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Abstract In this paper we consider the algebraic traveling wave solutions of a non-
local hydrodynamic-type model. It is shown that algebraic traveling wave solutions
exist if and only if an associated first order ordinary differential system has invari-
ant algebraic curve. The dynamical behavior of the associated ordinary differential
system is analyzed. Phase portraits of the associated ordinary differential system is
provided under various parameter conditions. Moreover, we classify algebraic trav-
eling wave solutions of the model. Some explicit formulas of smooth solitary wave
and cuspon solutions are obtained.
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1 Introduction

Mathematical modeling of dynamical processes in a great variety of natural phenom-
ena leads in general to nonlinear partial differential equations. There is a particular
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class of solutions for nonlinear equations that are of considerable interest, in particu-
lar, traveling wave solutions attract more attention. Such a wave is a special solution
of governing equations, that may be localized or periodic, which does not change its
shape and which propagates at a constant speed.

There are several classical models describing the motion of waves at the free sur-
face of shallow water under the influence of gravity. Among these models, the best
known is the Korteweg-de Vries (KdV) equation [1]

ut + 6uux + uxxx = 0. (1.1)

The KdV equation admits solitary wave solutions, i.e. solutions of the form u(x, t) =
ϕ(x − ct) which travel at a fixed speed c, and vanish at infinity. The KdV solitary
waves are smooth and retain their individuality after two solitary wave interaction
and eventually emerge with their original shapes and speeds.

Another model, the Camassa-Holm (CH) equation [2]

ut − utxx + 3uux = 2uxuxx + uuxxx. (1.2)

arises as a model for the unidirectional propagation of shallow water waves over a
flat bottom [2], as well as water waves moving over an underlying shear flow [3]. The
CH equation has many remarkable properties that KdV does not have like solitary
waves with singularities and breaking waves. The CH equation admits peaked soli-
tary waves or “peakons” [2]: u(x, t) = ce−|x−ct |, c �= 0, which are smooth except
at the crests, where they are continuous, but have a jump discontinuity in the first
derivative. The CH equation also has algebro-geometric solutions associated with a
Neumann system on a symplectic submanifold [4].

The CH model may be extended to multi-component generalizations. Chen and
Liu [5] proposed the following generalized two-component CH system{

ut − utxx − Aux + 3uux − σ(2uxuxx + uuxxx) + ρρx = 0,

ρt + (ρu)x = 0,
(1.3)

which can be derived from shallow water theory with nonzero constant vorticity.
By using dynamical system method, Li and Qiao [6] obtained solitary wave solutions,
kink and anti-kink wave solutions, cusp wave solutions, breaking wave solutions, and
smooth and non-smooth periodic wave solutions of this equation.

This paper deals with algebraic traveling wave solution, supported by the
hydrodynamic-type system which takes into account the non-local effects [7–9]:{

ut + βρn+1ρx + σ [ρn+1ρxxx + 3(1 + n)ρnρxρxx + n(1 + n)ρn−1ρ3
x ] = 0,

ρt + ρ2ux = 0,

(1.4)
where u is the mass velocity, ρ is the density, t is time, x is the mass (Lagrangian)
coordinate related the commonly used (Eulerian) coordinate xe in the following
fashion:

x =
∫ xe

ρ(t, s)ds,

β > 0 and σ �= 0 are constant parameters. In this paper, by using bifurcation
theory of dynamical system [10, 15], we study the smooth solitary wave and cuspon
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solutions of system (1.4). The idea is inspired by the study of the traveling waves of
Camassa-Holm equation and Degasperis-Procesi equation [16, 19].

The whole paper is organized as follows. In Section 2, we discuss the alge-
braic traveling wave solutions and invariant algebraic curves. In Section 3, we study
dynamical behavior of algebraic traveling wave solutions. In Section 4, we classify
algebraic traveling wave solutions of the model. Some explicit formulas of algebraic
traveling wave solutions are obtained.

