
Self-Assembly of Shapes at Constant Scale using
Repulsive Forces?

Austin Luchsinger∗, Robert Schweller∗, and Tim Wylie∗

*Department of Computer Science
University of Texas - Rio Grande Valley

Edinburg, TX 78539, USA
{austin.luchsinger01,robert.schweller,timothy.wylie}@utrgv.edu

Abstract. The algorithmic self-assembly of shapes has been considered
in several models of self-assembly. For the problem of shape construc-
tion, we consider an extended version of the Two-Handed Tile Assembly
Model (2HAM), which contains positive (attractive) and negative (re-
pulsive) interactions. As a result, portions of an assembly can become
unstable and detach. In this model, we utilize fuel-efficient computation
to perform Turing machine simulations for the construction of the shape.
In this paper, we show how an arbitrary shape can be constructed using
an asymptotically optimal number of distinct tile types (based on the
shape’s Kolmogorov complexity). We achieve this at O(1) scale factor
in this straightforward model, whereas all previous results with sublin-
ear scale factors utilize powerful self-assembly models containing features
such as staging, tile deletion, chemical reaction networks, and tile acti-
vation/deactivation. Furthermore, the computation and construction in
our result only creates constant-size garbage assemblies as a byproduct
of assembling the shape.

1 Introduction

A fundamental question within the field of self-assembly, and perhaps the most
fundamental, is how to efficiently self-assemble general shapes with the smallest
possible set of system monomers. This question has been considered in multiple
models of self-assembly. Soloveichek and Winfree [16] first showed that any shape
S, if scaled up sufficiently, is self-assembled within the abstract tile assembly

model (aTAM) using O(K(S)
logK(S)) tile types, where K(S) denotes the Kolmogorov

or descriptional complexity of shape S with respect to some universal Turing
machine, which matches the lower bound for this problem. This seminal result
presented a concrete connection between the descriptional complexity of a shape
and the efficiency of self-assembling the shape, and represents an elegant example
of the potential connections between algorithmic processes and the self-assembly
of matter. The only drawback with this result is the extremely large scale factor

? This research was supported in part by the National Science Foundation Grant
CCF-1555626.

required by construction: the scale factor to build a shape S is at least linear
in |S|, and is typically far greater in their construction. To lay claim as a true
universal shape building scheme for potential experimental application, a much
smaller scale factor is needed. Unfortunately, example shapes exist (long thin
rectangles for example) which prove that the aTAM cannot build all shapes at

o(|S|) scale in the minimum possible O(K(S)
logK(S)) tile complexity. This motivates

the quest for small scale factors in more powerful self-assembly models.

The next result by Demaine, Patitz, Schweller, and Summers [5] considers
general shape assembly within the staged RNAse self-assembly model. In this
model, system tiles are separated into separate bins and mixed over distinct
stages of the algorithm in a way that models realistic laboratory operations. In
addition, each tile type in this model is of type DNA or RNA, and the staging
permits the addition of an RNAse enzyme at any step in the staging, thereby
dissolving all tiles of type RNA, leaving DNA tiles untouched. By adding the
powerful operations of separate bins, sequential stages, and tile deletion, [5]

achieves general shape construction within optimal O(K(s)
logK(S)) tile complexity

using only a constant number of bins and stages, and only a logarithmic scale
factor. This leap in scale factor reduction constituted a great improvement, but
required a very powerful model with both staging and tile dissolving. In addition,
the holy grail of O(1) scale factor remained elusive.

The next entry into the quest for Kolmogorov optimal shape assembly at
small scale comes from a recent work by Schiefer and Winfree [14]. Schiefer and
Winfree introduce the chemical reaction network tile assembly model (CRN-
TAM) in which chemical reaction networks and abstract tile assembly systems
combine and interact by allowing CRN species to activate and deactivate tiles,
while tile attachments may introduce CRN species. This powerful interaction
allowed the construction of Kolmogorov optimal systems for the assembly of
general shapes at O(1) scale. Although the result provides a great scale factor,
the CRN-TAM constitutes a substantial jump in model complexity and power.

