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Abstract—The widespread of smart devices along with the 

exponential growth of virtual societies yield big digital image 

databases. These databases can be counter-productive if they are 

not coupled with efficient Content-Based Image Retrieval (CBIR) 

tools. The last decade has witnessed the introduction of 

promising CBIR systems and promoted applications in various 

fields. In this article, a survey on state of the art content based 

image retrieval including empirical and theoretical work is 

proposed. This work also includes publications that cover 

research aspects relevant to CBIR area. Namely, unsupervised 

and supervised learning and fusion techniques along with low-

level image visual descriptors have been reported. Moreover, 

challenges and applications that emerged to support CBIR 

research have been discussed in this work. 
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I. INTRODUCTION 

The importance of digital image databases depends on how 
friendly and accurately users can retrieve images of interest. 
Therefore, advanced search and retrieval tools have been 
perceived as an urgent need for various image retrieval 
applications. The earliest search engines have adopted text-
based image retrieval approaches. These solutions have shown 
drastic limitations because digital images to be mined are either 
not labelled or annotated using inaccurate keywords. In other 
words, text-based retrieval approaches necessitate manual 
annotation of the whole image collections. However, this 
tedious manual task is not feasible for large image databases. 

Content-Based Image Retrieval (CBIR) emerged as a 
promising substitute to surpass the challenges met by text-
based image retrieval solutions. In fact, digital images, which 
are mined using CBIR system, are represented using a set of 
visual features. As illustrated in Figure 1, typical CBIR system 
consists of an offline phase which aims at extracting and 
storing the visual feature vectors from the database images. On 
the other hand, the online phase allows the user to start the 
retrieval task by providing his query image. Finally, typical 
CBIR system returns a set of images visually relevant to the 
user query. However, its main drawback consists in the 
assumption that the visual similarity reflects the semantic 
resemblance. This assumption does not hold because of the 
semantic gap [1] between the higher level meaning and the 
low-level visual features. 

Despite the promising results achieved by large-scale 
applications, such as Yahoo! and Google TM, bridging the 
semantic gap remains a challenging task for CBIR researchers. 
Also, social network usage, along with the widespread of low 
cost smart devices, has re-boosted the research related to image 

retrieval. This represented a paradigm shift in the research aims 
of the new generation of CBIR researchers. Image 
representation, feature extraction and similarity computation 
also as a critical component of typical CBIR systems. More 
specifically, in order to design successful CBIR system, 
researchers investigated various contributions for these 
components [15, 16, 17]. Comprehensive surveys on CBIR 
systems have been proposed to report the progress reached by 
the research community [1, 3, 4, 5, 6, 7]. Other surveys have 
been elaborated on highly relevant topics to CBIR systems. 
Namely, researches on high-dimensional data indexing [11], 
relevance feedback [10], and medical application of CBIR [13, 
14] have been surveyed. 

 
Fig. 1. Overview of typical CBIR system. 

The continuous growth of associated research spanning 
several domains during the last decade and the increase in the 
number of researchers investigating CBIR are the main 
motivations of this survey. This article fully surveys, 
investigates and appraises state of the art research and future 
facet of CBIR systems. The rest of this article is organised as 
follows: Section 2 focuses on state of the art methods used to 
bridge down the „semantic gap‟. Low-level features proposed 
to capture high-level query semantic are outlined in Section 3. 
In Section 4, CBIR recent challenges and applications are 
addressed. Emerging research issues related to CBIR systems 
are introduced in Section 5. Finally, Section 6 concludes the 
survey. 

II. BRIDGING THE SEMANTIC GAP 

Researcher contributions to bridge the semantic gap can be 
categorised into different manner based on the adopted angle of 
view. In particular, if one takes into consideration the 
application domain, the state of the art techniques can be 
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perceived as those focusing on scenery image retrieval [18, 19, 
20], web images retrieval [21, 22], artwork image retrieval 
[23], etc. This article spotlights on the approaches used to 
develop high level semantic based CBIR. These approaches are 
grouped into: (i) Approaches based on supervised or 
unsupervised learning techniques to learn the association 
between low level descriptors and query semantics, and (ii) 
Fusion based image retrieval approaches. 

A. Supervised and Unsupervised Learning 

Over the last decade, researches have confirmed the 
limitations of single similarity measure to yield perceptually 
meaningful and robust image ranking. Learning based 
solutions have been proposed as promising an alternative to 
overcome this weakness. In particular, image 
categorization/classification has been designed as a pre-
processing phase to speed up image retrieval from the large 
collection [76, 77]. Equivalently, unsupervised learning has 
been adapted to speedup retrieval process and enhances 
visualization performance when the images are not labelled or 
annotated [13, 14]. More specifically, the clustering phase can 
be represented as early retrieval stage hat aims to handle 
unstructured image collections. On the other hand, 
classification techniques, along with the distance measurement, 
form the core of the retrieval process. 

