimal rectangle in BOX¢? containing S. Given C; €
UpyBOX4, for any example r € [0,n — 1] and S C [0,n — 1]¢, we say that (r,9) is a
witness for Cy if and only if, (1) r ¢ C; and S C Cy, and (2) 7 € rec(S).

Property 3.8.

(i) VS C [0,n — 1]¢, S C rec(S).

(i) VA C [0,n — 1]%, A € BOXY if and only if (VS C A) (rec(S) C A).

(iii) YOy € UpBOXZ, Cy ¢ BOXY if and only if there is a witness (r,S) for it.

Proof.
(i) V2 = (21,...,2q4) € S, mini(S) < z < maz;(S), Vi € [1,d]. This implies that

z € rec(S), hence S C rec(S).

(ii) Suppose that A € BOX® Let A = [1%, [ai,b)]. Then, VS C A, mini(S) =
min{z;lx € S & © = (z1,...,24)} > a; and, maz;(S) = maz{zilz € S & z =
(x1,...,24)} < bj. Thus, Vy = (y1,...,y4) € rec(S), a; < y; < b;, Vi € [1,d]. Hence,
y € A, this implies that rec(S) C A. On the other hand, assume that (VS C A)
(rec(S) C A). In particular, rec(A) C A. By (i), A C rec(A). Thus, A = rec(A) €
BOX4.

(iii) Suppose that there is a witness (r,S) for Cy. If C; € BOXZ, then by (ii), r €
rec(S) C Cy, contradicting r ¢ Cy. Now, suppose that C; ¢ BOXZ. Choose S = C;.
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Then, by (i), C; C rec(S). Because C; ¢ BOXY, rec(S) — C; # ¢. Hence, there exists

at least one r € rec(S) — C;. By definition, (r, S) is a witness for C;. O

It is known in [CMa, b] that one can learn BOX? by BOX¢ using O(d? logn) queries.

We now prove a stronger result.

Theorem 3.9. For any C; € U,BOXZ, with O(d?logn) CE’s one learns Cy if it is a

rectangle or finds a witness for it otherwise.

Proof. For any target concept C; € Up,BOXZ, we assume that it is a single rectangle
H?Zl[ai, b;] (of course, this may not true). Then, Vi € [1,d], at the i-th dimension we
use two procedures S; and S} to search for the parameters b; and a;, respectively. Our
learning algorithm LR runs in stages. At stage s, the learner issues the hypothesis

d
H(s) = [JIRS; (s), RS;(s)].

i=1
Let zs = (xs1,...,%sq) be the CE received for H(s). One should note that, although
x5 is a CE for the hypothesis H(s), 25 may not necessarily be a CE for the hypothesis
issued by procedure S; or S}, i € [1,d]. If zg is an NCE, it may be false. However, z;

will always be true, if it is a PCE.

Let W (s) be the set of all CE’s received by the end of stage s and, P(s) be the set of all
PCE’s in W (s). Because P(s) is uniquely determined by W (s), we will not explicitly
define it in the algorithm. In order to learn C, one only needs to satisfy the following

2d requirements,
R(i,1): 3s (Vs' > s (RS;(s") = b)), i€][l,d],

R(i,2) : ds (Vs' > s (RS;(s') =a;)), i€[l,d].

We say that R(i,1) is injured (or receives an injury) at stage s, if either PS;(s) <
NSi(s) < b, or b; < PS;(s). In the first case, we say that R(i,1) receives a negative
injury. In the latter case, we say that R(i,1) receives a positive injury. Similarly, we

define injury, positive injury and negative injury for requirements R(i,2).

Learning Algorithm LR

17



Stage 0. Set H(0) = ¢. Ask an equivalence query. If yes then stop. Otherwise one
receives a PCE zy. Let W(0) = {z¢}.

Stage s+ 1 > 1. Decide whether 3rgs € (W (s) — P(s)) such that (rs, PS(s)) is a wit-
ness. If yes then output it and stop. Otherwise, on the received CE x4, Vi € [1,d],
the learner executes the following two steps: (1) Search for b; using S; in the
domain [zg;,n — 1], i.e., if zy; is a CE for the current hypothesis RS;(s) of S;, then
S; issues a new hypothesis RS(s + 1), or sets RS(s + 1) = RS(s) otherwise. (2)

Search for a; using S} in the domain [0, z¢;], i.e., do the same as that in (1).

Ask an equivalence query for H(s + 1). If yes then stop, otherwise a CE x4 is
received. Set W(s+1) =W (s) U{zsy1}.

Claim 3.10. Assume that C; € BOXZ. Then, Vi € [1,d], neither R(i,1) nor R(i,2)
will receive a positive injury. Furthermore, each of the procedures S; and S; receives
at most 2(d — 1) logn invalid NCE’s, and each of R(i,1) and R(i,2) receives at most

6(d — 1) log n negative injuries.

