Multi-component generalization of the Camassa–Holm equation

Baoqiang Xiaa,*, Zhijun Qiaob

a School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
b Department of Mathematics, University of Texas–Rio Grande Valley, Edinburg, TX 78541, USA

\begin{abstract}
In this paper, we propose a multi-component system of the Camassa–Holm equation, denoted by CH\((N, H)\), with \(2N\) components and an arbitrary smooth function \(H\). This system is shown to admit Lax pair and infinitely many conservation laws. We particularly study the case \(N = 2\) and derive the bi-Hamiltonian structures and peaked soliton (peakon) solutions for some examples.
\end{abstract}

© 2016 Elsevier B.V. All rights reserved.

\section{Introduction}

In 1993, Camassa and Holm derived the well-known Camassa–Holm (CH) equation\cite{1}
\begin{equation}
 m_t + 2mu_x + m_x u = 0, \quad m = u - u_{xx} + k,
\end{equation}
(with \(k\) being an arbitrary constant) with the aid of an asymptotic approximation to the Hamiltonian of the Green–Naghdi equations. Since the work of Camassa and Holm\cite{1}, more diverse studies on this equation have remarkably been developed\cite{2–12}. The most interesting feature of the CH equation\cite{1} is that it admits peakon solutions in the case \(k = 0\). The stability and interaction of peakons were discussed in several references\cite{13–17}. In addition to the CH equation, other similar integrable models with peakon solutions were found\cite{18,19}. Recently, there are two integrable peakon equations found with cubic nonlinearity. They are the following cubic equation\cite{3,20–22}
\begin{equation}
 m_t + \frac{1}{2} [m(u^2 - u_x^2)]_x = 0, \quad m = u - u_{xx},
\end{equation}
and the Novikov’s equation\cite{23,24}
\begin{equation}
 m_t = u^2 m_x + 3 uu_x m, \quad m = u - u_{xx}.
\end{equation}
There is also much attention in studying integrable multi-component peakon equations. For example, in\cite{25–28}, multi-component generalizations of the CH equation were derived from different points of view, and in\cite{29}, multi-component extensions of the cubic nonlinear equation\cite{2} were studied.

In a previous paper\cite{30}, we proposed a two-component generalization of the CH equation\cite{1} and the cubic nonlinear CH equation\cite{2}.
Proposition 1. (8) provides the Lax pair for the multi-component system (5).
Proof. It is easy to check that the compatibility condition of (8) generates
\[U_t - V_x + [U, V] = 0. \] \hfill (10)
From (9), we have
\[
U_t = \frac{1}{N + 1} \begin{pmatrix}
0 & \lambda \bar{m}_t \\
\lambda \bar{n}_t & 0
\end{pmatrix},
\]
\[
V_x = \frac{1}{N + 1} \begin{pmatrix}
\frac{1}{N + 1} [\bar{m}(\bar{v} + \bar{v}_x)^T - (\bar{u} - \bar{u}_x)\bar{n}^T] & \lambda^{-1}(\bar{u}_x - \bar{u}_x) + \lambda(\bar{m}H)_x \\
\lambda^{-1}(\bar{v}_x + \bar{v}_x) + \lambda(\bar{n}^T H)_x & \frac{1}{N + 1} [\bar{n}^T (\bar{u} - \bar{u}_x) - (\bar{v} + \bar{v}_x)^T \bar{m}]
\end{pmatrix},
\] \hfill (11)
and
\[
[U, V] = UV - VU = \frac{1}{(N + 1)^2} \begin{pmatrix}
\Gamma_{11} & \Gamma_{12} \\
\Gamma_{21} & \Gamma_{22}
\end{pmatrix},
\] \hfill (12)
where
\[
\Gamma_{11} = \bar{m}(\bar{v} + \bar{v}_x)^T - (\bar{u} - \bar{u}_x)\bar{n}^T,
\]
\[
\Gamma_{12} = (N + 1)\left[\lambda^{-1}(\bar{u}_x - \bar{u}_x) - \lambda\bar{m}H\right] - \frac{\lambda}{N + 1} [\bar{m}(\bar{v} + \bar{v}_x)^T (\bar{u} - \bar{u}_x) + (\bar{u} - \bar{u}_x)(\bar{v} + \bar{v}_x)^T \bar{m}].
\]
\[
\Gamma_{21} = (N + 1)\left[\lambda^{-1}(\bar{u}_x + \bar{v}_x)^T + \lambda\bar{n}^T H\right] + \frac{\lambda}{N + 1} [\bar{n}^T (\bar{u} - \bar{u}_x)(\bar{v} + \bar{v}_x)^T + (\bar{v} + \bar{v}_x)^T (\bar{u} - \bar{u}_x)\bar{n}^T],
\]
\[
\Gamma_{22} = \bar{n}^T (\bar{u} - \bar{u}_x) - (\bar{v} + \bar{v}_x)^T \bar{m}.
\]
We remark that (12) is written in the form of block matrix. As shown above, the element \(\Gamma_{11}\) is a scalar function, the element \(\Gamma_{12}\) is a \(N\)-component row vector function, the element \(\Gamma_{21}\) is a \(N\)-component column vector function, and the element \(\Gamma_{22}\) is a \(N \times N\) matrix function.

