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Abstract

In this paper, we propose a new completely integrable equation:
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which has no smooth solitons. This equation is shown to have bi-Hamiltonian structure and Lax pair, which imply inte-
grability of the equation. Studying this new equation, we develop two new kinds of soliton solutions under the inho-
mogeneous boundary condition limjxj!1m ¼ B where B is nonzero constant. One is continuous and piecewise smooth
‘‘W/M”-shape-peaks solitary solution and the other one-single-peak soliton. The two new kinds of peaked solitons can
not be written as the regular type peakon: ce�jx�ctj, where c is a constant. We will provide graphs to show those new
kinds of peaked solitons.
� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, the study of peaked and cusped soliton equations has arisen lot of attractive attention. The typical repre-
sentative of such equations is the well-known Harry–Dym (HD) equation [8]
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:

Wadati et al. [18] generalized the HD equation to an integrable hierarchy. In their paper [19,20], Wadati et al. first time
proposed the cusp soliton, which is a kind of peaked soliton whose left and right derivatives equal infinities, for the HD
equation. Later, there are several authors studying the cusp and peaked soliton solutions for the integrable equations
[2–5,9,11,13,15–17].

In this paper, we propose a new peaked soliton equation:
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where m is a scalar function and subscripts denote the partial derivatives. This equation is shown to have bi-Hamilto-
nian structure, and Lax pair that implies its integrability. Through studying equation (1), we develop two new kinds of
soliton solutions under the inhomogeneous boundary condition limjxj!1m ¼ B, where B is nonzero constant. One is
continuous and piecewise smooth ‘‘W/M”-shape-peaks solitary solution and the other one-single-peak soliton. The
two new kinds of peaked solitons cannot be equivalent to the regular peakon: ce�jx�ctj, where c is a constant. There
is no smooth soliton found for the new Eq. (1). We will take some graphs to show how these three peaks soltions
and one-single-peak solitons look like.

2. Hamiltonian structure and integrability

Eq. (1) can be cast in the following Hamiltonian structure:
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X ¼ ðx0; x0 þ T Þ or X ¼ ð�1;þ1Þ is the domain of m that needs to be periodic with T or to approach the same con-
stant as x goes to �1, and Hþ0 , Hþ1 are two Hamiltonian functions. Both operator K and operator J are Hamiltonian,
and furthermore our Eq. (1) is bi-Hamiltonian (see Remark 1).

Remark 1. Apparently, the operator K ¼ o3 � o is Hamiltonian (see [10], chapter 7) because of constant coefficients and
skew-symmetric property. From Ref. [10], we also know that the operator J is Hamiltonian if and only if
PrV JhðAJ Þ ¼ 0, where

AJ ¼
1

2

Z
ðh ^ JhÞdx

is the associated bi-vector of J, and h is a basic uni-vector corresponding to m. Let P ¼ o�1mhx, then P x ¼ mhx,
Jh ¼ �ðmPÞx, A ¼ � 1
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R
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So, J is Hamiltonian. In a similar way, we can prove that K þ J is also Hamiltonian. Therefore, K and J form a Ham-
iltonian pair.

In order to show the integrability of this equation, let us consider the following spectral problem
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where k is a spectral parameter, m is a scalar potential function periodic or approaching the same constant at both infin-
ities, and w ¼ ðw1;w2Þ

T is the spectral function corresponding to the spectral parameter k. Then, we have

Krk ¼ k2Jrk; ð6Þ

where rk ¼ k
2
ðw2

1 þ w2
2Þ.
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Remark 2. Eq. (6) plays a very important role in the discussions of the periodic solutions of the new wave equation (1),
which we will deal with in a subsequent paper [16]. Actually, on the basis of those two operators, following our earlier
method [12,14] we are able to generate a new integrable hierarchy.

A direct calculation leads to the following statement.
Eq. (1) has the following Lax pair:
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In fact, one can use mathematical software Maple to check that the compatibility condition
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w2

� �
tx

, namely

U t � V x þ ½U ; V � ¼ 0

generates equation (1).
So the wave equation (1) is accordingly completely integrable by the Inverse Scattering Transformation [1].