2 Algebraic Traveling Wave Solutions and Invariant Algebraic Curves

We consider general n-th order partial differential equations with the following form

∂nu

∂xn
= F(u,

∂u

∂x
,
∂u

∂t
, · · · ,

∂n−1u

∂xn−1
,

∂n−1u

∂xn−2∂t
, · · · ,

∂n−1u

∂x∂tn−2
,
∂n−1u

∂tn−1
), (2.1)

where x and t are real variables and F is a smooth map. The traveling wave solu-
tions of (2.1) are particular solutions of the form u = u(x, t) = U(x − ct), where
U(ξ) satisfies the boundary conditions

lim
ξ→−∞ U(ξ) = a, lim

ξ→∞ U(ξ) = b, (2.2)

where a and b are constant root solutions, not necessarily different, of
F(u, 0, ..., 0) = 0. Plugging u(x, t) = U(x − ct) into (2.1) we get that U(ξ) has to
be a solution, defined for all ξ ∈ R, of the n-th order ordinary differential equation

U(n) = F(U, U ′, −cU ′, · · · , U(n−1), −cU(n−1), · · · , (−c)(n−2)U(n−1), (−c)(n−1)U(n−1))

(2.3)
where U = U(ξ) and its derivatives are taken with respect to ξ . The parameter c is
called the speed of the traveling wave solution.

Definition 2.1 A function u(x, t) = U(ξ) = U(x − ct) is called an algebraic
traveling wave solution of (2.1) if U(ξ) is a non constant function that satisfies (2.1)
and (2.3) and there exists a polynomial P ∈ R[z, w] such that P(U(ξ), U ′(ξ)) = 0.

It is known that traveling wave solutions correspond to homoclinic (a = b) or
heteroclinic (a �= b) solutions of an associated n-dimensional system of ordinary
differential equations. Recently, Gasull and Giacomini [20] proved the following
theorem.

Theorem 2.1 [20] The partial differential (2.1) has an algebraic traveling wave
solution with wave speed c if and only if the first order differential system
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

y ′
1 = y2,

y ′
2 = y3,

...
...

y ′
n−1 = yn,

y ′
n = G(y1, y2, · · · , yn),

(2.4)

where

G(y1, y2, · · · , yn) = F(y1, y2,−cy2, · · · , yn,−cyn, · · · , (−c)(n−2)yn, (−c)(n−1)yn), (2.5)

has an invariant algebraic curve containing the critical points (a, 0, · · · , 0) and
(b, 0, · · · , 0) and no other critical points between them.

Now, we need to seek a method to detect when a polynomial system of ordi-
nary differential equations has algebraic invariant curves to determine whether some
polynomial partial differential equation can have algebraic traveling wave solu-
tion. There are some works dealing with this problem in the n-dimensional setting
[21, 23], the planar case is the most developed one. Consider a planar differential
system, {

x ′ = P(x, y),

y ′ = Q(x, y),
(2.6)

where P and Q are polynomials of degree at most N , and assume that there is a
polynomial g(x, y) such that the set g(x, y) = 0 is non-empty and invariant by the
flow of (2.6).

Let U be an open subset of R2. We say that a non-constant function H : U → R is
a first integral of the polynomial system (2.6) in U if H is constant on the trajectories
of the polynomial system (2.6) contained in U ; i.e. if

P(x, y)
∂H(x, y)

∂x
+ Q(x, y)

∂H(x, y)

∂y
= 0. (2.7)

For irreducible polynomials we have the following algebraic characterization of
invariant algebraic curves. Given an irreducible polynomial of degree n, f (x, y), then
f (x, y) = 0 is an invariant algebraic curve for the system if there exists a polynomial
of degree at most N − 1, k(x, y), called the cofactor of f , such that

P(x, y)
∂f (x, y)

∂x
+ Q(x, y)

∂f (x, y)

∂y
− k(x, y)f (x, y) = 0. (2.8)

We are going to analyze a set of traveling wave solutions, having the form

u(x, t) = φ(ξ), ρ(x, t) = ϕ(ξ), ξ = x − ct. (2.9)

Inserting the ansatz (2.9) into the second equation of the system (1.4), we get, after
one integration, the following quadrature:

φ(ξ) = c1 − c

ϕ(ξ)
, (2.10)

where c1 is the constant of integration. In what follows, we assume that c1 = c/A1,
where A1 is a positive constant. Such a choice immediately leads to the following
asymptotic behavior:
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lim|ξ |→∞ u(x, t) = 0, lim|ξ |→∞ ρ(x, t) = A1, (2.11)

Inserting the ansatz (2.9) into the first equation of the system (1.4) and using the
(2.10), we obtain the following second order ordinary differential equation

c2

ϕ
+ β

n + 2
ϕn+2 + σ [ϕn+1ϕ′′ + (n + 1)ϕn(ϕ′)2] = E, (2.12)

where

E = c2

A1
+ β

n + 2
An+2

1 , (2.13)

is the integration constant determined from the conditions on infinity. Let us rewrite
the (2.12) as the first order differential system:{

dϕ
dξ

= y,
dy
dξ

= (σϕn+2)−1[Eϕ − c2 − β
n+2ϕn+3 − σ(n + 1)ϕn+1y2]. (2.14)

Let dξ = (σϕn+2)dζ , then system (2.14) is equivalent to the following ordinary
differential system{

dϕ
dζ

= σϕn+2y,
dy
dζ

= Eϕ − c2 − β
n+2ϕn+3 − σ(n + 1)ϕn+1y2.

