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1. Introduction

The investigation of the explicit solutions of integrable nonlinear evolution equations (NLEEs) plays an important role in
the study of nonlinear physical phenomena. It is well known that there are many approaches to obtain explicit solutions
of NLEEs, such as the Inverse Scattering Transform (IST) [1], the Hirota bilinear technique [2], the Backlund and Darboux
transformation [3-7], the algebra-geometric approach [8-10] and so on [11-19]. Among them, the Darboux transformation
(DT) is a powerful approach to get explicit soliton and multi-soliton solutions of integrable NLEEs. The key is to expose
a kind of covariant properties that the corresponding spectral problems possess. There have been many tricks to do this for
getting explicit solutions to various soliton equations including the Korteweg-de Vries (KdV) equation [3,4], the Kadomtsev-
Petviashvili (KP) equation [3], the Davey-Stewartson (DS) equation [3], the sine-Gordon (SG) equation [3], the nonlinear
Schrédinger (NLS) equation [3-5], the Boussinesq equation [6], the Nizhnik-Novikov-Veselov (NNV) equation [7], and so on
[11-19].

In 1984, Neugebauer and Meinel developed a systematic method to construct an explicit determinant formula for an N-
fold DT of the AKNS hierarchy [11]. The N-fold DT formula includes all N-soliton solutions of the AKNS hierarchy in a unified
form. Moreover, the solutions of each equation in the AKNS hierarchy are reduced to solving a linear algebraic system, which
is easy to generate various solutions by symbolic computation in the computer. Many multi-solitons of integrable NLEEs are
obtained through this systematic method [11-19].

In this paper, we consider the spectral problem proposed by Qiao in 1994 [20]

A — Luv u
=U¢gp, U= 2 s 1.1
be=Uo ( AV —k+%uv> (11)
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where ¢ = (¢1, ¢2)", u, v are two potentials, and A is a spectral parameter. Eq. (1.1) is equivalent to the following form [20]

1
L.¢E< 0+ juv - )-¢=x¢. (12)

vd+ Juv? =9 — Juv

A simple calculation leads to

A d
L*W(g) = %

s g 0 0
Lw+ed) =\ vagive) wpve | g o)b (13)
2 2

e=0

where w = (u, v)T, &= (51,3;2)T, and L, () is an injective homomorphism.
The spectral problem (1.2) has the following recursion relation [20,21]

L-VA=)Va, (14)
where
el —d—ovolu+uvidlu+uv ava~lv —uvy~lv (15)
) ud~lu+u’vo~lu 9 —oud v —u?volv+uv :
and
Sh 2
Su — Vo1
Vi = 6u)=<¢2 ) (16)
<§—¢ —¢7 — up16

The operator

B —ud~'u —14ud”lv
J__2(1+v8_]u —va~lv ) (17

yields the following integrable hierarchy [20,21]

(3) =],C’"+1-<Z), m=0,1,2,.... (1.8)
tm

The first system in the hierarchy (1.8) is trivial. The second and third systems are

1, 15, 1 1, 1502
Ut1=EUXx+§U Vx—zlu v, Vt1=_5Vxx+§V ux+ZV u-, (1.9)
and
1 3 3 1 3 3
Up, = Zuxxx + ZUUxVx - guzvzux, Ve, = vaxx - Zvuxvx - §u2v2vx_ (1.10)

Egs. (1.9) and (1.10) are not special cases of the AKNS hierarchy because they have more high order nonlinear terms than
the second and third members in the AKNS hierarchy. But, (1.9) is indeed gauge-equivalent to the Gerdjikov-Ivanov equation
through some complex variable transformation [22-24], which has physical applications in nonlinear optics. However, (1.10)
is a new integrable equation proposed in Qiao’ work [20]. In our paper, we focus on Egs. (1.9) and (1.10) and study their
explicit solutions.

In Ref. [20], under a constraint between the potentials and the eigenfunctions, the spectral problem (1.1) was non-
linearized as a completely integrable finite-dimensional system in the Liouville sense. The Lax representations and the
involutive solutions of the hierarchy (1.8) were also presented.

