Dirac特征值问题的特征展开
定理的一个证明

李梦如 乔志军
(郑州大学) (辽宁大学)

摘 要 本文用留数方法讨论了有限区间上Dirac特征值问题的一些基本问题，证明了函数向量按特征函数向量展开为广义富氏级数的定理。

关键词 Dirac特征值问题；留数方法；特征展开。

Dirac方程组是量子力学的基本方程之一，研究它的特征值问题具有重要意义。文献(1)对它的一种形式在有限区间上的特征函数展开定理给出了两种证明。一种用的是差分方程的方法，一种用的是积分方程的方法。本文对Dirac另一种形式在有限区间上的特征函数展开定理给出一个证明，用的是留数方法。这种方法的优点在于便于进一步讨论非自伴情形下的特征函数展开定理和获得特征值的迹公式，我们将另文讨论此二问题。

下述方程组称为Dirac方程组：
\[\begin{align*}
 y_1' + p(x) y_1 + q(x) y_2 &= \lambda y_1, \\
 -y_1' + q(x) y_1 - p(x) y_2 &= \lambda y_2
\end{align*} \] (1)

本文始终假设p(x)，q(x) ∈ C([0, π])，并研究(1)在以下自伴条件下的特征值问题
\[\begin{align*}
 y_1(0) \sin \alpha + y_2(0) \cos \alpha &= 0, \\
 y_1(\pi) \sin \beta + y_2(\pi) \cos \beta &= 0.
\end{align*} \] (2)

其中 \(\alpha, \beta\) 为常数。为简便计，引入以下记号：
\[L = \begin{pmatrix} 0 & D \\ -D & 0 \end{pmatrix} + (q/p) \begin{pmatrix} p & q \\ q & -p \end{pmatrix}, \quad D = \frac{d}{dx}, \quad Y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \]

\(t_1 Y = y_1(0) \sin \alpha + y_2(0) \cos \alpha, \quad t_2 Y = y_1(\pi) \sin \beta + y_2(\pi) \cos \beta, \)

问题(1) + (2) 可简写为
(\(E\)): \(L Y = \lambda Y, \quad t_1 Y = 0, \quad t_2 Y = 0. \)

再记 \(F = \{ f = (f_1(x), f_2(x)) | f_1(x), f_2(x) \in C([0, \pi]), t_1 f = 0, t_2 f = 0 \} \).

本文证明(\(E\))有可列个特征值，\(F \) 中的元素都可按(\(E\))的特征函数展开为广义富氏级数。

本文1992年10月19日收到
1 Cauchy问题解的估计

考虑Cauchy问题:

\[(C_0): \quad \dot{\varphi} = \lambda \varphi, \quad \varphi_1(0) = \cos \alpha, \quad \varphi_2(0) = -\sin \alpha; \quad (1.1)\]

\[(C_\times): \quad \dot{\chi} = \lambda \chi, \quad \chi_1(\pi) = \cos \beta, \quad \chi_2(\pi) = -\sin \beta. \quad (1.2)\]

其中 \(\varphi = (\varphi_1, \varphi_2)^T, \quad \chi = (\chi_1, \chi_2)^T. \)

命题1.1 \((C_0)\)和\((C_\times)\)的解\(\varphi\)和\(\chi\)的分量为\(\lambda\)的整函数.

证明 以\(\varphi\)为例，关于\(\chi\)的证明可类似进行.

\[\varphi_1(x, \lambda) = \cos(\lambda x - \alpha) + \frac{1}{\lambda} e^{\frac{-i}{|\lambda|}} \quad (1.3)\]

\[\varphi_2(x, \lambda) = -\sin(\lambda x - \alpha) + \frac{1}{\lambda} e^{\frac{i}{|\lambda|}}. \quad (1.4)\]

其中 \(\lambda = \sigma + i\tau.\)

证明 以\(\varphi\)为例.