(2.15)

Theorem 2.2 [9] System (2.15) has the following rational first integral

H(x, y) = 2c2 ϕn+1

n + 1
+ β

(n + 2)2
ϕ2(n+2) + σy2ϕ2(n+1) − 2E

ϕn+2

n + 2
, (2.16)

and therefore gives invariant algebraic curves h − H(x, y) = 0 for all h ∈ R.

Proof In fact, the result can be seen from [9]. Here, for the convenience of the
readers, we give proof. For the system (2.15), we have

P(x, y)
∂H(x,y)

∂x
+ Q(x, y)

∂H(x,y)
∂y

= σϕn+2y[2c2ϕn + 2β
n+2ϕ2n+3 + 2(n + 1)σy2ϕ2n+1 − 2Eϕn+1]

+[Eϕ − c2 − β
n+2ϕn+3 − σ(n + 1)ϕn+1y2](2σyϕ2(n+1))

= 0.

This completes the proof.

3 Dynamical Behavior of the Differential System (2.15)

Let us now consider the dynamical behavior of the polynomial ordinary differen-
tial system (2.15). It is evident that all isolated singular points of system (2.15) are
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located on the horizontal axis Oϕ. They are determined by solutions of the algebraic
equation

f (ϕ) = β

n + 2
ϕn+3 − Eϕ + c2 = 0. (3.1)

Based on results of [7–9], next we show the existence of the singular points and the
homoclinic orbits for the polynomial ordinary differential system (2.15).

Theorem 3.1 For σ �= 0, we have

(1.) Case I: σ > 0.
(1) If n = 2m − 1, m = 1, 2, · · · , then

(a) if β < c2

An+3
1

, then system (2.15) has a saddle (A1, 0) and a center (A2, 0),

where A1 < A2.
(b) if β = c2

An+3
1

, then system (2.15) has a cusp point (A1, 0).

(2) If n = 2m, m = 0, 1, 2, · · · , then

(a)
(a) if β < c2

An+3
1

, then system (2.15) has a saddle (A1, 0) and two centers

(A2, 0), (A3, 0), where A3 < A1 < A2.
(b) if β = c2

An+3
1

, then system (2.15) has a cusp point (A1, 0) and a center

(A3, 0), where A3 < A1 = A2.

Moreover, if β < c2

An+3
1

, then there exists a homoclinic orbit bi-asymptotic

to the saddle (A1, 0).
(2.) Case II: σ < 0.

(1) If n = 2m − 1, m = 1, 2, · · · , then

(a) if β > c2

An+3
1

, then system (2.15) has a saddle (A1, 0) and a center (A2, 0),

where A1 > A2.
(b) if β = c2

An+3
1

, then system (2.15) has a cusp point (A1, 0).

(2) If n = 2m, m = 0, 1, 2, · · · , then

(a) if β > c2

An+3
1

, then system (2.15) has two saddle (A1, 0), (A3, 0) and a

centers (A2, 0), where A3 < A2 < A1.
(b) if β = c2

An+3
1

, then system (2.15) has a cusp point (A1, 0) and a cusp point

(A3, 0), where A3 < A1 = A2.

Moreover, if c2

An+3
1

< β <
2(n+2)c2

(n+1)An+3
1

, then there exists a homoclinic orbit

bi-asymptotic to the saddle (A1, 0).

