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Abstract

We describe a computer proof of the 17-point version of a conjecture originally made by
Klein-Szekeres in 1932 (now commonly known as the “Happy End Problem”) that a planar
configuration of 17 points, no 3 points collinear, always contains a convex 6-subset. The
proof makes use of a combinatorial model of planar configurations, expressed in terms
of signature functions satisfying certain simple necessary conditions. The proof is more
general than the original conjecture as the signature functions examined represent a larger
set of configurations than those which are realisable. Three independent implementations of
the computer proof have been developed, establishing that the result is readily reproducible.

2000Mathematics subject classification: primary 52C10.
Keywords and phrases: Erdos-Szekeres problem, Ramsey theory, convex polygons and
polyhedra, generalized convexity.

1. Introduction

One of the early interests of Paul Erdős, one that had a strong influence on his later
work in combinatorial geometry and Ramsey theory, was the following problem of
Esther Klein-Szekeres: Is it true that fork > 1

(Pk) Every planar set ofn > 2k−2 points (in general position, no 3 points collinear)
contains a subset ofk points which form a convexk-gon (denoted aconvex
k-subset).
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( Qk) There exists a planar configuration of 2k−2 points which contains no convex
k-subset.

Fork = 2; 3 and 4 both statements are trivially true (fork = 4 by a simple argument
by the proposer herself) but alreadyk = 5 presents difficulties. When the problem
was posed (in 1932) it was not even clear that for anyk > 4 there exists ann = n.k/
such that a set ofn points in the plane always contains a convex subset ofk points,
but the question was soon settled in the affirmative by Erdős and Szekeres [3].

Nowadays the proof of existence of such ann presents no difficulties and is a simple
exercise in Ramsey theory. The following argument is from van Lint and Wilson, [9,
page 26]. Number the points of the configuration from 1 ton in an arbitrary manner,
and provide each triangleabc, a < b < c, with a signature+ or − according to the
(anticlockwise or clockwise) orientation of theabc. It is easily seen that a non-convex
quadrilateral always contains triangles of both kinds. On the other hand by Ramsey,
if n is sufficiently large, the configuration contains ak-subsetK with all its triangles
having the same signature. Hence all quadrilaterals ofK are convex and thereforeK
itself is convex. Ifn0.k/+ 1 denotes the smallestn such that any planar configuration
of sizen contains a convexk-subset, the conjectures (Pk) and (Qk) together assert that
n0.k/ = 2k−2.

At the time when the conjectures (Pk) and (Qk) were proposed they seemed to be
a hazardous extrapolation from a few trivial and not very convincing cases, but a few
years later Makai and Turán verified that indeed 9 points always contain a convex
pentagon. As far as we know this proof has never appeared in print but some of us
who knew of its existence saw in it modest support for the belief that (Pk) is true for
all k. (See Morris and Soltan [7], Kalbfleischet al. [5] and Bonnice [1] for proofs for
9 points.) Many years later Erdős and Szekeres [4] produced an explicit example of
2k−2 points which contained no convexk-gon, thereby confirming the truth of (Qk) for
all k > 1. This construction showed at any rate thatn0.k/ ≥ 2k−2. For recent results
on the upper bound forn0.k/ see Toth and Valtr [8].

The main result of the present paper is a computer proof ofn0.6/ = 16, that is, 17
points in the plane always contain a convex 6-subset, further strengthening the general
validity of (Pk).

2. Combinatorial convexity

To carry out the computer proof ofn0.6/ = 16 we shall need a combinatorial de-
scription ofn-point configurations in the plane and a suitable combinatorial definition
of convexity. Neither of these is unique and a judicious selection is vital for the suc-
cess of the quite formidable computer search. As in Section1, we shall make use of
signatures of triangles, but the numbering of points upon which the signatures depend
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will not be arbitrary but restricted to specific choices for a given configuration. In fact
the conceptual freedom afforded by an arbitrary numbering offers no advantages for
the demands of computerisation.