Substituting the expressions (11) and (12) into (10), we find that (10) gives rise to
\[
\begin{align*}
\bar{m}_t &= (\bar{m}H)_x + \bar{m}H + \frac{1}{(N + 1)^2} [\bar{m}(\bar{v} + \bar{v}_x)^T (\bar{u} - \bar{u}_x) + (\bar{u} - \bar{u}_x)(\bar{v} + \bar{v}_x)^T \bar{m}], \\
\bar{n}_t^T &= (\bar{n}^T H)_x - \bar{n}^T H - \frac{1}{(N + 1)^2} [\bar{n}^T (\bar{u} - \bar{u}_x)(\bar{v} + \bar{v}_x)^T + (\bar{v} + \bar{v}_x)^T (\bar{u} - \bar{u}_x)\bar{n}^T], \\
\bar{m} &= \bar{u} - \bar{u}_x, \\
\bar{n}^T &= \bar{v}^T - \bar{v}_x,
\end{align*}
\] \hfill (13)
which is nothing but the vector equation (7). Hence, (8) exactly gives the Lax pair of multi-component equation (5).

Now let us construct the conservation laws of Eq. (5). We write the spatial part of the spectral problems (8) as
\[
\begin{align*}
\phi_{1,x} &= \frac{1}{N + 1} \left[-N\phi_1 + \lambda \sum_{i=1}^{N} m_i \phi_{2,i}\right], \quad 1 \leq j \leq N, \\
\phi_{2,j,x} &= \frac{1}{N + 1} \left(\lambda n_j \phi_1 + \phi_{2,j}\right),
\end{align*}
\] \hfill (14)
Let \(\Omega_j = \frac{\phi_{2,j}}{\phi_1}, 1 \leq j \leq N\), we obtain the following system of Riccati equations
\[
\Omega_{j,x} = \frac{1}{N + 1} \left[\lambda n_j + (N + 1) \Omega_j - \lambda \Omega_j \sum_{i=1}^{N} m_i \Omega_i\right], \quad 1 \leq j \leq N.
\] \hfill (15)
Making use of the relation \((\ln \phi_1)_{xx} = (\ln \phi_1)_{1x}\), and (8), we arrive at the conservation law
\[
\left(\sum_{i=1}^{N} m_i \Omega_i\right)_t = \left(\lambda^{-2} \sum_{i=1}^{N} (u_i - u_{i,x}) \Omega_i + \frac{1}{N + 1} \lambda^{-1} \sum_{i=1}^{N} (u_i - u_{i,x})(v_i + v_{i,x}) + H \sum_{i=1}^{N} m_i \Omega_i\right)_x.
\] \hfill (16)
Eq. (16) means that \(\sum_{i=1}^{N} m_i \Omega_i\) is a generating function of the conserved densities. To derive the explicit forms of conserved densities, we expand \(\Omega_j\) into the negative power series of \(\lambda\) as
\[
\Omega_j = \sum_{k=0}^{\infty} \omega_j k \lambda^{-k}, \quad 1 \leq j \leq N.
\] \hfill (17)
Substituting (17) into the Riccati system (15) and equating the coefficients of powers of \(\lambda \), we obtain

\[
\omega_{j0} = n_j \left(\sum_{i=1}^{N} m_i n_i \right)^{-\frac{1}{2}},
\]

\[
\omega_{j1} = (N + 1) \left[\omega_j - \omega_{j0,x} - \frac{1}{2} n_j \left(\sum_{i=1}^{N} m_i (\omega_{i0} - \omega_{i0,x}) \left(\sum_{i=1}^{N} m_i n_i \right)^{-1} \right) \right] \left(\sum_{i=1}^{N} m_i n_i \right)^{-\frac{1}{2}},
\]

and the recursion relations for \(\omega_{j(k+1)} \), \(k \geq 1 \),

\[
\omega_{j(k+1)} = (N + 1) \left[\omega_{jk} - \omega_{jk,x} - \frac{1}{2} n_j \left(\sum_{i=1}^{N} m_i (\omega_{ik} - \omega_{ik,x}) \left(\sum_{i=1}^{N} m_i n_i \right)^{-1} \right) \right] \left(\sum_{i=1}^{N} m_i n_i \right)^{-\frac{1}{2}}.
\]