In this paper we study the optimal shape building problem within one of
the simplest, and most well studied models of self-assembly: the two handed tile
assembly model (2HAM), where system monomers are 4-sided tiles with glue
types on each edge. Assembly in the 2HAM proceeds whenever two previously
assembled conglomerations of tiles, or assemblies, collide along matching glue
types whose strength sums to some temperature threshold. Our only addition
to the model is the allowance of negative strength (i.e., repulsive) glues, an
admittedly powerful addition based on recent work [6,9–11,15], but an addition
motivated by biology [12] that maintains the passive nature of the model as
system monomers are static, state-less pieces that simply attract or repulse based
solely on surface chemistry (Figure 1). While the negative glue 2HAM has been
used for works such as fuel-efficient computation [15] and recently universal
shape replication [1], it is also one of the simplest models where the general
shape assembly problem has been considered. Our result is on par with the best
possible result: we show that any connected shape S is self-assembled at O(1)-

scale in the negative glue 2HAM within O(K(S)
logK(S)) tile types, which is met by

a matching lower bound.

Our Approach. We achieve our result by combining the fuel efficient Turing
machine construction published in SODA 2013, [15], with a number of novel
negative glue based gadgets. At a high level, the fuel efficient Turing machine
system extracts a description of a path that walks the pixels of the constant-
scaled shape from a compressed initial binary string. From there, the steps of
the path are translated into walker gadgets which conceptually walk along the
surface of the growing path and eventually deposit an additional pixel in the
specified direction, with the aid of path extension gadgets. When all pixels have
been placed, the path through the shape is filled, resulting in a scaled version of
the original shape.

Additional Related Work. Additional work has considered assembly of
O(1)-scaled shapes by breaking the assembly process up into a number of dis-
tinct stages. In particular, [3] introduce the staged self-assembly model in which
intermediate tile assemblies grow in separate bins and are mixed and split over
a sequence of distinct stages. This approach is applied to achieve O(1)-scaled
shapes with O(1) tiles types, but a large number of bins and stages which en-
code the target shape. In [4] this approach is pushed further to achieve tradeoffs
in terms of bin complexity and stage complexity, while maintaining construction
of a final assembly with no unbonded edges. In [8] similar constant-scale results
are obtained in the step-wise self-assembly model in which tile sets are added
in sequence to a growing seed assembly. Finally, in [17] O(1)-scaled shapes are
assembled with O(1) tile types by simply adjusting the temperature of a given
system over multiple assembly stages. While each of above staged approaches of-
fers important algorithmic insights, the large number of stages required by each
makes the approaches infeasible for large shapes. Furthermore, the system com-
plexity of these systems (which includes the staging algorithms) greatly exceeds
the descriptional complexity of the goal shape in a typical case.

Paper layout. Our construction consists of a number of detailed gadgets
for specific tasks. Presentation is thus organized incrementally to walk through
a version of each gadget (with symmetry there may be multiple). Section 2 gives
the preliminary definitions and background. In Section 3 we provide a high-
level overview of the entire process as a guide for the rest of the paper. Some
of the details of our construction are shown in Section 4 with the construction
gadgets and how to construct a line of the path. Section 5 provides the analysis
of our construction, with the lower bound on tile complexity for shape assembly
presented in Section 6, and details for pushing our construction to achieve a
matching upper bound in Section 7. Then we conclude in Section 8.

2 Definitions and Model

In this section we first define the two-handed tile self-assembly model with both
negative and positive strength glue types. We also formulate the problem of

(a) (b) (c)

Fig. 1: This figure introduces notation for our constructions, as well as a simple
example of negative glues. On each tile, the glue label is presented. Red (shaded)
labels represent negative glues, and the relevant glue strengths for the tiles can
be found in the captions. For caption brevity, for a glue type X we denote
str(X) simply as X (e.g., X +Y = str(X) + str(Y)). In this temperature τ = 1
example, X = 2, Y = 1, Z = 2 and N = −1. (a) The three tile assembly on the
left attaches with the single tile with strength Z + N = 2 − 1 = τ resulting in
the 2× 2 assembly shown in (b). However, this 2× 2 assembly is unstable along
the cut shown by the dotted line, since Y +N = 1− 1 < τ . Then the assembly
is breakable into the assemblies shown in (c).

designing a tile assembly system that constructs a constant-scaled shape given
the optimal description of that shape.

Tiles and Assemblies. A tile is an axis-aligned unit square centered at a
point in Z2, where each edge is labeled by a glue selected from a glue set Π.
A strength function str : Π → N denotes the strength of each glue. Two tiles
equal up to translation have the same type. A positioned shape is any subset of
Z2. A positioned assembly is a set of tiles at unique coordinates in Z2, and the
positioned shape of a positioned assembly A is the set of those coordinates.