Let Fn be the set of configurationsP = {p1; : : : ; pn} of n points in the.x; y/
coordinate plane. By rotating any given configuration we can assume that thex axis
is neither perpendicular nor parallel to any of the

(
n
2

)
edges of the configuration and

so the pointspi will have differentx coordinates. Indeed, we assume that the points
pi are ordered in terms of increasingx-coordinate. Assuming that no three points are
on a line, every ordered triple.pi ; pj ; pk/, 1 ≤ i < j < k ≤ n, is then oriented either
clockwise or anticlockwise, imparting a signature¦.i; j ; k/ = − or + to the triples
according to their orientation.

More formally let Tn be the set of ordered triples.i; j ; k/ of Sn = {1; 2; : : : ; n}
and6n the set of signature functions

¦ : Tn → {+;−}
on Tn. Then everyP ∈ Fn induces a signature function¦ ∈ 6n (strictly speaking an
equivalence class of such functions, depending on thex direction) and we regardP
as a geometrical realisation of this¦ .

To define a convexk-gon we make use of “cups” and “caps” as defined by Chung
and Graham [2]. After some experimentation we found them to be the most effective
for the computer search ahead. An ordered set

C¾;i = [a0; a1; : : : ; ai ]; 1 ≤ a0 < a1 < · · · < ai ≤ n; ¾ = + or −;
will be called a¾ -chain of lengthi ≥ 1 if ¦.a¼−2; a¼−1; a¼/ = ¾ for all 2 ≤ ¼ ≤ i . In
particular,[a0; a1] is a¾ -chain of length 1 for both¾ = + and−. HereC+;i represents
what Chung and Graham call an.i + 1/-cup andC−;i an .i + 1/-cap; we shall use
either of these names, whichever is more convenient.

DEFINITION. A k-subset is calledconvex relative to¦ if it is the union of a cup-cap
pair with common endpoints, that is,C+;i

⋃
C−; j , C+;i = [a0; a1; : : : ; ai ], C−; j =

[b0; b1; : : : ; bj ] with total length i + j = k, a = a0 = b0, ai = bj = b, and
C+;i

⋂
C−; j = {a; b}.

We will adopt this definition of convexity for¦ , whether or not¦ is induced by
someP ∈ Fn. Note that only triples formed by consecutive members of the chain were
required to have the same signature, but if¦ is induced by a geometric configuration
then of course all ordered triples of the chain have the same signature. We have chosen
a weakest possible condition for¾ -chains so that they should represent Chung-Graham
cups and caps whenever¦ is induced by someP ∈ Fn, where the points are ordered in
terms of increasingx-coordinate. We can then ask whether the combinatorial version
of (Pk) is valid for arbitrary¦ , that is,
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(Pσ,k) If n > 2k−2 then relative toany¦ ∈ 6n there is a convexk-subset ofSn.

As before, the existence of such ann is established by the Ramsey argument of van
Lint and Wilson. The conjecture (P¦;k) is considerably stronger than (Pk) since only
a small fraction of signature functions have a geometrical realisation. If¦ is induced
by someP ∈ Fn andabcd, 1 ≤ a < b < c < d ≤ n, is a convex quadrilateral then
writing

¦1 = ¦.a; b; c/; ¦2 = ¦.a; b; d/;

¦3 = ¦.a; c; d/; ¦4 = ¦.b; c; d/;

we must have

¦1 = ¦2; ¦3 = ¦4: (2.1)

Similarly if abcd is a concave quadrilateral, that is, a triangleabd with c inside the
triangle, or a triangleacd with b inside it, then we must have

¦1 = −¦4; ¦2 = ¦3: (2.2)

These are easily verified by examining all possible 4-point configurations in the plane.
Consequently the realisable signature functions are restricted to one of the (mutually
exclusive) conditions (2.1) and (2.2) which must then be satisfied by all 4-subsets ofSn.
This gives 8 possibilities (out of 16) for the signature values of any quadrilateral:

¦1 ¦2 ¦3 ¦4

¾ ¾ ¾ ¾

¾ ¾ ¾ −¾
¾ ¾ −¾ −¾
¾ −¾ −¾ −¾

(2.3)

where¾ = + or −. We denote by6∗
n the subset of those¦ ∈ 6n which satisfy one of

the geometric constraints (2.1) or (2.2) for all 4-subsets ofSn.
Of course if (P¦;k) is true for all¦ ∈ 6n then it is also true for those special¦

for which all 4-subsets ofSn belong to the 8 classes listed in (2.3). Therefore (P¦;k)
implies the much weaker conjecture

(P∗
σ,k) If n > 2k−2 then relative to any given¦ ∈ 6∗

n there exists a convexk-subset.