Recently, remarkable contributions have been proposed for 
unsupervised learning and supervised learning techniques and 
their application in various domains. This work focuses on 
novel approaches and applications dealing with content based 
image retrieval and closely related topics. The earlier efforts 
were focused on similarity measures and feature extraction 
components. Clustering and fast classification components 
have been promoted as practical hacks to overcome the 
scalability problem due to the continuous exponential growth 
of digital image databases. Clustering can be defined as the 
process of partitioning patterns into homogeneous categories in 
an unsupervised manner. It consists in dividing a collection of 
unlabelled data instances into groups such that instances 
belonging to different groups are as dissimilar as possible, and 
instances assigned to the same group are as similar as possible. 
Clustering aims to improve retrieval and visualization 
capability of typical image retrieval systems. One should 
mention that the performance of such retrieval systems is still 
affected by traditional challenges such as cluster conformity to 
the ground truth partition and visualization accuracy. 

In [35], the authors suggested various taxonomies of 
clustering methods. Partitional clustering relies on hard or 
fuzzy objective function optimization. For hard clustering, 
binary membership value is assigned to each data instance 
whether it belongs or not to a cluster. Since clusters are rarely 
completely separated and are usually overlapping in real world 
applications, the use of crisp logic to describe the data is not 
appropriate to distinguish between instances laying on the 
overlapping boundaries. On the other hand, fuzzy logic allows 
the gradual evaluation of the membership of instances within a 
group/cluster. The Fuzzy C-Means (FCM) algorithm [36] is a 
popular fuzzy clustering algorithm. Multiple FCM based 
contributions have been reported along with different 
applications [37, 38]. However, these FCM based algorithms 
fail to discover the ground truth distribution of the data when it 

contains asymmetric clusters and may yield non-optimal 
results. Probabilistic modelling is another alternative to fuzzy 
clustering. More specifically, mixture modelling based 
approaches in [80] rely on the assumption that instances in a 
given cluster are inherited from one of the multiple 
distributions, and aim at estimating the parameters of these 
distributions. Recently, in [39], the authors proposed to let data 
instances, belonging to different clusters, to be issued from 
various density functions. Such clustering techniques can be 
roughly categorised into three paradigms: statistical modelling, 
relational and objective function based paradigm. 

Statistical modelling based clustering considers each 
cluster/category as a restrictively distributed pattern. Thus, the 
overall dataset is modelled as distribution mixture. The 
Expectation Maximization algorithm [40] is usually used to 
estimate the parameters of the mixture 
components/distributions corresponding to the cluster 
properties. The main appealing advantage of this mixture 
modelling approach is the information it provides on the data 
densities along with the final clustering partition [41]. Note that 
mixture components are not necessarily modelled as 
multivariate distribution. For instance, in [42], the authors 
intended to cluster image regions by characterizing each cluster 
using a 2-Dimensional HMM. However, if no probability 
measure is set-up to model a category/cluster, a mixture 
modelling can be achieved by grouping data instances and 
representing each cluster in a different similarity preserving 
space [43]. Typically, this approach represents the dataset for a 
more accurate classification rather than clustering it. In 
particular, applications such as remotely sensed image 
recognition, medical image classification, and automatic image 
annotation exploit this approach along with specified image 
collections with labelled training instances [71]. On the other 
hand, for relational approaches (pairwise distance based 
approaches) the mathematical representation of the data points 
is not critical [81]. This makes them widely applicable and 
appealing for various image based applications such as image 
retrieval which requires complex formulation of image 
signatures. However, the computation of the pairwise distances 
between data instances makes the relational methods timely 
expensive. In [44], the authors proposed a spectral clustering 
algorithm [78] to group similar images into homogeneous 
clusters and use the obtained partition information to enhance 
the retrieval process. More specifically, given the query image, 
clusters are learned in an unsupervised manner in order to 
enhance the retrieval accuracy. Objective function optimization 
is another traditional unsupervised learning technique. For 
instance, the popular K-means algorithm [72] minimizes the 
sum of the intra cluster distances. Notice that a major drawback 
of K-means is that the number of clusters has to be specified a 
priori. 