Proof It can be easily seen that one of the roots of (3.1) coincides with A1. The
location of the second real positive root depends on relations between the parameters.
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Differentiating f (ϕ) with respect to ϕ, we obtain

f ′(ϕ) = (n + 3)β

n + 2
ϕn+2 − E. (3.2)

Obviously, the function f ′(ϕ) has a zero ϕ∗ if n is odd, and the function f ′(ϕ) has
two zeros ±ϕ∗ if n is even, where ϕ∗ > 0. Let

f ′(A1) = (n + 3)β

n + 2
An+2

1 − E = 0. (3.3)

Substituting (2.13) into (3.3) gives

(n + 3)β

n + 2
An+2

1 = c2

A1
+ β

n + 2
An+2

1 . (3.4)

Thus we obtain the critical parameters condition

c2 = βAn+3
1 . (3.5)

Furthermore analyzing we make the following conclusions.

1. When n is odd, then
(1) if β = c2

An+3
1

, then f (ϕ) has a zero A1 = ϕ∗.

(2) if β < c2

An+3
1

and σ > 0, then f (ϕ) has two zero A1 and A2 such that

A2 > ϕ∗ > A1 > 0.
(3) if β > c2

An+3
1

and σ < 0, then f (ϕ) has two zero A1 and A2 such that

A1 > ϕ∗ > A2 > 0.
2. When n is even, then

(1) if β = c2

An+3
1

, then f (ϕ) has two zeros A1 and A3 such that A3 < −ϕ∗ <

0 < ϕ∗ = A1.
(2) if β < c2

An+3
1

and σ > 0, then f (ϕ) has three zeros Ai(i = 1, 2, 3) such

that A3 < −ϕ∗ < 0 < A1 < ϕ∗ < A2.
3. if β > c2

An+3
1

and σ < 0, then f (ϕ) has three zeros Ai(i = 1, 2, 3) such that

A3 < −ϕ∗ < 0 < A2 < ϕ∗ < A1.

We next analyze the Jacobian matrix

M(Ai, 0) =
(

0 σAn+2
i−f ′(Ai) 0

)
.

A direct calculation shows that

J (Ai, 0) = detM(Ai, 0) = σf ′(Ai)A
n+2
i . (3.6)

For a singular point (Ai, 0) of the planar system (2.15) the following classification
holds true: if J (Ai, 0) < 0 then the singular point is a saddle; if J (Ai, 0) > 0 then
it is a center; if J (Ai, 0) = 0 and the index of the singular point is zero then it is a
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cusp. By analyzing the formula (3.6), we easily determine the type of a singular point
(Ai, 0).

The detailed proof of the conditions assuring the existence of the homoclinic loops
can be found in [9].

4 Classification and Explicit Formulas of Algebraic Traveling Wave Solutions

4.1 Weak Formulation

We consider the weak formulation of algebraic traveling wave solutions of system
(1.4) for n = 0. For a traveling wave ansatz (2.9), (1.4) take the form

− c2ϕ−2ϕξ + βϕϕξ + σ(ϕϕξξξ + 3ϕξϕξξ ) = 0. (4.1)

By integrating with respect to ξ , combining (2.11) and (2.13), (4.1) is equivalent to
the following integrated form

(ϕ2)ξξ = 1

σ
(−βϕ2 − 2c2

ϕ
+ 2E). (4.2)

(4.2) makes sense for all ϕ ∈ H 1
loc(R). The following definition is therefore natural.

Definition 4.1 A function ϕ ∈ H 1
loc(R) is a weak traveling wave solution to the

equation (4.1) if ϕ satisfies (4.2) in distribution sense for some E ∈ R.

By a similar approach just like Lemma 4 and 5 in [16], we give the following
determinant theorem.

Theorem 4.1 Any bounded function ϕ belongs to H 1
loc(R) and is a weak traveling

wave solution to (4.1) with the speed c if and only if satisfying the following two
statements:

(A). There are disjoint open intervals Ji, i � 1, and a closed set C such that
R \ C = ⋃∞

i=1 Ji , ϕ ∈ C∞(Ji) for i � 1, ϕ(ξ) �= 0 for ξ ∈ ⋃∞
i=1 Ji and ϕ(ξ) = 0

for ξ ∈ C.
(B). For each E ∈ R, there exists h ∈ R such that

ϕ2
ξ = G(ϕ), ξ ∈ Ji, (4.3)

where

G(ϕ) = −βϕ4 + 4Eϕ2 − 8c2ϕ + 4h

4σϕ2
, (4.4)

and ϕ → 0, at any finite endpoint of Ji .
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We next introduce two notations in [16]. We say that a continuous function ϕ has
a peak at ξ0 if ϕ is smooth locally on either side of ξ0 and

lim
ξ↑ξ0

ϕξ (ξ) = − lim
ξ↓ξ0

ϕξ (ξ) = a, a �= 0, a �= ±∞.

