
 

 

Extraction of Interaction Events for Learning Reasonable Behavior in an 

Open-World Survival Game  

Author Names Go Here Using the Author Name Style (Required) 

Affiliations and Addresses Go Here Using the Affiliation and Address Style (Required) 
publications@aaai.org 

 

 

 

Abstract 

Extracting event knowledge from open-world survival video 
games is a promising domain to investigate the application 
of Machine Learning techniques to routine human decision 
making. This contrasts with and builds upon typical game-
based decision making work that focuses on optimal behav-
ior. We propose an Interaction Graph data structure that can 
be trained from game play to enable hybrid reasoning and 
statistical estimation about what events can happen in the 
world. This enables an agent to exhibit increasingly more 
reasonable behavior after low numbers of training runs. An 
implementation and initial experimental validation are pre-
sented. 

 Introduction   

The problem of agents that can make intelligent decisions 

is a classic AI challenge, which has seen fruitful work with 

both classic board games and video games. In classic board 

games, the decision making is characterized by selecting 

the optimal move from a deceptively simple set of possible 

moves. There are only a handful of pieces and actions in 

Chess or Go, but the interdependency of one move on an-

other creates a combinatorial explosion of possible states. 

Deep Learning with Monte Carlo simulation has recently 

proven highly successful in Go (Silver et al. 2016). In most 

of the work applying Machine Learning to video games 

(cf. Galway et al., 2008; Minh et al. 2015), the decision 

making is reactive, again selecting from a very small set of 

possible actions, but here over a fine-grained spatiotem-

poral state that has an explosive number of configurations. 

These modes of decision making strongly apply to expert, 

task-specific performance such as sports and games.  

 In contrast, routine human decision making is not as 

notable for optimality as it is for robustness in the face of 

massive amounts of irrelevant state, adaptability to differ-

ent contexts, and quick learning. Here too, video games 

                                                 
Copyright © 2018, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved. 
 

can provide a great domain for investigation. We are inter-

ested in open-world survival games, which are highly ex-

ploratory in nature, involving a wider range of tasks re-

peated in an ever-evolving context. The player goal is less 

to find the optimal behavior to win the game, and more to 

explore the range of behaviors that meet the criteria of sur-

viving to explore further. Players must decide whether and 

how to respond to a variety of opportunities and threats as 

they are discovered. Reasonable behavior in this context 

should be aware of short-term implications, generally 

choose actions that are more beneficial or efficient to some 

goal, generally be consistent in the apparent goals being 

pursued, and not require re-learning applicable knowledge 

in a new situation. 

 To meet the challenge of learning reasonable behavior, 

the AI system must be able to identify the possible events, 

interventions and notable short-term outcomes enabled by 

the current situation, regardless of whether those outcomes 

are relevant to a specific task. The abstractions of events 

and outcomes are key composable knowledge structures to 

enable the system to accumulate and generalize operational 

knowledge in non-global contexts. We propose to automat-

ically segment events in terms of unique interaction con-

figurations between agents and other entities. The result is 

an Interaction Graph (IGraph) where nodes are types of 

interaction events, and edges are transitions between them. 

We then use each node and edge as context for probabilis-

tic models that learn to predict features of the events and 

transitions (e.g. how long will it last, will it result in this or 

that outcome, will it lead to another type of interaction). 

 Extracting and using this knowledge is a specialized 

type of reinforcement learning (Kaelbling et al., 1996), 

where the IGraph generalizes the world space observed 

during training play, enabling algorithms that can predict 

possible paths through that space. However, there is not a 

single reward function to be optimized. Rather, we use a 

hybrid approach of reasoning about the graph in order to 

train and utilize regression and classification models, in the 



context of the IGraph nodes, to predict events and their 

characteristics. 

 In this paper, we present the IGraph concept and imple-

mentation details to explain how it extracts event models 

from game play. We also present a validation experiment 

providing evidence that it is capable of learning how to 

make intelligent decisions about considering choices, out-

comes and how to reach goals in the world. 

