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In this paper, the effects of quadratic singular curves in integrable wave
equations are studied by using the bifurcation theory of dynamical system.
Some new singular solitary waves (pseudo-cuspons) and periodic waves are
found more weak than regular singular traveling waves such as peaked soliton
(peakon), cusp soliton (cuspon), cusp periodic wave, etc. We show that while
the first-order derivatives of the new singular solitary wave and periodic waves
exist, their second-order derivatives are discontinuous at finite number of points
for the solitary waves or at infinitely countable points for the periodic wave.
Moreover, an intrinsic connection is constructed between the singular traveling
waves and quadratic singular curves in the phase plane of traveling wave system.
The new singular periodic waves, pseudo-cuspons, and compactons emerge if
corresponding periodic orbits or homoclinic orbits are tangent to a hyperbola,
ellipse, and parabola. In particular, pseudo-cuspon is proposed for the first time.
Finally, we study the qualitative behavior of the new singular solitary wave and
periodic wave solutions through theoretical analysis and numerical simulation.

1. Introduction

Mathematical modeling of dynamical systems processing in a great variety
of natural phenomena usually leads to nonlinear partial differential equations
(PDEs). There is a special class of solutions for nonlinear PDEs that are of
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considerable interest, namely, the traveling wave solutions. Such a wave may
be localized or periodic, which propagates at constant speed without changing
its shape.

Many powerful methods have been presented for finding the traveling wave
solutions, such as the Bäcklund transformation [1], tanh-coth method [2],
bilinear method [3], symbolic computation method [4], Lie group analysis
method [5], and so on. Furthermore, a great amount of works focused on various
extensions and applications of the methods to simplify the calculation procedure.
The basic idea of those methods is that, by introducing different types of
Ansatz, the original PDEs can be transformed into a set of algebraic equations.
Balancing the same order of the Ansatz then yields explicit expressions for the
PDE waves. However, not all of the special forms for the PDE waves can be
derived by those methods. To obtain all possible forms of the PDE waves and
analyze qualitative behaviors of solutions, the bifurcation theory plays a very
important role in studying the evolution of wave patterns with variation of
parameters [6–16]. Moreover, an attractive classification is given for solitary
wave bifurcations in generalized nonlinear Schrodinger equations in Ref. [17].

To study the traveling wave solutions of a nonlinear PDE

�(u, ut , ux , uxx , uxt , utt , · · ·) = 0, (1)

let ξ = x − ct, u(x, t) = ϕ(ξ ), where c is the wave speed. Substituting them
into (1) leads the PDE to the following ordinary differential equation:

�1(ϕ, ϕ′, ϕ′′, · · ·) = 0. (2)

Here, we consider the case of (2), which can be reduced to the following
planar dynamical system:

dϕ

dξ
= ϕ′ = y,

dy

dξ
= F(ϕ, y), (3)

through several times integrals. Equation (3) is called the traveling wave system
of the nonlinear PDE (1). Thus, we just study the traveling wave system (3) to
get the traveling wave solutions of the nonlinear PDE (1).

Let us begin with some well-known nonlinear wave equations. The first one
is the Camassa–Holm (CH) equation

ut − utxx + 3uux = 2ux uxx + uuxxx , (4)

arising as a model for nonlinear waves in cylindrical axially symmetric
hyperelastic rods, with u(x, t) representing the radial stretch relative to a
prestressed state [18] where Camassa and Holm showed that Equation (4)
has a peakon of the form u(x, t) = ce−|x−ct |. Among the nonanalytic entities,
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the peakon, a soliton with a finite discontinuity in gradient at its crest, is
perhaps the weakest nonanalyticity observable by the eye [19]. However, in this
paper, we provide new singular solitary waves (pseudo-cuspons) with weaker
singularity than peakon.

To understand the role of nonlinear dispersion in the formation of patters in
liquid drop, Rosenau and Hyman [20] introduced and studied a family of fully
nonlinear dispersion Korteweg–de Vries equations

ut + (um)x + (un)xxx = 0. (5)

This equation, denoted by K (m, n), owns the property that for certain
m and n, its solitary wave solutions have compact support [20]. That is,
they identically vanish outside a finite core region. For instance, the K (2, 2)
equation admits the following compacton solution:

u(x, t) =
{

4c
3 cos2( x−ct

4 ), |x − ct | ≤ 2π,
0, otherwise.

(6)

The Camassa–Holm equation, the K(2,2) equation, and almost all integrable
dispersive equations have the same class of traveling wave systems, which can
be written in the following form:{

dϕ
dξ = y = 1

D2(ϕ)
∂H
∂y ,

dy
dξ = − 1

D2(ϕ)
∂H
∂ϕ

= − D′(ϕ)y2+g(ϕ)
D2(ϕ) ,

(7)

where H = H (ϕ, y) = 1
2 y2 D2(ϕ) + ∫

D(ϕ)g(ϕ)dϕ is the first integral. It
is easy to see that Equation (4) is actually a special case of (3) with
F(ϕ, y) = − 1

D2(ϕ)
∂H
∂ϕ

. If there is a function ϕ = ϕs such that D(ϕs) = 0, then
ϕ = ϕs is a vertical straight line solution of the system{

dϕ
dζ = y D(ϕ),
dy
dζ = −D′(ϕ)y2 − g(ϕ),

(8)

where dξ = D(ϕ)dζ for ϕ �= ϕs . The two systems have the same topological
phase portraits except for the vertical straight line ϕ = ϕs and the directions in
time. Consequently, we can obtain bifurcation and smooth solutions of the
nonlinear PDE (1) through studying the system (8), if the corresponding
orbits are bounded and do not intersect with the vertical straight line ϕ = ϕs .
However, the orbits, which do intersect with the vertical straight line ϕ = ϕs

or are unbounded but can approach the vertical straight line, correspond to
the nonsmooth singular traveling waves [8–13]. It is worth pointing out that
traveling waves sometimes lose their smoothness during the propagation due
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to the existence of singular curves within the solution surfaces of the wave
equation.

The relationships, between the traveling waves of the nonlinear PDEs with a
singularity of vertical straight line and the orbits of the corresponding traveling
wave systems, are well known [21–29]. However, till now there are few works
on the integrable PDEs with the following types of singular curves:

dϕ

dξ
= y,

dy

dξ
= F(ϕ, y) = P(ϕ, y)

Q(ϕ, y)
, (9)

where the functions P(ϕ, y) and Q(ϕ, y) satisfy y ∂Q(ϕ,y)
∂ϕ

+ ∂P(ϕ,y)
∂y ≡ 0, that

is, this is a first integral of system (9). Obviously, Q(ϕ, y) = 0 defines a set of
real planar curves such that the right-hand side of the second equation of the
system (9) is not well defined on these curves, which form singular curves
of the corresponding nonlinear PDEs. What kinds of traveling wave solution
will be achieved for the presence of the singular curves for a given nonlinear
wave equation, still needs a further study. For the following nonlinear wave
equations, the singular equation Q(ϕ, y) = 0 are required to be a quadratic
curve such as hyperbola, ellipse, and parabola.