Proof. Given C; € BOXY, let C; = [1%,[ai,b;]. For each PCE z, = (z41,...,%5q),
a; < zg < b;,Vi € [1,d]. This implies that neither R(i,1) nor R(7,2) will receive a
positive injury. On the other hand, each NCE z; provides a CE for at least one of
the 2d procedures. Furthermore, each NCE z provides a true NCE for at least one
procedure and a false NCE for at most (d — 1) procedures. By Theorem 3.2, each of
the procedures receives at most log n true NCE’s, thus each procedure receives at most
2(d—1)logn false NCE’s. Hence, each procedure receives at most 2(d — 1) log n invalid
NCE’s, and by Theorem 3.5, each of R(%,1) and R(%,2) receives at most 6(d — 1) logn

negative injuries. 0.

Claim 3.11 Assume Cy € BOXZ. Then, with at most 4dlogn + 44d(d — 1)logn + 2d

CFE’s the learner learns Cs.

Proof. It follows from Theorem 3.2 and Claim 3.10 that each of the 2d procedures
receives at most 2logn +22(d —1)logn+1 CE’s. Every CE for Algorithm LR provides
one CE for at least one of its 2d procedures. Therefore, at most 4dlogn + 44d(d —
1)logn + 2d CE’s are required to learn C;. O
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Claim 3.12. Assume that Cy ¢ BOXY. Then, with at most 4dlogn+44d(d—1)logn+
2d+ 1 CE’s, the learner will find a witness for it.

Proof. By Property 3.8 (iii), there are witnesses for Cy. Since the learner issues a
hypothesis H(s) € BOX? at each stage during the learning process of LR, the learner
will not receive a yes from the environment. If the learner finds a witness for C; with at
most 4d log n+44d(d—1) log n+2d+1 CE’s, then the claim is true. We now assume, by
contradiction, that the learner has received s’ = 4dlog n+44d(d —1)logn+2d+1 CE’s
but hasn’t found any witnesses. Thus, at stage s’ + 1, rec(P(s’)) is consistent with all
CE’s in W(s'). Recall that rec(PS(s')) € BOXY. Consider the learning process of LR
on the target concept rec(P(s’)). Since Algorithm LR is deterministic and is oblivious
to the input target concept, the learning process of LR for rec(PS(s')) is the same as
that for C; by the end of stage s’. There is no s” < s’ such that at stage s” the learner
issued the hypothesis H(s") = rec(P(s')), because if so a CE x4 would be received
and thus z, € W(s'), a contradiction to the consistency of rec(P(s’)) with all CE’s in
W (s'). Therefore, the learner requires at least 4dlogn + 44d(d — 1) logn 4+ 2d + 1 CE’s

to learn rec(P(s")), a contradiction to Claim 3.11. O

Now, Theorem 3.9 follows directly from Claim 3.11 and 3.12. O

6 Unions of Two Disjoint Rectangles

It is open whether there is a polynomial time algorithm for learning unions of two
rectangles over the domain [0, 7 — 1]¢ using the same type of unions as hypotheses. Pitt
and Valiant’s work in [PV] on the non-learnability of 2-term DNF formulas by 2-term
DNF formulas under the assumption P # NP implies that no positive solution to this
problem exists if P # NP. On the other hand, a polynomial time learning algorithm
using O(log®n) queries was given in Chen [C] over the domain [0,n — 1]2. It is also
open whether one can learn unions of two rectangles on the plane by unions of two
rectangles using O(logn) queries. This technically difficult problem was considered in
Maass and Turdn [MTd] as one of the most interesting open problems regarding learning

discretized geometric concepts. In this section, we will show that unions of two disjoint
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rectangles are polynomial time learnable using unions of two rectangles as hypotheses.

Given any two rectangles A, B € BOXY, let A = ngl[ai, bi], B= ngl[ei, fi]. For any

j € [1,d], we say that A and B are j-disjoint if either b; < e; or f; < a;. Define

DU (j,d,n) = {AUB|A,B € BOX? & A and B are j — disjoint},

d
DU(d,n) = || DU(j,d,n).
7j=1

It is obvious that DU (d,n) is the class of all unions of two disjoint rectangles. For
any witness (r,S) for Cy, let o = (af,...,a}) € S be an example such that Vo =
(21,...,24) € S, of < zj. Similarly, let 8" = (B7,...,8;) € S be an example such that

Ve = (z1,...,2q) €5, pj > z;. Note that &” and " may not be unique.

Lemma 4.1. Given C; = AU B = [1%[a:, b;] U 14 [ei, fi] € DU(j,d,n). Assume
bj < ej. Then, for any witness (r,S) for Cy, &" € A and " € B.

Proof. Suppose that " € B. Then, S C B by the definition of " and the assumption
that b; < e;. This implies that rec(S) C B by Property 3.8 (ii), thus r € rec(S) C B

C (%, a contradiction to r € Cy. Hence, " € A. Similarly, 5" € B. O

Theorem 4.2. Vj € [1,d], there is an algorithm for learning the concept class DU(j,d,n)
using O(d*log? n) queries. Moreover, the hypotheses issued by the learner are unions

of two rectangles, and the time complexity of the algorithm is poly(d,logn).

Corollary 4.3. There is an algorithm for learning the concept class DU(d,n) using
O(d®log® n) queries. Moreover, the hypotheses issued by the learner are unions of two

rectangles, and the time complezity of the algorithm is poly(d,logn).

