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Abstract—Association Rule (AR) mining has been studied
intensively for the past two decades. Essentially, AR models
the conditional probabilities of itemsets. However, AR mining
generates an overwhelming number of rules which limits its
capability in mining real nuggets. We re-examined the problem
and propose to start mining on dependent relationships instead
of conditional relationships. In contrast to AR mining, depen-
dence mining has received much less attention in the literature.
In this paper, a new model, Dependent Pattern (DP) mining
is presented. DP has a solid base in classical statistics and
at the same time is suitable for large scale computation with
the property of downward closure. We validate the model from
different perspectives using a variety of datasets. Experimental
results demonstrate that DP has remarkable advantages over
AR mining and other related methods. This paper serves as
a proof of concept. Future work will focus on the theoretical
analysis of DP’s scalability.

1. Introduction

Traditional Association Rule (AR) mining is a viable
example that statistic problems such as conditional rela-
tionships can be exhaustively computed [2]. It opens doors
for computation to combine with statistics. However, AR
mining often faces numerous obstacles in practice: (a) it
generates a huge amount of rules, even more than the
number of original transactions. Post-mining on rules is
often required [18]; (b) AR does not support other rela-
tions, such as negative implication [14], correlation [7] and
dependence [9], and (c) the uniform form support threshold
and confidence threshold in AR do not reflect the statistical
significance of items [15]. For some items, 10% support
is high, but for others, even 90% support is low. Setting a
universal threshold will eliminate the individual difference
between these items.

The motivation for this paper comes from a mining task
on a dataset of an education survey [4]. We applied existing
AR mining tools but it resulted in an overwhelming number
of rules, which contradicts our purpose of mining. We
could adjust the support and confidence level to extremely
high (e.g. both 95%), but the rules began to lose practical
meaning. In examining problems with AR which have also
been observed by researchers in the field, we decided to
develop a new plausible model that may contribute to the
literature.

The confidence in AR mining is merely an estimation
of conditional probability: given event A, what is the prob-
ability of B. The support threshold is to add a significance
level to such probability in its context. While this model is
suited for computation using algorithms such as Aprioi and
its variants [10], it lacks a deep root in statistical theory.
Several specific examples have been given and explained
in [15]. One reason is that the AR model is ”loose” to
some degree, which means the requirements are not strong
enough. In contrast to conditional relation, there are stronger
relations in statistics such as dependence/independence and
correlation. Determining dependence/indepedence is vital
in solving many probability problems [3]. If we consider
conditional relation one-way, then dependent and correlation
relations are two-way (i.e., it implies both A → B and
B → A). Therefore, dependent and correlation relations are
much stronger. We can expect mining dependent items will
generate fewer rules under comparable settings.

There are some studies on both correlation mining [7],
[13], [16] and dependent mining [9], [15], [17]. Brin et al.
discussed the weakness of AR mining from the perspective
of classical statistics [15]. Examples were given to illustrate
the weaknesses of AR mining. They proposed to generalize
association rules to correlations with significance measured
by chi-squared test. Although the generalization is relatively
novel, it introduces a new problem: the items in each basket
must be made complete by incorporating negative items. For
example, if a transaction has only two items, i1 and i2, then
this transaction must be represented as {i1, i2, i3, · · · , ik} in
order to calculate the chi-square measure. Making up absent
items increases its computation cost.

It has been observed that frequent pattern mining over-
looks the interests of some items that are infrequent but
interesting [13]. As the first step in AR mining is to locate
frequent patterns, some interesting patterns are unfortunately
filtered. A frequent pattern does not necessarily mean an in-
teresting pattern. Therefore, mining goals depend on where
the interests are and how to model the interests. Sheng
et al. proposed to mine mutually dependent patterns. The
goal was to define and a m-pattern,i.e., all the items in a
subset with m items are mutually dependent. It models the
significance of dependency by two conditional probabilities:
P (A|B) > minp and P (B|A) > minp, where minp



TABLE 1. NOTATION

Symbol Description
I a set n elements {i1, i2, ..., in}
P dependent pattern

all its subsets are dependent.
s support, i.e., #ofoccurance

N
s0(ik) initial support threshold for item ik(k = 1, ..., n)
α dependence control factor

is a threshold. Essentially, it used double confidence c as
selection criteria. While this method can eliminate the need
of a support threshold, yet it is still within the framework
of support-confidence and the same results can be obtained
through post-mining on AR rules.