3. W/M-shape-peaks solitons and new one-single-peak solitons

3.1. Traveling wave setting

Let mðx; tÞ ¼ 1ffiffiffiffiffiffiffi
vðx;tÞ
p , then Eq. (1) becomes

�
o
ot vðx; tÞ

vðx; tÞð3=2Þ ¼
o

3

ox3
vðx; tÞ � o

ox
vðx; tÞ: ð9Þ

Let us consider the traveling wave solutions of the Eq. (9) through a generic setting vðx; tÞ ¼ UðnÞ, where n ¼ x� ct,
and c is the wave speed. Substituting it into Eq. (9) yields the following ODE:

U nnn � U n ¼ cU�3=2U n: ð10Þ

Apparently U ¼ constant is a solution, which is not interesting for us. Let us find non-trivial solutions. Taking indef-
inite integral twice on both sides of the ODE (10), we obtain

2cffiffiffiffi
U
p þ U nn � U þ C1 ¼ 0; ð11Þ

4c
ffiffiffiffi
U
p
þ C1U � U 2

2
þ 1

2
U 2

n þ C2 ¼ 0; ð12Þ

where C1 and C2 are two constants to be determined.
To have solitary traveling wave solutions, we set U ¼ V 2 and impose the boundary condition

lim
n!�1

V ¼ A; A > 0; ð13Þ

which implies m! 1
A as x approaches �1 (see paper [15,17] for more details). Substituting the boundary condition (13)

into the ODEs (11) and (12) generates the following two constants

C1 ¼ A2 � 2c
A
; ð14Þ

C2 ¼ �
1

2
A4 � 2cA: ð15Þ
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So the ODE (12) becomes

U 02 ¼ U 2 þ 2ð2c� A3Þ
A

U � 8c
ffiffiffiffi
U
p
þ A4 þ 4cA: ð16Þ

3.2. W/M-shape-peaks solitons

Setting U ¼ V 2 and taking integral on both sides of the ODE (16), we arrive at
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In general, we can not get an explicit form of V. But, if
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Since m ¼ 1
V , we denote B ¼ 1

A –0, then m! B as n! �1, therefore we obtain the following explicit solution of Eq. (1):

mðx; tÞ ¼ B
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4B3
t

����
����� ln 2;

ð17Þ

whose 3D and 2D graphs are plotted in Fig. 1 for B ¼ 1. This solution is of W-shape-peaks soliton [15,16] and has three
peaks, and its profile looks like a ‘‘W” type wave. So, we called it ‘‘W-shape-peaks” soliton. Three peaks occur at
x ¼ � 3

4
t0, x ¼ � 3

4
t0 � 2 ln 2, x ¼ � 3

4
t0 þ 2 ln 2, for each time t0. See graph 1 for more details.

We can also set m ¼ � 1
V and take negative B–0 as its infinities limit. The graph, corresponding to B ¼ �1 and the

solution form (17), is a ‘‘M-shape-peaks” soliton solution of Eq. (1), see Fig. 2.
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Fig. 1. (a) 3D graph of the explicit solution mðx; tÞ defined by (17) when B ¼ 1, wave speed c ¼ �3=4, and intervals of x, t, m:
�15 6 x 6 15, 0 6 t 6 2, 0 6 m 6 1. (b) 2D graph of the explicit solution mðx; tÞ defined by (17) at t ¼ 0. This is a W-shape-peaks
soliton solution.
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3.3. One-single-peak solitons

We already know that Eq. (1) has three peaks (either W-shape-peaks or M-shape-peaks) soliton solutions. Let us
consider the solution mðx; tÞ, defined by (17), without the absolute value of xþ 3

4B3 t. So, we create

Mðx; tÞ ¼ B
1

2
þ

ffiffiffi
3
p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2 � 2X þ 1

3X 2 þ 2X þ 3

s0
@

1
A;

X ¼ e
�1

2 xþ 3
4B3 t

� 	
; B > 0:

ð18Þ

Note no absolute value in X’s expression. A direct verification reveals that Mðx; tÞ still satisfies Eq. (1).
We view solution (18) as a function of n ¼ xþ 3

4B3 t. Then apparently, MðnÞ has the following properties:

Mð0Þ ¼ 1

2
B; M 0ð0þÞ ¼

ffiffiffi
6
p

8
B; M 0ð0�Þ ¼ �

ffiffiffi
6
p

8
B:

So, we found a continuous and piecewise-smooth (but not smooth) soliton solution for our new Eq. (1). See the graphs
of Mðx; tÞ in Fig. 3.