In 1995 and 1996, Fokas [36], and Olver and Rosenau [34] studied the
symmetry and tri-Hamiltonian structure of the following cubic Camassa–Holm
type equation:

mt = aux + 1

2
[(u2 − u2

x )m]x , m = u − uxx , (10)

where a(�= 0) is a constant. The equation is obtained through a reshuffling
procedure of the Hamiltonian operators underlying the bi-Hamiltonian structure
of mKdV equations. In [19], Rosenau pointed out that the interaction of
nonlinear dispersion with nonlinear convection generates exactly compact
structures. Unfortunately, as the author has pointed in [19], “a lack of proper
mathematical tools makes this goal at the present time pretty much beyond our
reach.” Recently, Chen et al. studied the dynamical system and phase portrait
of Equation (10) with providing W-/M-shaped solitary wave solutions in [30],
and Qiao and Li gave the Lax pair and nonsmooth solitons in an explicit form
including W-/M-shaped solitons.

In 2006, the author in [31] investigated the following completely integrable
wave equation, which is now called the Fokas-Olver-Rosenau-Qiao (FORQ)
equation or the modified CH equation:

mt + mx (u2 − u2
x ) + 2m2ux , m = u − uxx , (11)

with giving Lax pair, the W-/M-shape solitons, and cuspons. This equation
can also be derived from the two-dimensional (2D) Euler equation by using
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the approximation procedure, which might imply its water wave background.
Recently, Qiao et al. [44] proposed a generalized integrable Camassa–Holm
equation with both quadratic and cubic nonlinearity

mt = bux + 1

2
k1[(u2 − u2

x )m]x + 1

2
k2(2mux + mx u), m = u − uxx , (12)

and presented the Lax pair, bi-Hamiltonian structure, and multipeakon solutions
to the Equation (12). In Refs. [32, 33], Li and his coauthors studied the
existence of breaking wave solutions of the Equations (10)–(12). For those
equations, it is not difficult for one to find that the corresponding traveling
wave system (3) possess hyperbolas as singular curves in the phase plane.
Also, there exists a clear connection between the breaking wave solutions and
singular curves. In this paper, we study further effects of hyperbolas as singular
curves for the integrable wave equations, and provide new singular periodic
waves and singular solitons (pseudo-cuspons).

In 1997, Rosenau [19] studied the nonanalytic solitary waves of the following
integrable wave equation:

mt = aux + 1

2
[(u2 + u2

x )m]x , m = u + uxx , (13)

which appeared in Fokas [36] and Olver and Rosenau [34]. For our
convenience, let us call it the Fokas-Olver-Rosenau (FOR) equation. In [35], the
authors find that, in comparison with the K(m,n) equation, the FOR equation
has double compactons for some suitably chosen parameters. Actually in
1995, Fokas [36] proposed the following large class of physically integrable
equations in the form of:

ut + ux + νuxxt + βuxxx + αuux + 1

3
να(uuxxx + 2ux uxx ) + 3μα2u2ux

+ νμα2(u2uxxx + u3
x + 4uux uxx ) + ν2μα2(u2

x uxxx + 2ux u2
xx ) = 0.

(14)

Li and Zhang [37] considered the existence of solitary wave, kink and
antikink wave solutions, and uncountably infinite smooth and nonsmooth
periodic wave solutions of Equation (14) by using the bifurcation theory of
dynamical systems. Bi [38] studied singular solitary waves associated with
homoclinic orbits by considering the effects of quadratic singular curves. For
Equations (13) and (14), we find that the corresponding traveling wave system
(3) possesses elliptic singular curves in the phase plane. In this paper, we
consider the effects of elliptic singular curves for those wave equations toward
getting new singular periodic waves and compactons.
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In 2003, Manna and Neveu [39] derived the following integrable model
from asymptotic dynamics of a short capillary-gravity wave

uxt = 3g(1 − 3θ )

2vh
u − 1

2
uuxx − 1

4
u2

x + 3h2

4v
uxx u2

x , (15)

where u(x, t) is the fluid velocity on the surface, x and t are space and time
variables. After appropriately rescaling of the variables, one can bring Equation
(15) into the form of

uxt = u − uuxx − 1

2
u2

x + λ

2
uxx u2

x , (16)

where λ is expressed in terms of the physical parameters from Equation (15).
The Hunter–Saxton (HS) equation [45]

(ut + uux )x = 1

2
u2

x , (17)

is an integrable PDE that arises in the study of massive nematic liquid crystals
and shallow water waves, and has been already extended to a completely
integrable hierarchy through the Lax pair procedure [46]. In 2004, Brunelli
et al. [40] discussed the deformed Hunter–Saxton (DHS) equation

uxxt = αux − 2ux uxx − uuxxx + λ

6
(u3

x )xx , (18)

regarding integrability, etc. For Equations (16) and (18), we find that the
corresponding traveling wave system (3) possesses parabolic singular curves
in the phase plane, which is the first time, within our knowledge, appearing in
study of traveling wave dynamics.

The whole paper is organized as follows. In Section 2, we define pseudo-cuspon
and discuss the difference among peakons, cuspons, and pseudo-cuspons. In
Section 3, we investigate the hyperbolic singular curves for singular periodic
waves and singular solitary waves of the FORQ equation (11). In Section 4,
we study the the elliptic singular curves and compactons for the FOR Equation
(13). In Section 5, we analyze the effects of parabolic singular curves for the
DHS equation (18). A short conclusion is given in Section 6.

2. Solitary wave solutions with singularities

The existence of peakon is of interest for nonlinear wave equations because
most integrable models have smooth solitons. The first-order derivative of
peakon does not exist at a finite number of points where the jump of the
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derivative is finite. Cuspon is another type of continuous solitary waves with
an infinite jump for the first-order derivative at its crest. Both peakons and
cuspons are closely related to the singular straight lines of corresponding
traveling wave systems. To compare the difference between the effect of
singular straight lines and the one of quadratic singular curves for integrable
equations, let us consider the occurrence of peakons and cuspons by using the
phase space analysis technique.

DEFINITION 1. A wave function u(ξ ) is called a peakon if u(ξ ) is globally
continuous and bounded and locally smooth on both sides of ξ0 and
limξ↑ξ0 uξ (ξ ) = − limξ↓ξ0 uξ (ξ ) = a, a �= 0, a �= ±∞.

DEFINITION 2. A wave function u(ξ ) is called a cuspon if u(ξ ) is globally
continuous and bounded and locally smooth on both sides of ξ0 and
limξ↑ξ0 uξ (ξ ) = − limξ↓ξ0 uξ (ξ ) = ±∞.

The concept of peakon and cuspon can also be seen in Ref. 28. In this
paper, we propose a new singular solitary wave solution with discontinuous
second-order derivative, which is called pseudo-cuspon below.

DEFINITION 3. A wave function u(ξ ) is called a pseudo-cuspon if u(ξ ), uξ (ξ )
are globally continuous and bounded and uξ (ξ ) is locally smooth on both
sides of ξ0 and limξ↑ξ0 uξξ (ξ ) = − limξ↓ξ0 uξξ (ξ ) = ±∞.

Case 1. Peakon
In the study of nonanalytic traveling waves, peakon is perhaps the simplest

and best-known solitary wave. Let us first discuss the CH peakons. Let
u(x, t) = ϕ(ξ ) (ξ = x − ct) be a solution of the CH Equation (4), then it
follows that

− cϕ′ + cϕ′′′ + 3ϕϕ′ = 2ϕ′ϕ′′ + ϕϕ′′′. (19)

Integration yields

− cϕ + cϕ′′ + 3

2
ϕ2 = ϕϕ′′ + 1

2
(ϕ′)2 + g, (20)

where g is an integral constant. Clearly, Equation (20) is equivalent to the
following 2D system { dϕ

dξ = y,
dy
dξ = 3

2ϕ
2−cϕ−g− 1

2 y2

ϕ−c ,
(21)

which has the first integral

H (ϕ, y) = (ϕ − c)

(
1

2
y2 − 1

2
(ϕ − c)2 − c(ϕ − c) − c2 − 2g

2

)
. (22)
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Figure 1. (a) The heteroclinic orbits H (ϕ, y) = 0 defined by (22). (b) The profile of a peakon.

