两类新的 Liouville 完全可积的 Hamilton 系统
及 Heisenberg 铁磁链族与 WKI 族

乔志成
（辽宁大学数学系）

摘要 本文利用非线性化方法，将 Heisenberg 铁磁链问题与 WKI 谱问题的非线性化作为两类新的 Liouville 完全可积的 Hamilton 系统，最后我们利用差分方程解出 Heisenberg 铁磁链方程
族与 WKI 方程族的解的表达式。

众所周知，许多力学运动方程均可以表示成一种定义在n维形上的 Hamilton 系统，
因而在研究 Hamilton 系统的完全可积性非线性力学中是一门十分重要的课题。本文
研究一个有限对称的，并以此说明 Heisenberg 铁磁链问题（与 Heisenberg 铁磁链方程相
联系的谱问题）和 WKI 谱问题（与 WKI 方程相联系的谱问题）的非线性化。系统是两个
Liouville 完全可积的 Hamilton 系统，最后我们由可积流的对角解给出 Heisenberg 铁磁链方
程族与 WKI 方程族的解的表达式。

设 \(H = \sum_{j=1}^{n} \lambda_j \mathbf{f}_j \) 为标准 Poisson 括号①，
那么它是对称的，对称性并且满足 Jacobi 恒等式及 Liebniz 规则：

\[
\{ F, H \} = \sum_{j=1}^{n} \frac{\partial F}{\partial \lambda_j} \frac{\partial H}{\partial \lambda_j} - \sum_{j=1}^{n} \frac{\partial F}{\partial \mathbf{p}_j} \frac{\partial H}{\partial \mathbf{p}_j}
\]

设 \(\lambda_1 < \lambda_2 < \ldots < \lambda_n \) 有

\[
f_j = \sum_{i=1}^{n} \frac{\partial f_j}{\partial \lambda_i} \lambda_j
\]

则易算得

\[
\{ f_j, f_i \} = 0, \quad \{ f_i, f_j, f_k \} = 0, \quad \{ f_i, f_j \} = \{ f_i, f_k \} = 0
\]

这里 \(g = (g_{ij}) \) 为标准 Poisson 括号的准对角矩阵，

使用上述公式及 Poisson 括号的性质，经一系列详细计算，我们有：

命题：如下定义的函数系 \(E_1, E_2, \ldots, E_n \) 构成一个有限对称流系

\[
E_k = -\left(\frac{1}{2} \mathbf{f}_k - \mathbf{p}_k \right) + \mathbf{f}_k (\mathbf{A} - \mathbf{p}) E_k + \mathbf{f}_k (\mathbf{A} - \mathbf{p}) E_k + \frac{1}{2} \mathbf{f}_k \mathbf{f}_k, \quad k = 1, 2, \ldots, n
\]
定义 \mathbb{R}^n 上的一个双线性函数 Q_0 如下:

$$Q_0(\xi_n) \triangleq <(Z - \lambda)^{-1}\xi_n> = \sum_{i=1}^{n} (Z - \lambda_i)^{-1} \xi_{ni}. \tag{3}$$

则对合系 (T) 的发生函数是

$$- <(\Lambda \cdot \xi_n) Q_0(\xi_n) + \sqrt{1 + (\Lambda \cdot \lambda)^{-1} (\Lambda \cdot \xi_n) Q_0(\xi_n)} >$$

$$+ \frac{1}{2} \sum_{i=1}^{n} (\Lambda \cdot \xi_n) \frac{\partial^2 Q_0(\xi_n)}{\partial \xi_{ni} \partial \xi_{ni}} = \sum_{i=1}^{n} \frac{E_i}{Z - \lambda_i}. \tag{4}$$

命题 1. 令 $F_m = \sum_{i=1}^{n} \xi_{ni}^2, \; m = 0, 1, 2, \ldots$, 那么

$$F_0 = -<(\Lambda \cdot \xi_n) Q_0(\xi_n) + \sqrt{1 + (\Lambda \cdot \lambda)^{-1} (\Lambda \cdot \xi_n) Q_0(\xi_n)} >$$

$$F_m = -<(\Lambda \cdot \xi_n) (\Lambda \cdot \xi_n)^m + \sqrt{1 + (\Lambda \cdot \lambda)^{-1} (\Lambda \cdot \xi_n)(\Lambda \cdot \xi_n)^m} Q_0(\xi_n) >$$

$$+ \frac{1}{2} \sum_{i=1}^{n} (\Lambda \cdot \xi_n) \frac{\partial^2 Q_0(\xi_n)}{\partial \xi_{ni} \partial \xi_{ni}} = \sum_{i=1}^{n} \frac{E_i}{Z - \lambda_i}. \tag{5}$$

