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Abstract. The disc covering problem asks to cover a set of points on
the plane with a minimum number of fix-sized discs. We develop an
O(n(log n)2(log log n)2) deterministic time 2.8334-approximation algo-
rithm for this problem. Previous approximation algorithms [7, 3, 6], when
used to achieve the same approximation ratio for the disc covering prob-
lem, will have much higher time complexity than our algorithms.

1 Introduction

The disc covering problem is to find a minimum number of discs of a prescribed
radius r to cover a given set of points on the plane. This problem has many ap-
plications in areas such as image processing, wireless communication and patten
recognition. It was proved to be NP-hard [4]. The first approximation algorithm
was derived by Hochbaum and Maass [7]. Their algorithm has computational

time n2bl√2c2 for approximation ratio (1 + 1
l )

2, where l > 0 is an integer accu-
racy control parameter. This approximation algorithm was further improved to
n6bl√2c in [3, 6]. The high computational complexity of those polynomial time
approximation algorithms make them impractical for implementation in prac-
tice. Therefore, it is interesting, but challenging, to design faster polynomial time
approximation algorithms for the disc covering problem.

In this paper we try to find faster approximation algorithms for the disc cov-
ering problem with some reasonably small approximation ratios. We derive an
almost linear time approximation algorithm for the disc covering problem. This
algorithm runs in O(n(log n)2(log log n)2) time with a 2.8334-approximation ra-
tio. Previous approximation algorithms [7, 3, 6] will have much higher time com-
plexity than our algorithms, when they are used to achieve the same 2.8334-
approximation ratio for the disc covering problem. An O(n) time 3(1 + β)-
approximation algorithm for the two-dimensional disc covering problem was
shown in [5]. We generalize this linear time approximation algorithm to any
fixed d-dimensional space by using the concept of Borsuk number, which is the
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minimum number of d-dimensional balls of radius r to fill a d-dimensional ball
of a radius that is slightly larger than r.

We develop some novel method to cover the points in the local region, which
is roughly occupied by one disc. Instead of covering each local region by three
discs like [5], we let two local regions share one disc in some cases. Our method
involves the nontrivial algorithm by Chan [1] for covering points with two fixed
size discs, and another interesting algorithm by Meggido and Supowit [9] for
covering points with one fixed size disc.

2 Notations and Shifting Strategy

Given a set of input points P and a radius r, Let o(P ) denote the minimum
number of discs of radius r to cover all the points in P . For any given approxi-
mation algorithm A, which outputs A(P ) many discs of radius r to cover P , we
shall have A(P ) ≥ o(P ). The approximation ratio of the algorithm A is defined
as maxP

A(P )
o(P ) . Let Cr(p) be a disc with a radius r and centered at the point p.

For two points p1, p2 in the d-dimensional Euclidean space Rd, dist(p1, p2)
is the Euclidean distance between p1 and p2. For a set A ⊆ Rd, dist(p1, A) =
minq∈Adist(p1, q).

A point in Rd is a grid point if all of its coordinates are integers. For a
d-dimensional point p = (i1, i2, · · · , id) and a > 0, define grida(p) to be the
set {(x1, x2, · · · , xd)|ij − a

2 ≤ xj < ij + a
2 , j = 1, 2, · · · , d}, which is a half

open and half close ad-volume d-dimensional cubic region. For a1, · · · , ad > 0, a
(a1, · · · , ad)-grid point is a point (i1a1, · · · , idad) for some integers i1, · · · , id. For
a ball B in Rd, let r(B) denote the radius of B, center(B) denote the center
of B, and extendδ(B) be the ball with the same center as B but with a larger
radius (1 + δ)r(B) for δ > 0.

We will use the shifting method developed by Hochbaum and Maass [7] to
handle some subcases of our algorithms. For completeness, we give the descrip-
tion of the shifting method to deal with the disc covering problem. Let l > 0
be the integer parameter to control the accuracy of approximation. Assume
that all the points in the input set P are in a region B, and discs of radius r
are used to cover P . The region B is partitioned into vertical strips of width
2r, B1, B2, · · · , Bk. Without loss of generality, we assume that the union of ev-
ery two consecutive strips intersects P (otherwise, the covering problem can be
decomposed into two independent covering problems). This indicates that the
number of strips is O(|P |). Group every l consecutive strips into a wider strip
of width 2rl. In other words, each wider strip is Li = Bi ∪Bi+1 · · · ∪Bi+l−1 for
i = 1, · · · , k − l + 1, and Li = Bi ∪ Bi+1 · · · ∪ Bk for i = k − l + 2, · · · , k. We
also define L0