Of course (Pk) is an immediate consequence of.P∗
¦;k/ and it is natural to ask

whether the two are actually equivalent. In other words, are the conditions (2.3) not
only necessary but sufficient for¦ to be induced by someP ∈ Fn? The answer is
no, and Knuth ([6, Figure 1, page 26]) shows an example of a 9-point non-realisable
configuration satisfying (2.3). Hence.P∗

¦;k/ remains a stronger conjecture than (Pk).
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At first sight, it looks fairly unlikely that.P¦;k/ should be true. Yet.P¦;4/ is true
for all ¦ ∈ 65, that is, S5 always contains a convex 4-subset. For suppose that all
4-subsets ofS5 are non-convex. Then assuming¦.1; 2; 3/ = +, each of the following
implications follows from the preceding one:

.123/+ → .235/− → .245/− → .124/+ → .134/+ → .345/− → .234/+ → .123/−;

where we have used the simplified notation.i jk /¾ to denote¦.i; j ; k/ = ¾ .
For example, if.235/+ then[1; 2; 3; 5] is a 4-cup and the 4-subset 1235 is convex,

contrary to assumption. Similarly in the second step if.245/+ then [2; 3; 5] and
[2; 4; 5] are a 3-cup and 3-cap respectively and so the 4-subset 2345 is convex, again
contrary to assumption. The other steps are variants of the first two. We end up
with .123/−, contradicting the original assumption. It follows thatS5 must contain a
convex 4-subset.

This demonstration has the merit of being purely combinatorial (no reference to
geometrical constraints), and it paves the way for a computer proof of.P¦;5/ in
Section3 and.P∗

¦;6/ in Section4. In particular,.P¦;5/ is true, a much stronger result
than that of Makai and Turán. Its main interest is that, perhaps against expectations,
(P¦;k) is true in the first non-trivial casek = 5.

The proof of.P∗
¦;6/ was much more time consuming than that of.P¦;5/, hardly

surprising since it implies the validity of.P6/, that is, the 17-point conjecture. It
would be of great interest to also verify.P¦;6/, but at present this seems to be out of
reach.

The algorithm described in Sections3 and4 has been implemented independently
by each of the authors, and more recently, also by B. McKay.

3. Computer proof of (Pσ,5)

THEOREM1. For every¦ ∈ 69 there is a convex 5-subset ofS9.

Take an arbitrary¦ ∈ 69 over S9 = {1; 2; : : : ; 9}. Every such¦ is represented as
a state of an arrayAm = {a1; : : : ; am} of triples, of sizem = (9

3

) = 84, and where
each elementai takes the value+ or −. That is, if i corresponds to the tripleabc,
thenai = ¦.a; b; c/. HereAm is introduced simply as a computational convenience,
and in particular, during the search we will incrementally assign elements ofAm. A
partially assignedAm therefore represents a subset of69.

The ordering of the elements ofAm is not important, and so we choose

a1 = ¦.1; 2; 3/; a2 = ¦.1; 2; 4/; a3 = ¦.1; 3; 4/; : : : ; a84 = ¦.7; 8; 9/: (3.1)

As there are 2m possible states of the array, a simple exhaustive search is of course
not feasible and it is necessary to organise the search more efficiently. Whilst the
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following algorithm is not the simplest that can be used for then = 9 case, it is
described here as it is able to be extended to deal with then = 17 case.

Letabcdebe any (ordered) set of five points ofS9. It forms a convex 5-subset if and
only if its

(5
3

) = 10 triples satisfy one of the four relations (termedconvex relations):

R1 : ¦.abc/=¦.bcd/=¦.cde/; R2 : ¦.abc/=¦.bce/=−¦.ade/;

R3 : ¦.abd/=¦.bde/=−¦.ace/; R4 : ¦.acd/=¦.cde/=−¦.abe/:
(3.2)

Signatures that do not satisfy any of the relations (3.2) are termedconcave.
The total number of convex relations onS9 is therefore 4× (9

5

) = 504. The
hypothesis that for any 9 points there is at least one convex 5-subset is therefore
equivalent to the hypothesis that every (fully-assigned) state of the 84-element array
Am must satisfy at least one of these 504 relations.