且

$$(F_m)_{m \in \mathbb{Z}} = 0, \; \forall \lambda, m \in \mathbb{Z}$$

证明 由命题 1. 知显然有 $(F_m, F_n) = 0$. 当

$$|Z| > \max \{\lambda_1, |\lambda_2|, \ldots, |\lambda_n|\}$$

时，我们得到

$$Q_0(\xi_n) = \sum_{i=1}^{n} (\Lambda \cdot \lambda)^{-1} \xi_{ni}$$

将上述 Λ 阶级数形式代入 (4) 式的两端，进行计算整理，比较 Z 的同次幂系数后，我们就得到 (5) 和 (6).

定理 1. Hamilton 系统

$$(F_m)_{m \in \mathbb{Z}} = \frac{\partial E}{\partial \xi_{ni}}, \; \frac{\partial E}{\partial \xi_{ni}} = -\frac{\partial E}{\partial \xi_{ni}}, \; m = 0, 1, 2, \ldots \tag{7}$$

在 Liouville 意义下是完全可积的。

1. 设 $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_n)$ 是 Heisenberg 谐趣 $17)$

$$\lambda v = \left(-\frac{\imath \omega \theta}{\omega \theta} - \frac{\omega}{\omega} \theta \right) \nu, \; \omega = \sqrt{1 - \omega \theta}, \; \theta = \frac{1}{2}.$$

的 N 个变量的谐趣 $\nu = (\nu_1, \nu_2, \ldots, \nu_n)$ 为相应于 λ 的特征函数。令 $\lambda_1 = (-\lambda_3, \lambda_4, \ldots)$, 则 ν 满足线性关系

$$K \nu_1 = \lambda \nu.$$

其中，K, J 为两个极坐标 $(\theta = \imath \omega \theta, \; \omega \theta = \sqrt{1 - \omega \theta})$

$$K = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \; J = \begin{pmatrix} \imath \omega \theta \nu_1 \\ \nu_1 \omega \theta \end{pmatrix}.$$

它们称为谐趣 ν 的 Leonard 矩阵对。

取 $G = (g_{ij}) \in \mathbb{Z}_n$, 可通过定义 (8) 的 Leonard 阶级所列 $(G), K_0 = J G_m, \; m = 1, 2, \ldots$，Heisenberg 谐趣方程族由 Heisenberg 谐趣 $\nu = J G \nu$, 产生，即

$$K_{m+1} \nu_{m+1} = K_m \nu_m, \; m = 1, 2, \ldots \tag{8}$$
其中，当 \(m = 2 \) 时，(9) 为 Heisenberg 轨道链方程：
\[
 n = \frac{1}{2}(x_{2n} - x_{2n+1}), \quad \lambda = \frac{1}{2}(x_{2n} + x_{2n+1})
\]
文[8]已求得 (9) 行 Lax 表达。下文我们考虑 (8) 的非线性化，为此引入 Bargmann 约束(10):
\[
 g_t = \sum_{i=1}^{N} A_i
\]
亦即，
\[
 \xi = (\Lambda \cdot g, \eta)^{\tau}, \quad \tau = (\Lambda \cdot f)^{\tau}, \quad w = \sqrt{1 + (\Lambda \cdot p)^{\tau} (\Lambda \cdot \eta)^{\tau}}
\]
在约束 (11) 下，Heisenberg 轨道链方程 (4) 被非线性化为
\[
 \begin{align*}
 \phi_t &= -i \frac{\Lambda \cdot g}{\sqrt{1 + (\Lambda \cdot p)^{\tau} (\Lambda \cdot \eta)^{\tau}}} - \frac{\Lambda \cdot p}{\sqrt{1 + (\Lambda \cdot p)^{\tau} (\Lambda \cdot \eta)^{\tau}}} \Lambda \cdot \eta \\
\psi_t &= -i \frac{\Lambda \cdot p}{\sqrt{1 + (\Lambda \cdot p)^{\tau} (\Lambda \cdot \eta)^{\tau}}} + \frac{\Lambda \cdot \eta}{\sqrt{1 + (\Lambda \cdot p)^{\tau} (\Lambda \cdot \eta)^{\tau}}} \Lambda \cdot p
 \end{align*}
\]
引入 2N - 2 维 Poisson 行形
\[
 M_{2N-1} = \{(p, q) \in \mathbb{R}^N \mid F = (\Lambda \cdot p, \eta) = 0, \ G = (\Lambda \cdot \eta, \tau) = 0\}
\]
注意，\(dF, d\tau \) 相似性无关，但 \((F, G) = 0 \)，前者表示对 \(M_{2N-1} \) 为 2N - 2 维的行形 (见文献[9])，而后者则表示对 \(M_{2N-1} \) 是半行形。
在 \(M_{2N+1} \) 上，系统 (12) 可表示为 Hamilton 结构：
\[
 (H^{(2)}, \{F, P\})_{\eta_{0}, \eta_{1}} = 0, \quad \forall \eta \in \mathbb{R}, \quad (F, G) = 0.
\]
因而在 \(M_{2N+1} \) 上的 Hamilton 系统 (13) 是 Liouville 完全可积的。