Let dξ = (ϕ − c)dζ , then the 2D system (21) becomes{
dϕ
dζ = (ϕ − c)y,
dy
dζ = 3

2ϕ
2 − cϕ − g − 1

2 y2.
(23)

If g = 0, c > 0, there is a family of periodic orbits enclosing the center
point ( 2c

3 , 0), and the family of periodic orbits is surrounded by a triangle
consisting of three heteroclinic straight line orbits containing the saddle points
(0, 0) and (c,±c). The topological phase portrait of the 2D system (21) in
the (ϕ, y)-plane is shown in Figure 1(a). The orbit defined by H (ϕ, y) = 0
has two intersection points with the singular line ϕ = c. From the algebraic
equation y = ±ϕ of the orbit, we may obtain the parametric representation of
the following peakon solution:

ϕ(ξ ) = ce−|ξ |, (24)

with the properties:

ϕ(0) = c, ϕ(±∞) = 0, ϕ′(0+) = −c, ϕ′(0−) = c.

Clearly, the first-order derivative of ϕ(ξ ) does not exist at ξ = 0. The profile of
peakon wave is shown in Figure 1(b).

Case 2. Cuspon
Cuspon is another type of continuous solitary waves, but the first-order

derivative is discontinuous at its crest with an infinite jump.
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Figure 2. (a) Two open curves of the system (21). (b) The profile of a cuspon.

Let us still use the CH equation as an example. If c > 0 and g = c2

2 , the
equilibrium point (− c

3 , 0) is a saddle point. Let ls and lu denote stable and
unstable manifolds for the saddle point (− c

3 , 0) (see Figure 2(a)), respectively.
The orbits ls and lu are determined by the algebraic curve

y2 = (ϕ + c
3 )2(ϕ − 5c

3 )

ϕ − c
. (25)

If ϕ(0) = c, then from (25) and the first equation of (21) we obtain the
following parametric representations of a cuspon:

I1(ϕ) −
√

6

3
I2(ϕ) = |ξ | + ln c −

√
6

3
ln (6c), (26)

where

I1(ϕ) = ln |3ϕ − 4c +
√

3(3ϕ − 5c)(ϕ − c)|, (27)

I2(ϕ) = ln

∣∣∣∣∣6c(19c − 15ϕ − 6
√

2(3ϕ − 5c)(ϕ − c))

3ϕ + c

∣∣∣∣∣. (28)

Equation (25) implies

ϕ(±∞) = −c

3
, ϕ′(0+) = +∞, ϕ′(0−) = −∞.
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Thus, the first-order derivative of the cuspon wave solution ϕ(ξ ) at ξ = 0 has
an infinite jump from −∞ to +∞. The profile of cuspon wave is shown in
Figure 2(b).

Case 3. Pseudo-cuspon
Cuspon admits discontinuous first-order derivative at its crest. However,

pseudo-cuspon is smooth up to the first-order derivative and its second-order
derivative is discontinuous at its crest. Let us pick Equation (10) as an example.
Substituting u = u(x − ct) = ϕ(ξ ) into Equation (10) leads to

− c(ϕ − ϕ′′)′ = aϕ′ + 1

2
[(ϕ2 − ϕ′2)(ϕ − ϕ′′)]′. (29)

Integrating (29) once and taking the integration constant as zero, we have

(ϕ2 − ϕ′2 + 2c)ϕ′′ = ϕ3 + 2(a + c)ϕ − ϕϕ′2. (30)

Clearly, Equation (30) is equivalent to the following 2D system:{
dϕ
dξ = y,
dy
dξ = ϕ(ϕ2−y2+2(a+c))

ϕ2−y2+2c ,
(31)

which has the first integral

H (ϕ, y) = (y2 − ϕ2 − 2c)2 + 4aϕ2 = h. (32)

Apparently, the system (31) has a hyperbolic singular curve ϕ2 − y2 + 2c = 0
and the same phase portraits as the system{

dϕ
dζ = y(ϕ2 − y2 + 2c),
dy
dζ = ϕ(ϕ2 − y2 + 2(a + c)),

(33)

where dξ = (ϕ2 − y2 + 2c)dζ , for ϕ2 − y2 + 2c �= 0.
If c = −2a (a > 0) and h = h0 = 4c2, we have the following algebraic

equation of homoclinic orbit:

y2 = ϕ2 − 4a + 2
√

4a2 − aϕ2, (34)

which is tangent to the hyperbola ϕ2 − y2 + 2c = 0 at point (±2
√

a, 0) (see
Figure 3(a)). Let ϕ(0) = 2

√
a, then from (34) and the first equation of (31), we

obtain ∫ ϕ

2
√

a

dϕ√
ϕ2 − 4a + 2

√
4a2 − aϕ2

= ±ξ. (35)
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Figure 3. (a) The homoclinic orbit H (ϕ, y) = 0 defined by (32). (b) The profile of
pseudo-cuspon.

Letting ψ2 = 4a2 − aφ2 leads Equation (35) to∫ ψ

0

ψdψ

(2a − ψ)
√

(2a + ψ)ψ
= ±√

aξ. (36)

Therefore, we obtain the following parametric solutions of (10):{
φ(ξ ) = ±

√
c2−ψ2(ξ )

a ,

I3(ψ) +
√

2
2 I4[ψ] = ±√

aξ,
(37)

where

I3(ψ) = ln

∣∣∣∣∣ a

a + ψ +√
ψ(ψ + 2a)

∣∣∣∣∣, (38)

I4(ψ) = ln

∣∣∣∣∣a
2(2a + 3ψ + 2

√
2ψ(ψ + 2a))

2a − ψ

∣∣∣∣∣. (39)

According to Equations (34) and (30), the parametric solution should satisfy(
dϕ

dξ

)2

= ϕ2 − 4a + 2
√

a(4a − ϕ2) (40)
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and (
d2ϕ

dξ 2

)2

= ϕ2(a −
√

a(4a − ϕ2))2

a(4a − ϕ2)
. (41)

Therefore, when ξ → 0, then ϕ → ±2
√

a, dϕ
dξ → 0, d2ϕ

dξ 2 → ±∞. Thus, the
second-order derivative of the parametric solution has an infinity jump at its
crest ξ = 0. Hence, the parametric solution (37) is a pseudo-cuspon solution to
Equation (10). The profile of the pseudo-cuspon wave is shown in Figure 3(b).

3. Hyperbolic singular curves and singular traveling waves

The traveling wave system (3) for Equations (10)–(12) admits hyperbolic
singular curves in the phase plane. In the following, let us focus on the traveling
wave solution of Equation (10).

The singular point distribution of system (33) is given below.

(1) For c < 0, when a + c ≥ 0, the system (33) has only one equilibrium
point O(0, 0); when a + c < 0, the system (33) has three equilibrium
points O(0, 0) and P±(±ϕ1, 0), where ϕ1 = √−2(a + c).