Proof of Corollary 4.3. Vj € [1,d], run a copy of the learning algorithm for D(j,d,n).

Then, the above theorem follows immediately from Theorem 4.2. O

Proof of Theorem 4.2. Given the target concept C; = AU B = [[%[a;, b;] U
1L [es, fi] € DU (3, d,n), without loss of generality, we assume that bj <ej. Viell,d,
we use four procedures S, S ;, Sp,i and Sp; simultaneously to search for b;, ai, fi,

and e;, respectively. Our learning algorithm LU(j) runs in stages. At stage s, the
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learner issues the hypothesis

d

H(s) = Ha(s) U Hp(s) = [ [RS}(s), RSa,(s UH RS} (s), RSB,i(s)]-
=1

Let 5 = (zs1,...,%sq) be the CE received for H(s). Again, although z; is a CE for the
hypothesis Hg, Vi € [1,d], 5 may not necessarily be a CE for the current hypothesis
issued by procedures Sy, 5} ;,SB,, or Sp;. When zy; is an NCE, it may be false as
happened in Algorithm LR. When z; is PCE, however, it may also be false, since one
doesn’t know that to which of A and B the CE z4 belongs. This phenomenon will also

occur during the learning processes of algorithms in later sections.

Let W4 (s) be the set of all possible CE’s for A received by the end of stage s, and P4(s)
be the set of all PCE’s in W4(s). Because P4(s) is uniquely determined by W4(s),
we will not define P4 (s) explicitly in the construction of Algorithm LU (j). In order to

learn C}, one only needs to satisfy the following requirements, i € [1,d],
Ra(i,1): 3s (Vs > s (RSa,i(s") = b)),
RA(i,2) 1 Ts (V' > 5 (RS} () = ),
Rp(i,1) : 3s (Vs' > s (RSB(s') = fi)),
Rp(i,2) 1 3s (Vs' > s (RSH,(s') =€),
The priority of the above requirements is given as follows,
Rp(i,1) = Rp(4,2) > Ra(r,1) = Ra(m,2), Vi, j,r,m € [1,d].

In the same manner as we did in the construction of Algorithm LR, we define injury,
positive injury and negative injury for R4(i, k) and Rp(i,k), ¥(i, k) € [1,d] x [1,2]. By
Theorem 3.9, we further assume without loss of generality that the learner is given a
prior witness (r9,Sp). By Lemma 4.1, we know that o® € A and ™ € B. Fix an

integer-pairing function <, ->.

Learning Algorithm LU(j)

Stage <0,0>. Set H4(<0,0>) = {a} and Hp(<0,0>) = {f™}. Set W4(<0,0>) =
{a"}. Go to stage <1,0>.
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Stage <s,m> > 0. Ask an equivalence query for H(<s — 1,m>). If yes then stop.
Otherwise, one receives a CE x<s_1,,>. Set Wa(<s,m>) = Wa(<s — 1,m>) U
{#<s_1,m>} Decide whether there is a ry € (W4(<s,m>) —P4(<s,m>)) such that
(rs, Pa(<s,m>)) is a witness. If so then execute Case (i). Otherwise, execute Case
(ii).

Case (i). On the CE g7, Vi € [1,d], do: (1) Search for f; using Sp; in the
domain [3]°,n — 1], i.e., if §* is a CE for the current hypothesis RSp ;(<s —
1,m>), then issue a new hypothesis RSp ;(<s,m>), or set RSp i(<s,m>) =
RSp,i(<s — 1,m>) otherwise. (2) Similar to (1), search for e; using Sj ; in
the domain [0, 3/°]. Reset Wa(<s,m>) = Wa(<s,m>) —{f"}. Undo Sa;
and §7) ; by setting Ha(<s,m>) = rec(P4(<s,m>)). Go to stage <s + 1,m>.

Case (ii). On the CE z<_1,,>, Vi € [1,d], in the same manner as (1) in Case
(i), we first search for b; using S4; in the domain [o;°,n — 1] and a; using
S%; in the domain [0, @;°]. We then consider two subcases: (3) If z<,_1 >

is a PCE, then no actions will be taken for Sp; and Sj ;. (4) If 2<,_y1 > 18

an NCE, then search for f; using Sp; in the domain [;°,n — 1] and e; using

S7%; in the domain [0, 8;°]. Go to stage <s,m + 1>.

Claim 4.4. V(i,k) € [1,d] x [1,2], Rp(i, k) never receives a positive injury.

Proof. Actions taken for Sp; and Sj; for PCE’s only happen at Case (i) in the
construction of Algorithm LU (j). According to Lemma 4.1, all PCE’s 8" for which
actions have been taken for Sp; are true, i.e., in B. This implies that requirements

Rp(i, k) never receive any positive injuries. O

Claim 4.5. Each of the procedures Sp,; and Sp; receives at most 2(d — 1) invalid
NCE’s, Vi € [1,d]. Y(i,k) € [1,d] x [1,2], Rp(i,k) receives at most 6(d — 1)logn

negative injuries.

