
CSCI/CMPE 3333 Assignment Three

Instructor: Zhixiang Chen

In this homework assignment, I would like you to do two parts: The first is to carry out some

experimental study of the selection problem. The second is to implement a min-max heap.

 Part 1 (100 points). The Selection Problem: Assume a list of N elements is given. For

any ,1, Nkk find the k-th smallest elements in the list.

Note 1: the 1-th smallest element is the smallest, the 2-th smallest is the second smallest,

and so on, and the N-th smallest is the largest element.

Note 2: For the purpose of this homework, we may focus on integer type elements only.

We further assume that all elements may not be distinct.

Solution 1: One direct solution is to first build a binary min-heap for the list of elements

(here, the root has the smallest element), then perform k deleteMin() operations. The last

one from the k-th deletionMin operation is the answer. Hint: you shall use the clever O(N)

time algorithm to build the heap.

Solution 2: This solution replies on the idea of median3 quick sort. First, choose the

median of the first, middle and last elements as a pivot p. Second, split the list into two

sublists A and B such that, every element in A is less than p and every element in B is

greater than p. Third, we consider the following three cases:

 Case 1: If ,1|| kA then p is the answer. (Recall that | A | denotes the size of

A.)

 Case 2: If ,|| kA then the k-th smallest element is in A, so that we recursively

solve the problem for A and k using the same idea of median3 quick sort.

 Case 3: If ,1|| kA then the k-th smallest element is the)1||(Ak -th

smallest element in B, so that we recursively solve the problem for B and

1||' Akk using the same idea of median3 quick sort.

Your Work: I’d like you to do:

 Implement Solution 1 and Solution 2.

 Randomly generate 10 lists so that each may have 100,000 integers.

 For each list, randomly generate 5 values for k and then run Solution 1and

Solution 2 for each k and record the respective time. Calculate the average

time for each solution.

 Use a bar chart to report the average times of the two solutions for the 10 lists.

 Turn in your implementation of Solution 1 and Solution 2 and the bar chart

report.

 Part 2 (100 points). Implement a min-max binary heap: Recall a typical binary min-

heap (or max-heap) will always save the minimum element (or maximum element) at the

root, so that finding the minimum (or the maximum) takes constant time, and deleteMin

(or deleteMax) takes O(log N) time. However, a min-heap (or max-heap) cannot help you

to easily find the maximum (or the minimum) unless you search through all elements at

leaves, hence O(N) time is needed for such operation. On the contrary, however, a binary

min-max-heap guarantees that both deleteMin and deleteMax can be done in O(log N)

time.

A binary min-max heap is identical to a binary min-heap (or max-heap) in structure, but

its order property is different. For any node X at even depth, the element stored at X is

smaller than the parent but larger than the grandparent (where this makes sense). For any

node X at odd depth, the element stored at X is larger than the parent but smaller than the

grandparent. Below is an example of a binary min-max-heap.

Figure 1: A binary min-max-heap

Your work: I would like you to extend the binary min-heap (or max-heap) class template

to the binary min-max-heap. You need to define a new class template with both a pair of

getMin() and getMax() and a pair of deleteMin() and DeleteMax() method. You also

have to refine methods for insertion, deletion, and search operations. Test your program

with the following numbers to see if it builds a binary min-max-heap right and can do

deleteMin() and deleteMax() successfully.

Tests:

(1) Save the following list of integers into a text file and use your program to build a

binary min-max-heap:

48, 63, 31, 42, 14, 81, 17, 6, 59, 52, 28, 87, 80, 12, 32, 71, 18, 25, 13, 16, 15, 20, 24,

78, 19, 79

(2) Perform four operations: deleteMin(), DeleteMax(), deleteMin(), deleteMax().

Caution: DO NOT PRINT OUT THE DATA FILES!

Due Date: The due date will be given via Blackboard.

Warning: Any submission one week after the due date will not be accepted.

How to submit your work?

Please upload your source program files and your test results to Blackboard.