Consider now65 which is the set of signature functions on 5 points only. An
arbitrary¦ ∈ 65 is represented as a state of

(5
3

) = 10 elements, hence there are 210

possible signature functions in65. A straightforward calculation will verify that 700
of these are convex. Denoting� ⊂ 65 as the subset of concave signature functions
of 65, we therefore have|�| = 1024− 700= 324.

Denote the signature functions in� by {!1; : : : ; !324}, where for fixedi , the 10
triples representing!i (in the same order as in (3.1)) are denoted{!i 1; : : : ; !i 10}. The
ordering of the concave signature functions themselves is not important.

The hypothesis that every state ofAm satisfies at least one of the 504 convex
relations is therefore equivalent to the hypothesis that no state ofAm can consist of
signature functions wholly assigned from� for every 5-subset inS9.

Let U5 = {u1; u2; u3; u4; u5} denote the collection of contiguous 5-subsets inS9:

u1 = [1; 2; 3; 4; 5]; u2 = [2; 3; 4; 5; 6]; : : : ; u5 = [5; 6; 7; 8; 9]: (3.3)

We say that a signature function (or more simply, a signature) in� is assigned to a
5-subset inU5 if it is assigned to the elements ofAm corresponding to that 5-subset.
That is, the restriction of¦ to u j is a translation of that signature. We note that
if a signature in� is assigned to someu j , 1 ≤ j ≤ 4, then the possible choices
for assignment tou j +1 are reduced asu j andu j +1 share the 4 points{ j + 1; j + 2;
j + 3; j + 4} and so share

(4
3

) = 4 triples. Hence for each!i ∈ � we define its
compatible subsetas the set of signatures!l ∈ � such that

!l1 = !i 4; !l2 = !i 7; !l3 = !i 9; !l4 = !i 10: (3.4)

A simple computer search verifies that each compatible subset contains no more
than 27 signatures.

In brief, the algorithm performs an exhaustive search by successively assigning the
signatures in� to the triples corresponding to theu j under the assumption that the
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hypothesis is false. That is, we assume that each state ofAm is able to be assigned
from signatures in�, and show this leads to a contradiction in every case.

The algorithm relies on two key observations:

(1) The ordering of 5-subsets in (3.3) ensures that for a given signature, its compat-
ible subset does not depend onj , that is, on whether that signature has been assigned
to u1, u2, u3 or u4. Hence the compatible subsets for each signature in� need only be
calculated once, prior to the search itself.
(2) A partially assigned state ofAm can force further assignments, thereby eliminat-

ing large numbers of possible configurations from the search.

To illustrate the second observation, consider some partially assigned state ofAm,
that is, not all elements are assigned+ or −. We assume that the partially assigned
state does not yet satisfy any of the convex relations, that is, if all three elements
of Am corresponding to some convex relation in (3.2) are assigned, then that relation
is not satisfied. We now note that assigning one more element ofAm may necessarily
determine the values of some other elements due to the assumption that none of the
convex relations (3.2) are satisfied. For example, if¦.abc/ = ¦.bcd/ = + then
¦.cde/ must necessarily take the value− to avoid the first relation in (3.2). These
other assigned elements may, in turn, determine the values of further elements, and so
on recursively.

In this way, the assignment of a signature from� to the elements ofAm corre-
sponding to someu j may cause further elements ofAm to be necessarily assigned,
further restricting the choices of compatible signatures toum for m > j , and hence
reducing the number of subsequent configurations required to be examined.

Furthermore, an element ofAm necessarily assigned by considering one convex
relation may cause some other convex relation to be satisfied, eliminating from the
search all configurations represented by this partial assignment toAm.

In this way, contradictions are generated with relatively few assignments needing
to be made from�. In fact, the computer search indicates that the only 5-subsets that
ever need to be assigned are (in order)u1, u2, andu3 (the forced assignments involve
points 8 and 9).

The details of the algorithm are now described. It will terminate when a fully
assigned state is found with no contradiction, or alternatively, when all possible
configurations have led to a contradiction.