For a given positioned assembly Υ , define the bond graph GΥ to be the
weighted grid graph in which each element of Υ is a vertex and the weight of
an edge between tiles is the strength of the matching coincident glues or 0.1 A
positioned assembly C is said to be τ -stable for positive integer τ provided the
bond graph GC has min-cut at least τ , and C is said to be connected if every
pair of vertices in GC has a connecting path using only positive strength edges.

For a positioned assembly A and integer vector v = (v1, v2), let Av denote
the positioned assembly obtained by translating each tile in A by vector v. An
assembly is a translation-free version of a positioned assembly, formally defined
to be a set of all translations Av of a positioned assembly A. An assembly
is τ -stable if and only if its positioned elements are τ -stable. An assembly is
connected if its positioned elements are connected. A shape is the set of all
integer translations for some subset of Z2, and the shape of an assembly A is
defined to be the set of the positioned shapes of all positioned assemblies in A.
The size of either an assembly or shape X, denoted as |X|, refers to the number
of elements of any positioned element of X.

1 Note that only matching glues of the same type contribute a non-zero weight, whereas
non-equal glues always contribute zero weight to the bond graph. Relaxing this
restriction has been considered as well [2].

Breakable Assemblies. An assembly is τ -breakable if it can be cut into two
pieces along a cut whose strength sums to less than τ . Formally, an assembly C
is breakable into assemblies A and B if A and B are connected, and the bond
graph GC′ for some assembly C ′ ∈ C has a cut (A′, B′) for A′ ∈ A and B′ ∈ B
of strength less than τ . We call A and B pieces of the breakable assembly C.

Combinable Assemblies. Two assemblies are τ -combinable provided they
may attach along a border whose strength sums to at least τ . Formally, two
assemblies A and B are τ -combinable into an assembly C provided GC′ for any
C ′ ∈ C has a cut (A′, B′) of strength at least τ for some A′ ∈ A and B′ ∈ B.
We call C a combination of A and B.

Note that A and B may be combinable into an assembly that is not stable
(and thus breakable). This is a key property that is leveraged throughout our
constructions. See Figure 1 for an example. For a system Γ = (T, τ), we say
A →Γ

1 B for assemblies A and B if either A is τ -breakable into pieces that
include B, or A is τ -combinable with some producible assembly to yield B, or
if A = B. Intuitively this means that A may grow into assembly B through one
or fewer combination or break reactions. We define the relation →Γ to be the
transitive closure of →Γ

1 , ie., A →Γ B means that A may grow into B through
a sequence of combination or break reactions.

Producibility and Unique Assembly. A two-handed tile assembly system
(2HAM system) is an ordered pair (T, τ) where T is a set of single tile assemblies,
called the tile set, and τ ∈ N is the temperature. Assembly proceeds by repeated
combination of assembly pairs, or breakage of unstable assemblies, to form new
assemblies starting from the initial tile set. The producible assemblies are those
constructed in this way. Formally:

Definition 1 (2HAM Producibility). For a given 2HAM system Γ = (T, τ),
the set of producible assemblies of Γ , denoted PRODΓ , is defined recursively:

– (Base) T ⊆ PRODΓ
– (Combinations) For any A,B ∈ PRODΓ such that A and B are τ -combinable

into C, then C ∈ PRODΓ .

– (Breaks) For any assembly C ∈ PRODΓ that is τ -breakable into A and B,
then A,B ∈ PRODΓ .

Definition 2 (Terminal Assemblies). A terminal assembly of a 2HAM sys-
tem is a producible assembly that cannot break and cannot combine with any
other producible assembly. Formally, an assembly A ∈ PRODΓ of a 2HAM sys-
tem Γ = (T, τ) is terminal provided A is τ -stable (will not break) and not τ -
combinable with any producible assembly of Γ (will not combine).

Definition 3 (Unique Assembly - with bounded garbage). A 2HAM sys-
tem uniquely produces an assembly A if all producible assemblies have a forward
growth path towards the terminal assembly A, with the possible exception of some
O(1)-sized producible assemblies. Formally, a 2HAM system Γ = (T, τ) uniquely
produces an assembly A provided that A is terminal, and for some constant c for
all B ∈ PRODΓ such that |B| ≥ c , B →Γ A.