Inserting (17)-(19) into (16), we finally obtain the following infinitely many conserved densities \(\rho_j \) and the associated fluxes \(F_j \):

\[
\rho_0 = \sum_{i=1}^{N} m_i \omega_{i0} = \left(\sum_{i=1}^{N} m_i n_i \right)^{\frac{1}{2}}, \quad F_0 = H \sum_{i=1}^{N} m_i \omega_{i0} = H \left(\sum_{i=1}^{N} m_i n_i \right)^{\frac{1}{2}},
\]

\[
\rho_1 = \sum_{i=1}^{N} m_i \omega_{i1}, \quad F_1 = \frac{1}{N + 1} \sum_{i=1}^{N} (u_i - u_{i,x})(v_i + v_{i,x}) + H \sum_{i=1}^{N} m_i \omega_{i1},
\]

\[
\rho_2 = \sum_{i=1}^{N} m_i \omega_{i2}, \quad F_2 = \sum_{i=1}^{N} (u_i - u_{i,x})\omega_{i0} + H \sum_{i=1}^{N} m_i \omega_{i2},
\]

\[
\rho_j = \sum_{i=1}^{N} m_i \omega_{ij}, \quad F_j = \sum_{i=1}^{N} (u_i - u_{i,x})\omega_{(j-1)} + H \sum_{i=1}^{N} m_i \omega_{ij}, \quad j \geq 3,
\]

where \(\omega_{ij}, \quad 1 \leq i \leq N, \quad j \geq 0 \) is given by (18) and (19).

Remark 1. The 2N-component system (5) with an arbitrary function \(H \) does possess Lax representation and infinitely many conservation laws. Such a system is interesting since different choices of \(H \) lead to different peakon equations. Let us look back why an arbitrary smooth function may be involved in system (5). System (5) is produced by the compatibility condition (10) of the spectral problems (8) where such an arbitrary function is included in \(V \) part (see the formula (9)). The appearance of this arbitrary function can be explained as that the Lax equation is an over determined system by choosing the appropriate \(V \) to match \(U \).

3. Examples for \(N = 2 \)

In the case \(N = 2 \), Eq. (5) is cast into the following four-component model

\[
\begin{align*}
 m_{1,t} &= (m_1 H)_x + m_1 H \\
 &+ \frac{1}{9} \left[m_1 [2(u_1 - u_{1,x})(v_1 + v_{1,x}) + (u_2 - u_{2,x})(v_2 + v_{2,x})] + m_2 (u_1 - u_{1,x})(v_2 + v_{2,x}) \right] + \frac{1}{9} \left[m_1 (u_2 - u_{2,x})(v_1 + v_{1,x}) + m_2 (u_1 - u_{1,x})(v_1 + v_{1,x}) + 2(u_2 - u_{2,x})(v_2 + v_{2,x}) \right] \\
 m_{2,t} &= (m_2 H)_x + m_2 H \\
 &+ \frac{1}{9} \left[m_1 (u_2 - u_{2,x})(v_1 + v_{1,x}) + m_2 [2(u_1 - u_{1,x})(v_1 + v_{1,x}) + 2(u_2 - u_{2,x})(v_2 + v_{2,x})] \right] \\
 n_{1,t} &= (n_1 H)_x - n_1 H \\
 &- \frac{1}{9} [n_1 [2(u_1 - u_{1,x})(v_1 + v_{1,x}) + (u_2 - u_{2,x})(v_2 + v_{2,x})] + n_2 (u_2 - u_{2,x})(v_1 + v_{1,x})] \\
 n_{2,t} &= (n_2 H)_x - n_2 H \\
 &- \frac{1}{9} [n_1 (u_1 - u_{1,x})(v_2 + v_{2,x}) + n_2 [2(u_1 - u_{1,x})(v_1 + v_{1,x}) + 2(u_2 - u_{2,x})(v_2 + v_{2,x})]]
\end{align*}
\]

where \(H \) is an arbitrary smooth function of \(u_1, u_2, v_1, v_2 \), and their derivatives. This system admits the following \(3 \times 3 \) Lax pair

\[
U = \frac{1}{3} \begin{pmatrix}
 -2 & \lambda & \lambda m_1 \\
 \lambda n_1 & 1 & 0 \\
 \lambda n_2 & 0 & 1
\end{pmatrix}, \quad V = \frac{1}{3} \begin{pmatrix}
 V_{11} & V_{12} & V_{13} \\
 V_{21} & V_{22} & V_{23} \\
 V_{31} & V_{32} & V_{33}
\end{pmatrix}.
\]
where