Regarding negative B < 0, let us take B ¼ �1 as a representative. In this case, we have Mð0Þ ¼ � 1
2
, M 0ð0þÞ ¼ �

ffiffi
6
p

8
,

M 0ð0�Þ ¼
ffiffi
6
p

8
which imply that MðnÞ is an anti-peaked continuous and piecewise-smooth soliton. See Fig. 4 for more

details.
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Fig. 2. (a) 3D graph of solution (17) when wave speed c ¼ 3=4, and intervals of x, t, m: �15 6 x 6 15, 0 6 t 6 2, 0 6 m 6 1. (b) 2D
graph of solution (17) at t ¼ 0. This is a M-shape-peaks soliton solution.
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Fig. 3. (a) 3D graph of the explicit solution Mðx; tÞ defined by (18) when B ¼ 1, wave speed c ¼ �3=4, and intervals of x, t, M:
�15 6 x 6 15, 0 6 t 6 2, 0 6 M 6 1. (b) 2D graph of the explicit solution Mðx; tÞ defined by (18) at t ¼ 0. This is a single peak soliton
solution.
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4. Conclusions and open problems

In the paper, we present a new integrable equation (1). Through the regular traveling wave setting for our Eq. (1), we
develop two new types of soliton solutions: one is ‘‘W-shape-peaks”/‘‘M-shape-peaks” soliton (three peaks, continuous
and piecewise smooth, but not smooth, see Figs. 1 and 2), and the other is one-single-peak soliton solution (also con-
tinuous and piecewise smooth, but not smooth, see Figs. 3 and 4). Those solutions are apparently different from regular
peakons. No smooth solitons are found for our equation, but our equations are completely integrable. Namely, in this
paper we provide an integrable system with no smooth solitons.

We try to construct the interaction (both collision and chase) of two single peaked solitons, two W-shape-peaks sol-
itons (WW), two M-shape-peaks solitons (MM), WM, MW, and one single peaked and the other M/W solitons. But,
that is a really hard procedure because of the following two major reasons:

1. So far we have an effective numerical scheme to solve our PDE (10). The solutions are not smooth, e.g. our solitons
(18) and (19) have three peaks and one peak, respectively. We tried using the superposition of two single solitons (19)
with same A and different wave speed c as an initial condition of the PDE (10). However, the usual Finite Difference
schemes could neither capture the collision nor the chase. The authors have the impression that in order to capture
the wave interactions numerically some special techniques need to be developed for this specific Eq. (10). This is the
task of our future study.

2. We do not have a theoretical ansatz to deal with the peaked 2-soliton or N-soliton solutions of our equation like the
CH equation with

PN
j¼1pjðtÞe�jx�qjðtÞj, although we are seeking for. We tried extending our peaked soliton solutions

(18) and (19) to the form of
PN

j¼1pjðtÞmðe�jx�qjðtÞjÞ for the purpose of multi-soliton solutions. However, that is not the
case for our equation. There is no smooth soliton for our equation though it is completely integrable. This causes
difficulty to discuss multi-solitons. Finding what ansatz is appropriate for our equation will be a crucial work for
discussing interaction of two peaked solitons.

Furthermore, we suggest a more general partial differential equation:

mt ¼
1

2

1

mk

� �
xxx
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ð19Þ

with a constant k 2 R. When k ¼ 2; 1=2; 0;�1, the equation is integrable. For k ¼ 0, that is trivial case; for k ¼ �1, lin-
ear case; for k ¼ 1=2, Harry-Dym type case; for k ¼ 2, we already discussed in this paper. Any other integrable cases?
We will study in the near future.

The ODE (16) has a physical meaning and can be cast into the Newton equation U 02 ¼ SðUÞ � SðA2Þ of a particle
with a new potential SðUÞ ¼ U 2 þ 2ð2c�A3Þ

A U � 8c
ffiffiffiffi
U
p

, or can be converted to V 02 ¼ T ðV Þ � T ðAÞ with U ¼ V 2,
T ðV Þ ¼ V 2

4
� 2c

V þ
AðA3þ4cÞ

4V 2 . In the paper, we successfully solved this new Newton system with new one-single-peak solitons
and M/W-shape-peaks solitons. The new Newton system might have potential applications in the study of engineering
of loop solitons on a vortex filament with axial flow [6,7].
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Fig. 4. 3D and 2D graphs of a continuous and piecewise-smooth soliton solution for Eq. (1) with negative amplitude B ¼ �1. This is a
single peak soliton solution.
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