A natural alternative to overcome this limitation consists in 
gradually increasing the number of clusters until the average 
distance between an instance and its corresponding cluster 
centre reaches a predefined threshold. The competitive 
agglomeration algorithm is a more advanced alternative to 
finding the number of image clusters [45]. From an application 
point of view, researchers from the multimedia community 
dedicated more attention for Web image clustering. In fact, the 
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unsupervised learning (clustering) techniques are valuable 
when meta-data is collected/extracted in addition to visual 
descriptors [33, 34, 37]. Unsupervised learning usually serves 
to recognize new images and assign them to some predefined 
categories before proceeding with the retrieval phase. 
Similarly, classification techniques can be grouped into two 
main categories. The first one contains the generative 
modelling based approaches. The second category regroups the 
discriminative modelling approaches such as decision trees and 
SVM classifiers where the class boundaries and the posterior 
probabilities are learned. The generative modelling uses Bayes 
formula along with the densities of data instances within each 
class to estimate the posterior probabilities. The researchers in 
[46] adopted Bayesian classification to propose an image 
retrieval system. Similarly, researchers in [26] used Bayesian 
classification in their proposed image retrieval approach. Their 
system aimed to capture high-level concepts of natural scenes 
using low-level features. Images were then automatically 
classified into outdoor or indoor images. Similarly, in [134] 
Bayesian network was adopted for indoor/outdoor image 
classification. Besides, image classification using SVM as 
supervised learning technique has been proposed in [47]. 
Recently, advanced multimedia query processing systems 
using SVM based MIL framework has been proposed in [48, 
49]. MIL framework considers l training images as labelled 
bags  where the bag   includes a set of instances represents a 
region i extracted from a training image i, and   indicates a 
positive or negative example for a given class value. The 
mapping of these bags to a new feature space, where 
supervised learning technique can be trained to classify 
unlabelled instances, is the key component of MIL. An image 
classification system has been proposed in [50] as a key 
component of an image retrieval system. Such classification 
techniques along with new information theory based clustering 
have boosted the integration of clustering and classification 
components into typical image retrieval systems. Different 
supervised learning techniques, such as neural network, were 
also considered for high-level concept learning. Specifically, in 
[19], the authors used 11 concepts. Namely, they considered 
water, fur, cloud, ice, grass, rock, road, sand, tree, skin, and 
brick. A large training set including low-level region 
descriptors is then used as input for neural network classifier. 
This aims to learn the association between high-level semantic 
(concept labels) and low-level descriptors. The main limitation 
of this approach is its high computational cost and the 
relatively large data required for training. Besides these 
learning techniques, decision trees methods such as ID3, C4.5 
and CART are used to predict high-level categories [160]. In 
particular, the authors in [24] used CART algorithm to derive 
decision rules that associate image colour features to keywords 
such as Marine, Sunset, and Nocturne. In [161], a two-class 
(relevant and irrelevant) categorization model is solved using a 
C4.5 decision tree. Despite their robustness to noise and 
handling of missing data, decision trees exhibit a lack of 
modularity. 

B. Multimodal Fusion and Retrieval 

The last decade has witnessed the proposal of various 
image retrieval approaches [82, 83, 84, 95, 13] which mainly 
rely on image and text modalities. One should notice that 
solutions for multimedia and speech retrieval have also been 

proposed. This work focuses on image retrieval using text and 
image modalities only. In particular, it highlights the 
aggregation of these two modalities to enhance the retrieval 
accuracy. In other words, it considers this fusion as a typical 
technique that contributes considerably to the enhancement of 
the retrieval results. In fact, combining two query modalities 
can be counter-productive. In such scenario, query fusion aims 
at learning the optimal model to aggregate the different 
modalities. Recently, researchers have proposed some fusion 
techniques and applied them to image retrieval and image 
annotation systems [51]. In the following, a survey on multi-
modal fusion techniques related to image retrieval application 
is outlined. Traditional fusion approach is intended to learn 
optimal rules to fuse multiple classifier outputs (decisions). 
This process requires some ground truth data to validate the 
obtained rules [89, 90]. Unlike this late fusion approach, 
another fusion alternative relies on the re-training of individual 
classifiers in order to optimize the fusion rule. For instance, the 
authors in [74] formulate the multi-modal fusion as two fold 
problem. Statistical modelling of the modalities represents the 
first fold. The second one consists of learning the optimal 
combination in an unsupervised manner. This fusion learning 
approach proved to be more effective than naive fusion for 
image retrieval [52]. Moreover, the fusion learning is 
performed offline which makes its application computationally 
inexpensive. This boosted the usage of modality fusion in 
retrieval related applications. However, over-fitting remains a 
considerable challenge for fusion learning. Thus, bagging [75] 
has been used to re-sample the data and prevent/reduce over-
fitting. Despite these efforts, including fusion learning as the 
main component of image retrieval system represents a 
relatively new research area for pattern recognition and image 
processing researchers [86, 87, 88]. It is expected that it will 
boost research for various applications based on modalities and 
medias such as video, audio and text. In other words, future 
challenges are to fuse, in an efficient manner, as many 
information modalities as possible to overcome real world 
problems. 