（1.1）与下面积分方程等价:

\[\varphi_1(x, \lambda) = \cos(\lambda x - \alpha) + \int_0^x \{ \cos(q(t)\varphi_1(t, \lambda) - \rho(t)\varphi_2(t, \lambda)) \cos(\lambda x - t) + \sin(\lambda x - t) \} dt, \quad (1.5)\]

\[\varphi_2(x, \lambda) = -\sin(\lambda x - \alpha) + \int_0^x \{ \cos(q(t)\varphi_1(t, \lambda) - \rho(t)\varphi_2(t, \lambda)) \sin(\lambda x - t) - \sin(q(t)\varphi_1(t, \lambda) + \rho(t)\varphi_1(t, \lambda)) \cos(\lambda x - t) \} dt. \quad (1.6)\]

令 \(\varphi_1 = \psi_1 e^{-\frac{i}{\lambda}t}, \quad \varphi_2 = \psi_2 e^{-\frac{i}{\lambda}t}\)，则上述方程化为:

\[\psi_1 = \frac{1}{2} \left(e^{\frac{i\alpha}{\lambda x - t}} + e^{\frac{i\alpha}{\lambda x + t}} \right) + \frac{1}{2} \int_0^x (q + ip)\psi_1 + ip\psi_2 dt + \frac{1}{2} \int_0^x (q - ip)\psi_1 - ip\psi_2 dt. \]
\[\phi(t) = \frac{1}{2} \left(e^{i\lambda(t-x)} - e^{-i\lambda(t-x)} \right) - \frac{1}{2} \int_0^t (q + ip') \phi(t) + i \left(\phi(t) + i \phi(t) \right) \, dt + \left(\frac{i}{2} \right) \int_0^t (q - ip') \phi(t) \, dt \]

再令 \(\phi_1 = \phi_1 - i \phi_2 \), \(\phi_2 = \phi_1 + i \phi_2 \), 则有

\[\phi_1 = e^{\lambda t} + \int_0^t (q + i p') \phi_2 \, dt\]

\[\phi_2 = e^{i\lambda(t-x)} + \int_0^t (q - i p') \phi_1 \, dt\]

先设 \(\lambda = \sigma + i \tau \), \(\tau \geq 0 \), 则有 \(|e^{\lambda t}| \leq |e^{-2\pi t}| \leq 1 \). 故

\[|\phi_1| \leq 1 + \int_0^t M |\phi_2| \, dt\]

\[|\phi_2| \leq 1 + \int_0^t M |\phi_1| \, dt\]

这里，\(M = \max |q + ip| \).

从而，\(|\phi_1| + |\phi_2| \leq 2 + M \int_0^t (|\phi_1| + |\phi_2|) \, dt\). 由Bellman引理2.

\[|\phi_1| + |\phi_2| \] 有界，\(|\phi_1| \), \(|\phi_2| \) 也都有界. 由此，\(\phi_1 = 0 \left(e^{\sigma t} \right), \phi_2 = 0 \left(e^{\sigma t} \right) \).

对 (1.5), (1.6) 进行分部积分使得所要证明的 (1.3). 对于 \(\tau < 0 \), \(\phi \) 的共轭 \(\phi^* \) 必满足

\[\phi_1^* + \rho \phi_2^* + q \phi_2^* = \lambda^* \phi_1^*, \quad \phi_2^*(0) = \cos \alpha, \]

\[-\phi_1^* + q \phi_2^* + \rho \phi_2^* = \lambda^* \phi_2^*, \quad \phi_2^*(0) = -\sin \alpha.\]

此时 \(\lambda^* = \sigma + i(-\tau), \quad -\tau > 0 \). 对 \(\phi_1^* \) 有

\[\phi_1^* = \cos(\lambda^* t - \alpha) + \frac{1}{|\lambda^*|} e^{i\tau t} \]

从而

\[\phi_1 = \cos(\lambda^* t - \alpha) + \frac{1}{|\lambda^*|} e^{i\tau t} \]

总之无论 \(\tau \) 如何一定有

\[\phi_1 = \cos(\lambda^* t - \alpha) + 0\left(\frac{1}{|\lambda^*|} e^{i\tau t} \right) \]

其它三式证明类似.

命题1.3 记 \(\varphi \) 与 \(\chi \) 的Wronski行列式 \(W(\varphi, \chi) = \varphi_1 \chi_2 - \varphi_2 \chi_1 = \omega(\lambda) \). \(\lambda \) 是 (E) 的特征值的充要条件是 \(\lambda = \omega(\lambda) \) 的零点.