定理 2 (13) 的表达式与 (F) 的表达式 (6) 代入 Poisson 结构 (H^{(2)}, P) = \(\frac{dH^{(2)}}{d\eta} \frac{dF}{d\eta} - \frac{dH^{(2)}}{d\eta} \frac{dF}{d\eta} \)，直接计算并注意到上述运算是在 \(M_{2N+1} \) 上进行的，即可证明
\[
 (H^{(2)}, \{F, P\})_{\eta_{0}, \eta_{1}} = 0
\]
既然 Poisson 结构 (H^{(2)}, P) 在 \(M_{2N+1} \) 上的 Hamilton 系统 (H^{(2)}) 与 (F) 是相容的，记得 \(\eta \), 分别是 (H^{(2)}), (F) 初值问题在 \(M_{2N+1} \) 上的算子，则流 \(\tau \) 在 \(M_{2N+1} \) 上可交换 (见文献[5])，因而相容方程组 (H^{(2)}), (F) 在 \(M_{2N+1} \) 上的对称解
\[
 \begin{align*}
 \phi(t, \eta) &= \phi(0, \eta) \\
\psi(t, \eta) &= \psi(0, \eta)
 \end{align*}
\]
是 \((u, \xi) \) 的三元光滑函数。

定理 3 设 (\eta, \xi), \psi(0, \eta), \phi(0, \eta) 是相容系统 (H^{(2)}) 与 (F) 在 \(M_{2N+1} \) 上的一个对称解，那么
\[
 \begin{align*}
 \phi(t, \xi) &= \phi(0, \xi) \\
\psi(t, \xi) &= \psi(0, \xi)
 \end{align*}
\]
满足高级 Heisenberg 方程
\[
 \begin{align*}
 a_{1} &= 2j \eta_{0}^{2} \\
a_{n} &= 2j \eta_{0}^{2}, \quad n = 1, 2, ... \quad (15)
 \end{align*}
\]
其中，令算子

$$\mathcal{L} = J^*K - \left\{ \frac{1}{2}\sigma^2 - \frac{1}{2} \sigma^2 \text{diag}(\sigma) \sigma^2 \right\} - \frac{1}{2} \sigma^2 \text{diag}(\sigma) \sigma^2$$

$$G_\mathcal{L} = \{ x, y \}^2$$

证明 将(15)中的 u_0 对 \mathcal{L} 求导，并利用 $q = \frac{\partial \phi}{\partial y}$, $p = \frac{\partial \phi}{\partial x}$ 及关系式 $\mathcal{L}^*q = -\sum_{\alpha} \lambda_\alpha \text{exp}^\alpha \phi$ 注一序列按级计算，不难得(16)。

由定理 3，当 $\alpha = 2$ 时，便可求得 Heisenberg 广义差方程

$$i \mathcal{L}_\alpha = \frac{1}{2} (\alpha u_{\alpha} - \alpha w_{\alpha})$$

解的对比表示

$$v(x, t) = \langle \Lambda, \psi, \phi \rangle , \quad u(x, t) = -\langle \Lambda, q, \lambda \rangle$$

其中，$(v(x, t), u(x, t))$ 是对应系统 $(H^{(1)})$ 与 (F_0) 在 $M_{\mathcal{L}}$ 上的对合解。

2. 考虑 WKI 问题（16）。

$$\phi = \left(-\frac{\sigma}{\mu} \right) y, \quad \tau = -1$$

命

$$\alpha = \frac{\sqrt{1 + \langle \Lambda, \mu \rangle}}{\sqrt{1 + \langle \Lambda, q, \lambda \rangle}}, \quad \beta = \frac{\sqrt{1 + \langle \Lambda, \mu \rangle}}{\sqrt{1 + \langle \Lambda, q, \lambda \rangle}}$$