Local and global are the main approaches for combining 
diverse learners. Global approach assigns an average 
confidence degree to each learner based on the training set. On 
the other hand, local approach dedicates a confidence degree to 
the subspaces of the training set. This assumes that more 
accurate classification performance can be achieved using 
optimal data-based weights. During the training stage, an 
unsupervised grouping of the input data instances into 
homogeneous clusters is mandatory for local fusion approach. 
For supervised learning, unlabelled instances get appointed to 
regions, and the expert learner corresponding to this regions 
yield the fusion decision. Dynamic data classification during 
the testing stage is outlined in [143, 144, 145]. The classifier 
accuracies are obtained using sample vicinity in the feature 
space local regions. The most accurate classifier is then used to 
classify test samples. The Context-Dependent Fusion (CDF) in 
[145] is a local fusion approach that first groups the training 
samples into homogeneous context clusters. These clustering 
and local expert model selection phases are sequentially 
independent components of CDF. The authors in [146] 
proposed a generic context-dependent fusion approach which 
categorizes the feature space and combines the outputs of the 
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individual expert models simultaneously. Simple linear 
aggregation is used to predict aggregation weights for the 
individual classifier models. However, these weights may fail 
to reflect the integration between the individual learners. The 
researchers in [147] used clustering and feature selection to 
determine the most accurate classifier.  

More specifically, the unsupervised clustering of the 
training samples aims to discover the fusion decision regions. 
Next, the highest-performance classifiers on each local region 
of the feature space are selected. The principal limitation of 
this work one classifier only is appointed for each region. In 
[148], another clustering and selection approach was proposed 
to partition the training samples into correctly and incorrectly 
classified samples. In fact, the feature space is partitioned by 
grouping the training samples. Then, the most accurate 
classifier in the test sample vicinity is appointed in order to 
provide the fusion decision. This makes this approach more 
computationally efficient than the approach in [147]. Recently, 
in [149, 150], a local fusion approach that partitions the data 
instances into homogeneous groups using their low-level 
features was proposed. Notice that the resulting clusters are 
used to aggregate the individual classifier decisions. In fact, 
aggregation weights are assigned to each individual classifier 
within each context. These weights reflect the relative accuracy 
of the classifiers within the different contexts. In order to 
address the sensitivity of this approach to noise and outliers, 
the researchers in [151] proposed a possibilistic approach that 
adapts the fusion technique to sub-regions of the feature space. 
The proposed clustering algorithm produces possibilistic 
memberships reflecting the typicality of data instances in order 
to reduce noise point impact. Then, expert learners are 
appointed to the resulting clusters. Notice that the aggregation 
weights are learned simultaneously for all classifiers. Finally, 
the aggregation weights corresponding to the closest 
cluster/context yield individual confidence values. Although 
this fusion approach proved to be effective for some 
applications, the proposed objective function remains prone to 
local minima. 

III. LOW-LEVEL FEATURES  

The various promising low-level feature has been proposed 
to encode image content for CBIR systems. In the following, 
low-level descriptors and their use to enhance the retrieval 
accuracy are surveyed. 

A. Colour Features 

The most popular and widely used low level descriptor in 
image CBIR system is the colour feature. Several colour spaces 
have been defined for colour feature representation [91]. As 
reported in [95, 92, 93, 94, 20], the closest colour spaces to 
human perception include RGB, LUV, HSV, HMMD, YCrCb, 
and LAB. Also, various colour descriptors/features, such as 
colour histogram, colour moments, colour-covariance matrix, 
and colour coherence vector have been proposed for CBIR 
systems [96, 97, 98]. Similarly, in [99], colour structure, 
dominant colour, colour layout and scalable colour have been 
proposed as standard MPEG-7 colour features. Despite these 
efforts to encode the colour properties of the image, the 
proposed features have shown limitations to express image 
high level semantic. In order to alleviate this concern, 

researchers proposed averaging colour of all pixels in a 
region/image as a colour feature [20, 98, 100]. However, this 
feature is affected by the image segmentation quality. In [100], 
the authors defined the dominant colour in HSV space as 
region perceptual colour. The dominant colour considers the 
largest bin of the colour histogram (10 * 4 * 4 bins) of the 
region in the HSV space. Then, the dominant colour feature 
corresponds to the average HSV value of all the pixels in the 
selected bin. One should notice that if applied to non-
homogeneous colour region due to inaccurate segmentation, 
taking the average colour does not yield representative colour 
feature. Thus, image pre-processing has been adopted as the 
main component of CBIR systems in order to remove noise 
from the images and enhance the segmentation quality 
[101,102]. 

B. Texture Features 

Texture features aim at encoding another important visual 
property of images. In particular, texture feature represents the 
best some real world image content such as clouds, skin, trees, 
fabric, etc. Hence, texture feature contributes efficiently to 
reducing the gap between image content and their high level 
semantic for CBIR systems. For instance, spectral features 
extracted using wavelet transform [103] or Gabor filtering 
[104] have been widely adopted by CBIR systems. Similarly, 
statistical features such as wold features [105] and Tamura 
texture features [106] have been proposed in order to represent 
image visual content better and improve CBIR accuracy. Later, 
MPEG-7 adopted some statistical measures proposed in [106], 
such as directionality, regularity and coarseness, to dene 
standard texture browsing descriptor [94, 98]. However, this 
statistic measure based features are not robust to scale and 
orientation variation [107]. 