i = B1 ∪ B2 · · ·Bi−1, which is the union of first i − 1 blocks. The
i-th shifted case has a set of wider strips Pi = {L0

i , Li, Li+l, Li+2l, · · · , Li+til},
forming a partition for B (B = L0

i ∪ Li ∪ Li+l ∪ · · ·Li+tl).
Define optP (D) to be the set of the discs in an optimal solution for covering

the points of the set P in the region D. Let di =
∑

L∈Pi
|optP (L)|. The crucial

property of the shifting method [7] is that
∑l

i=1 di ≤ (1 + l)|optP (B)|. This
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implies that min1≤i≤l di ≤ (1 + 1
l )|optP (B)|. Assume we have a local algorithm

A for solving each local area Li with approximation ratio APA. The solution of
the algorithm A for the partition Pi is si =

∑
L∈Pi

A(L) ≤ APA ·di. The shifting
method SA applies the algorithm A for each partition Pi, 1 ≤ i ≤ l, and outputs
the result SA(B) = minl

i=1 si. Therefore, SA(B) ≤ (1 + 1
l ) ·APA · optP (B).

Theorem 1 ([7]). Assume that a local algorithm A has an approximation ratio
APA for the disc covering problem. Then, the approximation ratio APSA of the
shifting method utilizing A satisfies APSA ≤ (1 + 1

l )APA.

For the d-dimensional ball covering problem, repeating the shifting method
at the directions of d-axis, we can get the following result:

Theorem 2 ([7]). Assume that a local algorithm A has an approximation ratio
APA for the disc covering problem in the region of volume ld. Then, the approx-
imation ratio APSA of the shifting method utilizing A satisfies APSA ≤ (1+ 1

l )
d.

Furthermore, its computational time is O(ndlTd(l)), where Td(l) is the compu-
tational time for the optimal solution in a local d-dimensional cubic region of
volume (2rl)d.

3 Borsuk Number and Disc Covering

For any given dimension d > 0 and any given radius r > 0, let the Borsuk
number B(d) be the minimum number of d-dimensional balls of radius r in Rd

that can fill a d-dimensional ball of radius r + δ in Rd for some δ > 0. It is
well-known that B(2) = 3 and B(3) = 4. Given a set P of points in Rd, the
d-dimensional disc (or ball) covering problem is to find a minimum number of
d-dimensional discs (or balls) of radius r to cover all the points in P .

Lemma 1. For any given dimension d > 0 and any fixed parameter δ > 0, there
is an O(n) time algorithm that, given a set of n points P in Rd, returns a set of
points Sketchδ(P ) ⊆ P such that for every (δ, · · · , δ)-grid point q, gridδ(q)∩P 6=
∅ iff |gridδ(q) ∩ Sketchδ(P )| = 1.

Proof. Set Sketchδ(P ) = ∅. Unmark all the (δ, δ, · · · , δ)-grid points. For each
point p in P , find the (δ, δ, · · · , δ)-grid point q such that p ∈ gridδ(q). If q is not
marked, add p to Sketchδ(P ) and mark q. This takes O(n) time.

Theorem 3. Given a fixed dimension d > 0, a constant β > 0 and a radius
r > 0, for any set P of n points in Rd, we have two algorithms for covering
Sketchδ(P ) for some constant δ > 0 and P , respectively:

1. There exists an O(n) time (1 + β)-approximation algorithm for covering all
the points in Sketchδ(P ) with discs of radius r.

2. There exists an O(n) time B(d)(1+β)-approximation algorithm for covering
all the points in P with discs of radius r.
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Proof. Select an integer l such that (1 + 1
l )

d ≤ 1 + β. Assume that δ1 > 0 is
the constant such that a d-dimensional ball of radius r(1 + δ1) can be filled
by B(d) many d-dimensional balls of radius r. Let δ = rδ1√

d
. Let Q be the set

Sketchδ(P ) derived from Lemma 1. Apply the shifting method to find the (1+β)-
approximation to the minimum number of balls to cover all the points in Q. By
Theorem 2, we can get the (1 + β)-approximation for covering the points of Q
in O(nlT (l)) steps, where T (l) is the time in the (2rl)d region that has at most
( 2rl

δ + 1)d (δ, · · · , δ)-grid points. Therefore, it has at most ( 2rl
δ + 3)d points in

Q. We use d points to determine the position of a ball in d-dimensional space.
Finding the optimal covering for the points of Q in a ( 2rl

δ )d region can be done
in O(( 2rl

δ + 3)2d) = O(( 2
√

dl
δ1

+ 3)2d) steps for fixed d. This completes the proof
for first part of the theorem.