There is some other remarkable work on dependent
item mining. Teng et al. [17] described an algorithm for
mining substitution rules, which are derived from concrete
itemsets (statistically dependent, determined by chi-square
test). The algorithm would have to make up negative items
for absent items in every transaction. Roy et al. proposed an
algorithm to mine the top-k pairs of correlated items [12].
However, the correlation defined was only for pairs of single
items. The Pearson’s correlation is usually for two variables.
Hence, it has limitations when applying to multiple items.

In this paper, we propose a novel method for mining
dependent items. Our model is fundamentally different from
existing methods in the literature. Starting for the definition
of dependency of two single items, we extend it to mul-
tiple items. Exploiting the downward closure property of
the definition, we present a level-wise algorithm similar as
traditional AR, which is easy to implement.

The rest of the paper is organized as follows. In Section
2, we define the concepts and model the mining problem.
In Section 3, the dependence mining (DP) algorithm using
pseudocode is described. Then, we report our experiments
conducted to validate the algorithms in Section 4. Finally,
we conclude and describe future work in Section 5.

2. Definitions of Dependent Pattern

Instead of frequent pattern, we define dependent pattern
to model the dependent relationship in a way suitable for
large scale computation. To assist our description, we list
the notations in Table 1. A dependent pattern P is defined
as follows:

• If P consists of one single item ik, it is a depen-
dent pattern if and only if s(ik) > (1 + α)s0(ik),
where s0(ik) is an initial support threshold. Note
that the support thresholds s0(.) are for every ik(k =
1, ..., n) and can be different.

• If P consists of multiple items, it is a dependent
pattern if and only if i) all its subsets are dependent
patterns, and ii)any two subsets Pi and Pj , if Pi ∪
Pj = P , then s(P ) > (1 + α)2s(Pi) ∗ s(Pj), where
α is the dependence control factor.

The initial setting s0(ik) for each item can be consid-
ered as an initial support threshold. That means, under this

model, we can set different thresholds instead of a universal
threshold. This is meaningful because not all items are born
equal. To our best knowledge, all current mining models in
the literature uses universal threshold(s), which overlooks
the personality of individuals. In practice, all items are
different and it can be problematic to treat them with a same
threshold. It is particular the case in the survey data [8]. For
example, a question on survey, are you male or female?, the
answer (item) has a common sense probability of 50%. If
the support turns out to be significantly over 50%, then it
is an interesting pattern by itself. In another question, are
you freshmen, sophomore, junior or senior?, each possible
answer (corresponding to one item) has a common sense
probability of 25%. Though, common sense does not serve
our best interests.

To measure the degree of interests, a parameter α is
introduced to the model. α here is essentially a degree to
which the support exceeds common sense. In the applica-
tions, we can vary α to mine interesting results. And, the
requirements of dependent pattern is much stronger than
frequent pattern. Consequently, we can expect the range
of rules based on dependent patterns will be much more
focused on interesting itemsets.

Note that by definition, the dependent pattern implies
mutual dependency among items. When there is one single
item, the pattern is essentially a surprise pattern with a
support greater than expected. When there are two items,
it is the same as dependence in statistics. However, in case
of more than two items, there is no equivalent concept
from statistics. It is well known than chi-squared test is
to decide whether a group of k (k ≥ 2) variables is k-
way independent [6], [11]. If the test rejects the hypothesis
of k-way independency, it indicates that some variables
among the group are dependent, but not necessarily mutual
dependent. Therefore, chi-squared does not apply in our
model. However, we can use chi-squared to validate our
mining results, i.e., how significant a dependent pattern is.

Moreover, we should be clear that correlation is dif-
ferent from dependent. Correlation is usually linear and
it means two variables affect each other. It is a specific
type of dependence, as dependence can be non-linear. In
this sense, correlation based mining has its limitations and
is conceptually different from our mutual dependency. Our
mining task here is to mine the dependent patterns. As far as
how exactly the items are depending on each other (linear
or non-linear), it is beyond the scope of the this paper.