Related Work 

For machine learning in modern video games, much prior 

work has focused on optimizing agents’ low-level, real-

time movements and actions using neural networks, evolu-

tionary computing and reinforcement learning (cf. Galway 

et al., 2008). These techniques have also been applied to 

the tactical and strategic elements of games, generally by 

isolating those elements and creating appropriate abstrac-

tions of the game state for the models to work with. In the 

Real-Time Strategy (RTS) genre, which current survival 

games inherited many mechanics from, several projects 

have used reinforcement learning with neural network q-

value approximation to learn combat micro-management 

(Micic et al., 2011; Shantia et al. 2011; Wender & Watson, 

2012) by simplifying the action space to fight or retreat 

scripts, and the feature space using manual abstractions 

such as the closest enemy or aggregate enemy health with-

in range. These abstractions allow the learning model to 

work with relevant, fixed-size input. (Jaidee & Munoz-

Avlia, 2012) presented a q-learning algorithm capable of 

playing complete, simple RTS scenarios by training on 

each class of unit and building separately. The state space 

and action space could therefore be tailored to each class, 

greatly reducing the size. Again, various useful abstrac-

tions were used in the state space and the action scripts 

(e.g. count of units stronger than x, attack all units weaker 

than attacker). (Sharma et al., 2007) used a three-layered 

architecture with a scripted planner on top, hybrid case-

based reasoning and reinforcement learning (CBR/RL) for 

tactical decisions, and reactive planning at the bottom to 

show transfer learning in a simplified RTS environment. 

The CBR/RL component replaces the typical MDP by stor-

ing the learned transitions in cases and retrieving them in 

new scenarios. The inputs are global abstractions of game 

state (e.g. overall unit count, territories held) and the action 

space is simplified to Attack, Explore, Retreat and Conquer 

goals that are carried out by the reactive layer. (Synnaeve 

& Bessiere, 2012) used Bayesian inference to predict the 

outcome of attacks over the abstractions of regions and 

army strengths. These and other studies suggest that an 

effective system for learning in complex game environ-

ments needs to be modular to address different reasoning 

challenges, and embrace identifying the right abstractions 

of state and action as a primary concern. 

 The nodes of the IGraph provide context to train, vali-

date and utilize regression and classification models for 

reasoning tasks. These models have become very mature in 

recent years, with a number of stable and accessible librar-

ies providing a wide variety of off-the-shelf implementa-

tions. Many models can be found supporting continuous 

and categorical input and outputs, probabilistic predictions 

and dimensionality reduction. For this project, we are 

working in the Scientific Python
1
 environment with easy 

access to linear and polynomial regression, as well as wide 

range of trainable classifiers and regressors including Na-

ïve Bayes, Decision Tree ensembles, SVM, Gaussian Pro-

cesses and Discriminant Analysis. 

 Model selection is a fundamental problem in any data 

analysis field, far pre-dating AI learning algorithms. 

Whether manual or automatic, it can be viewed as an ex-

haustive search over the quality of results of the available 

models. (Linhart & Zucchini, 1986) formalized this using 

n-fold cross-validation for each model, and (Schafer, 1993) 

applied it specifically to selecting a machine learning clas-

sifier for a given data set. Model parameters can be viewed 

as a recursive extension of that search. Significant work 

has also been done on improving that search by leveraging 

heuristic knowledge about the models (cf. Brodley, 1993) 

and better measuring the fit of a model (cf. Browne & 

Cudeck, 1992; Kohavi, 1995). Model parameter tuning and 

feature selection can be broadly viewed as recursive exten-

sions of that search, and again, considerable work has gone 

into those areas both for general-purpose and model-

specific techniques (cf. Guyon & Elisseeff, 2003; Yu & 

Liu, 2004; Snoek et al., 2012). 

System Description 

Open-World Survival Game 

The game is a click-to-move overhead 2D survival game, 

where the player collects resources from nodes such as 

trees, ponds and rocks that can be used to craft useful items 

such as tools and weapons, as well as structures that pro-

vide benefits such as shelter and storage. Roaming enemies 

(mobs) must be avoided or defeated in combat or else they 

will kill the player. Additional environmental features such 

as thirst, exposure and fire can also end the game. Players 

and autonomous agents are afforded the same set of behav-

iors to choose from, such as selecting a tree to cut down, a 

position to move to, an item to craft or an enemy to attack. 