Based on researcher contributions to propose accurate 
CBIR systems, wavelet and Gabor based texture features 
proved to match the best human vision and achieved the 
highest performance [98, 104, 108]. However, one should 
notice that these two texture features are sensitive to the shape 
of the image region [20, 104]. More specifically, they handle 
better the rectangular regions than arbitrarily shaped regions. 
Reshaping these non-rectangular regions by padding or 
applying some transforms emerged as an intuitive solution to 
overcome this drawback. Notice that region padding decreases 
the fidelity of the extracted texture feature to the image 
content. Another efficient extraction approach using iterative 
projection onto convex sets (POCS) has been proposed in [109] 
to extract texture features from non-regular regions. The Edge 
Histogram Descriptor (EHD) [98] proved to represent natural 
images efficiently. This edge feature encodes the spatial 
distribution of images edges. More specifically, it includes 
local edge histograms extracted from predefined sub-images 
and grouped into horizontal, vertical, diagonal, anti-diagonal 
and neutral edges. However, EHD is sensitive to scene and 
object distortions. Similarly, the researchers in [110] extracted 
the gradient vector from the sub-band images obtained using 
wavelet transform. 

C. Shape Feature 

Shape attributes such as consecutive boundary segments, 
circularity, aspect ratio, moment invariant, Fourier descriptors, 
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eccentricity and orientation have been widely exploited to 
represent an image in CBIR systems [20, 97, 111]. In [96], 
shape descriptors are extracted using area and second-order 
moments from gross image regions. For object-based image 
retrieval, MPEG- 7 [98] has included three shape descriptors. 
Namely, a descriptor based on curvature scale space (CSS), a 
region based feature extracted using Zernik moments, and a 3-
D shape descriptor based 3-D meshes of shape surface have 
been defined as MPEG-7 standard shape features. CSS 
descriptor is robust to scaling, translation and rotation 
variations. However, it shows some limitation to represent 
objects taken from the different point of view due to the 
resulting distortions. The authors in [112] addressed this 
limitation and proposed a variation of CSS descriptor that is 
robust to such affine transform. 

D. Spatial Location 

Spatial location represents another shape feature relevant to 
CBIR. In fact, if objects/regions exhibit similar texture and 
colour properties, then their respective spatial locations can 
serve as a more discriminative feature to represent these 
regions/objects [113, 114]. Minimum bounding box and the 
spatial centroid of regions represent the information used as a 
spatial location in [115]. However, such intrinsic spatial 
location does not reflect the semantic information in an 
effective manner compared to a relative spatial relationship. 
Thus, the authors in [116] used 2D-string, and its derivative 
structures formulate directional relationships such as 
„below/above‟ and „left/right‟, between objects. In [117], 
topological relationships have been included to enhance the 
performance of directional relationships. They outlined a 
spatial context modelling algorithm which relies on 6 pairwise 
spatial region relationships. Similarly, in [118], a promising 
approach using a composite region template (CRT) was 
introduced in order to capture semantic classes and the spatial 
arrangement of regions. 

IV. CBIR OFFSHOOTS: PROBLEMS AND APPLICATIONS OF 

THE NEW AGE 

In [53], an early age survey on CBIR has been reported. 
Researcher effort was outlined as novel contributions to 
information retrieval, computer vision and machine learning 
applications. Nowadays, CBIR represents relatively mature 
research field. Moreover, a considerable number of researches 
shows the emergence of non-typical challenges, yet of high 
relevance to CBIR systems. In the following, these novel 
research directions are outlined. 

A. Automatic Image Annotation 

The typical goal of content based image retrieval system is 
to find relevant images to a given query when meta data is 
missing or unavailable. However, the uploaded digital images 
on a daily basis to image databases are rarely coupled with 
relevant labels or keywords. This triggered researches on 
automatic image annotation approaches [25, 31, 53, 59, 60, 62, 
63]. Figure 2 shows the general architecture of a typical image 
annotation system. This system uses a set of labelled images 
for training. First, each image is segmented into regions and 
local features are extracted and used to describe each region. 
There are two main segmentation strategies; the first one 
partitions the image into a set of fixed sized blocks or grid 

[138, 139]. The second one partitions the image into a number 
of homogeneous regions that share common features [140, 141, 
142]. Ideally, each region corresponds to a different object in 
the image. After segmentation, each segmented block or region 
is represented by a feature vector. After segmenting all training 
images and extracting visual features from their regions, a 
machine learning algorithm is used to learn associations or 
joint probability distributions between these features and the 
keywords used to annotate the images. The testing part of the 
system takes, as input, an un-annotated image, segments it into 
homogeneous regions, extracts and encodes the visual content 
of each region by feature vectors. Then, it uses the learned 
associations or joint probability distributions to infer the set of 
keywords that best describe the visual features. These 
keywords are then used to annotate the image.  