2.1. Properties

According to definition, dependent patter P has the
following properties:

• Downward closed. If P is a dependent pattern, then
all its subsets are all dependent patterns. In other
word, if a subset is not dependent pattern, then none
of its supersets is a dependent pattern. We can take
advantage of this property to derive a level-wise
algorithm, just like the classical Apriori [2].



• s0(ik) provides a flexible base for the model. It can
be a minimum support as traditional AR mining, or
common sense (expected) probabilities for answers
to survey questions, or they can be determined by
sampling historical data. Such a flexibility enables
our model to be applicable to a wide range of mining
domains.

• α is a proper setting for dependence. According to
statistics, if event A is independent of event B, then

Prob(P1 + P2) = Prob(P1) ∗ Prob(P2) (1)

In other word, Prob(P1+P2)
Prob(P1)∗Prob(P2) > 1 indicates

positive dependence, and Prob(P1+P2)
Prob(P1)∗Prob(P2) < 1

indicates negative dependence. In practice, since the
probabilities are estimated, the equation (1) does not
need to hold strictly. Note that the term ”> (1+α)”
in the definition implies positive dependence. We can
adjust the term to ”< (1 − α)” to mine negative
dependence easily. As a proof of concept, this paper
focuses on positive dependence.

2.2. Related work

Ma and Hellerstein presented a model to mine mutu-
ally dependent patterns, namely m-Pattern [9]. A nonempty
itemset P is an m-Pattern with minimum mutual dependence
threshold minp ( 0 ≤ minp ≤ 1)if and only if

Prob(P1|P2) ≥ minp (2)

holds for any nonempty two subsets P1 and P2.
While m-Pattern seems to be similar to our algorithm

DP, its mechanism is fundamentally different. m-Pattern is
based on the definition of the dependence between a pair of
itemsets: P1 and P2 are significantly mutual dependent with
a minimum dependence threshold minp iff Prob(P1|P2) ≥
minp and Prob(P2|P1) ≥ minp.

m-Pattern models two conditional relationships by pos-
tulating that both significance levels must be greater than
a threshold. This is an extension on classic associate
rule mining. However, combining two conditional relation-
ships does not lead to dependence as defined in statis-
tics. Equation 1 is the right statistic measure for inde-
pendence/dependence. Here is an example to see the dif-
ference. Suppose Prob(P1) = 0.5, Prob(P2) = 0.5,
Prob(P ) = Prob(P1 + P2) = 0.25, and minp = 0.5.
According to the mutual dependence as defined in m-Pattern,

Prob(P1|P2) = Prob(P1 + P2)/Prob(P2)

= 0.25/0.5 = 0.5

≥ minp = 0.5

and

Prob(P2|P1) = Prob(P2 + P1)/Prob(P1)

= 0.25/0.5 = 0.5

≥ minp = 0.5

Therefore, P1 and P2 are mutually dependent with
minimum threshold 0.5. On the other hand, according to
statistics, P1 and P2 are perfectly independent, because

Prob(P )

(Prob(P1) ∗ Prob(P2))
=

0.25

0.5 ∗ 0.5
= 1 (3)

Starting from equation (2), we can find the reason why
the difference can happen.

Prob(P2|P1) = Prob(P1 + P2)

Prob(P2)
≥ minp (4)

Similarly, we can have Prob(P2+P1)
Prob(P1) ≥ minp. Combining

the two, we get:

Prob(P1 + P2)√
Prob(P1) ∗ Prob(P2)

≥ minp (5)

Obviously, equation (5) is different from equation (1). minp
does not properly indicate the degree of dependence. Our
DP algorithm based on statistic dependence is more robust.
Our α in (1 + α) is an appropriate measure of the statistic
significance of dependence. A higher value of α indicates a
stronger dependent relation.

3. Algorithm for mining dependent patterns

The Dependent Pattern (DP) mining algorithm is easy
to implement. The framework can be similar to level-wise
Apriori algorithm. The pseudo code is described in algo-
rithm 1 and 2. On level 1 (one item), we can filter items
whose support is below the initial support threshold. The
initial thresholds are not universal but item dependent, in
contrast to Apriori. Level k (k > 1) is built on level
k − 1. Only qualified lower level candidates can pass on
to a higher level, because the requirement for subset de-
pendence is recursive (i.e., all subsets of qualified pattern
must be dependent). Following the level-wise mechanism
to construct dependent patterns, we can expect the trend
of pattern volumes to increase at the beginning and then
decreases after some levels, like a bell shape. However,
given the strict requirements imposed by initial settings for
support thresholds and dependence control factor α, we can
also expect the bell shape is much smoother than Apriori,
i.e., less number of patterns on each level.