The aim of the present paper is to construct an N-fold DT of the spectral problem (1.1). As an application of the N-fold
DT, multi-soliton and complexiton solutions of the two integrable equations (1.9) and (1.10) are obtained. In our results,
the soliton and complexiton solutions are expressed in terms of exponential functions and combinations of trigonometric
and exponential functions. All of solutions are real. One of potentials u, v could have a smooth soliton while the other has
singularity. This means that we may have found an example of a 2-component integrable system having no smooth solitons
and complexitons.

Our paper is organized as follows. In Section 2, an N-fold DT for the integrable equations (1.9) and (1.10) is constructed.
In Section 3, their multi-solitons are derived from the N-fold DT. In Section 4, new complexiton solutions of the integrable
equations (1.9) and (1.10) are given. The paper is concluded by summarizing the results in Section 5.
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2. Darboux transformation

In order to construct a DT of the integrable equations (1.9) and (1.10), let us first recover their Lax representations
from [20]:
The Lax representation of (1.9) is composed of the spectral problem (1.1) and the following auxiliary problem

(1 1
M ur 4+ Suy
—v® , v® — ( 11 2 ) , 21
o ¢ va2— v —M{) (21)

where M%ll) =22 — Juvi + F(—u?v? = 2vuy + 2uvy).
The Lax representation of (1.10) is given by the spectral problem (1.1) and the following auxiliary problem
@) @)

My My )

2.2)
) @ (
My)  —Mj;

b=V, VO = (
where

1 1 1
2
Mgl) =23- Euvkz - g(uzv2 + 2viuy — 2uvg)A + E(u3v3 + 2UxVy — 2VUlxy — 2UVxx),

1 1 1
M%) —ur?+ iuxk +3 (uvux - 5u(uzv2 +2vuy — 2uvy) + uxx),

1 1 1
Mgzl) —vaAd — EVXAZ + 2 <—uvvx — Ev(uzv2 + 2vuy — 2uvy) + vxx>k.

In fact, a direct calculation shows that the zero curvature equation U, — V,EK ) +[U, V&ID]=0 (k =1,2), implies the
nonlinear equations (1.9) (k = 1) and (1.10) (k = 2), respectively. Therefore, (1.9) and (1.10) are integrable in the sense of
Lax pair.

Based on the Lax pairs ((1.1), (2.1)) and ((1.1), (2.2)) for the integrable equations (1.9) and (1.10), let us consider the
following gauge transformation:

p=To, (2.3)
where T is a nonsingular matrix and ¢ admits the form of the Lax pairs ((1.1), (2.1)) and ((1.1), (2.2))

¢=U¢, U=(Tx+TUT, (24)

¢, =VPp, VO =(Ty, +TVO) T, (2.5)

b, =V3¢, VO =(T, +TVO) T (2.6)

Differentiating ((2.4), (2.5)) or ((2.4), (2.6)) yields

U, — V¢ 4 [0, V] =T (U, — VETY 4 [U, VEIDTT (e =1,2). (2.7)

In order to make the integrable equations (1.9) and (1.10) invariant under the transformation (2.3), it is crucial to find an
appropriate matrix T such that U, V«*D have the same forms as U, V®*1D_ The old potentials u and v in U, V&*D are
mapped into the new potentials i and v in U, V*®+D simultaneously.

Suppose that the Darboux matrix T in (2.3) is in the form of

_ _(A®) B®)
T_T()L)_<C()L) D(A))’ (2.8)
where
N—-1 N—-1
AG) =N+ Ak B =) Bk, (2.9)
k=0 k=0
N—1 N-—1
COy=) G, Dey =N+ 3" Dk, (210)
k=0 k=0

Ay, Bi, Cr and Dy (0 <k < N —1) are functions of x and t.
Let ¢ (Xj) = (¢1 (Aj),(pz(kj))T, Y(Aj) = W1 (hj), wz(Aj))T be two basic solutions of (1.1) and (2.1) (or (2.2)). In the fol-
lowing, we discuss ((2.4), (2.5)) and ((2.4), (2.6)), separately.
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For ((2.4), (2.5)), there exist constants r; (1 < j <2N) such that

(A @1 (X)) + BOj@a(rj)) —rj(AAY1(Aj) + BO)Y2(rj)) =0, (2.11)
(CONP1(j) + DA P2(rj)) — 1 (CANY1(hj) + D(AjY2a(rj) =0. (212)