  

Fig. 2. Overview of a typical automatic image annotation system 

Despite the effort made by researchers to propose accurate 
automatic image annotation approaches, the reported systems 
show noticeable limitations to label real world images 
accurately. For instance, the authors in [54] formulated 
automatic image annotation as a linguistic translation problem 
with hierarchical text modelling. The approach relies on the 
assumption that words describing an image represent nodes in 
a hierarchical concept tree Wordnet [55]. In [56], the 
researchers extended this approach and used the Wordnet 
ontology to remove uncorrelated words. In [79], the Latent 
Dirichlet Allocation (LDA) model was adopted to associate 
images to textual labels. As one can notice, these approaches 
encode images as regions, blobs or segments. Thus, images are 
perceived as bags of words, and joint blob-keyword 
probabilities are estimated in order to reduce the automatic 
annotation of images to a likelihood estimation problem. These 
approaches assume accurate segmentation of the images. 
Alternatively, Cross Media Relevance Models (CMRM) was 
proposed in [57, 58] to annotate images automatically. Also, in 
[59] the authors used the word to word correlations, and 
proposed coherent language models to enhance image 
annotation accuracy. The automatic image annotation solutions 
reported above handle visual features and text modalities 
separately before modelling their associations. The authors in 
[60] proposed simultaneous handling of the visual features and 
the textual keywords. The Probabilistic Latent Semantic 
analysis (PLSA) is then used to model the resulting uniform 
vectored data. A variation of this approach, namely the 
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nonlinear latent semantic analysis was proposed in [61] to 
annotate images automatically. Another approach consists in 
formulating automatic image annotation as a classification task 
where unlabelled images are assigned to a set of predefined 
concepts such as landscape, city and sunset [62]. The 
researchers in [63] solved the automatic image annotation 
problem using a saliency measure based on WordNet and a 
structure composition modelling. Automatic Linguistic 
Indexing of Pictures (ALIP) system, introduced in [64], adopts 
a 2-Dimensional multi-resolution Hidden Markov Models 
(HMM) to recognize the intra-scale and inter-scale spatial 
correlations of the visual properties characterizing given 
semantic classes. For this approach, single classes are first 
modelled independently. Then, based on the learned 
class/model, the likelihoods of the query image is calculated 
and the statistically salient keywords of the most likely classes 
are chosen for annotation. Similarly, Automatic Linguistic 
Indexing of Pictures - Real time (ALIPR) system was proposed 
in [65] as a novel variation of ALIP. ALIPR allows real-time 
estimation of statistical likelihoods due to its simpler modelling 
approach. As a pioneer real time automatic image annotation 
system, ALIPR triggered remarkable interest for real world 
applications [66]. The authors in [67] outlined concept/class 
learning using Gaussian mixture models and user feedback 
when image databases dynamically change over time. In [68], a 
soft annotation approach based on Bayes point machines to 
generate confidence function for the predefined semantic 
keywords. Also, a soft fusion of SVM classifiers was proposed 
in [64, 69] to overcome automatic annotation challenges. The 
authors in [49] used Multiple instance learning to automatically 
categorize images and associate image regions to semantically 
relevant keywords [70]. The amount and diversity of learning 
techniques and approaches used to annotate images show how 
challenging this problem is automatically. Moreover, the image 
segmentation techniques, which represent a critical component 
of the proposed system, exhibit considerable limitations to 
extract the objects and regions in the images accurately. Thus, 
associating image regions to semantic concepts get more acute. 
Recently, researchers aimed at bridging the retrieval annotation 
gap [63] by using keyword queries by default, regardless of 
label availability with the images. 

B. Multiple Query-Based CBIR 

For multiple query-based CBIR, a set of query images is 
provided by the user to represent his interest. The low-level 
features are extracted from each one of these query images. 
Like for typical CBIR system, the visual descriptor extraction 
is done offline. The key component of multiple query-based 
CBIR systems consists in the pair-wise distance computation 
between the query image set and the images in the database. 
More specifically, rather than computing the distance between 
the low-level feature vectors corresponding to the unique query 
image and image from the database, multiple query-based 
CBIR requires the distance/similarity estimation between a the 
low-level features representing the query set and a feature 
vector from the original database [152, 153, 154, 155]. The 
Multiple query set is intended to be more representative of the 
user retrieval interest. The authors in [152] presented a CBIR 
system based on multiple query set. The proposed approach 
relies on the multi-histogram intersection to measure the 
distance between the query image set and images in the 

