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Abstract

The Adomian decomposition approach is used for the b-balanced shallow water
wave equation py, 4 myu + bmu, = 0, m = 1 — Clixyy. Approximate solutions arc ob-
tained for three smooth initial values. Compared with the existing method, our proce-
dure just works with the polynomial and algebraic computations for this shallow water
cquation.
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1. Introduction
Recently, the balanced water wave equation
my +myu+bmu, =0, m=u— Cliyy, (1)

where ¢ is a constant, has arisen a lot of attractive attentions [6]. The family (1) is integrable
only when b = 2,3 [8], and it is reduced to the Camassa-Holm (CH) equation [2] as b =2
and to the Degasperis-Procesi (DP) equation [3] as b = 3, respectively. The DP equation
has bi-Hamiltonian structure and Lax pair [5], and can be also extended fo a whole inte-
grable hierarchy of equations [11] with parametric solutions under some constraints [12].
In addition, the CH equation also has new peaked and smooth solitons which are given In
explicit forms [14].

In an earlier paper [7], we dealt with the decomposition of the CH equation using the
Adomian method [1]. Very recently, Qiao [13] developed three new types of soliton so-
Jutions - M-shape peakon, dehisced soliton, and double dehisced 1-peak solions through
studying the DP equation, and the most interesting is that a cuspon is a limit of the new
peaked soliton solutions for the DP equation (see [13]). In the present paper, we discuss the
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bh-balanced water wave equation (1) Using analysis procedure and the Adomian decomposi-
tion method. we are able to obtain the approximate solutions for three smooth initial values.
Compared with the existing method, our procedure just works with the polynomial and al-
gebraic computations for this family of water equations. Finally, we plot our approximate
solutions in three dimensional space.

1.1. Analysis of the Decomposition Method
After an expansion, the b-balance water wave equation (1) for real u(x.7) is rewritten as

Le(tt—C thyy) = —myut — bmu, (2)
where L, = j—r is a linear operator.

Assuming the mverse operator L, " exists and it can be taken as the definite integral with

respect to 7 from #p to 7, 1e.

L= [(-) dr

=10

then applying the inverse operator L; ! on both sides of (2) yields

m(x,t) = m(x,ty) + Lt (—ma — bmuy). (3)

The ADM assumes that the unknown function u(x,7) can be expressed by a sum of
components defined by the decomposition series of the form:

u(x, 1) = Z Tl
n=0
with o defined as u(x,0) where u(x,¢) will be determined recursively. The nonlinear oper-
ator
NL(u) := mu + bmuy
= mluu + bmluliy (4)

can also be decomposed by an infinite series of polynomials given by

&0

NL(u) = 2,4”&:9,1;1,...,:;,,),
n=0
where 4, (uo, 11, -- ,up) are the Adomian’s polynomials which are defined as

b L
= —_ N L 3 = U, RS
A” H! ld?‘-n . (;}l I!I(x’{))] % 0 . OJ t‘z

1| e e B e
= — ~ |m {z Rt z Muj| + bm Ao 2 M ujy
n. d}h n=0 n=0 =0 =0 =0

i Z [mujc)up.; + bm [tta— ] il (5)
Jj=0
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since m[-] is a linear operator. Recursively, we then generates the formula of u,,:

up = u(x,ty) — ¢ ux(x,0) 1n=0 (6)
Upl] = C ey = j",LAnds ifn £ 0.

As we see, it is easy to write a computer code for generating the Adomian polynomials.
We summarize the whole procedure in the following algorithm '

Algorithm

e Input data:
fy — initial time
u(x,1y) — initial condition,
¢ — positive constant parameter, i.e: m|u](x,f) = u(x,fo) — ¢ u(x,40) = J(x),
b — constant parameter of (1),
k — number of terms in the approximation.

e Output: u,,,,.(x.¢) : the approximate solution

Step 1: Set ug = J(x) and uypproc(x,t) = up.

Step 2: For k= 0to n—1, do Step 3, Step 4, and Step 5.

|

Step 3: Compute

A = [mbud wey + bmfus] ).

k
=0

Step 4: Compute
“f
Upr] = C Uppy — Apds 1fk £ 0.

S

— Step 5: Compute Uapprox = Ugpprox + Uis1-

Stop
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2. Convergence Analysis

In this section, we discuss the convergence property of the approximated solution for the

h-balanced wave equation.
Let us consider the b-balanced wave equation in the Hilbert space H = L*((a,B) %

0.7)):

H= {v: (o,B) x [0,T] with [ V2 (x,s)dsdt < ~+—c>o}A (7)
: Jiap)x[0.7] )
Then the operator is of the form
Tlu) = Liln—c Usy)
= —(14b)uu + vt + b 1oyt (])

The Adomian decomposition method is convergent if the following two hypotheses are
satisfied' and some references therein for more details.:

e (Hypl): There exists a constant k> 0 such that the following inner product holds in

H:
(T(u)—T(v),u~v)>_'k||,rf-—v||, Yu,v € H; 9)

e (Hyp2): Aslong as bothu € and v € H are bounded (i.e. there is a positive number
M such that |Ju]| < M, ||v|| < M), there exists a constant 6(M) > 0 such that

(T(u)—T(v),u—v) < O(M)||u— || |lwl], YweH. (10)

Theorem 2.1. (Sufficient conditions of convergence for the h-balanced wave equation)
Let

Ploy = Lile — Cllyy)
= —(14b) uuu + teptt + b iy,

. d
with b<3, Li==,
ot
and consider the free initial and boundary conditions for the b-balanced equation. Then
the Adomian decomposition method leads to a special solution of the h-balanced wave

equation.