Furthermore, (2.11) and (2.12) can be rewritten as a linear algebraic system

A(Lj) +8jB(j)=0,  C(Aj)+8;D(Aj) =0, (213)
or
N-1 N-1
D (Ac+8Bx == Y (G + 8Dk = =5t (2.14)
k=0 k=0
with

2(hj) =1y (r))
T o) —rivn )
If one takes care of a proper selection of constants Aj, rj (A 7 Aj as k # j), then the determinant of coefficients for (2.14)

is non-zero. Therefore, Ay, By, Cx and Dy (0 <k < N — 1) are uniquely determined by (2.14).
Eq. (2.8) shows that det T () is a 2Nth-order polynomial in A, and

1< j<2N. (2.15)

detT(Aj) =A(Aj)D(Xj) — B(Aj))C(Aj). (2.16)
On the other hand, from (2.13) we have

A(rj)=—48jB(Aj), C(Aj) =—8;D(%j). (217)
Therefore, we obtain

detT(A;) =0, (2.18)

which implies that A; (1 < j <2N) are 2N roots of the 2Nth degree polynomial det T (1), namely,

2N
detT() =[x — ). (2.19)
j=1

Using the above facts, we are able to prove the following proposition.

Proposition 1. The matrix U given by (2.4) has the same form as U
=" )
U= __

A uv

where
U=u—2BN_1, Vv=v+2Cn_1, (2.20)

uv

<I N|[—=

i
A+

N[—=

and
1 __ o
AN—mx = 5(2UCN—m—1 —2VBN-m-1 + UVAN—m — UVAN-m),
BN—mx= §(4BN—m—] — 2uAN-—m +2UDN_m —UVBN_; —UVBN_m),
1 _ -
CN—mx= 5(_4CN—m—1 —2VDN_m + uVCN_m + 2VAN—m + UVCN_p),

1 _ __
DN_mx= E(_ZUCN—m—] —uvDN_m +2VBN_m—1 +UVDN_n) (Mm=1,2,...,N), (2.21)

withB_1=C_1=0.
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Proof. Let T-1=T*/detT and

« [ fri) fiz)
(Tt TUT _<f21(>»> fzz()»))' (2:22)

It is easy to see that fi1(A), fo2(A) and f>1()) are three (2N + 1)th degree polynomials in A, while f12(A) is a 2Nth degree
polynomial. From (1.1) and (2.15), we find

1
aszxjv+2<—xj+iuv>5j—u5§. (2.23)

Through a direct calculation, we know that all A; (1 < j <2N) are roots of fpi(A) (n,i=1,2). Therefore, (2.22) reads as

(Ty + TU)T* = (detT)P(A), (2.24)
where
(€))] 0) 0)
P()) = pll)”—}_p]] P12 (225)
[€)] 0) M o ) .
Py A+ Dy Py h+ Dy

and p,(fi) (n,i=1,2,s=0,1) are independent of A. So, we obtain

(Tx +TU) = P()T. (2.26)

Comparing the coefficients of AN*1 and AN on both sides of (2.26) leads to

AN+ pgll) = —pgz) =1, pg]) =v+2Cy_1 =17, (2.27)
AN p D —u 2By =1, (2.28)

1
qu) = —pé‘? = 5(4BN—1CN—1 —2uCn—1+2VBN_1 —uV)

1 1__
Z_E(U_zBN—l)(V+2CN—])=_§UV, (2.29)
pg? =2CNn_2+ ZBN_1C12V_1 — UCIZV_l + vBy_1Cn_-1+VvDN_1 —uvCpn_1
—(v+2CNn-1)AN-1+ Cn—1x- (2.30)

Substituting (2.20) and (2.21) into (2.30) produces

0
P57 =0.

From (1.1) and (2.25), we see U = P(A). The proof is thus complete. O

Proposition 2. The matrix V@ given by (2.5) has the same form as V@, where original potentials u and v are mapped into new
potentials u and v through same transformation (2.21).