Definition 4 (Unique Shape Assembly - with bounded garbage). A
2HAM system uniquely produces a shape S if all producible assemblies have a
forward growth path to a terminal assembly of shape S with the possible exception
of some O(1)-sized producible assemblies. Formally, a 2HAM system Γ = (T, τ)
uniquely assembles a finite shape S if for some constant c for every A ∈ PRODΓ
such that |A| ≥ c, there exists a terminal A′ ∈ PRODΓ of shape S such that
A→Γ A′.

Definition 5 (Kolmogorov Complexity). The Kolmogorov complexity (or
descriptional complexity) of a shape S with respect to some fixed universal Turing
machine U is the smallest bit string such that U outputs a list of exactly the
positions in some translation of shape S when provided the bit string as input.
We denote this value as K(S).

3 Concept/Construction Overview

This section presents a high-level overview of the shape construction process.
First, we will present the conceptual overview, which explains the fundamental
ideas behind our shape self-assembly process. Then, we will show a high-level
look at how our construction implements this process.

3.1 Conceptual Overview

Starting with the Kolmogorov-optimal description of a shape (as a base b string,
b > 2), we simulate a Turing machine which converts any base b string into
its equivalent base 2 representation (Sec. 7) We then simulate another Turing
machine that takes the binary description of a shape, finds a spanning tree for
that shape, and outputs a path around that spanning tree as a set of instructions
(forward, left, right) starting from a beginning node on the perimeter.

A simple depth-first search will find the spanning tree for any shape. Scaling
the shape to scale 2 creates a perimeter path that outlines the spanning tree, and
assembles the shape. Scaling again, this time by a multiple of 3, now allows space
for the perimeter path with an equal-sized space buffer on both sides (Fig. 2).
This buffer is required as it allows sufficient space for our construction gadgets
to “walk” along the perimeter path being built.

Process Overview:

1. Given the Kolmogorov-optimal description of a shape, run a base conversion
Turing machine to get its binary equivalent.

2. Given that binary string, run another Turing machine that outputs the de-
scription of a path around the shape’s spanning tree as a set of instructions
(forward, left, right).

3. Given those instructions, build the path. Our construction begins with a tape
containing this path description for a scale 24 shape.

(a) Non-scaled shape X
with spanning tree.

(b) Shape X at scale 2
with spanning tree.

(c) Shape X at scale 6
with spanning tree.

Fig. 2: The Turing machine calculates a spanning tree of the tiles in the shape
(a), scales the shape in order to allow a path around the spanning tree (b), and
further scales the shape for the gadgets (c).

3.2 Construction Overview

The construction overview begins at step 3 of the conceptual overview, using the
output from step 2. Throughout this paper, we will be referring to this output
as the tape, meaning the fuel-efficient Turing machine tape with path-building
instructions encoded on it. This tape is detailed in Section 4.

Construction Steps Overview:

1. Overlay. The overlay process is the first step in shape construction. Fig-
ure 3a-c shows an abstraction of how the output from step 2 in the concept
overview gets covered during the overlay process. The overlay initiator gad-
get can only attach to a completed tape. This begins a series of cooperative
attachments that will cover the tape. Each bit of information on the tape is
covered by its corresponding overlay piece, and thus is readable on the top
of the overlay. The overlay process is finished once the entire tape is covered.

2. Reading. After the overlay process is complete, information can be ex-
tracted from the tape through the read process (Figs. 3d-f). Information can
only be extracted from the covered leftmost section of the tape if it has not
already been read. When a tape section is read, information is extracted
from the tape and a corresponding information block is created.

3. Information Walking. Once the information block is created, it begins
walking until it reaches the end of the tape/path (Figs. 3g-i). Walking gad-
gets allow the information to travel down the entire path.

4. Path Extension. When an information block cannot travel any further,
the path is extended (Figs. 3j-l). The path can be extended forward, left, or
right. The direction of the path extension is dependent on which information
block is at the end of the path. After the path is extended, the information
block is removed from the path.

5. Tape Reduction. Once information is extracted from the tape and sent
down the path, one tape section is removed (Figs. 3j-l). Only tape sections

(a) Abstract tape (b) Overlay Process (c) Resulting Assem-
bly

(d) Begin Read (e) Continue Read (f) End Read

(g) Begin Walk (h) Continue Walk (i) End Walk

(j) Begin Extend (k) Continue Extend (l) End Extend

(m) Begin Reduction (n) Continue Reduction (o) End Reduction

Fig. 3: (a)-(c) The overlay process covers the tape while making the data readable
on top. (d)-(f) Reading the leftmost piece of data and creating an information
block (depicted in green). (g)-(i) Information Walking on the path to the end
where the information is used. (j)-(l) When the information block reaches the end
of the path, the block triggers a Path Extension. (m)-(o) Once the information
has been read, Tape Reduction removes that piece of the tape.

that have been read are removed, which then allows the next section to be
read. This process continues until every section of the tape is read/removed.