Proof. Note that an NCE <, ,,> for H(<s,m>) may not necessarily be an NCE
for Hp(<s,m>). As in the proof of Claim 3.10, we know that an NCE z«,,,> for
Hp(<s,m>) provides an NCE for at least one of the 2d procedures Sp; and Spis

i € [1,d]. Furthermore, each NCE x> provides a true NCE for at least one of the
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procedures and a false NCE for at most (d — 1) procedures. By Theorem 3.2 and Claim
4.4, each of the procedures receives at most logn true NCE’s, thus each procedure
receives at most 2(d — 1)logn false NCE’s. Hence, each procedure receives at most
2(d — 1) log n invalid NCE’s, and by Theorem 3.5, each requirement Rp(i, k) receives

at most 6(d — 1) log n negative injuries. O

Claim 4.6. O(d?logn) CE’s are required to satisfy all the requirements Rp(i, k),
V(i k) € [1,d] x [1,2].

Proof. It follows from Claim 4.4, 4.5 and Theorem 3.2. O

Claim 4.7. Suppose that Case (i) was executed at stage <s,m'> and stage <s +1,m'>.
Then, m" —m' = O(d? logn). In other words, there is a constant § which is independent

of m',m",d and n such that m" —m' < 6d*logn.

Proof. By the construction of Algorithm LU(j), the parameter s is incremented by
one only when Case (i) is executed, while the parameter m is incremented by one only
when Case (ii) is executed. Thus, from stage <s,m'> to stage <s + 1, m”> (excluding
those two stages), only Case (ii) is executed. During this period of the learning process,
for any CE z<, >, m € [m' + 1,m" — 1], we use procedures S4; and S} ;, Vi € [1,d],
to learn A when x<, ,,>; is a CE for S4; or Sjl’i. We also use procedures Sg; and
SE,Z- to learn B when z< ,,> is an NCE and z<; ,,>; is an NCE for Sp; or SE,Z-. Each
CE <, ;> provides at least a CE for at least one of the procedures. By Theorem
3.9, and Claim 4.6, O(d?logn) CE’s will occur during the period, this implies that

m" —m' = O(d?*logn). O

Claim 4.6 and 4.7 imply that all requirements Rp(i, k), i € [1,d],k € [1,2], will be
satisfied at some stage <s, m> after receiving O(d* log? n) CE’s. At any stage later than
<s,m>, the learner only uses procedures Ss; and S} ; to learn A, Vi € [1,d]. This
requires O(d?logn) CE’s by Theorem 3.9. Hence, the learner requires O(d*log®n)
CE’s to learn C;. Each execution of one of the 4d procedures needs time O(log?n),
because it only needs to do certain comparisons of two numbers and then compute a
new number for next hypothesis and the sizes of all the numbers considered are of order

logn. Algorithm LU(j) needs also to decide at each stage <s,m> whether a witness
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exists. This is done by searching each CE in Wy4(<s,m>) — P4(<s,m>) and deciding
whether it is in rec(Pa(<s, m>)). Thus, the time complexity of LU(j) is poly(d,logn).

a

7 Unions of k£ Disjoint Rectangles

As noted in the first section, Boolean-decision trees are special cases of unions of
pairwise-disjoint rectangles over the domain [0,n — l]d. Recently, in his remarkable pa-
per, Bshouty [B] proved that Boolean-decision trees are polynomial time learnable with
equivalence and membership queries. However, it is open whether unions of pairwise-
disjoint rectangles are polynomial time learnable. In this section, we will show that any
unions of rectangles whose projections on some unknown dimension are pairwise-disjoint

are polynomial time learnable using only equivalence queries.

Now, we assume that £ > 3. For any target concept C; = UleCi € Up,BOXZ, let

C;, = H?Zl[ai,j, b j]. We say that that C; is e-dimension disjoint if
Viy,ip € [1,d], iy # ia implies [ai, ¢, biy ] [ [Ginser bin,e] = ¢-

Intuitively, C; is e-dimension disjoint if the projections of its k rectangles on the e-th

dimension are pairwise-disjoint. Define

DDU (e, k,d,n) = {C; € UBOXY|C is e — dimension disjoint},

d
DDU (k,d,n) = | J DDU (e, k,d,n).

e=1

Theorem 5.1. Ve € [1,d], there is an algorithm for learning DDU (e, k,d,n) using
O(k%d? log? n) queries, where the hypotheses issued by the algorithm are unions of (k —
1)(logn + 1) rectangles, and its time complexity is poly(k,d,logn).

Corollary 5.2. There is an algorithm for learning DDU (k,d,n) using O(k*d®log® n)
queries, where the hypotheses issued by the algorithm are unions of (k — 1)(logn + 1)

rectangles, and its time complexity is poly(k,d,logn).
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Proof of Corollary 5.2. Ve € [1,d], run a copy of the algorithm for learning
DDU (e, k,d,n). Then, the theorem follows immediately from Theorem 5.1. O

Proof of Theorem 5.1. Given the target concept C; = U¥_,C; € DDU(e, k,d,n),
let C; = H?:l[ai,j7bi,j]' Without loss of generality, we assume that b; . < ajj1,, Vi €
[1,k — 1]. Our learning algorithm LD DU (e) runs in stages. At each stage s, we divide
the e-th dimension into a set I(s) of pairwise-disjoint intervals such that their union is
[0,n — 1]. Based on I(s), we divide the domain X = [0,n — 1]¢ into a set of pairwise-
disjoint subdomains, i.e., D(s) = {E(u,v)|[u,v] € I(s)}, where E(u,v) = [0,n —1]¢"1x
[u,v] x [0,n — 1], When it is clear from the context, we simply use E to stand for

E(u,v).