Wave profiles with peaks are called peaked waves or peakons.
Similarly, a continuous function ϕ is said to have a cusp at ξ0 if ϕ is smooth locally

on both sides of ξ0 and

lim
ξ↑ξ0

ϕξ (ξ) = − lim
ξ↓ξ0

ϕξ (ξ) = ±∞,

We will call waves with cusps cusped waves or cuspons.

4.2 Classification of Algebraic Traveling Wave Solutions

The hydrodynamic-type system (1.4) admits smooth solitary wave and cuspon
solutions. It is notable that system (1.4) has not peakon solution.

From invariant algebraic curves h − H(x, y) = 0 or (4.3) we obtain

y2 = β( 4h
β

− 8c2

β
ϕ + 4E

β
ϕ2 − ϕ4)

4σϕ2 , (4.5)

where

h = A1(c
2 − β

4
A3

1). (4.6)

Combining (2.12),(2.16) and (4.6), then (4.1) reduces to

y2 = (ϕ − A1)
2(B1 − ϕ)(ϕ − B2)

4σϕ2
= F(ϕ), (4.7)

where

B1 =
√

4c2

βA1
− A1, B2 = −

√
4c2

βA1
− A1. (4.8)

Obviously, B1 � B2. From (4.8) we know that A1 < B1 if β < c2

A3
1

and A1 > B1 if

β > c2

A3
1
. Any algebraic traveling wave solutions ϕ must satisfy the following initial

and boundary values problem⎧⎪⎨
⎪⎩

(ϕξ )
2 = (ϕ−A1)2(B1−ϕ)(ϕ−B2)

4σϕ2 ,

limξ→±∞ ϕ(ξ) = A1,

ϕ(0) ∈ {0, B1},
(4.9)

(4.7) implies

(1) if σ > 0, then B2 � ϕ � B1;
(2) if σ < 0, then ϕ � B1 or ϕ � B2.

From (4.7), we know that F(ϕ) has a simple zero at B1 and a double zero at A1.
Depending on whether the zero is double or simple, ϕ has different behavior.
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Theorem 4.2 1. When ϕ approaches the double zero A1 of F(ϕ) so that
F ′(A1) = 0, F ′′(A1) �= 0, then the solution ϕ satisfies

ϕ(ξ) − A1 ∼ a exp(−|ξ |√|F ′′(A1)|), ξ → ±∞, (4.10)

for some constant a, thus ϕ → A1 exponentially as x → ±∞.
2. If ϕ approaches the simple zero B1 of F(ϕ) so that F(B1) = 0, F ′(B1) �= 0,

then the solution ϕ satisfies

ϕ(ξ) = B1 + 1

4
ξ2F ′(B1) + O(ξ4), ξ → 0, (4.11)

where ϕ(0) = B1 and ϕ′(0) = 0.
3. If σ < 0, β = 4c2

A3
1

, then B1 = 0 is a simple pole of F(ϕ), and the solution ϕ

satisfies
ϕ(ξ) = bξ2/3 + O(ξ4/3), ξ → 0 (4.12)

and

ϕξ =
{ 2

3b|ξ |−1/3 + O(ξ1/3), ξ ↓ 0,

− 2
3b|ξ |−1/3 + O(ξ1/3), ξ ↑ 0,

(4.13)

for some constant b, thus ϕ has a cusp.

Proof Because A1 is a double zero of F(ϕ), we have

ϕ2
ξ = (ϕ − A1)

2F ′′(A1) + O((ϕ − A1)
3), ϕ → A1. (4.14)

Furthermore, we get

dξ

dϕ
= 1√

(ϕ − A1)2F ′′(A1) + O((ϕ − A1)3)
. (4.15)

Since√
(ϕ − A1)2F ′′(A1) + O((ϕ − A1)3) = |ϕ−A1|(

√|F ′′(A1)|+O(ϕ−A1)), (4.16)

and
1√|F ′′(A1)| + O(ϕ − A1)

= 1√|F ′′(A1)| + O(ϕ − A1) (4.17)

we get
dξ

dϕ
= 1

|ϕ − A1|√F ′′(A1)
+ O(1). (4.18)

Integration gives Eq. (4.10).