\[V_{11} = -2\lambda^{-2} + \frac{1}{3}[(u_1 - u_{1,x})(v_1 + v_{1,x}) + (u_2 - u_{2,x})(v_2 + v_{2,x})], \]
\[V_{12} = \lambda^{-1}(u_1 - u_{1,x}) + \lambda m_1 H, \quad V_{13} = \lambda^{-1}(u_2 - u_{2,x}) + \lambda m_2 H, \]
\[V_{21} = \lambda^{-1}(v_1 + v_{1,x}) + \lambda n_1 H, \quad V_{22} = \lambda^{-2} - \frac{1}{3}(u_1 - u_{1,x})(v_1 + v_{1,x}), \]
\[V_{23} = \frac{1}{3}(u_2 - u_{2,x})(v_1 + v_{1,x}), \quad V_{31} = \lambda^{-1}(v_2 + v_{2,x}) + \lambda n_2 H, \]
\[V_{22} = -\frac{1}{3}(u_1 - u_{1,x})(v_2 + v_{2,x}), \quad V_{33} = \lambda^{-2} - \frac{1}{3}(u_2 - u_{2,x})(v_2 + v_{2,x}). \]

(23)

Due to the appearance of arbitrary function \(H \), we do not know yet whether (21) is bi-Hamiltonian in general. But we find that it is possible to figure out the bi-Hamiltonian structures for some special cases, which we will show in the following examples.

Example 1. A new integrable model with stationary peakon solutions

Taking \(H = 0 \), Eq. (21) becomes the following system

\[
\begin{align*}
\begin{cases}
\frac{m_{1,t}}{m_{1,x}} = -\frac{1}{9}[(u_1 - u_{1,x})(v_1 + v_{1,x}) + (u_2 - u_{2,x})(v_2 + v_{2,x})] + m_2(u_1 - u_{1,x})(v_2 + v_{2,x})], \\
\frac{m_{2,t}}{m_{2,x}} = -\frac{1}{9}[(u_1 - u_{1,x})(v_1 + v_{1,x}) + m_2(u_1 - u_{1,x})(v_2 + v_{2,x})] + m_2(u_1 - u_{1,x})(v_2 + v_{2,x})], \\
n_1 = -\frac{1}{9}[n_1(u_1 - u_{1,x})(v_1 + v_{1,x}) + (u_2 - u_{2,x})(v_2 + v_{2,x})] + n_2(u_2 - u_{2,x})(v_1 + v_{1,x})], \\
n_2 = -\frac{1}{9}[n_1(u_1 - u_{1,x})(v_1 + v_{1,x}) + n_2(u_1 - u_{1,x})(v_1 + v_{1,x}) + 2(u_2 - u_{2,x})(v_2 + v_{2,x})] + n_2(u_2 - u_{2,x})(v_1 + v_{1,x})], \\
m_1 = u_1 - u_{1,xx}, \quad m_2 = u_2 - u_{2,xx}, \quad n_1 = v_1 - v_{1,xx}, \quad n_2 = v_2 - v_{2,xx}.
\end{cases}
\end{align*}
\]

(24)

Let us introduce a Hamiltonian pair

\[
J = \begin{pmatrix}
0 & 0 & \partial + 1 & 0 \\
0 & 0 & 0 & \partial + 1 \\
\partial - 1 & 0 & 0 & 0 \\
0 & \partial - 1 & 0 & 0
\end{pmatrix}, \quad K = \begin{pmatrix}
K_{11} & K_{12} & K_{13} & K_{14} \\
K_{21} & K_{22} & K_{23} & K_{24} \\
K_{31} & K_{32} & K_{33} & K_{34} \\
K_{41} & K_{42} & K_{43} & K_{44}
\end{pmatrix},
\]

(25)

where

\[
\begin{align*}
K_{11} &= -2m_1\partial^{-1}m_1, \quad K_{12} = -m_2\partial^{-1}m_1 - m_1\partial^{-1}m_2, \\
K_{13} &= 2m_1\partial^{-1}n_1 + m_2\partial^{-1}n_2, \quad K_{14} = m_1\partial^{-1}n_2, \\
K_{21} &= -K_{22}^* = -m_1\partial^{-1}m_2 - m_2\partial^{-1}m_1, \quad K_{22} = -2m_2\partial^{-1}m_2, \\
K_{23} &= m_2\partial^{-1}n_1, \quad K_{24} = m_1\partial^{-1}n_1 + 2m_2\partial^{-1}n_2, \\
K_{31} &= -K_{32}^* = 2n_1\partial^{-1}m_1 + n_2\partial^{-1}m_2, \quad K_{32} = -K_{33}^* = n_1\partial^{-1}m_2, \\
K_{33} &= -2n_1\partial^{-1}n_1, \quad K_{34} = -n_1\partial^{-1}n_2 - n_2\partial^{-1}n_1, \\
K_{41} &= -K_{42}^* = n_2\partial^{-1}m_1, \quad K_{42} = -K_{43}^* = n_1\partial^{-1}m_1 + 2n_2\partial^{-1}m_2, \\
K_{43} &= -K_{44}^* = -n_2\partial^{-1}n_1 - n_1\partial^{-1}n_2, \quad K_{44} = -2n_2\partial^{-1}n_2.
\end{align*}
\]