6. Repeat. Repeat the tape read, information walk, path extend, and tape
reduction processes until all path instructions have been read (Figs. 4a-c).

7. Path Filling. The final tape section that gets read begins the shape fill
process (Figs. 4d-f). In this process, the path is padded with tiles which fill
it in and results in the final shape.

4 Construction Details

In this section, we detail the steps presented in the construction overview (Sec. 3.2).
This is the process by which information is read from the tape and portions of
the path are assembled.

We will also cover the gadgets required for each step, and review the tape
construction from the fuel-efficient Turing machine used in [15]. This construc-
tion uses pre-constructed assemblies called gadgets. These gadgets are designed

(a) Early Path
Construction

(b) Intermediate Path
Construction

(c) Final Path
Construction

(d) Begin Fill (e) Continue Fill (f) End Fill

Fig. 4: (a)-(c) The process is repeated until all information has been
read/removed from the tape. (d)-(f) The final step is Path Filling the shape.

(a)

(b) (c) (d)

Fig. 5: (a) A completed tape consisting of all forward instructions. (b) Overlay
Initiator gadget attaching to tape. (c-d) Overlay fillers begin covering all tape
sections from right to left.

to work in a temperature τ = 10 system. In our figures, a perpendicular black
line through the middle of the edge of two adjacent tiles indicates a unique
2τ = 20 strength bond2. Each gadget provides a different function to the shape
creation process.

Turing Machine Tape. A detailed look at a fuel-efficient Turing machine tape
is seen in Figure 5a. Notice each tape section has a pair of tiles on top of it
where the information is stored. When talking about the tape from Section 3.2,
each pair of dark grey tiles on top of the tape sections represents a piece of
information describing the path.

2 The strongest detaching force used in our construction is a τ strength detachment,
and since the internal bonds of our gadgets are meant to withstand even the strongest
repulsive force, it follows that those bonds must be of strength at least 2τ .

(a) (b) (c)

Fig. 6: (a) The Read Gadget attaches (n + T + F = 2 + 7 + 1 ≥ τ). In (b)
the first form of an information block attaches (F + F + J2 = 1 + 1 + 8 ≥ τ).
Since the forward version of the read gadget was used, the forward information
block is placed. After the information block is placed, the penultimate read-
helper attaches (A2 +A2 +O1 = 2 + 2 + 7 ≥ τ). (c) After all read helpers have
attached, the read gadget becomes unstable (F + F + M + n + T + F + Q =
1 + 1 + 1 + 2 + 7 + 1− 7 ≤ τ).

The Overlay Initiator Gadget attaches to the end of the completed tape, and
begins the overlay process (Fig. 5b-d). Each bit of information on the tape is
covered by a corresponding overlay section, allowing the information to be read
on top of the overlay. This process continues, section by section, until the entire
tape is covered. Once finished, the overlay layer will act as an interface, allowing
the gadgets to use the information on the tape.

Read. The read gadget is required for “reading” the Turing machine tape. Essen-
tially, this gadget extracts the information that is relayed from the tape through
the overlay blocks. The read process (Fig. 6a-c) can only begin if the leftmost
tape section has not previously been read. Once attached, the gadget allows
the attachment of an information block (corresponding to the information being
read) that will be used to carry the build instructions through the rest of our
construction. Once the information block is present, the remaining read-helpers
can attach. The final helper destabilizes the read gadget, allowing it to fall off
and expose the newly attached information block. The read gadget was designed
to produce this information block, alter the tape section that is being read (mak-
ing it unreadable), and then detach from the assembly. This design ensures that
each tape section is only read once, and allows us to transfer the instructions to
other locations in our construction via the walking gadgets.