For experimental purposes, we have a non-interactive Py-

thon build that runs agents either headless or with a mini-

malist visualization. Currently in this build, combat is 

                                                 
1 https://www.scipy.org/about.html 



simply applying periodic damage until one combatant is 

dead or attempts to flee. 

 The game uses a Component-Entity-System architecture 

(Boreal Games, 2013), where all state data is contained in 

plain data arrays. This makes taking snapshots of the world 

state for game traces an easy copy operation. Every agent 

decision creates a behavior component which uses Behav-

ior Tree semantics (Simpson, 2014) including status codes 

RUNNING, SUCCESS and FAILURE. Game traces store 

all behaviors performed by players, agents and mobs. Each 

behavior has formal parameters (the arguments to the be-

havior component constructor) that are assigned to in-

world entity IDs, entity and item type IDs and quantities. 

In this way, standard game architecture enables data col-

lection, in order to minimize extra effort in the game itself. 

The trace also stores snapshots of the game state at the 

beginning and end of each behavior. For reasoning conven-

ience, we can translate between those behavior component 

classes and predicate calculus representations such as (at-
tack 2011 2014).  

 To generate initial data, the game can be played by an 

Exploration Agent that chooses random behaviors to exe-

cute. At any time that no behavior is in progress, the agent 

binds all possible behaviors and randomly selects one. Due 

to the very high branching factor, movement to all possible 

empty locations is not included. Instead, movement to a 

single, random location is included as a possibility. During 

execution of a behavior, the agent may randomly interrupt 

with a certain probability, and select a different behavior. 

The game ends when the goals set for the agent are ful-

filled, the agent dies, or a time limit is reached. 

Fundamental Reasoning Abstractions 

Identifying the right state and action abstractions for each 

task is critical to good performance. This led us to the idea 

of reusable fundamental reasoning abstractions – concepts 

that could be learned, but are both critical to understanding 

and easy to code by hand. The architecture of the hybrid 

system is built on several of these assumed fundamentals: 

there are entities in the world, they have positions, some 

perform behaviors, behaviors take time, behaviors have 

outcomes, and so on. The rest are concept models that ab-

stract details of the world such as gaining an item being 

when something is in an agent’s inventory that was not 

there at a prior state, or the definition of the distance be-

tween two entities. These abstractions are provided to the 

system as simple sets and it is up to the learning process to 

determine where and when they are effective. 

Interaction Graph 

The IGraph is a set of nodes and edges where each node 

abstracts an interaction: a set of behaviors being performed 

together over an interval of time that share at least one en-

tity in their formal argument bindings. This does not mean 

that the behaviors start and end at the same time, only that 

they fully cover the interval of the node. The IGraph repre-

sents transitions between these interaction states. For ex-

ample, as show in Figure 1, the red agent begins by per-

forming a gather behavior targeting the flower bush in part 

(a). Both entities are part of the interaction. The green 

agent then begins to attack the red agent in part (b), joining 

the interaction. This interaction node exists for as long as 

both the green and red agents continue these behaviors and 

no other behaviors are performed involving red, green or 

the bush. From there, the red agent might choose to attack 

the green agent back, as in part (c). This transitions to a 

new interaction node, where the bush is no longer part of 

the interaction. Alternatively, the red agent might choose 

instead to attack innocent passerby blue, who is idle, and is 

part of the interaction node in part (d). Each node in the 

IGraph has a primary agent entity, the point of view of the 

transitions. Each node is unique to the set of behaviors and 

argument bindings in the interaction, so all cases in this 

world where (gathers A B) and (attacks C A) are 

represented by the interaction node in part (b), with red as 

primary. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Example interaction states. 

 Transition edges within the IGraph are of four types, 

relative to the primary agent: 

1) A choice transition involves the primary agent de-
ciding to change the behavior they are performing. A 
choice transition may stochastically lead to more than 
one node, but is initiated as part of the decision pro-
cess. In Figure 1, (b)=>(c) is a choice. 