To prove the second the part of the theorem, we continue with the set of
balls, denoted by S, obtained by the algorithm for the first part for covering
Sketchδ(P ). By the construction of Sketchδ(P ), every point p in P is either
covered by a ball in S, or it is not covered but is within distance

√
dδ to some

ball S. We replace each ball D in S by a ball D′ of radius r +
√

dδ and centered
at center(D), i.e., D′ = extend√dδ(D). Let S′ denote the new set of those larger
balls. Obviously, balls in S′ covers P . By the choice of δ, r+

√
dδ = r(1+δ1). Thus,

every ball in S′ can be filled with B(d) balls of radius r. Therefore, replacing
each ball D′ in S′ with B(d) ball of radius r that fill D′ yields a set of balls of
radius r for covering all the points in P . This completes the proof for the second
part of the part of the theorem. 2

4 A 2.8334-Approximation Algorithm for 2D Covering

We present our main result in this section. We derive a 2.8334 approximation al-
gorithmfor the 2D disc covering problem with almost linear computational time.
We will use the linear time algorithm for finding the minimum disc to cover a set
of points by Meggido and Supowit [9]. We also use the O(n(log n)2(log log n)2)-
time algorithm developed by Chan, who improved the previous O(n(log n)9)-
time deterministic algorithm by Sharir [10] to check if a set of points on the
plane can by covered by two discs. An O(n(log n)2)time randomized algorithm
to check if a set of points on the plane can by covered by two discs was developed
by Epstein [2].

Lemma 2. Let r > 0 be a real number. For any constant 1 ≥ α > 0, there
are three constants α ≥ α1, α2, α3 > 0 such that for every disc D1 of ra-
dius r′ = (1 + β)r with β ≤ α1 and every disc D2 of radius r, if 2r′ − r

2 ≤
dist(center(D1), center(D2)) ≤ 2r′ − α2r, then the line through their intersec-
tion points has distance at most r′ − α3r to center(D1).

Proof. We first compute the two intersection points of the two discs D1 and D2.
Without loss of generality, we assume that the center of D1 is at the origin (0, 0)
and the center of D2 is at x-axis (d, 0), where d = dist(center(D1), center(D2)) ≤
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Fig. 1. Two Discs with Intersection

2r′ − α2r. See Figure 1 for an illustration. The two intersection points are at
p1 = (x, y) and p2 = (x,−y). It is easy to see that r′2−x2 = r2− (d−x)2. Thus,
we have x = r′2−r2+d2

2d . It is easy to see that x is maximal when d = 2r′ − α2r.
Thus, x is at most

r′2 − r2

2d
+

d

2
=

(r′ − r)(r′ + r)
2d

+
d

2
(1)

=
βr(2 + β)r

2(2(1 + β)r − α2r)
+

2(1 + β)r − α2r

2
(2)

= (1 +
β(2 + β)

2(2(1 + β)− α2)
+ β − α2

2
)r (3)

≤ (1 +
3β

2
+ β − α2

2
)r. (4)

We use that fact 0 < β,α2 ≤ 1 in the transition from (3) to (4), which gives that
β(2+β)

2(2(1+β)−α2)
≤ β(2+1)

2(2(1+0)−1) = 3β
2 . Assign α1 = α

4 and α2 = α, and α3 = α
8 . Thus

we have x ≤ (1 + β + 3α1
2 − α2

2 )r ≤ (1 + β − α
8 )r = r′ − α3r. 2

Lemma 3. Let r > 0 and β > 0. There exist constants ε and δ with β ≥ δ >
ε > 0 such that if D is a disc of radius r′ = (1 + ε)r and L is a line of the
distance d ≤ r′ − δr to the center of D, then the larger part of D on one of two
sides of L can be covered by two discs of radius r.