(2) For c > 0, when a + c ≥ 0, the system (33) has three equilibrium points
O(0, 0) and S±(0,±√

2c); when a + c < 0, the system (33) has five
equilibrium points O(0, 0), P±(±ϕ1, 0) and S±(0,±√

2c).

In addition, from Equation (32), we have

h0 = H (0, 0) = 4c2,

h1 = H (±ϕ1, 0) = 8a(a − c),
hc = H (±√−2c, 0) = −8ac.

(42)

It is known that a solitary wave solution of Equation (10) corresponds to a
homoclinic orbit of the system (31). Obviously, as c < 0, a > 0, a + c < 0,
there exists a homoclinic orbit defined by H (ϕ, y) = h0.

PROPOSITION 1. Suppose that a > 0, c < 0, then we have the following
results:

(1) For −a < c < 0, there is a family of periodic orbits enclosing the center
point (0, 0). If h = hc, the periodic orbit defined by H (ϕ, y) = hc is
tangent to the hyperbola ϕ2 − y2 + 2c = 0 at point (±√−2c, 0).

(2) For −2a < c < −a, there are two families of periodic orbits enclosing
the center points (ϕ1, 0) and (−ϕ1, 0) and surrounded by a homoclinic
orbit H (ϕ, y) = h0 containing the saddle point (0, 0). The homoclinic
orbit does not intersect with the singular curve ϕ2 − y2 + 2c = 0.
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If h ∈ (h0, hc), there is a family of periodic orbits defined by H (ϕ, y) = h
outside the homoclinic orbit. If h = hc, the periodic orbit defined by
H (ϕ, y) = hc is tangent to the hyperbola ϕ2 − y2 + 2c = 0 at point
(±√−2c, 0).

(3) For c = −2a, there are two families of periodic orbits enclosing the
center points (ϕ1, 0) and (−ϕ1, 0) and surrounded by a homoclinic orbit
H (ϕ, y) = h0 containing the saddle point (0, 0). The homoclinic orbit
is tangent to the singular curve ϕ2 − y2 + 2c = 0.

(4) For c < −2a, the homoclinic orbit defined by H (ϕ, y) = h0 intersects
with the singular curve ϕ2 − y2 + 2c = 0.

The phase portraits of the system (33) are shown in Figure 4 for a > 0, c < 0.
Let us discuss the above four cases in detail below.

(1) Case I: −a < c < 0.
If h ∈ (h0, hc), the periodic orbit defined by H (ϕ, y) = h has no intersection

point with the hyperbola ϕ2 − y2 + 2c = 0. Thus, Equation (10) has a family
of smooth periodic wave solutions. The algebraic equation of periodic orbit is
given by

y2 = ϕ2 + 2c +
√

h − 4aϕ2, (43)

which intersects with the ϕ-axis at two points (−ϕm, 0) and (ϕm, 0). From
Equation (43) and the first equation of (31), one may compute the parametric
representation for the periodic orbit below∫ ϕm

ϕ

dϕ√
ϕ2 + 2c +

√
h − 4aϕ2

= |ξ − 2nT1|, (44)

where |ξ − 2nT1| ≤ T1 and

T1 =
∫ ϕm

ϕ

dϕ√
ϕ2 + 2c +

√
h − 4aϕ2

. (45)

Lettingψ2 = h − 4aϕ2 in Equation (43) yields y2 = 1
4a (ψM − ψ)(ψ − ψm),

where ψM = 2a + √
4a2 + 8ac + h and ψm = 2a − √

4a2 + 8ac + h. By the
first equation of the system (31), we have

∫ ψ

ψm

ψdψ√
(ψM − ψ)(ψ − ψm)(h − ψ2)

= ±ξ. (46)
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Figure 4. The phase portraits of the system (33) for c < 0, a > 0.

Therefore, we obtain the following parametric representations of smooth
periodic wave solutions to Equation (10):

ϕ(τ ) = ±
√

h−ψ2(τ )
4a ,

ψ(τ ) = 2
√

h(ψM−ψm )−ψM (
√

h−ψm )sn2(τ,k)
ψM−ψm−(

√
h−ψm )sn2(τ,k)

,

ξ (τ ) = 1

α2
√

(ψM−ψm )
[(α2 − α2

1)�(arcsin(sn(τ, k)), α2, k) + α2
1τ ],

(47)
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where

α2 =
√

h − ψm

ψM − ψm
, α2

1 = ψM (
√

h − ψm)√
h(ψM − ψm)

, k2 = (
√

h − ψm)(ψM + √
h)

2
√

h(ψM − ψm)
, (48)

and sn(τ, k) is the Jacobian elliptic function with the modulus k and � is the
elliptic integral of the third kind.

If h = −8ac, the periodic orbit is tangent to the hyperbola ϕ2 − y2 + 2c = 0
at point (±√−2c, 0). The corresponding periodic wave solution satisfies

(
dϕ

dξ

)2

= ϕ2 + 2c +
√

−4a(2c + ϕ2) (49)

and

(
d2ϕ

dξ 2

)2

= −
ϕ2
(

2a −
√

−4a(ϕ2 + 2c)
)2

4a(ϕ2 + 2c)
. (50)

Along this orbit when ϕ → ±√−2c, then dϕ
dξ → 0, d2ϕ

dξ 2 → ±∞. Thus, when

h → ±√−2c, the smooth periodic wave evolves into a singular periodic wave
(see Figure 5).

The singular periodic wave can be written as

∫ √−2c

ϕ

dϕ√
ϕ2 + 2c +

√
−4a(ϕ2 + 2c)

= |ξ − 2nT2|, (51)

where |ξ − 2nT2| ≤ T2 and

T2 =
∫ √−2c

−√−2c

dϕ√
ϕ2 + 2c +

√
−4a(ϕ2 + 2c)

. (52)

Letting ψ2 = −4a(ϕ2 + 2c) in Equation (32) leads to y2 = 1
4a (4a − ψ)ψ .

By the first equation of the system (31), we have

∫ ψ

0

ψdψ√
ψ(4a − ψ)(−8ac − ψ2)

= ±ξ. (53)
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Figure 5. When −a < c < 0, as h from h0 tends to hc, the smooth periodic waves evolve
into a singular periodic wave.

Therefore, we obtain the following parametric representations of singular
periodic wave solutions to Equation (10):

ϕ(τ ) = ±
√

−8ac−ψ2(τ )
4a ,

ψ(τ ) = 4a
√−2accn2(τ,k)

2a−√−2acsn2(τ,k)
,

ξ (τ ) =
√−2ac

α2
√

a
√−2ac

[α2�(arcsin(sn(τ, k)), α2, k) + τ ],

(54)
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where

α2 =
√−2ac

2a
, k2 = 2a + √−2ac

4a
. (55)

(2) Case II: −2a < c < −a.
If h ∈ (h1, h0), the periodic orbit defined by H (ϕ, y) = h has no intersection

point with the hyperbola ϕ2 − y2 + 2c = 0. Thus, Equation (10) has a family
of smooth periodic wave solutions. The periodic orbit intersects with the ϕ-axis
at two points (ϕm, 0) and (ϕM , 0). From Equation (32) and the first equation of
(31), we have the following parametric representation for the periodic orbit:∫ ϕM