(26)

By direct but tedious calculations, we arrive at

Proposition 2. Eq. (24) can be rewritten in the following bi-Hamiltonian form

\[
\left(m_{1,t}, m_{2,t}, n_{1,t}, n_{2,t} \right)^T = J \left(\frac{\delta H_2}{\delta m_1}, \frac{\delta H_2}{\delta m_2}, \frac{\delta H_2}{\delta n_1}, \frac{\delta H_2}{\delta n_2} \right)^T = K \left(\frac{\delta H_1}{\delta m_1}, \frac{\delta H_1}{\delta m_2}, \frac{\delta H_1}{\delta n_1}, \frac{\delta H_1}{\delta n_2} \right)^T,
\]

(27)

where \(J \) and \(K \) are given by (25), and

\[
H_1 = \int_{-\infty}^{+\infty} [(u_{1,x} - u_1)n_1 + (u_{2,x} - u_2)n_2]dx,
\]
\[
H_2 = \frac{1}{9} \int_{-\infty}^{+\infty} [(u_1 - u_{1,x})^2(v_1 + v_{1,x})n_1 + (u_1 - u_{1,x})(u_2 - u_{2,x})(v_2 + v_{2,x})n_1 \\
+ (u_1 - u_{1,x})(u_2 - u_{2,x})(v_1 + v_{1,x})n_2 + (u_2 - u_{2,x})^2(v_2 + v_{2,x})n_2]dx.
\]

(28)
Suppose an N-peakon solution of (24) is in the form

$$
\begin{align*}
 u_1 &= \sum_{j=1}^{N} p_j(t) e^{-|x-q_j(t)|}, \quad u_2 = \sum_{j=1}^{N} r_j(t) e^{-|x-q_j(t)|}, \\
 v_1 &= \sum_{j=1}^{N} s_j(t) e^{-|x-q_j(t)|}, \quad v_2 = \sum_{j=1}^{N} w_j(t) e^{-|x-q_j(t)|}.
\end{align*}
$$

(29)

Then, in the distribution sense, one can get

$$
\begin{align*}
 u_{1,x} &= -\sum_{j=1}^{N} p_j \text{sgn}(x - q_j) e^{-|x-q_j|}, \quad m_1 = 2 \sum_{j=1}^{N} p_j \delta(x - q_j), \\
 u_{2,x} &= -\sum_{j=1}^{N} r_j \text{sgn}(x - q_j) e^{-|x-q_j|}, \quad m_2 = 2 \sum_{j=1}^{N} r_j \delta(x - q_j), \\
 v_{1,x} &= -\sum_{j=1}^{N} s_j \text{sgn}(x - q_j) e^{-|x-q_j|}, \quad n_1 = 2 \sum_{j=1}^{N} s_j \delta(x - q_j), \\
 v_{2,x} &= -\sum_{j=1}^{N} w_j \text{sgn}(x - q_j) e^{-|x-q_j|}, \quad n_2 = 2 \sum_{j=1}^{N} w_j \delta(x - q_j).
\end{align*}
$$

(30)

Substituting (29) and (30) into (24) and integrating against test functions with compact support, we arrive at the N-peakon dynamical system as follows:

$$
\begin{align*}
 q_{j,t} &= 0, \\
 p_{j,t} &= -\frac{1}{9} \left\{ 2 \left[p_j(p_j s_j + r_j w_j) - \sum_{i,k=1}^{N} (p_j(2p_i s_k + r_i w_k) + r_j p_i w_k) \left(\text{sgn}(q_j - q_i) - \text{sgn}(q_j - q_k) \right) e^{-|q_j-q_i|-|q_j-q_k|} \right] \\
 &\quad + \sum_{i,k=1}^{N} (p_j(2p_i s_k + r_i w_k) + r_j p_i w_k) \left(\text{sgn}(q_j - q_i)\text{sgn}(q_j - q_k) - 1 \right) e^{-|q_j-q_i|-|q_j-q_k|} \right\}, \\
 r_{j,t} &= -\frac{1}{9} \left\{ 2 \left[r_j r_j w_j + p_j s_j \right] - \sum_{i,k=1}^{N} (r_j(2r_i w_k + p_i s_k) + p_j r_i s_k) \left(\text{sgn}(q_j - q_i) - \text{sgn}(q_j - q_k) \right) e^{-|q_j-q_i|-|q_j-q_k|} \right] \\
 &\quad + \sum_{i,k=1}^{N} (r_j(2r_i w_k + p_i s_k) + p_j r_i s_k) \left(\text{sgn}(q_j - q_i)\text{sgn}(q_j - q_k) - 1 \right) e^{-|q_j-q_i|-|q_j-q_k|} \right\}, \\
 s_{j,t} &= \frac{1}{9} \left\{ 2 \left[s_j(p_j s_j + r_j w_j) - \sum_{i,k=1}^{N} (s_j(2p_i s_k + r_i w_k) + w_j r_i s_k) \left(\text{sgn}(q_j - q_i) - \text{sgn}(q_j - q_k) \right) e^{-|q_j-q_i|-|q_j-q_k|} \right] \\
 &\quad + \sum_{i,k=1}^{N} (s_j(2p_i s_k + r_i w_k) + w_j r_i s_k) \left(\text{sgn}(q_j - q_i)\text{sgn}(q_j - q_k) - 1 \right) e^{-|q_j-q_i|-|q_j-q_k|} \right\}, \\
 w_{j,t} &= \frac{1}{9} \left\{ 2 \left[w_j(p_j s_j + r_j w_j) - \sum_{i,k=1}^{N} (w_j(2r_i w_k + p_i s_k) + s_j p_i w_k) \left(\text{sgn}(q_j - q_i) - \text{sgn}(q_j - q_k) \right) e^{-|q_j-q_i|-|q_j-q_k|} \right] \\
 &\quad + \sum_{i,k=1}^{N} (w_j(2r_i w_k + p_i s_k) + s_j p_i w_k) \left(\text{sgn}(q_j - q_i)\text{sgn}(q_j - q_k) - 1 \right) e^{-|q_j-q_i|-|q_j-q_k|} \right\}.
\end{align*}
$$

(31)

The formula $q_{j,t} = 0$ in (31) implies that the peakon position is stationary and the solution is in the form of separation of variables. Especially, for $N = 1$, (31) becomes
Example 2. A new integrable four-component system with peakon solutions

See Fig. 1 for the stationary single-peakon of the potentials which has the solution

\[
q_1 = C_1, \quad p_1 = A_4 e^{\frac{\beta}{A_2 + A_3} t}, \quad r_1 = \frac{1}{A_1} p_1, \quad s_1 = A_2 e^{-\frac{\alpha}{A_2 + A_3} t}, \quad w_1 = \frac{A_3}{r_1},
\]

where \(C_1\) and \(A_1, \ldots, A_4\) are integration constants. Thus, the stationary single-peakon solution becomes

\[
\begin{align*}
u_1 &= A_4 e^{\frac{\beta}{A_2 + A_3} t} e^{-|x - C_1|}, \quad u_2 = \frac{u_1}{A_1}, \\
v_1 &= A_2 e^{-\frac{\alpha}{A_2 + A_3} t} e^{-|x - C_1|}, \quad v_2 = \frac{A_1 A_3}{A_2} v_1.
\end{align*}
\]

See Fig. 1 for the stationary single-peakon of the potentials \(u_1(x, t)\) and \(v_1(x, t)\) with \(C_1 = 0, A_2 = A_4 = 1\) and \(A_3 = 2\).

Let us choose

\[
H = \frac{1}{9} [(u_1 - u_{1,x})(v_1 + v_{1,x}) + (u_2 - u_{2,x})(v_2 + v_{2,x})],
\]

then Eq. (21) is cast into

\[
\begin{align*}
m_{1,t} &= (m_1 H)_x + \frac{1}{9} m_1 (u_1 - u_{1,x})(v_1 + v_{1,x}) + \frac{1}{9} m_2 (u_1 - u_{1,x})(v_2 + v_{2,x}), \\
m_{2,t} &= (m_2 H)_x + \frac{1}{9} m_1 (u_2 - u_{2,x})(v_1 + v_{1,x}) + \frac{1}{9} m_2 (u_2 - u_{2,x})(v_2 + v_{2,x}), \\
n_{1,t} &= (n_1 H)_x - \frac{1}{9} n_1 (u_1 - u_{1,x})(v_1 + v_{1,x}) - \frac{1}{9} n_2 (u_2 - u_{2,x})(v_1 + v_{1,x}), \\
n_{2,t} &= (n_2 H)_x - \frac{1}{9} n_1 (u_1 - u_{1,x})(v_2 + v_{2,x}) - \frac{1}{9} n_2 (u_2 - u_{2,x})(v_2 + v_{2,x}), \\
m_1 &= u_1 - u_{1,xx}, \quad m_2 = u_2 - u_{2,xx}, \quad n_1 = v_1 - v_{1,xx}, \quad n_2 = v_2 - v_{2,xx}.
\end{align*}
\]