For each subdomain £ € D(s), we assume that C;NE is a rectangles (this may not true).
Vi € [1,d], within the domain F, we use procedures Sg; ; and SE‘,i at the ¢-th dimension
to search for the right and left parameters (denoted by rp; and g ;, respectively) of
CyNE. At stage s, VE € D(s), we issue a hypothesis

d

Hp(s) = [[IRSE.i(s), RSp.i(s)].
=1

The hypothesis issued for the target concept at stage s is

H(s) = | {Hu(s)|E € D(s)}.
In order to learn C}y, we only need to satisfy the following requirements,
R(0): 3s (Vs' > s (YE € D(s') (C; N E € BOXY))),
R(j,1) :3s (Vs' > s (VE € D(s") (RSp;(s") =rE,4))), J€[L,d],
R(j.2) :3s (vs' > s (VE € D(s') (RS},(s) = ly)). i € [L.d].
The priority of the requirements is
R(0) > R(j1,1) = R(j2,2), Vij1,J2 € [1,d].

We say that R(0) is injured at stage s, if 3E € D(s) (C;N E ¢ BOXY). We also
define injury, positive injury and negative injury for requirements R(j,1) and R(j,2),

Vj € [1,d], in the same manner as one did in the construction of Algorithm LR. Let
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W (s) denote the set of all the CE’s received by the end of stage s, and P(s) be the set
of PCE’s in W (s). We will not define D(s) and P(s) explicitly in the construction of
LDDU (e), since they are uniquely determined by I(s) and W (s), respectively. Fix an

integer-pairing function <-,->.

Learning Algorithm LDDU(e)

Stage <0,0>. Set 1(<0,0>) = {[0,n — 1]}, H(<0,0>) = ¢ and W (<0,0>) = ¢. Go to

stage <1,0>.

Stage <s,m> > 0. Ask an equivalence query for H(<s — 1,m>). If yes then stop,
otherwise one receives a CE z<, 1 ,,,>. Let Z1 = W(<s — 1,m>) U {Z<s_1m>},
and Z3 be the set of all PCE’s in Z;. Decide whether 3E(u,v) € D(<s — 1,m>)
and Jrg € (Z1 — Z5) N E such that (rs, Zo N E) is a witness for C; N E. If yes then

execute Case (i). Otherwise, execute Case (ii).

Case (i). Define z = ut [%5%]|. Set I(<s,m>) = (I(<s — 1,m>) —{[u,v]})
U{[u, z],[z + 1,v]}, and W(<s,m>) = Z;. Undo all procedures by setting
Hpg(<s,m>) = rec(ENP(<s,m>)), VE € D(<s,m>). Go to stage <s+1, m>.

Case (ii). Fix F € D(<s — 1,m>) such that z<;_; ,,> € E. Within F, search for
rEg,; using Sg j and [g ; using S%,j at the j-th dimension in the same manner
as we did in Algorithm LR, j € [1,d]. No actions will be taken for all the
other subdomains in D(<s — 1,m>). Set I(<s — 1,m + 1>) = I(<s — 1,m>)

and, W(<s —1,m + 1>) = Z;. Go to stage <s,m + 1>.

Claim 5.3. At stage <s,m>, for any [u,v] € I(<s,m>), if [u,v] contains parameters
at the e-th dimension from at most one rectangle in Cy, then E(u,v) N C; € BOXZ.
In other words, if E(u,v) N Cy ¢ BOXZ, then [u,v] contains parameters at the e-th

dimension from at least two different rectangles in Cy.

Proof. Assume that [u,v] contains parameters at the e-th dimension from at most
one rectangle in Cy, say, Ci. Then, [u,v] C [a1,,b1¢]. Hence, [u,v] N [aje, bie] = ¢,
Vi € [2,d], since Cy is e-dimension disjoint. This implies that C;NE([u,v]) = C1NE(u,v)
€ BOX¢. O
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Claim 5.4. During the learning process of Algorithm LDDU (e), Case (i) can be exe-
cuted at most (k —1)(logn — 1) times, and |1(<s,m>)| < (k—1)(logn+1), Vs,m > 1.

Proof. We construct a tree 7' by tracing the generation of I(<s,m>). The root of T is
[0,n — 1] € 1(<0,0>). At stage <s,m>, we expand T' by adding two children to one leaf
of the current T if Case (i) is executed, or do nothing otherwise. More precisely, when
Case (i) is executed, Ju,v] € I(<s — 1,m>) (i.e., [u,v] is a leaf in the current T'), one
finds a witness in F/([u,v]), so one adds [u, 2] and [z + 1,v] as two children to the leaf

[w, v].