Proof. Let T~ =T*/detT(%) and

«_ [ 811(1) g12(A)
(Tey TV ‘(gﬂ(x) gzz(x)>' (231)

One can easily see that g11(1), g22(1), g21(1) are three (2N + 2)th degree polynomials and gq2(1) is a (2N + 1)th degree
polynomial in A. When A =A; (1 < j <2N), using (2.1) and (2.15), we obtain a Riccati equation

1 1 1 1
Sjt, = vk? - vakj - 2()»? — Euvkj + g(—uzv2 — 2vuy +2uvx))8j — (ukj + Eux>8]2.. (2.32)

Obviously, all A (1 < j<2N) are roots of gy;j(1) (n,i=1, 2). Furthermore, we have

Ty, +TV = Q(VT. (2.33)
where
2 1 0 1 0
Q) = (qgl))‘i+qg1))‘:' 4y , qu))‘"]‘qu) . )
q§1))‘2 + qgl))‘ qu))‘z + qéz))‘ + qéz)
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(s) (

and q,; (n,i=1,2,5=0,1, 2) are independent of A. So, we obtain

T, + TV =QW)T. (2.34)

Comparing the coefficients of AN+2 AN*1 and AN on both sides of Eq. (2.34) leads to

Nt q@ = D=1, ) =v+2cy_1=7, (235)

N ) —u— 2By =1, (2.36)
m__m_1 _ 1

d11 =9y = 5(4BN71CN,] —2uCN—_1 4+ 2vBN_1 —uv) = —iuv, (2.37)

1
¢ = 5 (4CN-—2 —4AN_1Cn-1 +4BN-1CR g — 2uC} 4 —2vAN-

+2vBNy_1CNn-1+2vDN_1 —2uvCn_1 — Vx), (2.38)
N, o _ 1. _aR2 A
AT Q= 2( 4BN-1 —4ByN_1CN-1 +4BN-1DN-1 +2uUAN-1 + 2uUBN_1CN-1
—2uDN_1 —2VB}_; +2uvBy_1 + Uy), (2.39)

ng) = —qég) = %(1GBN—]CN—2 +16BN_2Cn—1 — 16AN_1BN_1CN_1 4+ 16B%_C%_; —16BN_1CN_1DN_1
— 8uCN—3 — 8uBN_1C%_{ +8uCN_1DN—1 +8VBN_2 — 8VAN_1BN_1 +8VBN_1CN_1
— 8uvBN_1Cn—1 — u? — 4uyCn_1v? — 2vuuy — 4veBy_1 + 2uvy). (2.40)
After substituting (2.20) and (2.21) into (2.38), (2.39) and (2.40), we arrive at

1 1 1
0 - 1 ~ 0 0 _o- __ __
qél) = va’ qu) = Eux, qﬁl’ = —qéz) = g(—uzv2 —2vuy + 2uvx).

This completes the proof. O

On the other hand, starting from ((2.4), (2.6)) and using the way similar to the proof of Propositions 1 and 2, we are
able to obtain the following results.

Proposition 3. The matrix V® given by (2.6) has the same form as V3, where original potentials u and v are mapped into new
potentials u and v through the same transformation (2.20).

Propositions 1-3 show that the transformation (2.20) mapped the Lax pairs ((1.1), (2.1)) and ((1.1), (2.2)) into another
set of Lax pairs ((2.4), (2.5)) and ((2.4), (2.6)) with the same format, respectively. Therefore, both of the Lax pairs yield the
same Egs. (1.9) and (1.10). So, the transformation (2.20) is a DT of the integrable equations (1.9) and (1.10). From the above
three propositions, we have the following theorem.

Theorem 1. Under the DT (2.20), the integrable equations (1.9) and (1.10) admit the following solutions

A
B TR s (2.41)

ﬁ =Uu-—-— 2 5 l
AN_1 £2N-1

where Ay _1 is the determinant of the coefficients for the first linear algebraic system of (2.14):

1 81 M 1M1 s )LI]\Jf] 51)\2\171
1 &2 A2 S2A2 e )»12\]_] 52)»12\]_1
AN 1 =]|--- . ,
N N-1 N-1
1 San-1 Aan—1 SaN—12A2N-1 0 Ayy_q GaN—1AN 4
1 &y AN J2NA2N e )»Izv,\?] 52N)»§],\71