证明 由于 \(L \) 的第二项矩阵的迹为零，故 \(W(\varphi, \chi) \) 与 \(\chi \) 无关，只与 \(\lambda \) 有关，可记为 \(\omega(\lambda) \). 若 \(\lambda_0 \) 是 \(\omega(\lambda) \) 的零点，则 \(\varphi(x, \lambda_0) \) 与 \(\chi(x, \lambda_0) \) 线性相关，因而
命题 1.4 当 $\lambda \to \infty$ 时，$\omega(\lambda)$ 有以下渐近估计：

$$\omega(\lambda) = -\sin(\lambda \pi + \beta - \alpha) + O\left(\frac{1}{\lambda}\right).$$

2. 特征值与特征函数的性质

引理 2.1 设 $f = (f_1, f_2)^T$, $g = (g_1, g_2)^T$, $f, g \in C^1$，则

$$\int_0^\infty \left[\int_0^\infty \frac{d}{dx} \left(\frac{\partial}{\partial t} \right) \phi(x, \lambda) d\lambda \right] dt = \int_0^\infty \left[\int_0^\infty \frac{d}{dx} \left(\frac{\partial}{\partial t} \right) \phi(x, \lambda) d\lambda \right] dt$$

证明 直接计算即可验证。

引理 2.2 设 $\varphi(x, \lambda)$ 和 $\varphi(x, \lambda')$ 分别是 (C_0) 对应于 λ 和 λ' 的解，即

$$(\lambda - \lambda') \int_0^\infty \frac{d}{dx} \left(\frac{\partial}{\partial t} \right) \varphi(x, \lambda) \chi(x, \lambda') dx = -\frac{1}{\cos \beta} \left| \begin{array}{cc} \varphi_1(\pi, \lambda) & \varphi_1(\pi, \lambda') \\ \varphi_2(\pi, \lambda) & \varphi_2(\pi, \lambda') \end{array} \right|$$

证明 在 (2.1) 中令 $f = \varphi(x, \lambda), g = \varphi(x, \lambda')$，注意到 $W \varphi(x, \lambda), W \varphi(x, \lambda') = \lambda \varphi(x, \lambda), \lambda' \varphi(x, \lambda')$。不妨设 $\cos \beta \neq 0$，如果 $\cos \beta = 0$，则 $\sin \beta = 0$，可证 (2.2) 的第二个等式成立，即

$$(\lambda - \lambda') \int_0^\infty \frac{d}{dx} \left(\frac{\partial}{\partial t} \right) \varphi(x, \lambda) \chi(x, \lambda') dx = -\frac{1}{\cos \beta} \left| \begin{array}{cc} \varphi_1(\pi, \lambda) & \varphi_1(\pi, \lambda') \\ \varphi_2(\pi, \lambda) & \varphi_2(\pi, \lambda') \end{array} \right|$$

$$= -\frac{1}{\cos \beta} \left| \begin{array}{cc} \varphi_1(\pi, \lambda) & \varphi_1(\pi, \lambda') \\ \varphi_2(\pi, \lambda) \sin \beta + \varphi_2(\pi, \lambda) \cos \beta & \varphi_2(\pi, \lambda') \sin \beta + \varphi_2(\pi, \lambda') \cos \beta \end{array} \right|$$

$$= -\frac{1}{\cos \beta} \left| \begin{array}{cc} \varphi_1(\pi, \lambda) \\ \varphi_2(\pi, \lambda) \chi(x, \lambda) + \varphi_2(\pi, \lambda) \chi_1(\pi, \lambda) \end{array} \right|$$
作 者 : 李 梦 如 等

Dirac特征值问题的

一

伊 1 () + 伊 2 () = 1

后一等式可类似进行证明.

命题 2.1 (E)只有实特征值．相应于不同特征值的特征函数彼此正交，即：若λ，与
λ 1 为不同特征值，ψ(x, λ)和ψ(x, λ 1)为相应的特征函数，则

\[\int_0^\pi \psi^*(x, \lambda) \psi(x, \lambda_1) \, dx = 0. \]

证明 L 可视为定义域是F的算子，由引理 2.1，L 是对称的，即：若定义内积：

\[(f, g) = \int_0^\pi f^* \, g \, dx, \]

则 (Lf, g) = (f, Lg).

由泛函知识知L的特征值必为实数，且对应于不同特征值的特征函数正交.