We say a node [u,v] in T is valid if it has two children and both children are leaves.
Fix one leaf [ in T" such that the path from the root to [ is the longest. Let f be the
parent of [. By the construction, f must have another child g. If g is not a leaf, then
the path from the root to one of its child is longer than the path from the root to [,
a contradiction. Thus, g is a leaf. Hence, f is valid node. For any non-leaf node s,
consider the subtree with the root s. Similarly, we can show that there is at least one
valid node in this subtree. Therefore, any non-leaf node is on the path from the root

to some valid node.

Because each time two children [u, z] and [z + 1, v] are added to a node [u, v], they are
disjoint and of length at most half of that of their parent [u,v]. This implies that any
two distinct nodes in T with a common ancestor distinct from themselves are disjoint,
and the longest path in 7" is at most logn. Suppose that [u,v] is a valid node. Then,
according to the construction of T, E([u,v]) N C; ¢ BOXY. So, by Claim 5.3, [u,v]
contains parameters at the e-th dimension from at least two different rectangles in Cj.
Since the target concept Cy has at most k rectangles, there are at most k£ — 1 valid
nodes in 7. Hence, the number of non-leaf nodes of T' is at most (k — 1)(logn — 1),
and the number of leaves of T" is at most 2(k — 1) + (k — 1)(logn — 1). It follows from
the construction of T' that, |I(<s,m>)| is no more than the number of leaves of T', the
number of executions of Case (i) is the number of non-leaf nodes of 7. This implies
that, |I(<s,m>)] < 2(k —1)+ (k—1)(logn — 1) = (k — 1)(logn + 1) and, the number

of executions of Case (i) is at most (k — 1)(logn —1). O
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Claim 5.5. Assume that Case (i) was executed at stage <s,m'> and <s+1,m">. Then,

m" —m' = O(kd®log®n).

Proof. In the construction of Algorithm LD DU (e), the parameter s is incremented by
one only when Case (i) is executed, while the parameter m is incremented by one only
when Case (ii) is executed. Thus, during the period of the learning process between
stage <s,m'> and <s,m"”> (excluding those two stages), only Case (ii) is executed. At
any stage <s,m>, for m € [m', m"], for each domain E € D(<s — 1,m>) the learner uses
2d procedures Sp ; and Sp, ;, Vj € [1,d], to learn Cy N E. With the same analysis as we
did for Algorithm LR, the learner needs O(d? logn) CE’s to learn C;NE if it is in BOXY,
or finds a witness for it otherwise. By Claim 5.4, there are at most (k — 1)(logn + 1)

subdomains in D(<s — 1,m>). Therefore, m"” —m' = O(kd?*log?n). O

Claim 5.6. Requirement R(0) will be satisfied after receiving O(k*d?log3n) CE’s. In
other words, there is a constant 0 which is independent of k,d and n such that R(0)
will be satisfied after receiving at most 5k*>d?log®n CE’s.

Proof. By Claim 5.4 and 5.5. O

Suppose that R(0) is satisfied at stage <s,m> after finding the last witness in the
execution of Case (i). Then, at stage <s+1,m>, for any E € D(<s,m>), ENC; € BOXZ.
At any later stage <s+1,m'> with m’ > m, for each domain F € D(<s,m’>) the learner
uses 2d procedures Sp,; and Sp, ;, Vj € [1,d], to learn Cy N E. With the same analysis
as we did for Algorithm LR, the learner needs O(d?logn) CE’s to learn C; N E. By
Claim 5.4, there are at most (k — 1)(logn + 1) subdomains in D(<s,m'>), Therefore,
the learner learns Cy with O(kd?log®n) CE’s after stage <s,m>. Together with Claim
5.6, O(k*d*log®n) CE’s are required in the learning process. Claim 5.4 also implies
that each hypothesis issued is a union of no more than (k —1)(logn + 1) rectangles. By
the similar analysis to Algorithm LU (j), the time complexity of algorithm LDD(e) is
ploy(k,d,logn), O
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8 Unions of k£ Rectangles

Goldberg, Goldman and Mathias [GGM] proved that for any fixed d, unions of rect-
angles over the domain [0,n — 1]¢ are polynomial time learnable using equivalence and
membership queries. In this section, we will show that their result still holds when only
equivalence queries are used. As mentioned in Section 1, similar results to Theorem 6.1
have also been proved independently in Bshouty [Bb] and, Maass and Warmuth [MW].
All three approaches are different in hypothesis representations and, more importantly,
in the proof techniques. Maass and Warmuth’s algorithm is the strongest in the sense
that its query complexity matches the lower bound. Bshouty’s algorithm can also cope
with certain misclassified CE’s, Our approach uses unions of rectangles as hypotheses
and, with introduction of priority arguments in this setting, opens the possibility that

other concrete algorithms can make good use of priority arguments.

Theorem 6.1. There are is an algorithm for learning UyBOXY using
O((4kdlogn)¥t1d?logn) equivalence queries, where the time complexity of the algo-
rithm is poly(k<, log? n), and the hypotheses issued by the learner are unions of at most

(4kd(logn — 1) — 2k(logn — 3))? rectangles.