2n_1 is the determinant of the coefficients for the second linear algebraic system of (2.14):
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M 51 )»% 511 kllv 51)»11\]_1
A2 &2 )»% S2A2 . )\12\1 52)»12\]_1
QN1 = . i
AN—1 SaN—1 M3y_y San—1han—1 o Ay 32N—1?~12V,\7_11
AN BN Ay S2NA2N My 52N)»12V,\71
Agy_, is produced from An_q by replacing its 2Nth column with (=N, .., —)LQ’N)T, $2cy_, is produced from §2y_1 by replacing its
(2N — 1yth column with (—=8:AY , ..., =8nAN\)T, 8; (1 < j < 2N) are given by (2.15) and Aj (1 < j < 2N) are spectral parameters.

In the next two sections, we will construct the soliton and complexiton solutions of the integrable equations (1.9) and
(1.10) according to Theorem 1.

3. Solitons

Substituting trivial solutions u = v =0 into the Lax pairs (1.1) and (2.1), we choose the following basic solutions

L (exp(hj(x+Ajb)) N 0
¢<x,)—( o ) w(kf)—<exp(—xj(x+xjt>>>'

According to (2.15), we have
a](.” = —rjexp(—=21j(x+Ajt)), 1< j<2N. (3.1)

Substituting trivial solutions u = v =0 into the Lax pairs (1.1) and (2.2), we choose the following basic solutions

L (exp(hj(x+ A3) N 0
¢(}”)_< ! o’ ) w()”)_(exp(—)»j(anA?t)))'

According to (2.15), we have
89 = —rjexp(—24;(x +23r)). 1< j<2N. (3.2)

For simplicity, let us discuss soliton solutions of the integrable equations (1.9) and (1.10) in the special case of N =1.
Solving the linear algebraic system (2.14) with A =4; (j =1, 2) leads to

A 2
Bozﬂv Cozﬁa (3.3)
Ao .Qo
where
- ‘ 1 s 3 ‘/\1 51 A ' 1 —h o ’ —8\ng 8
°Thoslo T s TR S T sy, a0 )
According to (2.41), we obtain a solution of the integrable equations (1.9) and (1.10)
_ A A=A
u=1u-— A—BO:U—ZH, (3.4)
0 4y " — &
(k) ()
_ 2 Ay —A1)8y '8
TR LU BP A e Taka Vi N MRS (3.5)
20 218590 — 5810

where 5;") (k =1,2; j=1,2) are given by (3.1) or (3.2). Parameters rj, Aj (j =1,2) are properly chosen so that the
denominators in (3.4) and (3.5) are non-zero.
As k =1, Eqgs. (3.4) and (3.5) give explicit solutions of the integrable equation (1.9):

Do 2(A1 —22)
r1exp(—2A1 (X + Aqt)) — rpexp(—2i2(x + Azt))’
} 2r1ra(ha — A1) exp(—2(h1 + A2)x — 2(A2 4+ A2)t
G 112(A2 — A1) exp(—2(A1 + A2) (AT +2A5)0) (3.6)

—rah1 eXp(—2A2 (X 4 Aat)) + 1A exp(—=2A1(x + Aqb))

In order to obtain one-soliton solution of the integrable equation (1.9), the following two especial cases are discussed
under the condition Ay = —Aq.
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Fig. 1. One-soliton solution (3.7) with ry = —rp = A1 = —A =1, the solid line (—) is wave elevation at t = 7%, the evenly dashed line (— — —) is for wave
elevation at t =0, and unevenly dashed line (— - — - — ) is for wave elevation at t = %

I A\
/
0 oo
AN
2 1/ \
‘ 2 " i Ao
) '/'// A\
\ -y 7 ﬁ NN
1 = AN
0 L
Fig. 2. One-soliton solution (3.8) with r{ =r; = A1 = —A, =1, the solid line (—) is wave elevation at t = 7%. the evenly dashed line (— — —) is for wave
elevation at t =0 and unevenly dashed line (— - — - — ) is for wave elevation at t = %
Case 1. When r, = —rq, (3.6) becomes one-soliton solution
_ 2M ) _ 2
il = —=— exp(2A5t) sech(2A1x), ¥V =2r exp(—2A5t) csch(2A1x), (3.7)
r
and their graphs are shown in Fig. 1.
Case 2. When r; =11, (3.6) becomes one-soliton solution
_ 2\ 2 _ )
il = = exp(2Ajt) csch(2A1x), V =2r; exp(—2Ait) sech(2A1x), (3.8)
r

and their graphs are shown in Fig. 2.