The time complexity of DP mining is lower than the
frequent itemset mining in Aprori because of three features:
(a) dependence is a bi-directional requirement, other than
one-directional conditional relationship, (b) we have item
dependent thresholds s0(ik), instead of a universal support
threshold, and (c) the pruning power of DP can be controlled
by dependence factor α. The stronger pruning power of



TABLE 2. DATASETS USED FOR EXPERIMENTS

Datasets Description # of items # of transactions
DB1 Accidents 292 5000
DB2 Survery 812 1903
DB3 Extended Bakery 50 75000

DP, the less space complexity. We will demonstrate the
effectiveness of DP in the experiments.

Algorithm 1 MiningDependentPatternsWithPruning
Input: dataset I , initial thresholds s0, α
Output: all qualified patterns {Lk}

1: C1 = {{a}|a ∈ I}
2: Compute the qualified set L1 = {v ∈ C1|Support(v) >
s0(v)}

3: k = 2
4: if Lk−1 is empty then
5: return {Lk}
6: end if
7: Construct the set Ck based on Lk−1 by the downward

closure property
8: Prune Ck by computing the qualified candidate set Lk =
{v ∈ Ck|isDependentPattern(v) = true}

9: k = k + 1
10: go back to 4

Algorithm 2 isDependentPattern
Input: pattern P (a subset candidate), α
Output: {true, false}

1: if all its subset of P are dependent patterns and
support(P ) > support(P1) ∗ support(P2) ∗ (1 + α)2,
where P1 ∪ P2 = P then

2: return true
3: else
4: return false
5: end if

4. Experimental results

Three datasets were chosen to evaluate the DP algorithm,
with comparisons with classical Apriori and m-Pattern. The
summary of the datasets is listed on Table 2. DB1(Accident
data) is available from [5]. For the experiments, 292 at-
tributes were selected in DB1. DB3 (Extended Bakery) is
commonly used for evaluating mining algorithms, publicly
available [1].

DB2 (survey data) is obtained from EDUCAUSE [4].
The survey was administered at a southern state univer-
sity in collaboration with EDUCAUSE Center for Applied
Research (ECAR). ECAR developed the online survey and
collected the data remotely. The survey study was primarily
conducted to explore undergraduate students attitude toward
technology and their academic experiences related to tech-
nology use and ownership. Table 3 shows some examples

TABLE 3. SAMPLE QUESTIONS FROM EDUCAUSE SURVEY (DB3)

Question and answers Items
Which of the following best describes your class standing
during the current academic year?
(A) Freshman or first-year student 1
(B) Sophomore or second-year student 2
(C) Junior or third-year student 3
(D) Senior or fourth-year student 4
(E) Other type of undergraduate 5
(F) Not an undergraduate student 6
*No answer* 7
Do you own a printer?
( )Yes 8
( )No 9
*No answer* 10
Thinking about the past year, please rate your institutions
support for the following activities from a mobile device:
a. Accessing library resources
( )Service not offered for mobile device 11
( )Poor 12
( )Fair 13
( )Good 14
( )Excellent 15
*No answer* 16
b. Registering for courses
( )Service not offered for mobile device 17
( )Poor 18
( )Fair 19
( )Good 20
( )Excellent 21
*No answer* 22

of the questionnaire in the survey. To covert the collected
answers into transactions, we let each answer in a question
corresponds to an item. Note that survey takers may skip
some questions. We view ”no answer” as an item. All the
answers from one user form one transaction. The Survey has
169 quantitative questions, converted to 812 items for our
experiments. There are 1903 survey respondents and thus
we have such amount of transactions.

The experiments were designed to evaluate the following
three aspects: (a) distribution of of patterns mined using
our algorithm, compared to Apriori and m-Pattern, (b) the
degree to which dependence setting α affects the distribution
of patterns, and (c) the degree to which DP mining works on
the Survery dataset and mines meaningful relations, which
Apriori fails to do so.