引理 2.3 设 \(\gamma = \pm \pi \), \(\alpha \in \mathbb{Z} \), \(\lambda = (\pi - \alpha)/\pi \), 则

\[e^{i\pi \tau}/|\sin(\lambda \pi + \beta - \alpha)| \leq 2, \quad \text{当} \quad \tau = R_n. \]

\[e^{i\pi \tau}/|\sin(\lambda \pi + \beta - \alpha)| \leq 2/(1 - e^{-\tau}), \quad \text{当} \quad \tau \geq 1/2. \]

证明 \(|\sin(x + iy)|^2 = \sin^2 x + \sinh^2 y \). 当 \(\sigma = R_n \) 时，

\[|\sin(\lambda \pi + \beta - \alpha)|^2 = 1 + \sinh^2 x, \quad \text{当} \quad \sigma = R_n, \]

则

\[|\sin(\lambda \pi + \beta - \alpha)| = 1 + \sinh^2 x. \]

当 \(|\tau| \geq 1/2 \) 时，

\[|\sin(\lambda \pi + \beta - \alpha)|^2 = \sin^2 x + \sinh^2 x, \quad \text{当} \quad |\tau| \geq 1/2. \]

命题 2.2 (E) 有可列个离散的特征值．

证明 记 \(\Omega(\lambda) = -\sin(\lambda \pi + \beta - \alpha), \) 由 (1.7) 对大 \(|\lambda| \) 有

\[\frac{\omega(\lambda)}{\Omega(\lambda)} = 1 + 0 \left(\frac{1}{|\lambda|} \cdot \frac{e^{i\pi \tau}}{|\sin(\lambda \pi + \beta - \alpha)|} \right). \]

记 \(l_n \) 为一矩形，其四个顶点为：\(R_n(1 \pm i), R_{-n}(1 \pm i), n \in \mathbb{Z} \). 由引理 2.3 在 \(l_n \) 上

\[\omega(\lambda)/\Omega(\lambda) = 1 + 0 \left(\frac{1}{n} \right) \quad (2.3) \]
由复变函数中的 Rouche 定理，在 \(f \) 内 \(\omega(\lambda) \) 与 \(\Omega(\lambda) \) 有相同个数的零点。如果 \(\omega(\lambda) \) 仅有单重零点，则 \(\omega(\lambda) \) 在 \(f \) 内有 \(2n + 1 \) 个零点。如果 \(\omega(\lambda) \) 在 \(f \) 内有 \(n \) 个零点，且 \(n \) 是正整数，则 \(\omega(\lambda) \) 有可列个零点。又因 \(\omega(\lambda) \) 为整函数，不恒等于零，故 \(\omega(\lambda) \) 的零点没有有限极限点。否则由解析函数唯一性定理 \(\omega(x) \equiv 0 \)。下面证明 \(\omega(\lambda) \) 仅有单重零点。事实上，由引理 2.2

\[
\int_0^\infty \frac{\varphi^T(x, \lambda) \varphi(x, \lambda') dx}{\cos \beta} = \begin{vmatrix}
\frac{\varphi_1(x, \lambda)}{\omega(\lambda)} & \frac{\varphi_1(x, \lambda') - \varphi_1(x, \lambda)}{\lambda' - \lambda} \\
\frac{\varphi_1(x, \lambda') - \varphi_1(x, \lambda)}{\lambda' - \lambda} & \frac{\omega(\lambda') - \omega(\lambda)}{\lambda' - \lambda}
\end{vmatrix}
\]

令 \(\lambda' \to \lambda \) 得

\[
\int_0^\infty \frac{\varphi^T(x, \lambda) \varphi(x, \lambda') dx}{\cos \beta} = \begin{vmatrix}
\frac{\varphi_1(x, \lambda)}{\omega(\lambda)} & \frac{\varphi_1(x, \lambda') - \varphi_1(x, \lambda)}{\lambda' - \lambda} \\
\frac{\varphi_1(x, \lambda) - \varphi_1(x, \lambda')}{\lambda' - \lambda} & \frac{\omega(\lambda') - \omega(\lambda)}{\lambda' - \lambda}
\end{vmatrix}
\]

此处 \(\varphi_1(x, \lambda) = \frac{\partial \varphi_1(x, \lambda)}{\partial \lambda} \)，\(\omega'(\lambda) = \frac{d\omega(\lambda)}{d\lambda} \)。若 \(\lambda_0 \) 是 \(\omega(\lambda) \) 的 \(k \) 重零点，