ϕ

dϕ√
ϕ2 + 2c +

√
h − 4aϕ2

= |ξ − 2nT3|, (56)

where |ξ − 2nT3| ≤ T3 and

T3 =
∫ ϕM

ϕm

dϕ√
ϕ2 + 2c +

√
h − 4aϕ2

. (57)

Lettingψ2 = h − 4aϕ2 in Equation (43) yields y2 = 1
4a (ψM − ψ)(ψ − ψm),

where ψM = 2a + √
4a2 + 8ac + h and ψm = 2a − √

4a2 + 8ac + h. By the
first equation of the system (31), we have∫ ψ

ψm

ψdψ√
(ψM − ψ)(ψ − ψm)(h − ψ2)

= ±ξ. (58)

Therefore, we obtain the following parametric representations of smooth
periodic wave solutions to Equation (10):

ϕ(τ ) = ±
√

h−ψ2(τ )
4a ,

ψ(τ ) = (
√

h−ψm )ψM−√
h(ψM−ψm )sn2(τ,k)√

h−ψm−(ψM−ψm )sn2(τ,k)
,

ξ (τ ) = 2ψM

α2
√

(
√

h−ψm )(ψM+√
h)

[(α2 − α2
1)�(arcsin(sn(τ, k)), α2, k) + α2

1τ ],

(59)

where

α2 = ψM − ψm√
h − ψm

, α2
1 =

√
h(ψM − ψm)

ψM (
√

h − ψm)
, k2 = 2

√
h(ψM − ψm)

(
√

h − ψm)(
√

h + ψM )
. (60)

If h = h0, the homoclinic orbit defined by H (ϕ, y) = h0 has no intersection
point with the hyperbola φ2 − y2 + 2c = 0. Thus, Equation (10) has a smooth
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solitary wave solution. To find a parametric representation of solitary wave
solution, let us start from the algebraic equation of homoclinic orbit

y2 = ϕ2 + 2c ± 2
√

c2 − aϕ2. (61)

The sign before the term 2
√

c2 − aϕ2 is dependent on the interval of ϕ. Under
the condition −2a < c < −a and for ϕ ∈ (−2

√−(a + c), 2
√−(a + c)), we

need to take + before the term 2
√

c2 − aϕ2. From Equation (61) and the
first equation of (31), we have the following parametric representation for the
corresponding homoclinic orbits:∫ ϕ

2
√

−(a+c)

dϕ√
ϕ2 + 2c + 2

√
c2 − aϕ2

= ±ξ. (62)

Letting ψ2 = c2 − aϕ2 in Equation (61) leads to y2 = 1
a (ψ − ψ1)(ψ2 − ψ),

where ψ1 = −c, ψ2 = 2a + c. By the first equation of the system (31), we
obtain ∫ ψ

ψ2

ψdψ

(ψ + c)
√

(ψ − ψ2)(ψ − c)
= ±√

aξ. (63)

Therefore, we arrive at the following parametric representations of smooth
solitary wave solutions to Equation (10):⎧⎨

⎩φ(ξ ) = ±
√

c2−ψ2(ξ )
a ,

I5(ψ) +
√

2c

2
√

2c(a+c)
I6[ψ] = ±√

aξ,
(64)

where

I5(ψ) = ln

∣∣∣∣∣ψ − (a + c) +√
(2a + c − ψ)(c − ψ)

a(ψ + c)

∣∣∣∣∣, (65)

I6(ψ)= ln

∣∣∣∣∣−c(3a+c)−(a + 2c)ψ+ 2
√

c(a + c)(2a+c−ψ)(c−ψ)

a(ψ + c)

∣∣∣∣∣. (66)

If h ∈ (h0, hc), the periodic orbit defined by H (ϕ, y) = h has no intersection
point with the hyperbola ϕ2 − y2 + 2c = 0. Thus, Equation (10) has a family
of periodic wave solutions with the same parametric representation as (47).

If h = −8ac, the periodic orbit is tangent to the hyperbola ϕ2 − y2 + 2c = 0
at the point (±√−2c, 0). Thus, when h → ±√−2c, the smooth periodic wave
evolves into a singular periodic wave with the same parametric representation
as (54).



Effects of Quadratic Singular Curves in Integrable Equations 19

1

1.1

1.2

1.3

1.4

1.5

1.6

u(x)

–15 –10 –5 0 5 10 15

x

0

0.5

1

1.5

2

u(x)

0155–01–

x

(a) h = 60.0625 (b) h = 64

–3

–2

–1

0

1

2

3

u(x)

020101–02–

x

–3

–2

–1

0

1

2

3

u(x)

020101–02–

x

(c) h = 68.0656 (d) h = 96

Figure 6. When −2a < c < −a, as h from h1 tends to h0, the smooth periodic waves
evolve into a smooth solitary wave; as h from h0 tends to hc, the smooth solitary waves
evolve into a singular periodic wave.

Based on the above analysis, when −2a < c < −a, as long as h ∈ (h1, h0)
and h → h0, the smooth periodic waves evolve into a smooth solitary wave; as
long as h ∈ (h0, hc) and h → hc, the smooth solitary waves evolve into a
singular periodic wave. That procedure can be simulated by Maple and shown
in Figures 6(a)–(d).

(3) Case III: c = −2a.
If h ∈ (h1, h0), then the periodic orbit defined by H (ϕ, y) = h has no

intersection point with the hyperbola ϕ2 − y2 + 2c = 0. Thus, Equation (10)
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Figure 7. When c = −2a, as h from h1 tends to h0, the smooth periodic waves evolve into
a singular solitary wave.

has a family of smooth periodic wave solutions with the same parametric
representation as (59).

If h = h0, the homoclinic orbit is tangent to the hyperbola ϕ2 − y2 + 2c = 0
at point (±2

√
a, 0). The homoclinic orbit corresponds to a pseudo-cuspon

given in Section 2. When h → ±√−2c, the smooth periodic wave evolves
into a pseudo-cuspon. That procedure can be simulated by Maple and shown
in Figures 7(a)–(c).

(4) Case IV: c < −2a.
To understand the presence of M-/W-shape solitary wave solutions, let us

make a further study about the case of c < −2a. In this case, the hyperbola
ϕ2 − y2 + 2c = 0 intersects with the homoclinic orbit H (ϕ, y) = h0 at four
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points Q±
1 (−ϕ∗,±y∗) and Q±

2 (ϕ∗,±y∗), where ϕ∗ = − c
√

a
a , y∗ =

√
c(2a+c)

a .