ALGORITHM 1. Step 1. Suppose we have a partial assignment ofAm obtained
by an assignment tou1; : : : ; uj for some j ≤ 5 by elements of�. (Initially we
simply assign the first element of� to u1 for some fixed ordering of elements of�).
Check convex relations (3.2) to see if a contradiction has been reached or if¦.i jk /
for some unassigned triple.i; j ; k/ is forced to avoid satisfying one of the convex
relations. Repeat this step (that is, re-checking all the convex relations when a new
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element is necessarily assigned) until no more elements are necessarily assigned, or a
contradiction is reached.
Step 2. If there is no contradiction found in the previous step, we have shown that
the current assignments tou1; : : : ; uj do not cause any of the convex relations to be
satisfied. Check whetherAm is now completely assigned. If it is, we have found a state
where no convex relation is satisfied, and the search terminates with a counterexample
found to Theorem1. If it isn’t completely assigned, move to the next configuration to
be checked as follows. If! is currently assigned tou j , assign the first possible element
of the compatible subset for! to u j +1 and go to Step1. We note that there could be
triples inu j +1 that have already been necessarily assigned, restricting the choices from
the compatible subset for! as mentioned above. If there are no remaining choices
for assignments tou j +1, we have derived a contradiction by the current assignments
to u1; : : : ; uj and so we go to Step3.
Step 3. If there was a contradiction found in Steps1 or 2 we have shown that
irrespective of the possible assignments of the remaining unassigned elements ofAm,
the current assignments tou1; : : : ; uj will necessarily cause one of the convex relations
to be satisfied. Move to the next configuration to be checked as follows:
Step 4. Restore the state ofAm to what it was prior tou j having its current assignment.
Assign the next possible element tou j , that is, the next possible element of the
compatible subset of the element assigned tou j −1 if j > 1, or the next element of�
if j = 1, and go to Step1. If there are no remaining choices for assignments tou j

we have derived a contradiction by the current assignments tou1; : : : ; uj −1 and so if
j > 1 we decrementj and repeat this step. Ifj = 1 and there are no remaining
choices from� to u1 the search terminates with all possible states having led to a
contradiction.

Some notes on efficiency

• In Step1, when some new element is assigned, only the convex relations involving
the new element need to be checked, and not the complete list of 504 relations. Hence
for each elemental of Am, the set of relations involvingal are stored prior to the
commencement of the search.

• We can take advantage of the linearity of the convex relations by only assigning
half of the possible elements of� tou1, for example, those elements for whicha1 = +.

Using a 1.5 GHz workstation, the search terminates at Step4 in less than one
second, establishing Theorem1.

4. Computer proof of (P∗
σ,6)

THEOREM2. For every¦ ∈ 6∗
17 there is a convex 6-subset ofS17.
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The description of the 17-point proof will focus on the required extensions to the
proof given above for the 9-point case. Unless indicated otherwise, the various entities
(Am,� and so on) will be denoted by the same symbols as their 9-point counterparts.

The number of elementsm in Am required to represent a signature in617 over S17

is now
(17

3

) = 680. Letabcdef be any (ordered) set of six points ofS17. They form
a convex 6-subset if and only if its

(6
3

) = 20 triples satisfy one of the eight convex
relations:

R1 : ¦.abc/ = ¦.bcd/ = ¦.cde/ = ¦.def/;

R2 : ¦.abc/ = ¦.bcd/ = ¦.cd f/ = −¦.aef/;

R3 : ¦.abc/ = ¦.bce/ = ¦.cef/ = −¦.ad f/;

R4 : ¦.abd/ = ¦.bde/ = ¦.def/ = −¦.acf/;

R5 : ¦.acd/ = ¦.cde/ = ¦.def/ = −¦.abf/;

R6 : ¦.abc/ = ¦.bcf/ = −¦.ade/ = −¦.def/;

R7 : ¦.abd/ = ¦.bd f/ = −¦.ace/ = −¦.cef/;

R8 : ¦.acd/ = ¦.cd f/ = −¦.abe/ = −¦.bef/:

(4.1)

The total number of convex relations onS17 is therefore 8× (17
6

) = 99; 008. A
straightforward calculation verifies that|�| = 184; 556 where� is now the set of
concave signatures onS6.