database using texture and low-level colour features. The query 
image set includes images which represent the texture 
information, and others that reflect the colour information. The 
similarity of the query image set to images from the database is 
formulated as a weighted sum of the individual similarities 
obtained using texture and colour features separately. The 
authors in [163] introduced a CBIR system based on multiple 
query images. They formulate the user query using a set of 
relevant images, and another set of irrelevant images to the 
user interest. Namely, they used multiple positive sets and 
multiple negative sets to express the user‟s semantic. More 
specifically, the similarity of a query set to images from the 
dataset is obtained using the similarity of the dataset images 
with the means of the positive and negative query image sets. 
In [155], structure, colour and texture descriptors are used to 
calculate partial distances between images from the query set 
and database images. Then, relevance weights are associated 
with these partial distances along with weighted summation to 
yield individual distances. Finally, the overall distance between 
an image from the database and the query image set is 
introduced as the minimum individual distance between each 
query image and the given database image. One should notice 
that such approaches suffer from over-fitting. More 
specifically, the weights associated with the visual descriptors 
are affected by the dataset content. In other words, weight 
tuning/learning is required for each image collection. Thus, the 
relevance weights represent the visual properties of the 
database images rather than the semantic the user is interested 
in. 

In [156], the authors proposed an approach for optimal 
query image learning using Mahalanobis distance. Given query 

images set    {  
 (       )}  and its goodness scores set 

  (       ), the distance between the query image   
  and 

image   
 
 from the database is formulated as: 
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where,   
  and   

 
 represent the optimal feature vector of 

the query image   
  and image   

 
 from the database. On the 

other hand, matrix A defines the Mahanolobis distance. The 
learning of the optimal feature vector   

  and the Mahanalobis 

matrix A is achieved through the minimization of the following 
objective function [166]: 
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The minimization of this objective function using the 
Lagrange multiplier [157] yields: 
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where, C is the covariance matrix of the feature vectors   
 

. 

The user expresses his interest using query images and their 
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corresponding goodness scores. One should mention that a 
large number of query images should be provided to learn 
accurate Mahalanobis matrix representing the user high level 
semantic. Moreover, the computation of the Mahalanobis 
matrix exhibits high time complexity with highly dimensional 
features. 

In [164], the researchers used the Euclidean distance, and 
assumed that the relationship between an image from the 
database and a query image set is an AND logical operation to 
ensure that the retrieved images are similar to all query images. 
This yields: 

 (  
      

    
 
 )      (  (  

    
 
))  (6) 

where,   (  
    

 
)   is the Euclidean distance between a 

database image   
 

 and the query image   
 .  As it can be seen, 

this approach does not assign feature weight and consider all 
features equally relevant. The authors in [158] introduced 
another multiple query based image retrieval approach using 
several visual descriptors. The system relies on logic OR 

distances between the distances from a given query image   
  to 

database image   
 
  using the different features. Besides, it uses 

a logic AND operator between the distances from a given 
database image and of the query images. This approach is 
formulated using the equation below: 

 (  
      

    
 
 )      (      (  

    
 
))  (7) 

where,   (  
    

 
)   represents the distance between the 

database image    
 
 and the query image   

  obtained using all 

features. One should notice that rather than assigning feature 
weights, this approach [158] considers one single feature only, 
and discards the others. On the other hand, the authors in [159] 
proposed to linearly combine distances to express the user 
interest based on the provided query image set and s set of 
goodness scores. The proposed approach is formulated as: 

 (  
      

    
 
 )  ∑  

 

   

 (  
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 (8) 

where,    expresses the goodness score of the query image 

  
  while  (  

    
 
) represents the distance between the database 

image    
 

 and   
 . Besides, t is a positive constant larger or 

equal to 1. The goodness scores           are provided by the 

user to express his interest. 

As it can be seen, some of the existing multiple query based 
CBIR approaches do not conduct features relevance weighting. 
Instead, they consider one of the provided query images as the 
most representative one, and ignore the other query images 
[164, 168]. Other approaches [166, 169] require user scoring of 
the query images to include it in the pair-wise similarity among 
images. One should notice an important limitation of some 
state-of-the-art multiple queries based CBIR approaches [162, 
163, 165] which are the considerable number of query images 
required to learn appropriate relevance weights. Furthermore, 
these relevance weighting relies on cross-validation using 
particular dataset, and requires a learning process per dataset. 
This makes the obtained relevance weights reflect the visual 

characteristics of the training set rather than the semantic user 
interest. 

C. Benchmarking 

The state-of-the-art proved that no standard benchmark 
image collection and/or performance measures had been 
universally used by researchers to evaluate the proposed CBIR 
systems. 

1) Performance Evaluation 
Usually the retrieval performance of CBIR systems is 

assessed using precision and recall. The precision represents 
the proportion of retrieved images that is relevant to the query. 
It assesses the capability of the system to find all relevant 
images. On the other hand, the recall represents the proportion 
of relevant images that are retrieved by the system. It assesses 
its capability to find relevant images only. The precision is 
computed as follows: 

           
                              

                         
            (9) 

Similarly, the recall is calculated as: 

        
                              

                        
                  (10) 

 
Researchers aim to achieve high Precision and Recall 

values. Therefore, rather than assessing the retrieval 
performance using Precision or Recall individually, the curve 
Recall Vs Precision has been widely used to evaluate retrieval 
systems [4]. However, unlike text-based retrieval systems, the 
retrieval performance for CBIR systems is not accurately 
reflected by such curve [119]. Thus, the rank (Ra) measure 
[120, 121] defined as the average rank of the retrieved images, 
emerged as a promising alternative to overcome this limitation. 
The smaller the obtained rank value is, the better the achieved 
performance is. Another performance measure that has been 
adopted to assess the retrieval performance is the Average 
Normalised Modified Retrieval Rank (ANMRR) [122]. It 
includes the order of the retrieved images. The ANMRR values 
are within the [0, 1] range. If the ANMRR value is close to 
zero, then the retrieval is highly accurate. 