Proof. To prove the theorem, we just verify the conditions (Hyp1) and (Hyp2). For Vu,v &€
H, let us calculate:

T(u) -T(v) = —(1+ b) (uert— vy v) + (teott — VareV) + b (2t — Vix V)
1+b 3 1 ) 3 5 T b
= == B ('HZ — Vd)x S E ((Efa =r 1"d)x.r_\' =i (u; . V:)r) a5 5 (“_% - "’%)-\'
— —2—( w? — )i+ S v 5 (12 —V3)x

1See [7]

Therefore

(T(w)

Let us as
M?. By

and sinc:
and [lu+

Followii

&

where €
Mo

then by
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Therefore, we have the inner product

(T{u) = T(v)u—v) = l%b (—a{—i(uz —v),u— v) s —;— (—%(ui e 1-‘)

3"_b 33 7 a
— | —=—= ("= v ), u—v). 11
= > ( =3 (" —v°),u v) (11)

Let us assume that #, v are bounded and there is a constant M > 0 such that (u,u). (v,v) <
M?. By using Schwartz inequality

d

($(er = vz)}u— 1’) < ||(u2 - v’l'}_‘-H lee — v, (12)
[

I

and since there exist 8; and 0, such that [[(w —v),|| < 0y {|u— ||, [[(w+v):|| < Oaflu—v

and |lu+v|| < 2M, we have

(%(1‘12 — vg)jy e v) <2M6,0; ||”_ vHE'

(_9_(“3 ) v) > 2M0,0; ||l — 1'E|2. (13)
ox

Following the preceding procedure, we can calculate:

d 5 2
(a(_x{nf —1-';),3!—") = H(”.%‘"E)x” o =]
O [ty + vl [late — vl llue — v
< 2MB; 94 GjHH_VHQ'-

a 3 2 :
(—a(u;—v_;),u—v’) > 2M03046s |u—v|?, (14)

where 0; (i=3,4,5) are positive constants.
Moreover, the Cauchy-Schwartz-Buniakowski mequality yields

33 2 2 2
(—(uz —v ) u— v) < || = v )| e = vl (15)

o3

then by using the mean value theorem, we have

& s
(E(u‘ e 1-')

[/

060705 || — 2| || —v]|

1A

2 M85076g ||u— v||?

83 ) 3]
(—-)—,.(nz — V) — v) > 2M6050g [|lu—vi- (16)
ox’
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L

where 0; (j = 6,7.8) are three positive constants, and 2 — )] < 86l (22 — V2 )
[l (2 4+ V)l < 07| (e 4+ v)y || and [} (e +v)x l|.
Substituting (13), (14), (16) into (11) generates the following inner product:

(—ba—a;(uz —1f2),u—v)

3
—(c—d) (ai (u2 —12), ;——v)— (Ei (uz—vz),zf—v)

> ku—vl?,

(T(u)—T(v),u—v)

where k= ((1+5)0,0; — 036405 + (3— b)0607603) M. So, (Hypl) is true for the
b-balanced wave equation. :
Let us now verify the hypotheses (Hyp2) for the operator T (u). We directly compute:

‘ S gn l 5 3 1 _ETE 2
(T(u)—T(v),w) = 5 ( bax[ 1]:11>—2( =l "XJ_._M)

2 [Zi0-0])

O(M)]|u — ||| w|

[/

where 8(M) = 3M/2. Therefore, (Hyp2) is correct as well. QED.

3. Implementation of the Method and Approximate Solutions

In this section, we take some examples to show the procedure and present some approximate
solutions u(x, 1) = £ u,(x,1), for the b-balanced equation.

Example 3.1.
my + meu + bmu, =0, m=1u—Cux a7
tp—=ulx =3 e 428

Example 3.2.
my + mpu + bmu, =0, m=u— Cityy (18)
o = u(x,0) = cosh(g x*). |

Example 3.3.
my + mu + bmu, =0, m=u—Cly (19)
ug = u(x,0) = 3 cosh(c; x)+2 sin(cz x). :
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i
|

Figure 3. Approximate solution for for equation (17) with 5 = 0.5.
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Figure 5. Approximate solution for equation (18) withb=1,c=1,g=2.

Figure 6. Approximate solution for equation (19) with b=0,c1=4,c,=5.

Figui
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Figure 9. Approximate solution for equation (19) with b = —3, ¢, =4,¢, =5 .
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4. Conclusions

In this paper, we apply the Adomian polynomial decomposition method to solve the family
of b-balanced shallow water equations in an explicitly approximate form. The initial values
we adopted are smooth, but the more interesting is: approximate solutions are non-smooth
(see figures 1 - 9). In comparison with the existing method to obtain peaked solitary solu-
tions, our procedure just works on the polynomial and algebraic computations. In the recent
literatures, there are also other methods [4, 9, 10] to deal with nonlinear partial differential
equations, where smooth solutions were obtained. Our paper presents some continuous but
non-smooth solutions for the A-balanced equation (1).
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