Information Walking. The walking gadgets begin the information walking
process (Fig. 7), which allows instructions to travel throughout our construction.
After a tape section has been read and an information block has been placed,
a walking gadget can attach. Once attached, the walking gadget allows a new
information block (of the same type) to attach, while also detaching the the
previous information block. Notice that this detachment will always be O(1)
size. After the previous information is removed, the walking gadget detaches as
well, allowing the new info block to interact with other gadgets. Thus, the same
information has traveled from the tape, through the overlay, and is now traveling
along the tape. This process is repeated until the information has traveled to the

(a) (b) (c)

Fig. 7: (a) A Walking Gadget (specific to the information block) attaches to the
overlay and the information block (F +F +J1 = 1+1+8 ≥ τ). (b) The negative
interaction between theD glues destabilizes the old information block, along with
the two walking-helpers (J2 +A2 +A2 +F +F +D = 8 + 2 + 2 + 1 + 1−7 ≤ τ).
Notice that two helpers remain attached to the tape, as they will be used later
in the construction. (c) Once the second walking-helper is attached, the walking
gadget becomes unstable (F +O2 + J1 +D = 1 + 7 + 8− 7 ≤ τ).

(a) (b) (c)

Fig. 8: (a) The forward-extension gadget attaches to the information block and
Turing tape (B+C+F +p = 3+4+1+2 ≥ τ). (b) The second extension-helper
comes with the negative D glue that causes targeted destabilization (X + p +
J1 + X + D = 2 + 2 + 8 + 2 − 7 ≤ τ). The extension gadget and its helpers,
along with the information block and its helpers are no longer stable along their
tape-overlay edges. (c) The final result is a one path-pixel extension of the path.

end of the path, at which point it is used to construct the next path portion. This
method is desirable because it does not allow duplicate readable instructions to
be attached to the path at any time.

Path Extension. After the information block has reached the end of the path,
a path extension gadget can attach to the assembly. Once attached, the gadget
allows the path extension process (Fig. 8) to begin, which extends the path
in a given direction (forward, left, or right) based on the instruction carried
by the information block. The extension gadget “reads” the information block,
and then extends the path in the given direction. Afterwards, the extension
helpers destabilize the information block and extension gadget, causing a O(1)
sized detachment. We designed the extension gadget to essentially replace an
instruction block with a corresponding path portion. This design allows us to
attach a O(1) sized path portion for each instruction read from the tape.

Tape Reduction. After a tape section has been read, we no longer need it.
Instead of continuing to grow the assembly, we can remove O(1) size portions of
the tape as it is being read. This is where the tape reduction gadget initiates the

(a) (b) (c)

Fig. 9: (a) The tape reduction gadget attaches to the read-helpers (A2 + U =
2 + 8 ≥ τ). (b) Filler tiles attach (s + s = 8 + 8 ≥ τ), and create a strong
bond to the tape reduction gadget. (c) The two negative o glues cause a strong
targeted destabilization of the previously read tape section (e+u1+u2+o+o =
3 + 8 + 8− 5− 5 ≤ τ).

tape reduction process (Fig. 9) mentioned in Section 3.2. The attachments left
behind by the read/walk processes allow the tape reduction gadget to attach to
a tape section that has already been read. The gadget then removes itself, along
with the previously read tape section, exposing the next section of the tape for
reading. This technique is desirable because it allows us to break apart the tape
into O(1) sized pieces as we use it. As the tape is reduced, the path continues to
grow until there are no more tape sections to be read.

Due to page constraints, some of the construction details have been omitted
(such as turning and filling). For complete details, please see the arXiv version
of this paper [7].

5 Constant Scaled Shapes

In this section, we formally state the results based on our construction.

Theorem 1. For any finite connected shape S, there exists a 2HAM system
Γ = (TS , 10) that uniquely produces S (with O(1) size bounded garbage) at a

O(1) scale factor, and |TS | = O(K(S)
logK(S)).

Proof. We show this by constructing a 2HAM system Γ = (TS , 10). One portion
of TS consists of the tile types which assemble a higher base Kolmogorov-optimal

description of S (Section 7). This portion of TS consists of O(K(S)
logK(S)) tile types,

as analyzed in Section 7. Another portion of TS consists of the tile types needed
to assemble a fuel-efficient Turing machine, as described by [15], that performs

a simple base conversion to binary using O(K(S)
logK(S)) tile types, as analyzed in

Section 7. The next portion of TS consists of the tile types required to assemble
another fuel-efficient Turing machine that finds and outputs the description of a
path around the spanning tree of S. This Turing machine is of O(1) size, and thus
adds O(1) tile types using the method from [15]. The final portion of TS consists
of the tile types that construct the gadgets and assemblies shown in Section 4.
With the number of tile types used for computing the path description and for

our construction process being O(1), our final tile complexity is O(K(S)
logK(S)).