Proof. We select positive constants ε, δ and t that satisfy the conditions below:

t = 5 (5)

δ = 12t2ε
2
3 (6)

t

2
> t2ε + (12t2)2ε

1
3 (7)

min(β,
1
4
) > δ, ε (8)
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Fig. 2. A Disc with an Intersection Line

It is easy to see the existence of those three constants. Without loss of generality,
assume that the center of D is at the origin (0, 0) and line L is parallel to y-axis.
Let p1 = (x, y) and p2 = (x,−y) be the intersection points of disc D and line L
(see Figure 2). Since the center of D has distance at most r′ − δr to line L,

x ≤ r′ − δr. (9)

We put a disc D1 of radius r with center at point g1 = (−tεr, δr). We put the
second disc D2 of radius r with center at g2 = (−tεr,−δr).

We use L≤x to denote the half plane on left side of line L. We will prove that
for every point q in the area of D∩L≤x has either dist(q, g1) ≤ r or dist(q, g2) ≤
r. Let q = (x1, y1) be a point on the boundary of D with −r′ ≤ x1 ≤ x and
y1 ≥ 0. Clearly, x2

1 + y2
1 = r′2.

dist(q, g1)2 = (x1 + tεr)2 + (y1 − δr)2 (10)
= x2

1 + 2tεrx1 + (tεr)2 + y2
1 − 2(δr)y1 + (δr)2 (11)

= r′2 + 2tεrx1 + (tεr)2 + (δr)2 − 2(δr)y1 (12)
= (r + εr)2 + 2tεrx1 + (tεr)2 + (δr)2 − 2δry1 (13)
= r2 + 2εr2 + ε2r2 + 2tεrx1 + (tεr)2 + (δr)2 − 2δry1 (14)

Case 1. − r
2 < x1 ≤ x ≤ r′ − δr. This condition implies that r′ + x1 > r

2 and
r′ − x1 ≥ r′ − x ≥ δr. Therefore,

y1 =
√

r′2 − x2
1 =

√
(r′ − x1)(r′ + x1) ≥

√
δ

2
r. (15)

Now we prove that the distance between q and g1 is bounded by r. By (14),

dist(q, g1)2 = r2 + 2εr2 + ε2r2 + 2tεrx1 + (tεr)2 + (δr)2 − 2δry1 (16)

≤ r2 + 2εr2 + ε2r2 + 2tεrx1 + (tεr)2 + (δr)2 − 2

√
1
2
δ

3
2 r2 (17)
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≤ r2 + 2εr2 + ε2r2 + 2tεr2 + (tεr)2 + (δr)2 −
√

2δ
3
2 r2 (18)

≤ r2 + (2ε + ε2 + 2tε + (tε)2 + δ2 −
√

2δ
3
2 )r2 (19)

≤ r2 + (6t2ε−
√

2δ
3
2

2
)r2 (20)

< r2 (21)

Transition from (16) to (17) is from (15). In transition (19) to (20), we use the

fact thats ε, ε2, tε, t2ε2 ≤ t2ε and δ2 ≤ δ
3
2

2 ≤
√

2δ
3
2

2 . Those are from conditions (6)
to (8). Transition (20) to (21) is from (6).

Case 2. −r′ ≤ x1 ≤ − r
2 . We have that 2tεrx1 ≤ −tεr2. By (14),

dist(q, g1)2 ≤ r2 + 2εr2 + ε2r2 + 2tεrx1 + (tεr)2 + (δr)2 − 2δry1 (22)
≤ r2 + 2εr2 + ε2r2 − tεr2 + (tεr)2 + (δr)2 (23)

≤ r2 + (t2ε2 + δ2 − tε

2
)r2 (24)

≤ r2 + (t2ε2 + (12t2)2ε
4
3 − tε

2
)r2 (25)

≤ r2 + ε(t2ε + (12t2)2ε
1
3 − t

2
)r2 (26)

< r2 (27)

In transition (23) to (24), we use that fact that 2 + ε ≤ t
2 , which is derived from

(8). Transition (24) to (25) follow from (6). (26) to (27) is from the condition (7).
Case 3. q1 = (x, 0). Notice that x satisfies (9). We have that

dist(q1, g1) = (x + tεr)2 + (δr)2 (28)
= x2 + 2tεrx + (tεr)2 + (δr)2 (29)
≤ (r′ − δr)2 + 2tεrx + (tεr)2 + (δr)2 (30)
≤ r′2 − 2δrr′ + δ2r2 + 2tεr2 + (tεr)2 + (δr)2 (31)
≤ (1 + ε)2r2 − 2δr2 + δ2r2 + 2tεr2 + (tεr)2 + (δr)2 (32)
≤ r2 + 2εr2 + (εr)2 − 2δr2 + 2tεr2 + (tεr)2 + 2(δr)2 (33)
≤ r2 + (6t2ε− δ)r2 (34)
< r2. (35)

For transition (33) to (34), we use the facts that ε, ε2, tε, t2ε2 ≤ t2ε and 2δ2 ≤ δ,
which are derived from conditions (6) to (8). Transition (34) to (35) is due to
condition (6).