2) An external interrupt transition involves an entity 
not in the interaction starting an overlapping behavior 
to become part of the interaction in the destination 
node. In Figure 1, (a)=>(b) is an external interrupt. 



3) An internal interrupt transition involves an entity 
in the interaction starting a new behavior, which may 
mean they are or are not part of the destination node. 
A special case of this is the primary agent dying (or 
sleeping, etc) and transitioning to the DEAD node. 

4) A completion transition happens when the primary 
agent behavior completes, with a SUCCESS or 
FAILURE outcome. In this world, limited to one be-
havior per entity, this means that the primary agent 
most likely transitions to a node where the primary 
agent behavior is IDLE. 

 

 The IGraph provides a learnable, inspectable framework 

for generalizing predictions and estimations about what 

can happen in the game world. Formally, each node con-

sists of: 

B: the set of behaviors in the interaction. 

L: a set of entity labels generalizing the entities in B. 

C: a set of choices that have been observed, where 
each choice is a behavior type and bindings to L. 

O: a set of outcome effects observed on completion. 

T: a set of observed interrupt transitions, with bind-
ings to L and open bindings to external entities. 

 

 Predictors (classifiers and regressors), either global to 

the entire graph or specific to each node, are trained to pre-

dict probability-of-death, time-to-completion, and the 

probabilities for each outcome in O, transition in T, and 

transition following from each choice in C. Both interrupts 

and outcomes are treated as independent probabilities for 

simplicity, such that the posterior probability of an out-

come is its estimated probability multiplied by (1.0 - the 

probability that none of the interrupts happen). 

Training the Interaction Graph 

The IGraph is built by playing the game and recording 

game play traces. It can be easily updated and predictors 

re-trained as more data becomes available. A sequence of 

IGraph exemplar nodes is created from a game trace by 

starting with the sequence of behaviors for the primary 

agent entity. The green, orange and blue rectangles repre-

sent behaviors spanning time in Figure 2. Every other be-

havior in the trace is then compared to that sequence, such 

as the purple behavior shown in Figure 2, part (a). If it has 

common entities with the green and orange behaviors, it 

splits the sequence into five nodes, as shown in part (b). As 

shown in parts (c) and (d), if the second purple node has 

overlapping entities only with blue (and not orange), then 

there are still only five nodes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Segmenting trace behaviors into exemplar nodes. 

 Each exemplar sequence is fed into the training IGraph, 

and each exemplar node unifies its behavior signature (the 

behaviors with specific entity bindings) against B(L) from 

the existing graph nodes. If there is a match, the exemplar 

node is added as an exemplar to that node, to be used to 

add choices, outcomes and transitions, and to train the pre-

dictors. Otherwise a new node is created. Choices are easi-

ly identified when the primary agent cancels a still RUN-

NING behavior to start a new one. Outcomes are identified 

for completed behaviors by taking a state delta between the 

world state at the start of the exemplar node s0 and the end 

s1. The delta is taken by applying a generic set of funda-

mental abstractions, which can be expanded and left for the 

system to sift through. For this experiment, the effect mod-

els were: 

obtain(entity_id, item_type_id, ct): the 
specified entity has ct more of the specified item type 
in their inventory in s1 than in s0. 

lose(item_type_id, ct): the specified entity 
has ct more of the specified item type in their invento-
ry. 

die(entity_id): the specified entity, which is a 
decision-making entity (player, agent or mob), exists 
in s0 and not in s1. 

remove(entity_id): the specified entity, which is 
not a decision-making entity, exists in s0 and not in 
s1. 

 

 The outcomes are sets of always co-occurring effects 

observed. For example gathering from a bush might always 

give leaves and flowers (one outcome) but only sometimes 

twigs (another, independent outcome). The exemplars 

stored in the node for the completion cases are marked as 

positive or negative examples for each of the outcomes. 



Those exemplars are also used to train the time-to-

completion predictor. 