Let U12 = {u1; u2; : : : ; u12} denote the contiguous 6-subsets inS17:

u1 = [1; 2; : : : ; 6]; u2 = [2; 3; : : : ; 7]; : : : ; u12 = [12; 13; : : : ; 17]: (4.2)

Ideally we would attempt to assign all signatures from� to the 6-subsets in order
to establish.P¦;6/. To date however, this has not been achieved due to the large
number of signatures and consequent time required. However, by restricting the
concave signatures to those satisfying the geometric conditions, the search is readily
performed. We therefore define�∗ ⊂ � to be those concave signatures which satisfy
relations in (2.3) for all 4-subsets inS6.

As before, we note that if a signature in�∗ is assigned to the elements ofAm

corresponding to a 6-subsetu j , then the possible choices for assignment tou j +1 are
reduced asu j andu j +1 share the 5 points{ j + 1; : : : ; j + 5} and so share

(5
3

) = 10
triples. A simple computer search verifies that|�∗| = 892 and that for each signature
in �∗, its compatible subset contains no more than 18 signatures.

Two of the steps described in Algorithm1 now need to be extended, as follows.

Extension to Algorithm 1, Step1 In the 9-point case, we checked the convex rela-
tions to see if any other elements ofAm are necessarily assigned, or if a contradiction
is reached. Now however, we not only check the convex relations (4.1) but also
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the geometric conditions (2.3). If all four triples corresponding to a 4-subset ofS17

are assigned, but neither of the geometric conditions (2.1) or (2.2) is satisfied, then
a contradiction has been reached. If two or three of the triples corresponding to a
quadrilateral are assigned, then it could be that one or two of the remaining triples
must necessarily be assigned to avoid a contradiction. For example, suppose¦1 and¦4

are both assigned+, with ¦2 and¦3 unassigned. In this case, the only way to satisfy
one of the geometric conditions (2.1) and (2.2) is if ¦2 and¦3 are both assigned+.

Extension to Algorithm 1, Step2 In the 9-point case,j never exceeded 3, which is
why the definition (3.3) sufficed. We now find however thatj will reach its maximum
value of 12. That is, there are combinations of signatures assigned tou1; : : : ; u12

which do not generate any contradictions. In this situation, we perform up to three
more types of checks:

The U13 check: We extend theU12 to U13 by including another 6-subset

u13 = [9; 13; 14; 15; 16; 17]:
We have arbitrarily chosen point 9, but any point from 1 to 11 would have sufficed.
We now check all signatures tou13 compatible with the one assigned tou12 in the
sense that they must agree on the 10 triples they have in common. As the triples shared
betweenu12 andu13 are different to those shared betweenu j andu j +1, 1 ≤ j ≤ 11, a
second compatible subset is pre-calculated for each signature in�∗, in readiness for
assignments tou13. We could extend these selected 6-subsets still further, but this was
not found to be necessary in practice. If an assignment is made tou13 that still does
not lead to a contradiction, we go to the next step.
The one-bit check: We pick the first unassigned elemental of Am and arbitrarily
assign it to+. We then perform the checks in Algorithm1, Step1 as described above
(that is, both the convex and geometric checks). If a contradiction is generated, we
restore the state ofAm to what it was before assigningal and now check the− as-
signment. If a contradiction is also generated we know that the current assignments
to u1; : : : ; u13 necessarily lead to a contradiction, and we can proceed to Algorithm1,
Step3. If either assignment toal did not lead to a contradiction, we restore the state
of Am to what it was before that assignment, and pick the next unassigned element
of Am. If we exhaust all unassigned elements ofAm without generating a contradiction
we proceed to the next step.
The two-bit check: This is similar to the one-bit check except that instead of pick-
ing just one unassigned element ofAm, we pick the first pair of unassigned elements.
There are now four assignments to check (++; +−; −+; −−), and if all lead to
a contradiction, we can again proceed to Algorithm1, Step3. If any of the four
assignments do not lead to a contradiction, we pick another pair of unassigned ele-
ments, and so on. It was found that the two-bit check always succeeded in generating
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a contradiction at this point in the search.
Whilst the two-bit check by itself would generate a contradiction to any combination

of signatures that the one-bit check had generated a contradiction for (and so subsumes
the one-bit check), the number of pairwise checks means that this step is much slower
to execute and so it is more efficient to do the one-bit check first.