Let B(D∩L≤x) be the set of all the points (x1, y1) on the boundary of the top
half of disc D with y1 ≥ 0 and −r′ ≤ x1 ≤ x. Notice q1 = (x, 0) as in Case 3. For
every point p = (u, v) in the top half of D∩L≤x, i.e., u2 +v2 ≤ r′2,−r′ ≤ u ≤ x,
and 0 ≤ v, we have

dist(p, g1) ≤ max( max
q∈B(D∩L≤x)

(dist(q, g1), dist(q1, g1)) ≤ r.
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Thus, we have proved that D1 covers the top half of D ∩L≤x. Similarly, we can
also prove that D2 covers the bottom half of D ∩ L≤x. Therefore, D1 and D2

completely cover D ∩ L≤x. 2

Lemma 4. Let r > 0 be any given real number. For every constant α ∈ (0, 1),
there exist constants ε and ρ in the interval [0, α] such that for every two discs
D1, D2 of radius (1 + ε)r, if dist(center(D1), center(D2)) ≤ 4(1 + ε)r− ρr, then
they can be covered by five discs of radius r.

Proof. We prove the lemma by Lemmas 2 and 3. By Lemma 2, we have three
constants α1, α2 and α3 such that for every 0 < ε1 < α1, for any disc A1 of radius
(1+ ε1)r and any disc A2 of radius r, if the distance of their centers is within the
range [2(1 + ε1)r − r

2 , 2(1 + ε1)r − α2r], the line through the intersection points
between A1 and A2 has distance at most (1 + ε1)r − α3r to the center of A1.
Let β = min{ 1

20 , α1, α3} and ρ = 2α2. By Lemma 3, there are constants ε and
δ such that β ≥ δ > ε > 0 satisfy the condition in Lemma 3.

Case 1: The distance of the two centers of D1 and D2 is at least 4(1+ ε)r−r.
Let p be the middle point on the line through the centers of D1 and D2. By the
condition of the lemma, dist(p, center(D1)) ≤ 2(1 + ε)r− ρ

2r ≤ 2(1 + ε)r− α2r.
So, dist(p, center(D1)) ∈ [2(1 + ε)r − r

2 , 2(1 + ε)r − α2r]. Let B be the disc of
radius r and of center at the middle point p. By Lemma 2, the line through the
intersection points between D1 and B has distance at most (1 + ε)r − α3r ≤
(1 + ε)r − δr to the center of D1. By Lemma 3, D1 − B can be covered by two
discs of radius r. Similarly D2 −B can also be covered by two discs of radius r.
Therefore, D1 ∪D2 can be covered by at most five discs.

Case 2: The distance of the two centers of D1 and D2 is less than 4(1+ε)r−r.
We consider two subcases:

Subcase 1: Disc D1 and disc D2 have intersection points p1 and p2 and the
center of D1 has distance at most r′ − δr to the line L through p1 and p2. By
Lemma 3, the larger part of D1 at one side of L can be covered by two discs of
radius r. The part of D2 at other side of L can be also covered by two discs of
radius r. Therefore, D1 ∪D2 can be covered by four discs.

Subcase 2: Disc D1 and disc D2 have no intersection or the center of D1 has
distance ≥ r′ − δr to the line L through the intersection points of D1 and D2.
We put disc D with its center at the median on the line segment connecting the
centers of D1 and D2. Disc D has enough intersection with both D1 and D2 (the
center of D to the line through the intersection points between D and D1 (D2)
will be small enough) so that by Lemma 3, both D1 −D can be covered by two
discs of radius r and D2−D can be covered by two discs of radius r. Therefore,
D1 ∪D2 can be covered by five discs. 2

Theorem 4. There exists an O(n(log n)2(log log n)2)-time 2.8334-approximation
algorithm for the disc covering problem on the plane.