Proof. Given C; = UY_C; € U,BOXY. Let C; = H;l:l[ai,j,bi,j], Vi € [1,k]. Our
learning algorithm LUR runs in stages. At each stage s, Vi € [1,d], we divide the
i-th dimension into a set I(i,s) of pairwise-disjoint intervals such that their union is
[0,n—1]. Based on (i, s), we divide the domain [0, — 1] into a set of pairwise-disjoint
subdomains D(s) = [[%, I(i,s). Inside each subdomain B € D(s), Vi € [1,d], at the
i-th dimension, we use Sp; and S*B,i to search for the right and left parameters rp; and
I of CyN B, respectively. Here, we assume that C; N B is a rectangle (again, this may
not be true). At stage s, VB € D(s), we issue a hypothesis

d
Hp(s) = [][RSE(s), RSp.i(s)],
i=1

and the hypothesis issued for the target concept is

H(s) = J{Hp(s)|B € D(s)}.
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In order to learn Cy, we only need to satisfy the following requirements,
R(0):3s (Vs' > s (VB € D(s') (C; N B € BOXY))),

R(j,1) :3s (Vs' > s (VB € D(s') (RSB,]'(SI) =rg;))), J€[l,d],
R(5,2) : 3s (Vs' > s (VB € D(s) (RS*BJ-(S') =lgy))), j€l.d.

The priority of the requirements is
R(O) > R(jla ]-) = R(j272)7 leaj? € []-7d]

We say that R(0) is injured at stage s, if 3B € D(s) (C; N B ¢ BOX%). V(j,k) €
[1,d] x [1,2], in the same manner as we did in the construction of Algorithm LR, we
define injury, positive injury and negative injury for R(j, k). Let W (s) be the set of all
the CE’s received by the end of stage s, and P(s) be the set of all PCE’s in W (s). We
will not define D(s) and P(s) in the construction of Algorithm LUR, since they are
uniquely defined by I(i,s) and W (s), respectively. As in the previous section, fix an

integer-pairing function <-,->.

Learning Algorithm LUR

Stage <0,0>. Vi € [1,d], set I(i,<0,0>) = {[0,n — 1]}. Let H(<0,0>) = ¢, and
W (<0,0>) = ¢. Go to stage <1,0>.

Stage <s,m> > 0. Ask an equivalence query for H(<s — 1,m>). If yes then stop,
otherwise one receives a CE z<,_1 ,,,>. Let Zy = W(<s —1,m>)U{x<;_1,,>}, and
Zs be the set of all PCE’s in Z;. Decide whether 3B = [T%_,[e;, fi] € D(<s—1,m>)
such that, Ir; € (Z1 — Z2) N B such that (rs, Zy N B) is a witness for BN Cy. If

yes then execute Case (i). Otherwise, execute Case (ii).

Case (i). Vi € [1,d], let z; = e;+ L%J if e; < f;, then set I(i,<s,m>)
= (I(3, <s — 1L,m>) — {[es, fil]}) U{les, 2], [zi + 1, fi]}, or set I(i,<s,m>) =
I(i,<s — 1,m>) otherwise. Set W (<s,m>) = Z;. Undo all procedures by
setting Hg(<s,m>) = rec(E N P(<s,m>)), VE € D(<s,m>). Go to stage

<s 4+ 1,m>.
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Case (ii). Within the subdomain B = [[L[e;, f;] with T<g—1,m> € B, in the same
manner as one did in the construction of Algorithm LR, Vi € [1,d], search
for rp; and Ip; using Sp; and S*Byi, respectively. No actions will be taken
for all the other subdomains in D(<s — 1,m>). Set W(<s — 1,m + 1>) = Z,

and I(i,<s —1,m + 1>) = I(i,<s — 1,m>). Go to stage <s,m + 1>.

Claim 6.2. Given B = H?Zl[ej,fj] € D(<s,m>). IfVj € [1,d], either [ej, f;] contains
no parameters of Cy, or ej = f;, then CyN B € BOXZ. In other words, if C;N B ¢
BOXY, then 3j € [1,d] such that lej, fj] contains at least one parameter of C; and

ej # fj-

Proof. Assume that the condition is true. Then, Vi € [1,k], Vj € [1,d], either [e;, f;] C
laij,bij], or [ej, fj] N [a;j,bij] = ¢. Thus, for any C; in C;, C; N B # ¢ implies
B C C;. Hence, BNCy = U{BNCjli € [1,k]} =U{BNC;)|BNC; # ¢ & i € [1,k]}
=U{BNGC)B CC; &ie€llk]} =U{B|BCC; &i € [l,k]} = B, this means that
C;NB=B¢eBOX! O

Claim 6.3. During the learning process of Algorithm LUR, Case (i) can be executed at
most 2kd(logn — 1) times, and |1(i, <s,m>)| < 4k +2k(logn — 1)+ 4k(d —1)(logn — 1),

Vie([l,d,s>1,m>1.