\(k \geq 2 \)，则 \(\omega(\lambda_0) = \omega'(\lambda_0) = 0 \)，故左端大于零，右端等于零，矛盾。综上所述，即知命题成立。

命题 2.3 设 \(\lambda \) 是 \(E \) 的特征值，则存在 \(K_n \)，使

\[
\chi(x, \lambda_n) = K_n \chi(x, \lambda_n)
\]

将 \(\lambda = \lambda_n \) 代入（2.4）中，注意

\[
\varphi_1(x, \lambda) = K_n^{-1} \chi_1(x, \lambda_n) = K_n^{-1} \cos \beta
\]

即得（2.5）。

3 特征展开定理

定义 \(E \) 的 Green 矩阵如下：

\[
G(x, y, \lambda) = \begin{cases}
\frac{1}{\omega(\lambda)} \left(\begin{array}{cc}
\varphi_1(y, \lambda) \chi_1(x, \lambda) & \varphi_2(y, \lambda) \chi_1(x, \lambda) \\
\varphi_1(y, \lambda) \chi_2(x, \lambda) & \varphi_2(y, \lambda) \chi_2(x, \lambda)
\end{array} \right), & y < x, \\
\frac{1}{\omega(\lambda)} \left(\begin{array}{cc}
\varphi_1(x, \lambda) \chi_1(y, \lambda) & \varphi_2(x, \lambda) \chi_1(y, \lambda) \\
\varphi_1(x, \lambda) \chi_2(y, \lambda) & \varphi_2(x, \lambda) \chi_2(y, \lambda)
\end{array} \right), & y > x.
\end{cases}
\]

定理 3.1 设 \(\lambda \) 不是 \(E \) 的特征值，则对任一 \(f \in C(0, \pi) \)，问题
在 F 中有唯一解

$$f (x, \lambda, f) = \int_{x}^{\infty} G (x, y, \lambda) f (y) dy$$ \quad (3.3)$$

证明 可直接验证 Φ 满足 (3.2)。实际上,

$$\Phi (x, \lambda, f) = \frac{1}{\omega (\lambda)} \int_{0}^{\infty} \left(\varphi _{1} (x, \lambda) f (y) \right) dy + \frac{1}{\omega (\lambda)} \int_{0}^{\infty} \left(\varphi _{2} (x, \lambda) f (y) \right) dy$$

记 $\Phi = (\Phi _{1}, \Phi _{2})$, $\varphi _{1} = (\sin \alpha + \Phi _{0} (0) \cos \alpha) = \frac{1}{\omega (\lambda)} \int_{0}^{\infty} \left(\varphi _{2} (x, \lambda) f (y) \right) dy$.

$$\Phi _{1} = \frac{1}{\omega (\lambda)} \int_{0}^{\infty} \left(\lambda x_{1} - \rho x_{1} - \lambda x_{2} \right) f (y) dy + \varphi _{2} \left(x, \lambda \right) = \frac{1}{\omega (\lambda)} \int_{0}^{\infty} \left(\varphi _{2} (x, \lambda) f (y) \right) dy$$

即 $\Phi _{1} + q \varphi _{2} = \frac{1}{\omega (\lambda)} \int_{0}^{\infty} \left(\varphi _{2} (x, \lambda) f (y) \right) dy$.

同样可得另一等式.

假设 (3.2) 有两个解 $\varphi _{1}$ 和 $\varphi _{2}$, 则 $\varphi = \varphi _{1} \text{ 满足 (E)}$, 因 φ 不是特征值, 故 $\varphi = \varphi _{1} = 0$. 即 $\Phi = \varphi$, 唯一性成立.

命題 3.2 当 $f \in F$ 时, 若 $\lambda \neq 0$, 则有

$$\Phi (x, \lambda, f) = \frac{1}{\lambda} f + \frac{1}{\lambda} \Phi (\lambda, f)$$ \quad (3.4)$$

证明 注意到引理 2.1. $L \varphi = \lambda \varphi$, $L x = \lambda x, f \in F$.