其中 $\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_N)$, $\mu = \text{diag}(\mu_1, \ldots, \mu_N)$, $\lambda = (\lambda_1, \ldots, \lambda_N)$ 是(17)的 N 个互不相同的特征值，$v = \langle \Lambda, \mu \rangle$ 是相应的 $\Lambda (k = 1, \ldots, N)$ 的特征值。

在 Bargmann 约定(18)下，(17)经细化被非线性化为一个 Hamilton 系统

$$(H^{(1)}): \begin{cases} \gamma_i = -i \langle \Lambda, q \rangle + i \langle \Lambda, q \rangle \left(\Lambda, p, \mu \right) \frac{\partial}{\partial \gamma_i} \\ p_i = i \langle \Lambda, p \rangle - \frac{\partial}{\partial \gamma_i} + i \langle \Lambda, q \rangle \left(\Lambda, p, \mu \right) \frac{\partial}{\partial \gamma_i} \end{cases}$$

其中，Hamilton 函数

$$H^{(1)} = \frac{1}{2} \left(\langle \Lambda, \mu \rangle + \sqrt{1 + \langle \Lambda, q \rangle \left(\Lambda, p, \mu \right)} \right) \phi - \frac{\partial \phi}{\partial \gamma}$$

定理 4 (19) 的 Hamilton 函数 $H^{(1)}$ 与 F_0 对合，即

$$H^{(1)}(F_0) = 0, \quad m = 0, 1, 2, \ldots$$

又 $(F, F) = \mathbb{C}$，因而 Hamilton 系统(16)在 Eulioville 意义下是完全可积的。

证明 通过直接计算 Poisson 指号

$$(H^{(1)}, F_0) = \frac{\partial H^{(1)}}{\partial \gamma} \frac{\partial F_0}{\partial \gamma} - \frac{\partial H^{(1)}}{\partial \gamma} \frac{\partial F_0}{\partial \gamma}$$

使如(20)式成立。

记 y, y_i 分别是 $(H^{(1)}), (F_0)$ 台阶问题的解算子，定义相容方程组 $(H^{(1)}), (F_0)$ 的对合解

$$y(x, t) = \text{diag} \left(y(x, 0), y_i(x, t) \right)$$

(F_0) 为(21)。
(21)是z, t的二元光滑函数，且x与y可换。

定理 8 设 $(x(t), y(t), z(t))$ 是相应系统 $(H^{(2)}, \mathbf{F}_x)$ 的一个对合解，那么

$$
W(x(t), y(t), z(t)) = -\frac{\mathbf{F}_x}{\sqrt{1 + \mathbf{F}_x^2}}
$$

满足高阶非线性 WK1 发展方程

$$
\mathbf{J}^m_2 = J^m G_{m+1}, \quad m = 0, 1, 2, \ldots
$$

其中，递推算子 $J^m = J^m K, G_0 = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right), \quad \mathbf{J} = \sqrt{1 - \mathbf{W}} \cdot \mathbf{J}, \quad \mathbf{W} = \frac{1}{2} \mathbf{J}^2 - \mathbf{J}
$$

证明 选 $\Omega = \sqrt{1 + \langle \mathbf{F}_x, \mathbf{F}_y \rangle / \langle \mathbf{F}_x, \mathbf{F}_z \rangle}$，由(13)式，我们有

$$
3Q = 4Q - \langle \mathbf{F}_x, \mathbf{F}_y \rangle - \langle \mathbf{F}_x, \mathbf{F}_z \rangle
$$

从(22)式，可以计算出

$$
W(x, y, z) = Q^2(\mathbf{F}_x, \mathbf{F}_y)(\mathbf{F}_x, \mathbf{F}_z)
$$

另一方面，令 $\nabla = (x, y)
$，则(18)式等价于

$$
G_0 = \sum_{i=1}^{2} q_i
$$

又由文[11]可知 $\lambda \nabla \mu = \lambda \lambda \nabla \lambda$，因此计算子 λ^m 作用(28)的两端后得到

$$
\mathbf{J}^m_2 = J^m G_{m+1}, \quad m = 0, 1, 2, \ldots
$$
\[\sum_{n=1}^{\infty} \lambda_n \varphi_n \quad \forall \lambda \in \mathbb{Z}^+ \] (29)

将式(27)代入(25),(26)和(29)，我们有

\[f(\phi) = \left(\begin{array}{c} 0 \\ 0 \end{array} \right) + \left(\begin{array}{c} -\tau_x X^{n-1} Y_{x,y} \\ 0 \end{array} \right) = \sum_{n=1}^{\infty} \lambda_n \varphi_n = J \sum_{n=1}^{\infty} \lambda_n \varphi_n = J \mathcal{G}_0 \]

参考文献

- 221.