To observe the distribution of mined patterns, we com-
pared DP, Apriori and m-Pattern on DB1. As shown in figure
1, all the three algorithms have a bell shape of pattern
distribution over levels. However, DP generates a much
smaller number of patterns on each level. This is expected
because dependence is a stronger bi-directional relationship
rather than unidirectional relationship. While m-Pattern is
bi-directional, it produces more patterns than DP. m-Pattern
lacks the first level filtering. The only control parameter
is minp, which is essential a support threshold instead of
a dependence degree. DP has two mechanisms to control
the generation of patterns: initial thresholds and dependence
control factor α.

The α plays a critical role in determining the number
of patters. Figure 2 shows the number of total patterns
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Figure 1. The number of dependent patterns mined on DB1. For DP, initial
thresholds are set at 0.04 uniformly and dependence factor α = 0.2; for
Apriori, support threshold s is set at 0.4; for m-Mattern, minp is set at
0.5.
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Figure 2. The total number of dependent patterns mined by DP on DB1
while α varies. Initial thresholds are uniformly set as 0.04.

mined by DP vs setting α on DB1. When α increases,
the total number of patterns decreases fast. This gives us a
powerful tool for mining. We can tighten α to squeeze the
total number of patterns. In contrast, Apriori seems weak in
controlling the number of patterns.

Table 4 shows some details of the distribution of pat-
terns for DP algorithm, including the maximum, minimum,
average and standard deviation of the real supports of the
patterns mined. For example, on level 4, DP mined 548 pat-
terns. Among those patterns, the maximum support 0.132,
while the minimum support is 0.001. Table 5 shows the
results by Apriori. On level 4, Apriroi mined 4896 patterns,
with maximum support 0.971 and minimum support 0.40
(which is actually the threshold support). The contrast of the
two tables demonstrates that Apriori is entirely controlled by
a universal support threshold. The dependence patterns by
DP is not restricted by support. On all the levels except
level 1, the maximum support in DP is even lower than the
minimum support in Apriori. That means, DP mined patterns
which are filtered by Apriori in the first place. Overall, the
average support of DP is much lower than Apriori, as shown
in Figure 4. In Apriori, a large number of items are filtered

TABLE 4. THE PATTERN DISTRIBUTION BY DP ALGORITHM ON DB1.
s0(·) = 0.04, α = 0.2.

Cardinality Max Min Mean Std
1 102 1.000 0.049 0.317 0.291
2 324 0.380 0.004 0.047 0.052
3 535 0.223 0.000 0.021 0.025
4 548 0.132 0.001 0.012 0.014
5 384 0.061 0.001 0.007 0.008
6 209 0.033 0.001 0.005 0.004
7 81 0.014 0.001 0.003 0.002
8 19 0.005 0.001 0.002 0.001
9 2 0.002 0.002 0.002 0.000

TABLE 5. THE PATTERN DISTRIBUTION BY ARIORI ON DB1. s = 0.4

Cardinality Max Min Mean Std
1 32 1.000 0.411 0.704 0.190
2 327 0.997 0.400 0.598 0.153
3 1642 0.995 0.400 0.544 0.121
4 4896 0.971 0.400 0.510 0.096
5 9343 0.914 0.400 0.486 0.078
6 11700 0.832 0.400 0.468 0.063
7 9592 0.761 0.400 0.455 0.051
8 5023 0.695 0.400 0.444 0.041
9 1586 0.614 0.400 0.435 0.033
10 264 0.541 0.400 0.428 0.024
11 16 0.448 0.403 0.422 0.012

because of the support threshold in the first step. In DP,
instead of support, we focus on mining the relations of
dependence, even the support is not significantly high. The
mean support of m-Pattern is even higher than DP, which
indicates that m-Pattern is also support driven, instead of
dependence driven.

While the mechanisms of the DP, Aprori and m-Pattern
are all different, the mined patterns do have overlaps to
a large degree. Table 6 shows overlapping mining results.
When α = 0.2, the number 2204 on cell (DP, DP) means the
total mined patterns by DP is 2204. Cell (DP, Ap)=32, which
means the 32 patterns are common (overlapping) among
the results by DP and Ap (Apriori). Cell (DP, mP) is 124,
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Figure 3. The mean supports of dependent/frequent patterns on DB1. For
DP, initial threshold is set at 0.04 and α = 0.2; for Apriori, s = 0.4; For
m-Pattern, minp = 0.5.