 Internal and external interrupt transitions are identified 

from the sequence of exemplars as all those that are not 

choices or completions. Interrupts are mutually exclusive, 

so each exemplar is stored as a positive example of only 

one interrupt transition. The exemplar behavior signature 

for the destination of the transition is compared against the 

source signature to identify open entity bindings in the 

former (e.g. “the entity who attacked”). In generating posi-

tive and negative training data, the open entity bindings are 

bound against each potential entity in the world (with only 

type and range filters). That is, the binding to the entity 

who did attack in the exemplar sequence is a positive, 

while binding to all entities in the completion exemplars 

are negative (i.e. they didn’t attack). Bindings to other enti-

ties in all of the transitions’ exemplars could also be used 

as negative examples, although there will be noise in that. 

These alternative negative exemplar generation strategies 

are one of many settings that the learning process can au-

tomatically search and validate to find the best predictions 

and estimates. 

 Once the available exemplars have been stored in the 

training IGraph, the predictors are trained. For a continu-

ous value such as time-to-completion, a set of regression 

models are automatically evaluated, while for categorical 

values a set of classifiers are automatically evaluated. For 

binary categorical values, regression to probability be-

tween 0 and 1 is also considered. The feature vectors used 

as input to each candidate predictor are based on the be-

havior-specific variables. For example, the gather behavior 

binds an entity actor and an entity target. Behavior varia-

bles are typed, and include entities, types (e.g. wood) and 

quantities. Type ids and quantities are included in the fea-

ture vector as-is. Entities are expanded to include all entity 

attributes – both type-level values such as the movement 

speed of a bear, and instance-level values such as an enti-

ties current health. If a behavior binds two entities, than all 

the relationships with arity 2 are also included. If a behav-

ior binds three entities, than all the relationships with arity 

3 are included, as well as all the pair-wise relationships of 

arity 2 and so on. Global variables such as time of day or 

temperature could be easily included, but have no effect in 

the simulation at this time. The attributes are largely de-

termined by the game engine (e.g. hp, attack speed, aware-

ness distance) while the relationships are another set of 

fundamental reasoning abstractions. Spatial abstractions 

are particularly useful here, such as distance, path distance, 

distance to a path and topological grouping. The training 

process includes all available relationships and uses simple 

dimensionality reduction and verification techniques to 

figure out what is predictive. 

 For a given predictor, a set of learning models are tried. 

The training feature vectors are filtered to remove categor-

ical values if they are not supported, and to bin continuous 

values if they are not supported. Each model is wrapped (if 

necessary) to provide normalization of continuous values 

based on the training data and dimensionality reduction if 

possible. N-fold cross-validation is also wrapped around 

each learning model. Based on the output of the validation, 

the predictors can be compared for effectiveness, and/or 

additional volume of exemplars can be generated by the 

system. An accepted learning model is retrained on the 

entire set, subject to dimensionality reduction, then re-

trained on only the applicable features. 

 Finally, the training IGraph exports itself for run-time 

use, removing exemplars and other unnecessary intermedi-

ate data before saving to disk. 

The Run-Time Interaction Graph Agent 

The run-time agent is assigned to an agent entity in the 

game world and given a set of goals to attempt to reach. 

Importantly, the IGraph does not have to be trained on 

those particular goals (although it should speed up train-

ing). The goals available are determined by the game en-

gine and capable of evaluating against the game state to 

determine when they are met. The agent monitors the game 

state by generating the behavior signature for itself each 

frame. Whenever the signature changes, it retrieves the 

corresponding new node from the IGraph. When in an 

IDLE state, the agent retrieves all choice transitions from 

that state, gets the destination IGraph node, generates valid 

bindings to the entities in the world, and evaluates the re-

sulting candidate states. The evaluation calculates three 

values: expected reward, expected cost and what we refer 

to as concern. The expected reward is a straightforward 

utility calculation of the estimated probability of each out-

come, given completion, by its value to the agent's goals 

and the estimated probability of completion. Likewise, the 

expected cost is simply the estimated time to reach com-

pletion. In considering each candidate choice, the agent 

uses the value ratio, which is the expected reward over the 

expected cost. Concern is an estimate of the risk of death 

(losing) for each choice. The destination node has its own 

predictor for the probability of death in the absence of any 

transition to another node. This is added to the sum of 

dread for each possible interrupt transition out of that state. 