We know y2 = ϕ2 + 2c + 2
√

c2 − aϕ2 in the interval between negative and
positive half branch of the hyperbola ϕ2 − y2 + 2c = 0. However, on the
left-hand side of negative half branch and right-hand side of positive half
branch of the hyperbola ϕ2 − y2 + 2c = 0, we have y2 = ϕ2 + 2c
− 2

√
c2 − aϕ2. Therefore, we can, respectively, write them as follows:

y2 = 1

a
(2a + c − ψ)(ψ + c), |ψ | ≥

√
c2 + 2ac − ay2, (67)

and

y2 = 1

a
(2a + c + ψ)(c − ψ), |ψ | <

√
c2 + 2ac − ay2, (68)

where ψ2 = c2 − aϕ2.
Next we define a value ξ0 by satisfying ϕ(ξ0) = − c

√
a

a . Let us partition the
whole real axis R into (−∞,−ξ0) ∪ (ξ0,+∞) and (−ξ0, ξ0). Using Equations
(31), (67), and (68), we arrive at the following M-shape solitary wave solutions:⎧⎪⎨

⎪⎩
ϕ(ξ ) =

√
c2−ψ2(ξ )

a ,

I7(ψ) − I7[−(2a + c)] = ±ξ, ξ ∈ (−ξ0, ξ0),
I8(ψ) − I8(0) = ±(ξ0 − ξ ), ξ ∈ (−∞,−ξ0) ∪ (ξ0,+∞),

(69)

where

I7(ψ) = J1(ψ) − c√
c2 + ac

J2(ψ),

J1(ψ) = ln |ψ + a + c +
√
ψ2 + 2(a + c)ψ + 2ac + c2|,

J2(ψ) = ln

∣∣∣∣∣4c2 + 6ac + 2(a + 2c)ψ + 4
√

(c2 + ac)(ψ2 + 2(a + c)ψ + 2ac + c2)

ψ − c

∣∣∣∣∣,
I8(ψ) = J3(ψ) + c√

c2 + ac
J4(ψ),

J3(ψ) = ln |ψ − a − c +
√
ψ2 − 2(a + c)ψ + 2ac + c2|,

J4(ψ) = ln

∣∣∣∣∣4c2 + 6ac − 2(a + 2c)ψ + 4
√

(c2 + ac)(ψ2 − 2(a + c)ψ + 2ac + c2)

ψ + c

∣∣∣∣∣.
The profile of M-shape solitary wave is shown in Figure 8(c). The M-shape

soliton (69) is the same kind of solution as the one in Refs. [31, 43].

Remark 1. It is worth pointing out that unlike the case of having a
straight line as a singular curve in the system (3), the singular curve (now
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Figure 8. (a) Smooth solitary wave, (b) singular solitary wave, (c) M-shape solitary waves.

hyperbola) ϕ2 − y2 + 2c = 0 is not a solution of the system (31). The hyperbola
ϕ2 − y2 + 2c = 0 intersects with the homoclinic orbit H (ϕ, y) = 0 at four
points Q±

1 (−ϕ∗,±y∗) and Q±
2 (ϕ∗,±y∗), and the homoclinic orbit H (ϕ, y) = 0

intersects with the ϕ-axis at three points O(0, 0) and Q±
3 (±2

√−(a + c), 0) (see
Figure 4(d)). This hyperbola is the infinite isocline of the vector field for the
system (33). Differing from the system (31), the hyperbola ϕ2 − y2 + 2c = 0
of the system (33) is a singular curve of the vector fields of the system.
Here, we discuss the case of c < −2a < 0. Clearly, on both the left- and the
right-hand branches of the hyperbola ϕ2 − y2 + 2c = 0, when ξ varies along
the loop orbit defined by H (ϕ, y) = h0, the vector fields of the system (31)
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have a different direction. In fact, on the segment O Q+
2 , dϕ

dξ > 0, dy
dξ > 0; on the

segment O Q−
2 , dϕ

dξ < 0, dy
dξ > 0; on the segment Q−

2 Q+
3 , dϕ

dξ < 0, dy
dξ > 0; and

on the segment Q+
3 Q+

2 , dϕ
dξ > 0, dy

dξ > 0. Those imply that the loop orbit of the
system (31), defined by H (ϕ, y) = h0, consists of three breaking solutions [33].

4. Elliptic singular curves and singular traveling waves

In this section, we consider the nonlinear wave equations associated with an
elliptic singular curve. Let us take the FOR equation (13) as our example.
Changing variable from u(ξ ) to ϕ(ξ ) and taking integration with respect to ξ
leads to an ordinary differential equation

d2ϕ

dξ 2
= −

2g + 2(a + c)ϕ + ϕ3 + ϕ( dϕ
dξ )2

2c + ϕ2 + ( dϕ
dξ )2

, g = constant, (70)

which is equivalent to the following planar system:{
dϕ
dξ = y,
dy
dξ = − 2g+2(a+c)ϕ+ϕ3+ϕy2

ϕ2+y2+2c ,
(71)

with the first integral below

H (ϕ, y) = 1

4
(ϕ2 + y2 + 2c)2 + aϕ2 + 2gϕ. (72)

The system (71) is not Hamiltonian yet. However, if we define a new
independent variableζ through the differential equation dξ = (ϕ2 + φ2 + 2c)dζ ,
then we may obtain the Hamiltonian form as follows:{

dϕ
dζ = y(ϕ2 + y2 + 2c),
dy
dζ = −(2g + 2(a + c)ϕ + ϕ3 + ϕy2),

(73)

with Hamiltonian function (72). The system (73) has the same phase portraits
as the system (71) except for the singular elliptic curve ϕ2 + y2 + 2c = 0.

The system (73) possesses very complex dynamical behaviors [41].
If g2 < −2ca2, there are two symmetrical singular points S(ϕe,±ye),

where ϕe = − g
a and ye =

√
− g2

a2 − 2c. If g2 < − 32
27 (a + c)3, there are three

singular points Pi (ϕi , 0), (i = 1, 2, 3) on the ϕ-axis, where ϕ1 < ϕ2 < ϕ3

are three roots of the cubic equation ϕ3 + 2(a + c)ϕ + 2g = 0. Denote
hi = H (ϕi , 0), i = 1, 2, 3, and let us discuss the following two cases.

Case I: a > 0, c < 0, g2 < −2a2c.
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Figure 9. The phase portraits of the system (4.2).

If h ∈ (h3, h2), the periodic orbit defined by H (ϕ, y) = h has no intersection
point with the singular curve ϕ2 + y2 + 2c = 0 (ellipse, see Figure 9(a)). Thus,
the FOR Equation (13) has a family of smooth periodic wave solutions. The
periodic orbit has the following algebraic equation:

y2 = −ϕ2 − 2c − 2
√

h − aϕ2 − 2gϕ, (74)

which intersects with the ϕ-axis at two points (ϕm, 0) and (ϕM , 0). From (74)
and the first equation of (71), we obtain the following parametric representation
for the periodic orbit:∫ ϕ

ϕm

dϕ√
−ϕ2 − 2c − 2

√
h − aϕ2 − 2gϕ

= |ξ − 2nT4|, (75)

where |ξ − 2nT4| ≤ T4 and

T4 =
∫ ϕM

ϕm

dϕ√
−ϕ2 − 2c − 2

√
h − aϕ2 − 2gϕ

. (76)

If h = h3, there is a homoclinic orbit inside the ellipse ϕ2 + y2 + 2c = 0.
The algebraic equation of the homoclinic orbit reads as

y2 = −ϕ2 − 2c − 2
√

h3 − aϕ2 − 2gϕ. (77)
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Figure 10. (a) The algebraic curve H (ϕ, y) = 0 defined by (4.3) for a > 0, c < 0,
g = −a

√−2c. (b) Profiles of two open upward compactons.

From (77) and the first equation of (71), we have the following parametric
representation for the smooth solitary wave:∫ ϕ

ϕm

dϕ√
−ϕ2 − 2c − 2

√
h3 − aϕ2 − 2gϕ

= ±ξ. (78)

Therefore, when a > 0, c < 0, g < −a
√−2c, as h from h2 tends to h3, the

smooth periodic waves evolve into a smooth solitary wave (see Figure11).
Case II: a < 0, c < 0, g2 = −2a2c.
In this case, the singular points of the system (73) are given by

E1

(
−1

2
(
√−8a − 2c + √−2c), 0

)
,E2

(
1

2
(
√−8a − 2c − √−2c), 0

)
,E3(

√−2c, 0).