TABLE 6. THE PATTERN OVERLAPPING BY DP, ARIORI AND
M-PATTERN ON DB1. SETTINGS: s = 0.4 FOR APRIORI, minp = 0.5

FOR M-PATTERN, s0(·) = 0.04 FOR DP.

α = 0.2 α = 0.4
DP Ap mP DP Ap mP

DP 2204 32 124 406 32 110
Ap 32 44421 12351 32 44421 12351
mP 124 12351 12702 110 12351 12702

α = 0.6 α = 0.8
DP 164 32 99 118 32 94
Ap 32 44421 12351 32 44421 12351
mP 99 12351 12702 94 12351 12702

meaning the overlapping between DP and m-Pattern is 124.
As α in DP varies, the overlapping persists.

We conclude from the tables that the overlapping of (DP,
mP) is larger than (DP, Ap), which indicates that m-Pattern
is ”closer” to DP and Aprioir to DP. This makes sense
because both m-Pattern and DP try to mine dependence,
even though through difference mechanisms. Another phe-
nomenon we observe from the table is that the overlapping
of (Ap, mP) is much stronger than (DP, Ap) and (DP,
mP). For example, when α = 0.6, (DP, mP)=99, but (Ap,
mP)=12351. This huge difference in the latter indicates
that both Ap and mP are support driven and their working
mechanisms are rather similar. Finally, the overlapping tells
us that each algorithm has its own mining emphasis. It
will be difficult to conclude which algorithm is superior to
another.

To demonstrate how DP can mine meaningful relations,
the Suvery dataset DB2 was used as the testbed. Both DP
and Apriori are adjusted to its best status, focusing on
what relations can be found out. In DP, we adjust initial
thresholds and dependence threshold α. In Apriori, support
s and confidence c are set at different values, in order to
achieve the best meaningful results.

Table 7 shows sample dependent relations mined by
DP. Note that row 1, 2 and 3 altogether indicates a pattern
consisting of 3 items which are mutually dependent. Such
relation cannot be mined by Apriori with a minimum support
(e.g., 80%) because the support threshold filters the 3 items
in the first step. When Aprioris sets a lower threshold, the
number of associated rules mined will be overwhelmingly
huge. In one case, 72735 rules are mined by Apriori with
s = 80% and c = 80%). This makes it prohibitively
expensive to locate the meaningful relations.

Table 8 shows the number of association rules mined
by Apriori on DB2 by varying support threshold s and
confidence threshold c. We can see that the main factor
that affects the quantity of rules is indeed the support.
The dilemma is that with high s, many potential items are
filtered immediately, whereas with low s, too many rules
are generated. Even when both s and c are set at 95%,
there are still 296 rules mined. Unfortunately, all the rules
are meaningless. Note that in Apriori, the rules are between
items, instead of variables. When the support is 95%, all
the surviving items are those ”No answers” survey items(see
examples in table 3).

TABLE 7. SOME DEPENDENT RELATIONS MINED BY DP ON THE
SURVEY DATASET DB2. s0(·) = 0.05, α = 0.005.

Item Item Dep.
Technology makes me
feel more connected to
whats going on at the
college.

Technology makes
me feel connected to
professors.

(
√

) Strongly Agree (
√

) Strongly Agree 0.112
Technology makes me
feel more connected to
whats going on at the
college.

When I entered college,
I was adequately prepared
to use technology needed
in my courses.

(
√

) Strongly Agree (
√

) Strongly Agree 0.103
Technology makes
me feel connected to
professors.

When I entered college,
I was adequately prepared
to use technology needed
in my courses.

(
√

) Strongly Agree (
√

) Strongly Agree 0.094
Institutions support for
checking grade from a
mobile device.

Institutions support for or-
dering transcripts from a
mobile device.

(
√

) Good (
√

) Good 0.094

TABLE 8. NUMBER OF ASSOCIATION RULES MINED BY APRIORI ON
DB2 WHILE SUPPORT AND CONFIDENCE VARY.

c
0.80 0.85 0.90 0.95

s

0.80 72735 72319 69933 58043
0.85 15696 15696 15556 13354
0.90 2943 2943 2943 2891
0.95 296 296 296 296

Finally, to evaluate the scalability of DP, DB3 was used.
Figure 4 shows the runtime of DP while the size of datasets
varies. The trend shows that the runtime is linearly increas-
ing, which is a good sign, indicating the scalability of DP is
excellent. Regardless, we acknowledge that the size of DB3
(75000) is still a small number. More theoretical analysis
and experiments are needed to evaluate the scalability of
DP on large dataset in our future work.