We know that F(ϕ) has a simple zero B1 so that F(B1) = 0, F ′(B1) �= 0, then

ϕ2
ξ = (ϕ − B1)F

′(B1) + O((ϕ − B1)
2), ϕ → B1. (4.19)

We get
dξ

dϕ
= 1√

(ϕ − B1)F ′(B1) + O((ϕ − B1)2)
. (4.20)

Since√
(ϕ − B1)F ′(B1) + O((ϕ − B1)2) = √|ϕ − B1|(

√|F ′(B1)|+O(ϕ−B1)) (4.21)
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and
1√|F ′(B1)| + O(ϕ − B1)

= 1√|F ′(B1)| + O(ϕ − B1), (4.22)

we get
dξ

dϕ
= 1√|(ϕ − B1)F ′(B1)| + O((ϕ − B1)

1/2). (4.23)

Integration gives

− ξ = 2√|F ′(B1)|
√|ϕ − B1| + O((ϕ − B1)

3/2), (4.24)

where we use the fact ϕ(0) = B1. Therefore

ξ2 = 4

|F ′(B1)| |ϕ − B1|(1 + O(ϕ − B1))
2. (4.25)

Using that (1 + O(ϕ − B1))
2 = 1 + O(ϕ − B1), we obtain

ξ2 = 4

|F ′(B1)| |ϕ − B1| + O((ϕ − B1)
2). (4.26)

This equation shows that O(ξ4) = O((ϕ − B1)
2). From (4.26) we get (4.11).

If σ < 0, β = 4c2

A3
1

, then B1 = 0 is a simple pole of F(ϕ), i.e. 1/F (ϕ) has a simple

zero. There exists a smooth function h(ϕ) defined in a neighborhood of ϕ = 0, such
that

1√
F(ϕ)

= h(ϕ)
√

ϕ, h(0) > 0, h(ϕ) = h(0) + O(ϕ),

where

h(ϕ) = 2
√−σ√

(ϕ − A1)2(ϕ − B2)
, h(0) = 2

A1

√
σ

B2
.

This implies, in view of (4.7), that

dξ

dϕ
= h(0)

√
ϕ + O(ϕ3/2). (4.27)

Integration gives

ξ = 2h(0)

3
ϕ3/2 + O(ϕ5/2), (4.28)

where ϕ(0) = 0. Hence

ξ2/3 = (
2h(0)

3
)2/3ϕ(1 + O(ϕ))2/3. (4.29)

Since (1 + O(ϕ))2/3 = 1 + O(ϕ), we get

ξ2/3 = (
2h(0)

3
)2/3ϕ + O(ϕ2). (4.30)

This equation shows that O(ϕ2) = O(ξ4/3). We arrive at

ϕ(ξ) = b|ξ |2/3 + O(ξ4/3), ξ → 0, (4.31)

where b = ( 3
2h(0)

)2/3.
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As for ϕξ , we get

ϕξ = 1

h(ϕ)
√

ϕ
= 1

(h(0) + O(ϕ))
√

b|ξ |2/3 + O(ξ4/3)
. (4.32)

Observing that √
b|ξ |2/3 + O(ξ4/3) = √

bξ1/3 + O(ξ), (4.33)

we obtain

ϕξ = 1

h(0)
√

bξ1/3(1 + O(ξ2/3))
. (4.34)

Using that 1
1+O(ξ2/3))

= 1 + O(ξ2/3)), we deduce

ϕξ = 1

h(0)
√

b
ξ−1/3 + O(ξ1/3). (4.35)

Therefore we obtain (4.13). This completes the proof of Theorem 4.2.

4.3 Explicit Formulas of Algebraic Traveling Wave Solutions

Using the standard phase portrait analytical technique (see Figs. 1, 2, 3, 4 and 5) and
above conclusions, we consider the following three case.

Case I :σ > 0, β < c2

A3
1
.

In this case, we have

B2 < 0 < A1 < B1, ϕ(0) = B1, A1 < ϕ � B1.

Fig. 1 Phase portraits of system (2.15) for n = 2m − 1 and σ > 0
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Fig. 2 Phase portraits of system (2.15) for n = 2m − 1 and σ < 0

The invariant algebraic curve h − H(x, y) = 0 determines a smooth solitary wave
solution satisfying

ϕ(0) = B1, lim
ξ→±∞ ϕ(ξ) = A1, ϕ′(0) = 0.