In [42], we did a result on nilpotent singular points (see Ref. [46] for more
details). Let (0, 0) be an isolated point of the vector fields (y + F(x, y),G(x, y)),
where F and G are analytic functions in a neighborhood of the origin
required at least with quadratic terms in the variables x and y in their Taylor
expansion. Let y = f (x) be the solution of the equation y + F(x, y) = 0
in a neighborhood of (0, 0). Assume that the development of the function
G(x, f (x)) is of the form K xk + HOT , where K is a constant and HOT stands
for higher order terms. If k is odd and K > 0, then the origin is a saddle point.
Moreover, the saddle point has two separations tangent to the semi-axis x < 0,
and the other two separations tangent to the semi-axis x > 0.

The eigenvalues of the Jacobian matrix M for the two singular points E1

and E2 are computed by two pairs of pure imaginary numbers λ1 = ±√
Ai
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Figure 11. When a > 0, c < 0, g < −a
√−2c, as h from h2 tends to h3, the smooth periodic

waves evolve into a smooth solitary wave.

and λ2 = ±√
Bi , respectively, where

A = (
√

4ac + c2 − 2a + c)(3
√

4ac + c2 − 4a − c) (79)

and

B = (
√

4ac + c2 + 2a − c)(4a + c − 3
√

4ac + c2). (80)

Thus, two singular points E1 and E2 are two centers.
For the singular point E3, the Jacobian matrix is not zero and

det M = tr M = 0, therefore E3 is a nilpotent point. Let ϕ − √−2c → ϕ

4c−2a ,
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then the system (73) reads as{
dϕ
dζ = G(ϕ, y),
dy
dζ = ϕ + F(ϕ, y),

(81)

where

G(ϕ, y) =
(

1

4c − 2a
ϕ2 + 2

√−2cϕ + y2

)
y (82)

and

F(ϕ, y) = −
(

3
√−2c

(4c − 2a)2
ϕ2 + 1

(4c − 2a)3
ϕ3 + (

1

4c − 2a
ϕ + √−2c)y2

)
.

(83)

The equation ϕ + F(ϕ, y) = 0 implies ϕ = √−2cy2 + H OT , thus we have

G(ϕ(y), y) = −2ay3 + H OT, (84)

which produces K = −2a > 0 and k = 3. Thus, E3 is a nilpotent saddle point.
Let hc = H (−√−2c, 0). Then, if h ∈ (h1, hc), the periodic orbit defined

by H (ϕ, y) = h has no intersection point with the singular curve (ellipse)
ϕ2 + y2 + 2c = 0 (see Figure 9(b)). Thus, Equation (13) has a family of smooth
periodic wave solutions. The algebraic equation of periodic orbit is given by

y2 = −ϕ2 − 2c + 2
√

h − aϕ2 + 2a
√−2cϕ, (85)

which intersects with the ϕ-axis at two points (ϕm, 0) and (ϕM , 0). From (85)
and the first equation of (71), we have the following parametric representation
for the periodic orbit:∫ ϕ

ϕm

dϕ√
−ϕ2 − 2c + 2

√
h − aϕ2 + 2a

√−2cϕ
= |ξ − 2nT5|, (86)

where |ξ − 2nT5| ≤ T5 and

T5 =
∫ ϕM

ϕm

dϕ√
−ϕ2 − 2c + 2

√
h − aϕ2 + 2a

√−2cϕ
. (87)

If h = −6ac, the periodic orbit is tangent to the singular curve (ellipse)
ϕ2 + y2 + 2c = 0 at point (−√−2c, 0). The corresponding periodic wave
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solution satisfies(
dϕ

dξ

)2

= −ϕ2 − 2c + 2
√

−a(ϕ − 3
√−2c)(ϕ + √−2c) (88)

and

(
d2ϕ

dξ 2

)2

=
(aϕ − a

√−2c + ϕ

√
−a(ϕ − 3

√−2c)(ϕ + √−2c))2

−a(ϕ − 3
√−2c)(ϕ + √−2c)

. (89)

Therefore, along this orbit when ϕ → −√−2c, one may have
dϕ
dξ → 0, d2ϕ

dξ 2 → ±∞. Thus, when h → −6ac, the smooth periodic wave
evolves into a singular periodic wave (see Figure 12).

The singular periodic wave can be expressed as∫ ϕ

ϕm

dϕ√
−ϕ2 − 2c + 2

√
−a(ϕ − 3

√−2c)(ϕ + √−2c)

= |ξ − 2nT6|, (90)

where |ξ − 2nT6| ≤ T6 and

T6 =
∫ −√−2c

ϕm

dϕ√
−ϕ2 − 2c + 2

√
−a(ϕ − 3

√−2c)(ϕ + √−2c)

. (91)

If h ∈ (h3, h2), the periodic orbit defined by H (ϕ, y) = h has no intersection
point with the singular curve (ellipse) ϕ2 + y2 + 2c = 0. Thus, the FOR
Equation (13) has a family of smooth periodic wave solutions. The algebraic
equation of periodic orbit is given by

y2 = −ϕ2 − 2c + 2
√

h − aϕ2 + 2a
√−2cϕ, (92)

which intersects with the ϕ-axis at two points (ϕm, 0) and (ϕM , 0). From (92)
and the first equation of (71), we have the following parametric representation
for the corresponding periodic orbit:∫ ϕ

ϕm

dϕ√
−ϕ2 − 2c + 2

√
h − aϕ2 + 2a

√−2cϕ
= |ξ − 2nT7|, (93)

where |ξ − 2nT7| ≤ T7 and

T7 =
∫ ϕM

ϕm

dϕ√
−ϕ2 − 2c + 2

√
h − aϕ2 + 2a

√−2cϕ
. (94)
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Figure 12. When a > 0, c < 0, g = −a
√−2c, as h from h1 tends to hc, the smooth periodic

waves evolve into a singular periodic wave.

If h = h3, then there exist two close orbits

y2 = −ϕ2 − 2c ± 2
√−a(ϕ − √−2c), (95)

which are tangent to the singular curve (ellipse) ϕ2 + y2 + 2c = 0 at the point
E3 (see Figure 10(a)). The two close orbits yield two new compactons (see
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Figure 10(b))

ϕ(ξ ) =
{√−a − (

√−2c − √−a) cos(ξ ), |ξ | ≤ 2π,√−2c, otherwise
(96)

and

ϕ(ξ ) =
{−√−a − (

√−2c + √−a) cos(ξ ), |ξ | ≤ 2π,√−2c, otherwise.
(97)

Based on the above analysis, if a > 0, c < 0, g = −a
√−2c, as long as h

from h2 tends to h3, the smooth periodic waves evolve into a compacton. That
procedure is just simulated by Maple and the graphs are shown in Figures
13(a)–(c).

5. Parabolic singular curves and singular traveling waves

In this section, we study the singular traveling waves of the DHS Equation
(18). Its traveling wave system (3) admits parabolic singular curves in the
phase plane.