For k =2, (3.4) and (3.5) give explicit solutions of the integrable equation (1.10):
_ 2(M —22)
r1exXp(—2A1 (X + A21)) — rpexp(—2Aa(x + A3t))
21112 (g — A1) eXp(—=2(h1 + A2)x — 2043 4+ 23)t)
—T2A1 €Xp(—2A2(X + A31)) + r1h2 €XP(—2A1 (X + A30))

u

v

Il
—
w
©
=
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Fig. 3. One-soliton solution (3.10) with r{ = —r; = A1 = —A2 =1, the solid line (—) is wave elevation at t = —1, the evenly dashed line (— — —) is for
wave elevation at t =0, and unevenly dashed line (— - — - — ) is for wave elevation at t =1.
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Fig. 4. One-soliton solution (3.11) with r; =r, = A; = —A =1, the solid line (—) is wave elevation at t = —1, the evenly dashed line (— — —) is for wave
elevation at t =0, and unevenly dashed line (— - — - — ) is for wave elevation at t = 1.

In order to obtain one-soliton solution of the integrable equation (1.10), the following two especial cases are discussed
under the condition Ay = —A;.

Case 1. When r; = —rq, (3.9) becomes one-soliton solution

<

- _zrﬂ sech (21 (x + A%t)), v =2ry csch(221(x + )L%t)), (3.10)
1

and their graphs are shown in Fig. 3.

Case 2. When r; =11, (3.9) becomes one-soliton solution

o= Zrﬂ csch(2a1(x+23t)), v = 2ry sech(2x1 (x + Af1)), (311)
1

and their graphs are shown in Fig. 4.

4. Complexiton solutions

On the basis of Theorem 1, we are able to generate the complexiton solutions for the integrable equations (1.9) and (1.10)
by using the method proposed in [17]. Substituting trivial solutions u = v =0 and complex parameters
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Aj3=0aj+if; = A0 Aj_p = —(oj+1ipj)) I=)»g;-),

1j >
A4 :a._iﬁ.:w A '=—a'+iﬁ~-=x(_".)
4j—1 J J- 1j > 4j j i 2j

(j=1,2,...,N; k =1) into Lax pairs (1.1) and (2.1), we have their basic solutions:

<¢gl>@4j3>) _ ( exp(y])(cos &} +ising}) )
My = _nt F_ e )
) ()\4]—3) exp( 77j )(COS‘S]- lSlnEj )

(q){”(m_z)) _ ( exp(n;)(cos; +ising;) )
03" (haj2) ) \exp(=n)(cos&; —ising) )’
<<p1(”(k4j_1)> _ ( exp(n])(cos&;” —ising;") )
03" (aj1))  \exp(—n])(cos[ +isingf) )’
(so{”wj)) _ ( exp(n); )(cos&;” —ising}) )
93" 04j))  \exp(=ny)(cos] +ising) )"

where
nf:ozjx—i-(a]z-—ﬁ]z)t, S;rzﬂjx—l-Zozjﬂjt,

n; =—ajx+(a]2-—ﬁ]2)t, £ =—Bjx+2a;pjt,

«j, Bj are arbitrarily real constants, and A?l) and )LE.Z) are conjugates of )L;.]) and Aﬁ.z).
According to Eq. (2.15), Egs. (4.2)-(4.5), choosing r; =0, j=1,2,..., N, we obtain

O 9051)()»41—3)
g <P§1)()»4j73)
M _ 3" (haj2)
g §0§1)()»4j—2)

1
s _ Gﬁé )()»41'—1)

= exp(—Zn;r)(cos Ef - isiné}r)2 = 8%),
= exp(—ZnJT)(cos & —isin éf)z = 8;1].),

- 2
1= =exp(—2n])(cos& +ising;")" =8y,
©; (Agj-1)
1 _ 95 0a)) - =~ Lising")? =8
s = i —— =exp(=2n;)(cos§; +ising; )" = 5y;.

o\ (haj)

803

(4.9)