Now, consider assembly A to be the fully constructed tape assembly (Sec-
tion 4) encoded with path-building instructions specific to S. Also, suppose as-
sembly B is some terminal assembly that has shape S at a constant scale factor.

Note that Γ follows the process detailed in Section 4. This system was de-
signed so that two assemblies are combinable only if at least one of those assem-
blies is at most a constant size (70 tiles), and every breakable assembly can only
break into two subassemblies if one of those assemblies is at most another con-
stant size (118 tiles). In our construction, the only non-constant size assemblies
are A, B, or some intermediate assembly that consists of some portion of the
tape, and some partially assembled section of the final shape. Of these, B is the
only terminal assembly.

While A and the intermediate assemblies continue engaging in a series of
attachments and detachments, the tape continues to get smaller and the path
continues to grow. The attachment and detachment of O(1) size pieces with
these assemblies will continue until we reach the terminal assembly B, at which
time A will have been disassembled into smaller constant garbage. Therefore, we
see that A→Γ B.

6 Lower Bound

Here we present a brief argument for the lower bound of Ω(K(S)
logK(S)) on the tile

types needed to assemble a scaling of a shape S. This argument is essentially
the same as what is presented in [2, 13, 16], and we refer the reader there for a
more detailed explanation.

Theorem 2. The tile complexity in the 2HAM for self-assembling a scale-c ver-

sion of a shape S at constant temperature and constant garbage is Ω(K(S)
logK(S)).

Proof. Note that a 2HAM system Γ = (T, τ = O(1)) can be uniquely represented
with a string of O(|T | log |T |) bits. In particular, each tile may be encoded as a
list of its 4 glues, and each glue may be represented by a O(log |T |)-bit string
taken from an indexing of the maximum possible 4|T | distinct glue types of
the system. The constant bounded temperature incurs an additional additive
constant. Given this representation, consider a 2HAM simulation program that
inputs a 2HAM system, and outputs the positions of any uniquely produced
scale-c shape (with up to O(1) garbage), if one exists. This simulator, along
with the O(|T | log |T |) bit encoding of a system Γ which assembles S at scale c,
constitute a program which outputs the positions of S, and is thus lower bounded
in bits by K(S). Therefore K(S) ≤ d|T | log |T | for some constant d, implying

|T | = Ω(K(S)
logK(S)).

7 Extension to K(S)

logK(S)

The starting assembly for our shape construction algorithm is the tape assembly
from [15] with a binary string as its value. For a binary string A = a0 . . . ak−1,
such an assembly can be constructed in a straightforward manner using O(k)

tile types (simply place a distinct tile for each position in the assembly, for
example). However, by using a base conversion trick, we can take advantage of
the fact that each tile type is asymptotically capable of representing slightly
more than 1 bit in order to build the string in O(k/ log k) tile types. To achieve
this, first we consider the base-b representation B = b0 . . . bd−1 of the string A
for some higher base b > 2. Note that the number of digits of this string is
d ≤ d k

blog2 bc
e = O(k

log b). We are able to assemble this shorter string (by brute

force with distinct tile types at each position) with only O(d) tile types.

Next, we consider a Turing machine which converts any base b string into
its equivalent base 2 representation. Such a Turing machine can be constructed
using O(b) transition rules. Therefore, we can apply the result of [15] to run
this Turing machine on the initial tape assembly representing string B to obtain
string A. The cost of this construction in total is O(d) tiles to construct the
initial tape assembly, plus O(b) tiles to implement the rules of the conversion
Turing machine3, for a total of O(d+ b) tiles.

Finally, we select b = d k
log k e = O(k

log k), which yields d = O(k
log k−log log k) =

O(k
log k), implying that the entire tile cost of setting up the initial tape assembly

representing binary string B is O(b + d) = O(k
log k) tile types. In our case k =

O(K(S)) where K(S) denotes the Kolmogorov complexity of shape S for some
given universal Turing machine, and so we achieve our final tile complexity of

O(K(S)
logK(S)).

8 Conclusion

In this work, we considered the optimal shape building problem in the neg-
ative glue 2-handed assembly model, and provided a system that allows the
self-assembly of general shapes at scale 24. Shape construction has been studied
in more powerful self-assembly models such as the staged RNA assembly model
and the chemical reaction network-controlled tile assembly model. However, our
result constitutes the first example of optimal general shape construction at con-
stant scale in a passive model of self-assembly where no outside experimenter
intervention is required, and system monomers are state-less, static pieces which
interact solely based on the attraction and repulsion of surface chemistry.