2) Image Databases 
Corel image dataset [123] has been most widely used to 

empirically evaluate the performance of CBIR systems 
outlined in the surveyed papers. Many researchers believe that 
Corel image dataset, with its heterogeneous content and the 
available manual ground truth label represent an appropriate 
mean to assess CBIR system [130]. However, others perceive 
Corel image database unsuitable due to the quality of the 
associated ground truth labels which are often too high-level to 
be relevant for the retrieval assessment [131, 132]. Thus pre- 
processing the meta-data associated with Corel images may be 
a natural alternative to enhance its quality and exploit its high 
intra-class variance. Thus, in [133], the authors introduced a 
novel reference data set to evaluate CBIR systems. The 
proposed data set was collected using real human evaluations 
of retrieval results. The authors considered 20k evaluations of 
query result pairs for query by example approach, and 5k pairs 
for text-based query approach. The resulting data set is 
assumed to be independent of any specific image retrieval 
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algorithm. The authors claimed that this data set is sufficient to 
assess any CBIR related algorithms objectively. Alternatively, 
researchers used either different digital image collections such 
as Kodak consumer images [124], LA resource pictures [125] 
or their own collected images sets. One should mention that 
specific datasets have also used for particular applications of 
CBIR models. For instance, Brodatz textures [126] have been 
adopted to validate applications that rely on perceptual texture 
descriptor [127, 128, 129]. Also, the Internet represents another 
alternative data source for Web image retrieval applications 
[21, 25]. 

V. RESEARCH ISSUES 

A. Query Formulation 

Query formulation is a key component to reducing the 
semantic gap between images low-level content and user high 
level interest. The researchers in [134] introduced OQUEL 
query language as novel retrieval language. The simple or 
complex combination of keywords is supported by OQUEL. In 
[145], a natural query language is proposed to query digital 
image collections. The language vocabulary consists of 
elementary semantic indicators such as “tree”, “sea”, etc..., and 
a syntax that reflects natural patterns perceived by human such 
as “outdoor scenes” and “people” [135]. The authors in [136] 
used image regions to express the semantic content the user is 
looking for by retrieving images of interest in collections 
including objects and metadata. More specifically, the semantic 
content is encoded using texture features based on wavelet 
transform, and the multi-scale colour coherent descriptor. 
Despite these efforts, the researchers in [134] considered query 
language as ill-understood and require more focus. 

B. Image Benchmark and Performance Measures 

Subsets of Corel image collection, along with precision and 
recall, are usually used to assess the performance of CBIR 
systems. However, the researchers in [137] proved that using 
Corel image subset and these performance measures yield 
subjective results. In particular, they claim that the obtained 
results depend on the submitted queries. In their experiments, 
the authors submitted various query images and relied on 
different ground truth data. Moreover, they proved that a CBIR 
system could yield different retrieval results using the same 
image collection and performance measures. Thus, they 
concluded that such performance evaluation couldnot be 
objective without specifying and reporting the test images used 
to query the system. One can conclude that standard image 
collection with specified query images, and appropriate 
performance measures are urgently required for objective 
CBIR performance evaluation. 

VI. CONCLUSIONS 

During the past decade, Content-Based Image Retrieval 
(CBIR) related research has reserved more attention for digital 
image processing, visual descriptor extraction, and learning 
techniques. Advanced researches proved that visual descriptors 
are unable to capture higher level semantic the user is 
interested in. In other words, they made CBIR systems fail to 
bridge the gap human semantics and image low-level content. 
This work surveyed recent research contribution aiming to 

reduce the “semantic gap”. It also outlined the state-of-the-art 
low-level features adopted to bridge the “semantic gap”. 
Despite the considerable quantity and quality of work proposed 
in this area, no standard approach has been defined for image 
retrieval based on high level semantics. CBIR systems using 
unsupervised, supervised learning or fusion techniques were 
proposed to reduce the gap between low-level visual 
descriptors and the richness of high-level semantic. Moreover, 
it has been noticed that objective evaluation and comparison of 
CBIR systems cannot be achieved without standard image 
dataset availability and unified performance measures. In 
conclusion, mature content based image retrieval system able 
to capture high level semantics stands mainly in need of 
intelligent learning techniques, and appropriate visual 
descriptor extraction. 
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