To investigate the traveling wave solutions of the DHS Equation (18),
substituting u = u(x − ct) = ϕ(ξ ) into (18), we have

− cϕ′′′ = aϕ′ − 2ϕ′ϕ′′ − ϕϕ′′′ + λ

6
((ϕ′)3)′′. (98)

Integrating Equation (98) once and taking the integration constant as zero
lead to

− cϕ′′ = aϕ − 1

2
(ϕ′)2 − ϕϕ′′ + λ

6
((ϕ′)3)′. (99)

Clearly, Equation (99) is equivalent to the following 2D system:{ dϕ
dξ = y,
dy
dξ = aϕ− 1

2 y2

ϕ−c− λ
2 y2 ,

(100)

which has the first integral

H (ϕ, y) = 4y2ϕ − 4aϕ2 − 4cy2 − λy4 = h. (101)
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Figure 13. When a > 0, c < 0, g = −a
√−2c, as h from h2 tends to h3, the smooth periodic

waves evolve into a compacton.

The system (100) has a parabolic singular curve ϕ − c − λ
2 y2 = 0 and has

the same phase portraits as the following system:{
dϕ
dζ = y(ϕ − c − λ

2 y2),
dy
dζ = aϕ − 1

2 y2,
(102)

where dξ = (ϕ − c − λ
2 y2)dζ , and ϕ − c − λ

2 y2 �= 0. If ac > 0, then the origin
is a center of the system (100). In addition, from Euation (101) we have

h0 = H (0, 0) = 0, hc = H (c, 0) = −4ac2. (103)
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Figure 14. The phase portrait of the system (100) for ac > 0.

If a < 0, c < 0, h ∈ (0, hc), the periodic orbit defined by H (ϕ, y) = h has
no intersection point with the parabola ϕ − c − λ

2 y2 = 0 (see Figure 14(a)).
Thus, the DHS Equation (18) has a family of smooth periodic wave solutions.
The algebraic equation of periodic orbit is given by

y2 = 1

2λ
(4ϕ − 4c ±

√
(4ϕ − 4c)2 − 4λ(4aϕ2 + h)), (104)

where the sign before the term
√

(4ϕ − 4c)2 − 4λ(4aϕ2 + h) is dependent on
the interval of ϕ. Under the condition λ < 0, a < 0, c < 0, for ϕ ∈ (c,−c), we
need to take minus sign. Therefore, the periodic orbit surrounding the center
O(0, 0) can be expressed as follows:

y = ±
√

1

2λ
(4ϕ − 4c −

√
(4ϕ − 4c)2 − 4λ(4aϕ2 + h)), (0 < h < −4ac2),

(105)

which intersects with the ϕ-axis at two points (ϕ±
1 .0) =

(
± 1

2

√
− h

a , 0
)

.

From (105) and the first equation of (100), we have the following parametric
representation for the periodic orbit:∫ ϕ+

1

ϕ

dϕ√
2c − 2ϕ +

√
4(ϕ − c)2 − λ(4aϕ2 + h)

= 1√−λ |ξ − 2nT8|, (106)
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where |ξ − 2nT8| ≤ T8 and

T8 =
∫ ϕ+

1

ϕ−
1

√−λdϕ√
2c − 2ϕ +

√
4(ϕ − c)2 − λ(4aϕ2 + h)

. (107)

If h = −4ac2, the periodic orbit is tangent to the parabola ϕ = λ
2 y2 + c at

point (c, 0). The corresponding periodic wave solution satisfies(
dϕ

dξ

)2

= 1

λ
(2ϕ − 2c − 2

√
(ϕ − c)2 − λa(ϕ2 − c2)) (108)

and (
d2ϕ

dξ 2

)2

= (aϕ − 1
λ
(ϕ − c −

√
(ϕ − c)2 − λa(ϕ2 − c2)))2

(ϕ − c)((1 − aλ)ϕ − (1 + aλ)c)
. (109)

Subsequently, along this orbit when ϕ → c, one may have dϕ
dξ → 0, d2ϕ

dξ 2 →
±∞. Thus when h → −4ac2, the smooth periodic wave evolves into a singular
periodic wave. That procedure may be simulated by Maple and shown in
Figures 15(a)– (c).

The singular periodic wave can be expressed in the following form:∫ ϕ+
1

ϕ

dϕ√
2c − 2ϕ + 2

√
(ϕ − c)2 − λa(ϕ2 − c2)

= 1√−λ |ξ − 2nT9|, (110)

where |ξ − 2nT9| ≤ T9 and

T9 =
∫ ϕ+

1

ϕ−
1

√−λdϕ√
2c − 2ϕ + 2

√
(ϕ − c)2 − λa(ϕ2 − c2)

. (111)

Particularly, when aλ = 1, letting ψ2 = 2c(c − ϕ) yields
y2 = 1

λc (−ψ2 − 2cψ). By the first equation of the system (100), we have

∫ −2c

ψ

ψdψ√
ψ(−2c − ψ)

=
√

cλ

λ
|ξ − 2nT9|. (112)

Therefore, we obtain the following parametric representations of singular
periodic wave solutions for the DHS Equation (18):

ϕ(ξ ) = c − ψ2(ξ )

2c
(113)
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Figure 15. When λ < 0, a < 0, c < 0, as h from 0 tends to hc = −4ac2, the smooth periodic
waves evolve into a singular periodic wave.

and

2
√

−ψ2 − 2cψ − arctan (
ψ + c√

−ψ2 − 2cψ
) = −2

√
cλ

λ
|ξ − 2nT9| − π. (114)

For λ > 0, a > 0, c > 0, we may have similar results mentioned above.
Under those parameter conditions, the phase portrait of the system (100) and
periodic waves of the DHS Equation (18) are shown in Figures 14(b) and 16,
respectively.
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Figure 16. When λ > 0, a > 0, c > 0, as h from 0 tends to hc = −4ac2, the smooth periodic
waves evolve into a singular periodic wave.

6. Conclusion and discussion

In this paper, we study the effects of quadratic singular curves in integrable wave
equations by using the bifurcation theory of dynamical system. To compare
the difference between the effects of singular straight lines and the effects of
quadratic singular curves in the integrable wave equations, we first recall the
occurrence of peakon and cuspon through the phase space analytical technique.
Then it is followed by several specific nonlinear wave equations as examples
to discuss the effects of quadratic singular curves. As shown in the previous
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sections, there exists a close connection between those singular traveling waves
and quadratic singular curves in phase plane. We present some new singular
solitary waves and singular periodic waves for some integrable wave equations,
which possess more weaker singularity than the classical singular traveling
waves such as peakon, cuspon, and cusped periodic wave. It is shown that the
second derivative of the new singular solitary wave and singular periodic wave
solutions does not exist at their crests where the first derivative does exist.

Equations (25) and (34) have physical background and actually coincide
with the Newton equation of a particle in the potential

V1(ϕ) = ϕ2 − 32c2

27(ϕ − c)
, V2(ϕ) = ϕ2 + 2

√
4a2 − aϕ2, respectively.

Thus, we solve the Newton equation ϕ2
ξ = V1(ϕ) − V1(A) for cuspon solutions

and ϕ2
ξ = V2(ϕ) − V2(0) for pseudo-cuspon solutions, where A = − c

3 . This is
very helpful for us to deal with physical equations. The singular solitary wave
solutions are expected to apply in nonlinear shallow-water wave theory and
Newton motion theory because they have a very close relation to the Newton
Equations (25) and (34).

We study the qualitative and analytic behaviors of the pseudo-cuspon solution
and singular periodic wave solutions by theoretical analysis and numerical
simulation, but stability of pseudo-cuspon and compacton of those equations
is not clear yet.
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