Proof. Let r be the radius of discs for the covering problem. Let γ be a positive
real constant such that every disc of radius ≤ (1 + γ)r can be covered by three
discs of radius r. Let α = γ. Select ε and ρ according to Lemma 4. We set a = 1

3
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and η = εr√
2
. Select the constant β > 0 small enough such that 6−a

2 (1 + β) ≤
2.8334 and 2+ 5a

2 (1+β) ≤ 2.8334. Such a β exists because 6−a
2 = 2+ 5a

2 < 2.8334.
Let r′ be equal to r(1 + ε).

Algorithm
Input: A set of n points P on the plane.
(1) With the parameter β, use the algorithm of the first part of Theorem 3

to find a set of discs S of radius r to cover Sketchη(P ) (see Lemma 1).
(2) Let T = ∅ and U = S.
(3) For each disc D ∈ U
(4) begin
(5) if (there is a disc D′ ∈ S with

dist(center(D), center(D′)) ≤ 4r′ − ρr) then
(6) begin
(7) let U = U − {D,D′}, and
(8) let T = T ∪ {(D, D′)}.
(9) end (if)
(10) end (for)
(11) Let V be the set of discs in the pairs of T .
(12) For each (D,D′) ∈ T , cover extendη(D) and extendη(D′) with at most

5 discs of radius r.
(13) For each disc in D ∈ U , cover all the points in extendη(D) ∩ P with a

minimal number of discs (at most 3 discs are needed).
End of Algorithm

Let m be the total number of discs in the set S obtained by the algorithm
in the first part of Theorem 3 for covering Sketchη(P ). Let S, T and U be the
sets after running the algorithm above. Recall in section 2 that we define o(A),
for any set A of points, as the minimal number of discs of radius r for covering
all the points in A. As Sketchη(P ) is a subset of P and m

o(Sketchη(P )) ≤ 1 + β,
we have o(Sketchη(P )) ≤ o(P ) and

o(P ) ≥ m

1 + β
. (36)

Let t be the number of pairs of discs of distance 4r′ − ρr that have been
identified by the algorithm. Those pairs are put into T .

Case 1. 2t ≥ am. In other words, |V | ≥ am. The algorithm outputs at most
5
2am+3(1− a)m = 6−a

2 m discs of radius r to cover P . The approximation ratio
is ≤ 6−a

2 m/ m
(1+β) = 6−a

2 (1 + β) ≤ 2.8334.
Case 2. 2t < am. In other words, |V | < am. So, |U | ≥ (1− a)m. Notice that

any two discs in U has distance > 4r′ − ρr. Let mi(i = 1, 2, 3) be the number
of discs D in U such that extendη(D) ∩ P requires i discs of radius r to cover.
Over all, the algorithm needs at least m1+2m2+3m3

2 discs of radius r to cover all
extendη(D)∩ P for every D in U , since each disc can be shared by at most two
adjacent regions (extendη(D1) and extendη(D2) for discs D1 and D2 in U). On
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the other hand, we can cover all points in P with (m1 +2m2 +3m3)+ 5
2am discs

of radius r, and these many discs have been identified by the algorithm. Com-
bining with (36), we have o(P ) ≥ max( m

1+β , m1+2m2+3m3
2 ). The approximation

ratio of the algorithm is at most (m1+2m2+3m3)+
5
2 am

o(P ) ≤ (m1+2m2+3m3)+
5
2 am

max( m
1+β ,

m1+2m2+3m3
2 )

≤
(m1+2m2+3m3)

m1+2m2+3m3
2

+
5
2 am

m
1+β

≤ 2 + 5a
2 (1 + β) ≤ 2.8334.

By Theorem 3, the shifting part at step (1) in the algorithm for covering
Sketchη(P ) takes O(n) time. We can find the smallest circle to cover a set of
points in linear time [9]. We need O(z(log z)2(log log z)2) time to check if a set of
z points on the plane can be covered by two discs of radius r [1]. It is easy to see
that each disc only intersects with O(1) other discs. This shows that steps (3) to
(10) in the algorithm takes O(|S|) = O(n) time. In summary, for each disc D in
U , it takes at most O(z(log z)2(log log z)2) time to find a minimal number of discs
of radius r to cover extendη(D)∩P , where z = |extendη(D)∩P |. Since each point
stays in O(1) discs in S, the total time of step (9) is O(n(log n)2(log log n)2). 2

Acknowledgements. We are grateful to two anonymous reviewers of SODA
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