Substituting trivial solutions u = v = 0 and complex parameters (4.1) for x =2 into the Lax pairs (1.1) and (2.2), we have

their basic solutions:

<<P1(2)(X4j—3)) :< exp(nj)(cos&;j + ising;) )
<P£2)()»4j_3) exp(—nj)(cos&; —isingj) )’

<<p§2>(x4j_z)> _ (exp(—nj)(COSEj - iSiﬂfJ))
08 (haj_2) exp(n;)(cos§j +ising;) )’
(w%” mj_n) _ ( exp(;)(cos§; — ising;) )
<P£2)(k4j—1) exp(—n;)(cos§j+ising;) J’
<¢§2> (m)) _ (exp(—n»(coséf + fsinfﬂ)
@ Gup)) ~ \ exp(nj)(cosj —isingj) )’

where

njzajx+( ]3—3(1,3]2)1', EjZﬂjX+(3(X]2~,3j—,3]3)t.
According to (2.15), (4.10)-(4.13), choosing rj =0, j=1,2,..., N, we have

2
5@ _ 95 (haj-3)

@ 5@
— 2 .
! €0§ )()»41'—3)

= exp(—2n;)(cosé&; — isinsj)2 1

(4.10)

(411)

(4.12)

(4.13)

(4.14)
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2
5@ _ €0§ )(Mjfz)

=2 = exp(2n)(cos &; +isin&j)? := 657 (415)
¥, (A4j-2)
@) (052)(%4]'—1) .. 2.
41 = gy = eXP(=21;)(cos§j +isingj)® := 8¢ )1/, (4.16)
;" (Aaj-1)
@ _ 95 (a)) 25
= £ " —exp(2nj)(cos&j — isingj)? :=§@)y;. (417)

4 = @2
‘P1( )(?»41‘

Substituting (4.1), (4.6)-(4.9), and (4.14)-(4.17) into (2.41) (j=1,2,...,N), we obtain the following complexiton solu-
tions of the integrable equations (1.9) and (1.10)

A ?;
ii = —p 2B v=2cCnt (418)
AN—1 §29N-1
where
_ ® () (k) (k) K () (k) (T
A2N-1 _det(o“ »0217,0117, 091 ""’GIN’GZN’GIN’GZN) ,
_ k) (k) () (k) ) () () T
$22N—1 _det(,o]] 102175 P11 P21 ""’IO]N’/OZN’IO1N’102N) )
_ ) pk) pK) 1) k) p) 1) pUNT
AByy 4 —dEt(bn sby1.byys by ""’blN’b2N’blN’b2N) )
_ ’) (&) (k) (k) (GERGIRGIRGN
¢y —dEt(CH 1621561175 €1 ""’ClN’CZN’ClN’CZN) )
with
k _ (k) 4 (k) oK) (k) ©)2N=2 ()4 )22 L (102N () (k)N
o = (187 a7 8 a8 T ), (4.19)
() _ (1K) oK) 4 ()% o)y (k) W1 L)y N2 0N k), ()T
L U e Y T S /e S Y N S B (4.20)
K) _ (k) 5 (k) oK)y () WMN=2 (k) ()2N72 (k)] ()N
by = (187 a7 8 h T Ay, (4.21)
() _ (1) oK) 4 ()% (k)5 (k) )2N=1 o) 4 (1)2N2 (k) 5 12N (k) 4 (k)N T
= (8 A T ST = T8 ) (4.22)
N ERGENG) () . K) (k) pK) ) g _
where Ol s Py ,blj , and ¢, are the conjugates ofa,j " Py 'blj and Cj (1=1,2).

By properties of determinant and analytic function, we are able to arrive at the following solutions, which are called
n-complexiton solution of the integrable equations (1.9) and (1.10)

_ Ap
i =Bt
AN—1

where

AaN_1 =det(Real('1‘),Rea(K) Imo® Imol

Ion—1 =det(Re /O§1

Apyy_, =det(Re

7= ZFCZN—I

IoN-1

21 > 11 > 21 - IN>

,Re p 1m p{) 1m p{ .. )

K)

b%) Reb™ . imb™, 1mb%

.,Re pl%) Re p3) 1m p%) 1m pSK;