Our work opens up a number of directions for future work. We have not
considered a runtime model for this construction, so analyzing and improving the
running time for constant-scaled shape self-assembly in the 2-handed assembly
is one open direction. Another is determining the lowest necessary temperature
and glue strengths needed for O(1) scale shape construction. We use temperature
value 10 for the sake of clarity, and have not attempted to optimize this value.

3 The formal theorem statement of [15] cites the product of the states and symbols of
the Turing machine as the tile type cost. However, the actual cost is the number of
transition rules, which is upper bounded by this product.

References

1. Chalk, C., Demiane, E.D., Demaine, M.L., Martinez, E., Schweller, R., Vega, L.,
Wylie, T.: Universal shape replicators via self-assembly with attractive and re-
pulsive forces. In: Proc. of the 28th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA’17) (2017)

2. Cheng, Q., Aggarwal, G., Goldwasser, M.H., Kao, M.Y., Schweller, R.T., de Es-
panés, P.M.: Complexities for generalized models of self-assembly. SIAM Journal
on Computing 34, 1493–1515 (2005)

3. Demaine, E.D., Demaine, M.L., Fekete, S.P., Ishaque, M., Rafalin, E., Schweller,
R.T., Souvaine, D.L.: Staged self-assembly: nanomanufacture of arbitrary shapes
with O(1) glues. Natural Computing 7(3), 347–370 (2008)

4. Demaine, E.D., Fekete, S.P., Scheffer, C., Schmidt, A.: New geometric algorithms
for fully connected staged self-assembly. In: DNA Computing and Molecular Pro-
gramming, Lecture Notes in Computer Science, vol. 9211, pp. 104–116 (2015)

5. Demaine, E.D., Patitz, M.J., Schweller, R.T., Summers, S.M.: Self-assembly of
arbitrary shapes using rnase enzymes: Meeting the kolmogorov bound with small
scale factor (extended abstract). In: Proc. of the 28th International Symposium on
Theoretical Aspects of Computer Science (STACS’11) (2011)

6. Doty, D., Kari, L., Masson, B.: Negative interactions in irreversible self-assembly.
Algorithmica 66(1), 153–172 (2013)

7. Luchsinger, A., Schweller, R., Wylie, T.: Self-assembly of shapes at constant scale
using repulsive forces (2016), arXiv1608.04791

8. Mauch, J., Stacho, L., Stoll, C.: Step-wise tile assembly with a constant number
of tile types. Natural Computing 11(3), 535–550 (2012)

9. Patitz, M.J., Rogers, T.A., Schweller, R., Summers, S.M., Winslow, A.: Resiliency
to multiple nucleation in temperature-1 self-assembly. In: DNA Computing and
Molecular Programming. Springer International Publishing (2016)

10. Patitz, M.J., Schweller, R.T., Summers, S.M.: Exact shapes and turing universality
at temperature 1 with a single negative glue. In: DNA Computing and Molecular
Programming, LNCS, vol. 6937, pp. 175–189 (2011)

11. Reif, J.H., Sahu, S., Yin, P.: Complexity of graph self-assembly in accretive systems
and self-destructible systems. Theoretical Comp. Sci. 412(17), 1592–1605 (2011)

12. Rothemund, P.W.K.: Using lateral capillary forces to compute by self-assembly.
Proceedings of the National Academy of Sciences 97(3), 984–989 (2000)

13. Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled
squares (extended abstract). In: Proc. of the 32nd ACM Sym. on Theory of Com-
puting. pp. 459–468. STOC’00 (2000)

14. Schiefer, N., Winfree, E.: Universal Computation and Optimal Construction in the
Chemical Reaction Network-Controlled Tile Assembly Model, pp. 34–54. Springer
International Publishing, Cham (2015)

15. Schweller, R., Sherman, M.: Fuel efficient computation in passive self-assembly. In:
SODA 2013: Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete
Algorithms. pp. 1513–1525. SIAM (2013)

16. Soloveichik, D., Winfree, E.: Complexity of self-assembled shapes. SIAM Journal
on Computing 36(6), 1544–1569 (2007)

17. Summers, S.M.: Reducing tile complexity for the self-assembly of scaled shapes
through temperature programming. Algorithmica 63(1), 117–136 (2012)

	Self-Assembly of Shapes at Constant Scale using Repulsive Forces