Dread is assigned to each IGraph node during training, 

analogously to reward in standard MDP-based reinforce-

ment learning. Instead of reward for a specific goal, dread 

estimates how much death has come from passing through 

that node. Dread is multiplied by the probability of each 

interrupt transition and added to the concern over death. 

 The candidate choices are sorted according to their value 

ratio and concern. Choices with no value are discarded, as 

a random movement would be preferable. The remaining 

choices are separated into low, medium and high concern 



bins and sorted by value ratio. The highest valued choice in 

the lowest non-empty bin is chosen for execution. 

 For non-IDLE states, the only difference is that the cur-

rent state is also evaluated and sorted with the rest to see if 

the agent should remain in that state. 

Experimental Validation 

The initial testing is focused on its ability to quickly learn 

to play the basic game by playing. For each test, 100 sce-

narios were played by the run-time agent and scored for 

success rate and time to win. Each scenario involves meet-

ing a set of random gathering goals from randomly placed 

resource nodes while avoiding or defeating randomly 

placed mobs. The first test was performed with an empty 

IGraph (0 training games). After each test, the IGraph was 

trained with 50 more training games and tested again, up to 

500. The success rates are shown in Figure 3, and the aver-

age time to success (among the successful runs only) are 

shown in Figure 4. 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Success rate over 100 testing runs after training on 0-

500 random sample runs. 

 

 

 

 

 

 

 

 

 

Figure 3. Average time spent completing the successful runs after 

training on 0-500 random sample runs. 

 As shown in Figure 3, the untrained success rate (ran-

dom behavior) is around 15%. The system very quickly 

improves, although it also flattens out rather quickly. Be-

cause of the transparency of the extracted events, we can 

see that the improvement is due to learning to predict 1) 

which types of resources nodes give which types of items, 

2) the time cost to gather from a given node, and 3) which 

behaviors will directly (i.e. attack) or indirectly (i.e. mov-

ing to close to a patrolling mob) lead into unwinnable 

fights. The stochastic nature of resource drops and fights 

does mean that the system could never be right all the time, 

and the simplicity of these initial scenarios does limit the 

creative responses available to the agent. 

 The average time spent completing the goals is roughly 

stable, although it does increase with more training. To 

clarify, this has nothing to do with processing time, as the 

times are in world clock, which runs on a fixed tick. It is 

possible that since the more trained agents win more often, 

they are winning harder/longer scenarios. The scenarios are 

all short gathering cycles, as we saw no real difference in 

longer or more spread out scenarios except that they took 

longer to process. 

Conclusion and Future Work 

We have proposed a novel knowledge structure, the Inter-

action Graph, which generalizes over interactions between 

entities, presented the implementation details, and done 

initial testing to verify that it can learn the basic game set 

up. The IGraph learns from playing, enables reasoning 

about all known possibilities in the state space and pro-

vides context for task-specific predictors to perform hybrid 

symbolic/statistical reasoning. We have shown that as the 

IGraph is trained, the agent behavior becomes more rea-

sonable in going after the right resource nodes and avoid-

ing detrimental combat. 

 We are continuing to add more features to the game and 

expand the model to handle them, including planning 

ahead (crafting), memory for exploring, more complex 

combat, environmental threats and multi-agent interactions 

(cooperation and antagonism). Along with this incremental 

development will be additional fundamental abstractions. 

A key question we are exploring is how the IGraph will 

scale, particularly at run-time, with the increase in com-

plexity of the game. 

 We have also implemented a real-time Monte-Carlo 

Tree Search component for \focused training, allowing the 

system to "rewind" and try alternative paths to quickly 

refine its predictors. At this time we do not have experi-

mental validation of that system. We also ran a compara-

tive Convolutional Neural Network solution to the basic 

game runs, but performance was so poor that we believe 

there must be an implementation error to fix. 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0 50 100 150 200 250 300 350 400 450 500 

Success Rate 

0 

2 

4 

6 

8 

10 

0 50 100 150 200 250 300 350 400 450 500 

Avg. Time for Successful Runs 



References 

Boreal Games. (2013). Understanding Component-Entity-
Systems. https://www.gamedev.net/articles/programming/general-
and-gameplay-programming/understanding-component-entity-
systems-r3013. Retrieved July 10, 2017. 