$$\Phi (x, \lambda, f) = \frac{1}{\omega (\lambda)} \int_{0}^{\infty} \left(\varphi _{1} (x, \lambda) f (y) \right) dy + \varphi _{1} (x, \lambda) \left(x, \lambda \right) L f (y) dy$$

$$= \frac{1}{\omega (\lambda)} \int_{0}^{\infty} \left(\varphi _{2} (x, \lambda) f (y) \right) dy + \varphi _{2} (x, \lambda) \left(x, \lambda \right) L f (y) dy$$

$$= \frac{1}{\omega (\lambda)} \int_{0}^{\infty} \left(\varphi _{1} (x, \lambda) f (y) \right) dy + \varphi _{1} (x, \lambda) \left(x, \lambda \right) L f (y) dy$$

$$+ \frac{1}{\omega (\lambda)} \int_{0}^{\infty} \left(\varphi _{2} (x, \lambda) f (y) \right) dy + \varphi _{2} (x, \lambda) \left(x, \lambda \right) L f (y) dy$$

$$= \frac{1}{\omega (\lambda)} \int_{0}^{\infty} \left(\varphi _{1} (x, \lambda) f (y) \right) dy + \varphi _{1} (x, \lambda) \left(x, \lambda \right) L f (y) dy$$

$$+ \frac{1}{\omega (\lambda)} \int_{0}^{\infty} \left(\varphi _{2} (x, \lambda) f (y) \right) dy + \varphi _{2} (x, \lambda) \left(x, \lambda \right) L f (y) dy$$
\[\frac{\lambda}{\omega(\lambda)} \left(\chi_1(x, \lambda) \frac{1}{2} \int_0^r (\varphi^T f_1(y)dy + \varphi_1(x, \lambda) \int_0^r (x^T f(y)dy) \right) \\
+ \frac{1}{\omega(\lambda)} \left(\chi_1(x, \lambda) \varphi_2(x, \lambda) \varphi_1(x, \lambda) \chi_2(x, \lambda) f_1(x) \right) \\
= \lambda \Phi(x, \lambda, \theta) - (f_1(x), f_2(x))^T. \]

从而 (3.4) 成立。

命题3.3 \(\Phi(x, \lambda, f) \) 是 \(\lambda \) 的亚纯函数，其极点 \(\lambda_n \) 唯为 \((E) \) 的特征值，都是单重的。在 \(\lambda_n \) 处的留数为

\[\text{Res} \Phi(x, \lambda, f) = f_n \psi_n(x), \] (3.5)

其中，\(f_n = (f_n \psi_n) = \int_0^r f^T(x) \psi_n(x)dx \).

\(\psi_n(x) = \frac{\sqrt{K_n}}{\omega(\lambda_n)} \varphi(x, \lambda_n), K_n \) 意义如命题2.2所述。

证明 由 \(\Phi \) 的定义式，\(\varphi, \chi \) 和 \(\omega \) 都是 \(\lambda \) 的整函数，故 \(\Phi \) 为 \(\lambda \) 的亚纯函数，其极点与 \(\omega(\lambda) \) 的零点重合，恰为 \((E) \) 的特征值。\(\omega(\lambda) \) 的零点均是单重，故 \(\Phi \) 的极点也为单重。注意到 \(\omega(\lambda_n) = 0 \).

\[\text{Res} \Phi_1(x, \lambda, f) = \lim_{\lambda \to \lambda_n} \frac{\lambda - \lambda_n}{\omega(\lambda) - \omega(\lambda_n)} \left(\chi_1(x, \lambda) \frac{1}{2} \left[\varphi^T \left(x, \lambda \right) f_1(y)dy \right) \right) \]

\[+ \varphi_1(x, \lambda) \int_0^r x^T(y, \lambda) f(y)dy \right) \]

\[= (K_n \varphi_2(x, \lambda_n)/\omega(\lambda_n)) \int_0^r \varphi(y, \lambda_n)dy \]

\[= \psi_n(x) \int_0^r \varphi_n(y)dy = f_n \psi_n(x). \]

同样可证 \(\text{Res} \Phi_2(x, \lambda, f) = f_n \psi_2(x). \) 总之 (3.5) 成立。

命题3.4 设 \(f(x) \in C(0, \pi) \)，对于 \(\lambda \in I_n \) 当 \(|\lambda| \to \infty \) 时，\(\Phi(x, \lambda, f) = 0 \frac{1}{f_n} \).