Let us set

\[
K = \frac{1}{9} \begin{pmatrix} K_{11} & K_{12} & K_{13} & K_{14} \\ K_{21} & K_{22} & K_{23} & K_{24} \\ K_{31} & K_{32} & K_{33} & K_{34} \\ K_{41} & K_{42} & K_{43} & K_{44} \end{pmatrix},
\]

where

\[
\begin{align*}
K_{11} &= \partial m_1 \partial^{-1} m_1 \partial - m_1 \partial^{-1} m_1, \quad K_{12} = \partial m_1 \partial^{-1} m_2 \partial - m_2 \partial^{-1} m_1, \\
K_{13} &= \partial m_1 \partial^{-1} m_1 \partial + m_1 \partial^{-1} m_2 \partial - m_2 \partial^{-1} m_1, \quad K_{14} = \partial m_1 \partial^{-1} m_2 \partial, \\
K_{21} &= -K_{12} = \partial m_2 \partial^{-1} m_1 \partial - m_1 \partial^{-1} m_2, \quad K_{22} = \partial m_2 \partial^{-1} m_2 \partial - m_2 \partial^{-1} m_2, \\
K_{23} &= \partial m_2 \partial^{-1} m_1 \partial, \quad K_{24} = \partial m_2 \partial^{-1} m_2 \partial + m_1 \partial^{-1} m_1 + m_2 \partial^{-1} m_2, \\
K_{31} &= -K_{13} = \partial n_1 \partial^{-1} m_1 \partial + n_1 \partial^{-1} m_2 \partial + n_2 \partial^{-1} m_2, \quad K_{32} = -K_{23} = \partial n_1 \partial^{-1} m_2 \partial, \\
K_{33} &= \partial n_1 \partial^{-1} m_1 \partial - n_1 \partial^{-1} n_1, \quad K_{34} = \partial n_1 \partial^{-1} n_1 \partial, \\
K_{41} &= -K_{14} = \partial n_2 \partial^{-1} m_1 \partial, \quad K_{42} = -K_{24} = \partial n_2 \partial^{-1} m_2 \partial + n_1 \partial^{-1} m_1 + n_2 \partial^{-1} m_2, \\
K_{43} &= -K_{34} = \partial n_2 \partial^{-1} n_1 \partial - n_1 \partial^{-1} n_2, \quad K_{44} = \partial n_2 \partial^{-1} n_2 \partial - n_2 \partial^{-1} n_2.
\end{align*}
\]
By direct calculations, we arrive at

Proposition 3. Eq. (35) can be rewritten in the following Hamiltonian form

\[
\begin{pmatrix}
m_1, t, m_2, t, n_1, t, n_2, t
\end{pmatrix}^T = K \begin{pmatrix}
\frac{\delta H_1}{\delta m_1}, \frac{\delta H_1}{\delta m_2}, \frac{\delta H_1}{\delta n_1}, \frac{\delta H_1}{\delta n_2}
\end{pmatrix}^T,
\]

where \(K\) are given by (36), and

\[
H_1 = \int_{-\infty}^{+\infty} [(u_{1,x} - u_1)n_1 + (u_{2,x} - u_2)n_2] dx.
\]

We believe that Eq. (35) could be cast into a bi-Hamiltonian system. But we did not find another Hamiltonian operator yet that is compatible with the Hamiltonian operator (36).

Suppose \(N\)-peakon solution of (35) is expressed also in the form of (29). Then, we obtain the \(N\)-peakon dynamical system of (35):

\[
q_{j,t} = \frac{1}{9} \left\{ -\frac{1}{3} \left(p_j s_j + r_j w_j \right) + \sum_{i,k = 1}^{N} \left(p_i s_k + r_i w_k \right) \left(\text{sgn}(q_j - q_i) - \text{sgn}(q_j - q_k) \right) e^{-|q_j - q_i| - |q_j - q_k|} \right\},
\]

\[
p_{j,t} = \frac{1}{9} \left\{ -\frac{1}{3} p_j (p_j s_j + r_j w_j) + \sum_{i,k = 1}^{N} \left(p_i s_k + r_i w_k \right) \left(\text{sgn}(q_j - q_i) - \text{sgn}(q_j - q_k) \right) e^{-|q_j - q_i| - |q_j - q_k|} \right\},
\]