0 1 2 3 4 5 6 7 8

x 10
4

0

1

2

3

4

5

6

7

8

size of dataset

R
u
n
ti
m

e
 (

s
e
c
o
n
d
s
)

Figure 4. The runtime of DP on DB3. s0(·) = 0.04, and α = 0.2.



5. Conclusion and future work

The new DP algorithm is fundamentally different from
classical Associate Rule mining. While the m-Pattern al-
gorithm is also for dependence mining, it is conceptually
different from DP. This paper serves as a proof of concept.
We claim that DP has remarkable advantages that other
existing algorithms lack: (a) the initial support thresholds
are custom-made for every item, which makes it feasible
to filter unwanted items and keep potentially interesting
ones, (b) the dependence control factor α is powerful in
controlling the mining process starting from level two, and
(c) the total number of mined patterns is controllable and
thus making mining focused on dependent items, regardless
of the support level.

While the proof of concept is encouraging, we are
anticipating work ahead to further develop the DP algorithm.
In future work, we will continue the theoretical analysis on
time complexity and space complexity of DP. Particularly,
we will conduct experiments on much larger datasets. We
will also investigate whether the idea of FP-growth can be
utilized to improve the scalability of DP.

References

[1] Extended bakery dataset. https://wiki.csc.calpoly.edu/datasets/
wiki/apriori.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules, 1994.

[3] A. Agresti and M. Kateri. Categorical data analysis. Springer,
2011.

[4] W. J. D. D. C. Dahlstrom, E. Ecar study of undergraduate
students and information technology. In Louisville, CO:
EDUCAUSE Center for Analysis and Research, 2013.

[5] K. Geurts, G. Wets, T. Brijs, and K. Vanhoof. Profiling
high frequency accident locations using association rules.
In Proceedings of the 82nd Annual Transportation Research
Board, Washington DC. (USA), January 12-16, page 18, 2003.

[6] P. E. Greenwood and M. S. Nikulin. A guide to chi-squared
testing, volume 280. John Wiley & Sons, 1996.

[7] Y.-K. Lee, W. young Kim, Y. D. Cai, and J. Han. Comine:
Efficient mining of correlated patterns. In In Proc. 2003 Int.
Conf. Data Mining, pages 581–584, 2003.

[8] C.-H. Leu and K.-W. Tsui. Discriminant analysis of survey
data. Journal of statistical planning and inference, 60(2):273–
290, 1997.

[9] S. Ma and J. L. Hellerstein. Mining mutually dependent
patterns. In Data Mining, 2001. ICDM 2001, Proceedings
IEEE International Conference on, pages 409–416. IEEE,
2001.

[10] J. Pei, J. Han, R. Mao, et al. Closet: An efficient algorithm for
mining frequent closed itemsets. In ACM SIGMOD workshop
on research issues in data mining and knowledge discovery,
volume 4, pages 21–30, 2000.

[11] R. L. Plackett. Karl pearson and the chi-squared test. Interna-
tional Statistical Review/Revue Internationale de Statistique,
pages 59–72, 1983.

[12] S. Roy and D. Bhattacharyya. Efficient mining of top-
k strongly correlated item pairs using one pass technique.
In Advanced Computing and Communications, 2008. AD-
COM 2008. 16th International Conference on, pages 416–
421. IEEE, 2008.

[13] B. Saha, M. Lazarescu, and S. Venkatesh. Infrequent item
mining in multiple data streams. In Seventh IEEE Inter-
national Conference on Data Mining Workshops (ICDMW
2007), pages 569–574. IEEE, 2007.

[14] A. Savasere, E. Omiecinski, and S. Navathe. Mining for
strong negative rules for statistically dependent items. In
Proceedings of, volume 1401, pages 442–449, 2002.

[15] C. Silverstein, S. Brin, and R. Motwani. Beyond market
baskets: Generalizing association rules to dependence rules.
Data Mining and Knowledge Discovery, 2(1):39–68, 1998.
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