Brodley, C. E. (1993). Addressing the selective superiority prob-
lem: Automatic algorithm/model class selection. In Proceedings 
of the tenth international conference on machine learning (pp. 17-
24). 

Browne, M. W., & Cudeck, R. (1992). Alternative ways of as-
sessing model fit. Sociological Methods & Research, 21(2), 230-
258. 

Galway, L., Charles, D. and Black, M. (2008). Machine learning 
in digital games: a survey. Artificial Intelligence Review. Volume 
29, Number 2, 123-161. 

Guyon, I., & Elisseeff, A. (2003). An introduction to variable and 
feature selection. Journal of machine learning research, 3(Mar), 
1157-1182. 

Jaidee, U., & Muñoz-Avila, H. (2012, October). Classq-l: A q-
learning algorithm for adversarial real-time strategy games. In 
Eighth Artificial Intelligence and Interactive Digital Entertain-
ment Conference. 

Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Rein-
forcement learning: A survey. Journal of artificial intelligence 
research, 4, 237-285. 

Kohavi, R. (1995, August). A study of cross-validation and boot-
strap for accuracy estimation and model selection. In Ijcai (Vol. 
14, No. 2, pp. 1137-1145). 

Linhart, H., & Zucchini, W. (1986). Finite sample selection crite-
ria for multinomial models. Statistische Hefte, 27(1), 173-178. 

Micić, A., Arnarsson, D., & Jónsson, V. (2011). Developing 
game AI for the real‐time strategy game StarCraft. Technical 
report, Reykjavik University. 

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., 
Bellemare, M. G., ... & Petersen, S. (2015). Human-level control 
through deep reinforcement learning. Nature, 518(7540), 529-
533. 

Riedl, M., & Stern, A. (2006). Failing believably: Toward drama 
management with autonomous actors in interactive narratives. 
Technologies for Interactive Digital Storytelling and Entertain-
ment, 195-206. 

Schaffer, C. (1993). Selecting a classification method by cross-
validation. Machine Learning, 13(1), 135-143. 

Settles, B. (2012). Active learning. Synthesis Lectures on Artifi-
cial Intelligence and Machine Learning, 6(1), 1-114. 

Shantia, A., Begue, E., & Wiering, M. (2011, July). Connectionist 
reinforcement learning for intelligent unit micro management in 
starcraft. In Neural Networks (IJCNN), The 2011 International 
Joint Conference on (pp. 1794-1801). IEEE. 

Sharma, M., Holmes, M. P., Santamaría, J. C., Irani, A., Isbell Jr, 
C. L., & Ram, A. (2007, January). Transfer Learning in Real-
Time Strategy Games Using Hybrid CBR/RL. In IJCAI (Vol. 7, 
pp. 1041-1046). 

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van 
Den Driessche, G., ... & Dieleman, S. (2016). Mastering the game 
of Go with deep neural networks and tree search. Nature, 
529(7587), 484-489. 

Simpson, C. (2014). Behavior trees for AI: How they work. 
http://www.gamasutra.com/blogs/ChrisSimpson/20140717/22133
9/Behavior_trees_for_AI_How_they_work.php. Retrieved July 
10, 2017. 

Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical bayes-
ian optimization of machine learning algorithms. In Advances in 
neural information processing systems (pp. 2951-2959). 

Synnaeve, G., & Bessiere, P. (2012, September). Special tactics: 
A bayesian approach to tactical decision-making. In Computa-
tional Intelligence and Games (CIG), 2012 IEEE Conference on 
(pp. 409-416). IEEE. 

Wender, S., & Watson, I. (2012, September). Applying rein-
forcement learning to small scale combat in the real-time strategy 
game StarCraft: Broodwar. In Computational Intelligence and 
Games (CIG), 2012 IEEE Conference on (pp. 402-408). IEEE. 

Yu, L., & Liu, H. (2004). Efficient feature selection via analysis 
of relevance and redundancy. Journal of machine learning re-
search, 5(Oct), 1205-1224. 

 
 