\[
r_{j,t} = \frac{1}{9} \left\{ -\frac{1}{3} r_j (p_j s_j + r_j w_j) + \sum_{i,k = 1}^{N} \left(r_j r_i w_k + p_j r_i s_k \right) \left(\text{sgn}(q_j - q_i) - \text{sgn}(q_j - q_k) \right) e^{-|q_j - q_i| - |q_j - q_k|} \right\},
\]

\[
s_{j,t} = \frac{1}{9} \left\{ \frac{1}{3} s_j (p_j s_j + r_j w_j) - \sum_{i,k = 1}^{N} \left(w_j r_i s_k + s_j p_i s_k \right) \left(\text{sgn}(q_j - q_i) - \text{sgn}(q_j - q_k) \right) e^{-|q_j - q_i| - |q_j - q_k|} \right\},
\]

\[
w_{j,t} = \frac{1}{9} \left\{ \frac{1}{3} w_j (p_j s_j + r_j w_j) - \sum_{i,k = 1}^{N} \left(s_j r_i w_k + w_j r_i s_k \right) \left(\text{sgn}(q_j - q_i) - \text{sgn}(q_j - q_k) \right) e^{-|q_j - q_i| - |q_j - q_k|} \right\}.
\]

For \(N = 1\), (40) becomes

\[
\begin{cases}
q_{1,t} = \frac{2}{27} (p_1 s_1 + r_1 w_1), \\
p_{1,t} = \frac{2}{27} p_1 (p_1 s_1 + r_1 w_1), \\
r_{1,t} = \frac{2}{27} r_1 (p_1 s_1 + r_1 w_1), \\
s_{1,t} = \frac{2}{27} s_1 (p_1 s_1 + r_1 w_1), \\
w_{1,t} = -\frac{2}{27} w_1 (p_1 s_1 + r_1 w_1).
\end{cases}
\]
Fig. 1. The stationary single-peakon solution of the potentials $u_1(x, t)$ and $v_1(x, t)$ given by (34) with $C_1 = 0, A_2 = A_4 = 1$ and $A_3 = 2$. Solid line: $u_1(x, t)$; Dashed line: $v_1(x, t)$; Black: $t = 1$; Blue: $t = 2$. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. The single-peakon solution of the potentials $u_1(x, t)$ and $v_1(x, t)$ given by (42) with $A_4 = 0, A_2 = A_5 = 1$ and $A_3 = 2$. Solid line: $u_1(x, t)$; Dashed line: $v_1(x, t)$; Black: $t = -2$; Blue: $t = 2$. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

We may solve this equation as

$$q_1 = \frac{2}{27} (A_2 + A_3) t + A_4, \quad p_1 = A_5 e^{\frac{2}{27} (A_2 + A_3) t}, \quad r_1 = \frac{1}{A_1} p_1, \quad s_1 = \frac{A_2}{A_5} e^{-\frac{2}{27} (A_2 + A_3) t}, \quad w_1 = \frac{A_3}{r_1}, \quad (42)$$

where A_1, \cdots, A_5 are integration constants. See Fig. 2 for the single-peakon of the potentials $u_1(x, t)$ and $v_1(x, t)$ with $A_4 = 0, A_2 = A_5 = 1$ and $A_3 = 2$.

4. Conclusions and discussions

In our paper, we propose a multi-component generalization of the Camassa–Holm equation, and provide its Lax representation and infinitely many conservation laws. This system contains an arbitrary smooth function H, thus it is actually a large class of multi-component peakon equations. We show it is possible to find the bi-Hamiltonian structures for the special choices of H. In particular, we study the peakon solutions of this system in the case $N = 2$, and obtain a new integrable system which admits stationary peakon solutions.

In contrast with the usual soliton equations, the peakon equations with arbitrary functions seem to be unusual. We believe that there are much investigations deserved to do for both our generalized peakon system and Li–Liu–Popowicz’s system [31]. The following topics seem to be interesting:
• Is there a gauge transformation that can be applied to the Lax pair to remove the arbitrary function H?
• Does there exist a unified (bi-)Hamiltonian structure for the system (5) for the general H?
• Can the inverse scattering transforms be applied to solve the systems in general?

Acknowledgments

The authors would like to thank the reviewers for their valuable suggestions and comments, which help us improve our paper. This work was partially supported by the National Natural Science Foundation of China (Grant Nos. 11301229, 11271168, and 11171295), the Natural Science Foundation of the Jiangsu Province (Grant No. BK20130224), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 13KJB110009), the Haitian Scholar Plan of Dalian University of Technology, and the China state administration of foreign experts affairs system under the affiliation of China University of Mining and Technology.

References