The number of partial signatures that survived theU13 check was 20, 312, 212. The
number that survived the one bit check was 23, 339.

There is evidently a certain arbitrariness in the three strategies above, and various
combinations of these strategies or others will suffice to check those few combinations
of signatures that do not lead to a contradiction when assigned tou1; : : : ; u12. For
example, one of the authors (Szekeres) used athree-bit checkinstead of theU13 check
for those signatures that had slipped through the one- and two-bit checks. (In his
implementation, B. McKay used a more efficient variation of the one-bit check in
place of the two-bit check).

The algorithm described above is amenable to parallel execution, as each assign-
ment of a signature from�∗ to u1 can be done independently of any other assignment
to u1. For example, one could have up to|�∗|=2 = 446 independent processes, each
evaluating one of the possible assignments tou1. Using modest computing platforms
(less than 2 GHz workstations) the time required to generate a contradiction from
just one assignment tou1 took between one hour and twenty hours, depending on the
particular assignment. The total computing time to establish contradictions for all
446 assignments tou1, and thus establish Theorem2, was approximately 3, 000 GHz
hours, that is, 1, 500 hours of computing time using processors of up to 2 GHz.

5. Proof of (Q∗
σ,k)

In this section we shall prove the corresponding combinatorial (and weaker) version
of (Qk):

( Q∗
σ,k) If n = 2k−2 there exists a¦ ∈ 6∗

n which contains no convexk-subset.

We present this partly for completeness, and partly to show how the new combina-
torial setting simplifies the original construction [4] if we don’t insist on realisability.

LEMMA 1. Giveni + j = m−2 ≥ 2, there exists a¦ ∈ 6∗
.m−2

i−1/
over

{
1; : : : ;

(
m−2
i −1

)}
which admits neither aC+;i of lengthi nor a C−; j of length j .

The statement is trivially true (empty) wheni = 1 or j = 1, hence we may assume
that i > 1 and j > 1. Also we may assume that there exists a¦1 ∈ 6∗

.m−3
i−1/

over

{
1; : : : ;

(
m − 3

i − 1

)}
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which admits neither aC+;i nor aC−; j −1 and a¦2 ∈ 6∗
.m−3

j−1/
over

{(
m − 3

i − 1

)
+ 1; : : : ;

(
m − 3

i − 1

)
+

(
m − 3

j − 1

)
=

(
m − 2

i − 1

)}

which admits neither aC+;i −1 nor aC−; j . Extend these two signature functions to the
whole set

{
1; : : : ;

(
m−2
i −1

)}
by setting

¦.i1; i2; i3/ =




−; 1 ≤ i1 < i2 ≤
(

m − 3

i − 1

)
< i3 ≤

(
m − 2

i − 1

)
;

+; 1 ≤ i1 ≤
(

m − 3

i − 1

)
< i2 < i3 ≤

(
m − 2

i − 1

)
:

Now suppose there is aC+;i = [k0; : : : ; ki ], then we must havek0 < k1 ≤ (
m−3
i −1

)
andki >

(
m−3
i −1

)
since¦2 does not admit aC+;i −1. Let¼ ≥ 1 be such that

1 ≤ k¼−1 < k¼ ≤
(

m − 3

i − 1

)
< k¼+1 ≤

(
m − 2

i − 1

)
;

then¦.k¼−1; k¼; k¼+1/ = − by definition, contrary to the assumption thatC+;i is a
cup. Similarly, suppose there is aC−; j = [k0; : : : ; kj ] then we must have

(
m − 3

i − 1

)
< kj −1 < kj ≤

(
m − 2

i − 1

)

and¦.k¹−1; k¹; k¹+1/ = + for suitable¹ >
(m−3

i −1

)
, by definition, again a contradiction.

The extended signature function satisfies the constraints (2.3). For instance, if
1 ≤ i1 < i2 < i3 ≤ (

m−3
i −1

)
< i4 then¦.i1; i2; i4/ = ¦.i1; i3; i4/ = ¦.i2; i3; i4/ = − and

(2.3) is satisfied irrespective of the value of¦.i1; i2; i3/. Similarly for the other two
cases, hence¦ ∈ 6∗

.m−3
i−1/

.