Proof. Vi € [1,d], we construct a tree T'(i) by tracing the generation of I(i,<s,m>).
The root of T'(7) is [0,n—1] € I(7, <0,0>). At stage <s,m>, we expand T'(7),Vi € [1,d], if
Case (i) is executed, or do nothing otherwise. More precisely, when Case (i) is executed,
B = [1L ,[es, fi] € D(<s — 1,m>) (i.e., [e;, fi] is a leaf in the current T'(i)), one finds
a witness in B, so one adds [e;, z;] and [z; + 1, f;] as two children to the leaf [e;, f;] if
e; < fi, or adds no children to [e;, f;] otherwise. In the first case, we say that T'(7)
receives an operation for the node [e;, f;]. Moreover, when [e;, f;] contains at least one

parameter of C; at the ¢-th dimension, we say that the operation is effective.

We say a leaf in 7'(¢) is valid if it contains at least one parameter of C;. Because each
time when two children [e;, z;] and [z; + 1, f;] are added to a node [e;, f;] in T'(7), they

are disjoint and of length at most half of that of their parent [e;, f;]. This implies that
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any two nodes in 7'(7) with a common ancestor (different from themselves) are disjoint,
and the longest path in T'(¢) is at most logn. Since Cy has at most 2k parameters at
the i-th dimension, there are at most 2k valid leaves in T'(i). Assume that T'(i) receives
an effective operation for a node w. Then, w contains at least one parameters of Cj,
this implies that at least one leave of T'(i) with an ancestor w contains at least one
parameter. Thus, an effective operation of T'(i) corresponds to one non-leaf node in the
path from the root to some valid leaf of T'(7). Hence, T'(7) receives at most 2k(logn —1)

effective operations.

Suppose that at a stage Case (i) is executed for the subdomain B = H?Zl[ei, fi]- Then,
according to Algorithm LUR, BN C; ¢ BOXZ. So, by Claim 6.2, there is at least
one j such that [e;, f;] contains at least one parameter of Cy at the j-th dimension and
ej < f;. This means that at least one of the d trees receives an effective operation, while
at most (d — 1) trees receive a non-effective operation. By the above analysis, each T'(7)
receives at most 2k(logn — 1) effective operations and 2k(d — 1)(log n — 1) non-effective
operations. Hence, the number of executions of Case (i) is at most 2kd(logn — 1).
Note that each operation produces two nodes. Thus, any tree 7'(7) has at most 4k +
2k(logn — 1) + 4k(d — 1)(logn — 1) nodes. This implies that |I(i, <s,m>)| is at most
4k + 2k(logn — 1) + 4k(d — 1)(logn — 1). O

Claim 6.4. Assume that Case (i) was executed at stage <s,m'> and <s+1,m">. Then,

m" —m! = O((4kdlog n)?d?logn).

Proof. In the construction of Algorithm LU R(e), the parameter s is incremented by
one only when Case (i) is executed, while the parameter m is incremented by one only
when Case (ii) is executed. Thus, during the period of the learning process between
stage <s,m’> and <s,m”> (excluding those two stages), only Case (ii) is executed.
At any stage <s,m>, for m € [m' + 1,m" — 1], for each domain B € D(<s,m>) the
learner uses 2d procedures Sp ; and S*Byj, Vj € [1,d], to learn C; N B. With the same
analysis as we did for Algorithm LR, the learner needs O(d? logn) CE’s to learn C; N B
if it is in BOXZ

2, or finds a witness for it otherwise. By Claim 6.3, there are at most

4kdlogn intervals in I(i,<s —1,m>) when n > 8. Hence, D(<s—1, m>) contains at most

(4kdlogn)? subdomains when n > 8. Therefore, m” — m' = O((4kdlogn)?d?logn). O
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Claim 6.5. Requirements R(0) will be satisfied after receiving O(4kdlogn)®t1d?logn)
CE’s.

Proof. By Claim 6.3 and 6.4. O

Suppose that R(0) is satisfied at stage <s, m> by finding the last witness in the execution
of Case (i). Then, at stage <s + 1,m> for any B € D(<s,m>), BN C; € BOXZ. This
implies that R(0) will never be injured again. Thus, at any later stage <s + 1, m'> with
m' > m, for each domain B € D(<s,m'>) the learner uses 2d procedures Sg_j and Sk js
Vj € [1,d], to learn Cy N B. With the same analysis as we did for Algorithm LR, the
learner needs O(d?logn) CE’s to learn C; N E (because it is in BOXY). By Claim 6.4,
there are at most (4kd(logn — 1) — 2k(logn — 3))¢ domains in D(<s,m'>). Therefore,
the learner learns C; with O((4kdlogn)?d?logn) CE’s after stage <s,m>. Together
with Claim 6.5, O(4kdlogn)?t'd?logn) CE’s are required in the learning process. The
hypotheses issued by the learner are unions of at most (4kd(logn — 1) — 2k(log n — 3))¢
rectangles. The time complexity of Algorithm LDD(e) is ploy(k,d,logn), because an
execution of any procedure needs time polynomially in logn and, finding a witness at
any stage <s’,m'> for a subdomain B needs only searching for each NCE in (W (<s' —

1,m">) — P(<s' —1,m">)) N B and testing whether it is in rec(P(<s’' —1,m">)N B). O
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