..Reb™ Reb®™ lmbg'fv), Imbé’f\,))r,

(4.23)

()

() (%) () T
..,Reo|y,Reo,y . Imo,y, Imoyy) ",

(%) (K))T’

11> 21 11 210 N>
(k) ) (i) () (i) () () (T
I'con 4 =det(Rec11 sRecyy’, Imcyy, Imcyy ,...,ReclN,ReCZN,ImclN,ImCZN) ,

with O'I(K)

T plg.'(), b,(]f() and ¢ given by (4.19)-(4.22).

lj

For simplicity, let us discuss the special case of N = 1. A direct computation yields 1-complexiton solution of the inte-
grable equations (1.9) and (1.10)

Ap,
Aq

u=-2

tl

where

A= det(ReG](']C), Re o Im al('f), lmaz('f))T,

Ag, =det(Re bg’;

e

V= ,
I

21
) (k) (k) T
,Rebyy, Imbjy’, Imby7’)",

I =det(Re p) Re o3 1m p!*) 1m p

I'c, =det(Rec{, Rec

(4.24)

(K))T’

3] (x) (T
o1 - Imey Imeyy’)’
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Fig. 5. The complexiton solution (4.25) of the nonlinear equation (1.9) with oy =1, g1 = —1.1.
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Fig. 6. The complexiton solution (4.26) of the nonlinear equation (1.10) with o1 =1, 1 = —2.
with
(k) _ (k) 5 (k) (k)4 (k) D) _ (&) () () oK)y (k)
oy = (1, Sy My s 8y Ay ). P = ()‘11 DBy Ay By Ay ).

(k) _ (1 00) () k) 4 ()% (k)5 () ) _ k) 4 (0) (x)?
Ch —()‘11 O =0 A S8 A ) by —(L(Sn A=A )

1=1,2), (Sﬁ), 55’? are given by (4.6), (4.7), and Ag';), Aé’? are given by (4.1).
For k¥ =1, Eq. (4.24) is a complexiton solution of the integrable equation (1.9):
8cr1 81 exp 27 [B1 cos2&," — By exp 1 cos2€; + g (exp &1 sin(—2£; ) + sin2&,)]
BE(1+exp2¢1) + 208 exp &1 cos(4B1x) — 2(aed + B) exp {1 €os 1
8ot f1 exp(—ny )lexp &1 sin 2§, — sin(=2§7)]
exp {1[2(c? — B?) cos 61 — 202 cos(4p1X)] + Bi[f1 + B1exp2¢1 — dagexp gy singy]

<
Il

’

<!
I

(4.25)

where ¢1 =41, ¢1 = 81 81t. The graph of the complexiton solution (4.25) for the integrable equation (1.9) is shown in
Fig. 5.
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For k =2, Eq. (4.24) gives a complexiton solution of the integrable equation (1.10):
8ar1 B1 exp2n1[B1(1 — exp4ny) cos 261 + a1 (1 + exp4ny) sin 2&1]
BE + B exp8i1 — 2(F + B7) exp i + 207 exp 4 cos A&
8ar1 B1 exp 2 (exp4n; — 1) sin2&;
BE + B exp8n1 + 2(a? — B} exp4ns — 20} exp 4 cos4Ey

<
Il

v

(4.26)

The graph of the complexiton solution (4.26) for the integrable equation (1.10) is shown in Fig. 6.
In this way, with the help of the DT (2.20), we are able to generate soliton and other solutions of the integrable equations
(1.9) and (1.10) from a trivial solution.

5. Conclusion

In this paper, the soliton and complexiton solutions to the integrable equations (1.9) and (1.10) have been presented
by using the N-fold Darboux transformation. The formula (2.41) is a unified and explicit formulation of multiple soliton
solution. The expression (4.23) is a formulation of all k-complexiton solution (1 <k < N), from which we can easily get
complexiton and other solutions of the integrable equations (1.9) and (1.10). It is important to point out that the soliton
and complexiton solutions for one of potentials u and v have singularities. The profiles of soliton and complexiton solutions
are graphically figured out. Within our knowledge, these solutions may be of significance for the explanation of some
physical phenomenon. Also, we may try to find cuspons and peakons for the integrable equations (1.9) and (1.10), using the
procedure we studied in [25,26].
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