To construct¦ ∈ 6∗
2k−2 which does not admit a convexk-subset we proceed as

follows: Let pr = ∑r
i =0

(
k−2

i

)
for 0 ≤ r ≤ k − 2 so thatp0 = 1, pk−2 = 2k−2. Let

¦ j ∈ 6∗
.k−2

j /
over Pj = {

pj −1 + 1; : : : ; pj −1 + (
k−2

j

) = pj

}
, 0 < j < k − 2, be such

that according to Lemma1 it admits neither aC+; j +1 nor aC−;k− j −1. SettingP0 = {1},
Pk−2 = {2k−2}, then

⋃k−2
j =0 is a partition ofS = {1; 2; : : : ; 2k−2}.

Define³ : S → {0; 1; : : : ; k − 2} to be the projection³.r / = i if r ∈ Pi . We can
now extend the signature¦ j to the whole ofSby setting

¦.k1; k2; k3/ =




+; if ³.k1/ ≤ ³.k2/ < ³.k3/;

−; if ³.k1/ < ³.k2/ = ³.k3/;

¦ j .k1; k2; k3/; if ³.k1/ = ³.k2/ = ³.k3/ = j :
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We show that this¦ does not admit a convexk-subset, that is, a pair of chainsC+;r ,
C−;s with common endpoints andr + s = k. For supposeC+;r = [a; a1; : : : ; ar −1; b]
andC−;s = [a; b1; : : : ; as−1; b] with ³.a/ = i , ³.b/ = j , i ≤ j . If i = j then by
constructionr + s ≤ k − 2< k. If i < j , then³.b¼/ = j for all 0< ¼ < s and

i = ³.a/ = ³.a1/ = · · · = ³.a¹/ < ³.a¹+1/ < · · · < ³.ar −1/ < j

for some¹ ≤ i . Hencer ≤ i + . j − i / = j , s ≤ k − j − 1, r + s ≤ k − 1< k.
Next we verify that the conditions (2.3) hold for¦ . Take any 4-subset{k1; k2; k3; k4},

³¹ = ³.k¹/, ¹ = 1; : : : ; 4, so that³1 ≤ ³2 ≤ ³3 ≤ ³4. We may assume³1 < ³4,
otherwise the pointsk¹ would all be in the samePi and by construction would satisfy
(2.3). Suppose that³1 ≤ ³2 ≤ ³3 < ³4. Then

¦.k1; k2; k4/ = ¦.k1; k3; k4/ = ¦.k2; k3; k4/ = +
by definition, and (2.3) is satisfied. Similarly if³1 ≤ ³2 < ³3 = ³4 then

¦.k1; k2; k3/ = ¦.k1; k2; k4/ = +; ¦ .k1; k3; k4/ = ¦.k2; k3; k4/ = −:
Finally if ³1 < ³2 = ³3 = ³4 then¦.k1; k2; k3/ = ¦.k1; k2; k4/ = ¦.k1; k3; k4/ = −,
and in all cases (2.3) is satisfied. Thus¦ ∈ 6∗

2k−2.
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Budapest. Ëotvös Sect. Math.3–4(1961) 53–63.

[5] J. D. Kalbfleisch, J. G. Kalbfleisch and R. G. Stanton, “A combinatorial problem on convex regions”,
in 1970 Proc. Louisiana Conf. on Combinatorics, Graph Theory and Computing, (Louisiana State
Univ., Baton Rouge, 1970) 180–188.

[6] D. E. Knuth,Axioms and Hulls(Springer, Heidelberg, 1992).



164 George Szekeres and Lindsay Peters [14]

[7] W. Morris and V. Soltan, “The Erd̋os-Szekeres problem on points in convex position. A survey”,
Bull. Amer. Math. Soc. (N.S.)37 (2000) 437–458.

[8] G. Toth and P. Valtr, “The Erd̋os-Szekeres theorem: upper bounds and related results”, inCom-
binatorial and computational geometry, Math. Sci. Res. Inst. Publ. 52, (Cambridge Univ. Press,
Cambridge, 2005) 557–568.

[9] R. M. Wilson and J. H. van Lint,A Course in Combinatorics(Cambridge Univ. Press, New York,
1992).