证明 注意到 \(\sin(\lambda x - \alpha) \leq e^{-\delta x}, \cos(\lambda x - \alpha) \leq e^{-\delta x}, \)

\[\cos(\lambda(\pi - x) + \beta) \leq e^{-|\pi - x|}, \sin(\lambda(\pi - x) + \beta) \leq e^{-|\pi - x|}. \]

可知

\[\int_0^r \varphi_1(y, \lambda) f_1(y)dy \leq M_1 \int_0^r \varphi_1(y, \lambda)dy, \]

再由 (1.3) 式知 \(\int_0^r \varphi_1(y, \lambda) f_1(y)dy = 0 \left(\frac{1}{|x|} - e^{-\delta|x|} \right) \) 同样可知
作 者 : 李 梦 如 等

Dirac 特 征 值 问 题 的 … 证 明

\[\int_0^\infty \varphi_2(y, \lambda) f_2(y) dy = 0 \left(\frac{1}{\pi} e^{i\lambda y} \right), \]

\[\int_0^\infty x_1(y, \lambda) f_1(y) dy = 0 \left(\frac{1}{\pi} e^{i(y-\lambda)} \right), \]

\[\int_0^\infty x_2(y, \lambda) f_2(y) dy = 0 \left(\frac{1}{\pi} e^{i(y-\lambda)} \right). \]

将 上 面 估 计 式 及 \(\omega(\lambda) \) 在 \(I_\lambda \) 上 的 估 计 式（参 见 命 题 2.2 的 证 明）

\[\frac{1}{\omega(\lambda)} = \frac{1}{\Omega(\lambda) + 1 + 0 \left(\frac{1}{\lambda} \right)} = e^{i\lambda} \left(\frac{e^{-i\lambda}}{-\sin(\lambda\pi + \beta - \alpha)} \right). \]

\[\cdot \left(1 + 0 \left(\frac{1}{\lambda} \right) \right) = 0 \left(e^{-i\lambda} \right) \]

起 代 入 \(\Phi_1(x, \lambda, f) \) 的 定 义 式 可 得:

\[\Phi_1(x, \lambda, f) = 0 \left(e^{i\lambda} \cdot \frac{1}{\pi} e^{i\lambda} \right) = 0 \left(\frac{1}{\lambda} \right). \]

在 \(I_\lambda \) 上，0 \left(\frac{1}{\lambda} \right) = 0 \left(\frac{1}{\pi} \right)。同 样 可 证 \(\Phi_2(x, \lambda, f) = 0 \left(\frac{1}{\pi} \right) \).

定 理 3.5 设 \(f \in F \)，则 \(f \) 可 按 \(\varphi_n \) 展 开 为 一 致 收 敛 的 级 数:

\[f = \sum_{n=1}^{\lambda} f_n \varphi_n(x), \quad f_n = \int_\varphi \varphi^T(y) \varphi(x) dy. \tag{3.6} \]

证 明 当 \(\lambda \in I_\lambda \) 时，对于 大 \(n \)，有

\[\Phi(x, \lambda, Lf) = 0 \left(\frac{1}{\pi} \right) \]

\[\Phi \frac{1}{\lambda} \Phi(x, \lambda, Lf) d\lambda = 0 \left(\frac{1}{\pi} \right). \]

对 于 (3.4) 式 两 边 沿 \(I_\lambda \) 积 分。对 于 大 \(n \)，有

\[\sum_{k=1}^{2n+1} \text{Res} \Phi(x, \lambda, Lf) = f(x) + 0 \left(\frac{1}{\pi} \right) \]

再 由 命 题 3.3 \[\sum_{k=1}^{2n+1} f_k \varphi_k(x) = f(x) + 0 \left(\frac{1}{\pi} \right) \]

取 \(n \to \infty \) 即 得 所 证。

注：可 按 通 常 方 法 证 明 \(f \in L_2 \) 时 的 \(L_2 \) 展 开。由 于 篇 幅 所 限，不 再 讨 论。
A Proof of Eigenexpansion Theorem for Dirac Eigenvalue Problem

Li Mengru
Department of Mathematics, Zhengzhou University

Qiao Zhijun
Department of Mathematics, Liaoning University

Abstract Some essential properties of Dirac eigenvalue problem on a finite interval are discussed with residue method. The theorem which function vector is expanded to become a generalized fourier series is proved according to eigenfunction vector.

Keywords Dirac eigenvalue problem, Residue method, eigenexpansion.