By using the first equation of system (2.14) to do the integration, we have∫ B1

ϕ

zdz

(z − A1)
√

(B1 − z)(z − B2)
=

√
β

2
√

σ

∫ 0

ξ

dξ. (4.36)

Thus we obtain the following implicit expression of the smooth solitary wave
solution.

I1(ϕ) + A1√
(A1 − B2)(B1 − A1)

I2(ϕ) =
√

β

2
√

σ
|ξ |, (4.37)
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Fig. 3 Phase portraits of system (2.15) for n = 2m and σ > 0

where

I1(ϕ) = arctan(
B1+B2−2ϕ

2
√

(ϕ−B2)(B1−ϕ)
) + π

2 , (4.38)

I2(ϕ) = ln |A1B1 + A1B2 − 2B1B2 + ϕB1 + ϕB2 − 2ϕA1 + 2
√

(A1 − B2)(B1 − A1)(ϕ − B2)(B1 − ϕ)

(B1 − B2)(ϕ − A1)
|.

(4.39)

The profile of smooth solitary wave solution ϕ(ξ) and φ(ξ) is shown in Fig. 6(6-1)
and Fig. 7(7-1), respectively.

Case II : σ < 0, c2

A3
1

< β < 4c2

A3
1

In this case, we have

B2 < 0 < B1 < A1, ϕ(0) = B1, B1 � ϕ < A1.

The invariant algebraic curve h − H(x, y) = 0 determines a smooth solitary wave
solution satisfying

ϕ(0) = B1, lim
ξ→±∞ ϕ(ξ) = A1, ϕ′(0) = 0.

By using the first equation of system (2.14) to do the integration, we have∫ ϕ

B1

zdz

(A1 − z)
√

(z − B1)(z − B2)
=

√
β

2
√−σ

∫ ξ

0
dξ. (4.40)

Thus we obtain the following implicit expression of the smooth solitary wave
solution.

I3(ϕ) + A1√
(A1 − B2)(A1 − B1)

I4(ϕ) =
√

β

2
√

σ
|ξ |, (4.41)
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Fig. 4 Phase portraits of system (2.15) for n = 2m and σ < 0

Fig. 5 The invariant algebraic curve h − H(x, y) = 0 for n = 0 and A1 = 1
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Fig. 6 The graphs of functions ϕ(ξ) for n = 0 and A1 = 1

where

I3(ϕ) = − ln |2ϕ − B1 − B2 + 2
√

(ϕ − B2)(ϕ − B1)

B1 − B2
|, (4.42)

I4(ϕ) = ln |−A1B1 − A1B2 + 2B1B2 − ϕB1 − ϕB2 + 2ϕA1 + 2
√

(A1 − B2)(A1 − B1)(ϕ − B2)(ϕ − B1)

(B2 − B1)(ϕ − A1)
|.

(4.43)

The profile of smooth solitary wave solution ϕ(ξ) and φ(ξ) is shown in Fig. 6(6-2)
and Fig. 7(7-2), respectively.

Case III : σ < 0, β = 4c2

A3
1

.

In this case, we have

B2 < 0 = B1 < A1, ϕ(0) = 0, 0 � ϕ < A1.

The invariant algebraic curve h − H(x, y) = 0 determines a cuspon solution
satisfying

ϕ(0) = 0, lim
ξ→±∞ ϕ(ξ) = A1, ϕ′(−0) = −∞, ϕ′(+0) = +∞.

Fig. 7 The graphs of functions φ(ξ) for n = 0 and A1 = 1



Algebraic Traveling Wave Solutions of a Non-local Hydrodynamic-type 481

By using the first equation of system (2.14) to do the integration, we have∫ ϕ

0

√
zdz

(A1 − z)
√

z − B2
=

√
β

2
√−σ

∫ ξ

0
dξ. (4.44)

Thus we obtain the following implicit expression of the cuspon solution.

I5(ϕ) +
√

A1(A1 − B2)

A1 − B2
I6(ϕ) =

√
β

2
√

σ
|ξ |, (4.45)

where

I5(ϕ) = − ln | 2ϕ−B2+2
√

ϕ(ϕ−B2)
B2

|, (4.46)

I6(ϕ) = ln |−A1B2−ϕB2+2ϕA1+2
√

A1ϕ(A1−B2)(ϕ−B2)
B2(ϕ−A1)

|. (4.47)

The profile of cuspon solution ϕ(ξ) and unbounded solution φ(ξ) is shown in
Fig. 6(6-3) and Fig. 7(7-3), respectively.
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