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1. Introduction

In 1995, Fokas studied the following integrable
generalization of the sine-Gordon (sG) equation
using the bi-Hamiltonian approach (see [Fokas,
1995]):

utx = (1 + ν∂2
x) sin(u), x ∈ R, t > 0, (1)

where ν is a real parameter and u(x, t) is a scalar-
valued function. For our convenience, we call Eq. (1)
the Fokas equation in this paper. Fifteen years
later, Lenells and Fokas [2010] showed the integra-
bility of the Fokas equation through a Lax pair and
conservation laws, solved its initial-value problem,
and analyzed its solitons and traveling wave solu-
tions. Unfortunately, the dynamical behavior of the

traveling wave system for the Fokas equation (1)
is not studied yet in the literature. Neither explicit
traveling wave solutions nor bifurcations are pre-
sented when some parameters vary.

To investigate the traveling wave solution of the
Fokas equation (1), let u(x, t) = u(x − ct) = φ(ξ),
where ξ = x− ct, c is the wave speed. Substituting
it into the Fokas equation (1) yields

−cφξξ = sin(φ) + ν(−φ2
ξ sin(φ) + φξξ cos(φ)),

(2)

which is equivalent to the following planar dynam-
ical system

dφ

dξ
= y,

dy

dξ
=

(νy2 − 1) sin(φ)
c+ ν cos(φ)

, (3)

∗This research work was partially supported by the National Natural Science Foundation of China (11471289, 11162020).

1550136-1

http://dx.doi.org/10.1142/S0218127415501369


September 21, 2015 10:25 WSPC/S0218-1274 1550136

J. Li & Z. Qiao

with the first integral

H(φ, y) = y2(c+ ν cos(φ))2

−
(
ν cos2(φ) + 2c cos(φ) − 1

2
ν

)

= h. (4)

Apparently, the system (3) is 2π-periodic in φ.
Therefore, the pair (φ, y) can be viewed on a phase
cylinder S1 × R, where S1 = [−π, π] and −π is
identified with π (see Fig. 1).

To understand the properties of the traveling
wave solutions of the Fokas equation (1), it is neces-
sary to find all possible parametric representations
for the system (3). In this paper, we use the method
of dynamical systems to investigate the dynamics of
solutions to the system (3) and give the parametric
representations of all bounded orbits with variance
of parameter ratio c

ν , where we assume that the
parameter (wave speed) c > 0 is fixed.

Apparently, when ν > 0, two straight lines y =
±Y0 = ± 1√

ν
are solutions to the system (3).

In addition, when | cν | ≤ 1, the system (3) is a
singular traveling wave system of the first class (see
[Li & Chen, 2007; Li, 2013; Li & Qiao, 2013]) with
the singular straight line φ = ±φs ≡ ± arccos(− c

ν ).
In fact, the existence of a singular straight line leads
to a dynamical behavior in two scaling variables.
In the above three references, we showed that for a

Fig. 1. The phase cylinder S1 × R of system (3).

singular nonlinear traveling wave system of the first
class, the following two results hold.

Theorem A (The Rapid-Jump Property of the
Derivative near the Singular Straight Line). Sup-
pose that in a left (or right) neighborhood of a sin-
gular straight line, there exists a family of periodic
orbits such that along a segment of every orbit near
the straight line, the derivative of the wave function
jumps down rapidly in a very short time interval.

Theorem B (Existence of Finite Time Interval(s)
of Solutions with Respect to Variables in the Posi-
tive or (and) Negative Direction(s)). For a singular
nonlinear traveling wave system of the first class
with a possible change of the wave variable, if an
orbit transversely intersects to a singular straight
line at a point or it approaches the singular straight
line but the derivative tends to infinity, then it only
takes a finite time interval of the wave variable to
make the moving point of the orbit arrive on the
singular straight line.

By Theorem A, all periodic orbits of the sys-
tem (3), which have segments close to the singu-
lar straight line φ = ±φs in a period annulus, give
rise to periodic cusp wave solutions. These peri-
odic cusp wave solutions have smooth wave profiles,
because in a neighborhood of the singular straight
line φ = ±φs, there exist two “time scaling” of wave
variables, such that cusp wave profiles appear.

The main result of this paper is as follows.

Theorem 1. The traveling wave system of the
Fokas equation (1) is a dynamical system in a phase
cylinder S1 ×R.

(1) If 1 < | cν | <∞, the Fokas equation (1) has three
families of smooth periodic wave solutions given
by (8) and (10) as well as two smooth soli-
tary solutions given by (9), which correspond to
two heteroclinic orbits of the system (3) in the
expanding phase plane given by H(φ, y) = hπ.

(2) If c
ν = −1, the Fokas equation (1) has two fami-

lies of compactons given by (11), a cuspon given
by (12), and an anti-cuspon given by (13).

(3) If −1 < c
ν < 0, the Fokas equation (1) has two

or four families of compactons given by (14),
(15), (18), (19) and (21), and cuspons given
by (16), (17) and (20).

(4) If 0 < c
ν < 1, the Fokas equation (1) has a

family of smooth periodic wave solutions given
by (8) and (22), two families of periodic cusp
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wave solutions given by (23), and two or four
families of compactons, out of which two para-
metric representations are given by (25).

(5) If c
ν = 1, the Fokas equation (1) has a fam-

ily of periodic wave solutions given by (8) and
two families of rotating periodic wave solutions
given by (10).

The proof of the theorem will be seen in the
remaining parts of the paper. This paper is orga-
nized as follows. In Sec. 2, we consider the bifur-
cations of phase portraits of system (3). In Secs. 3
and 4, for the two cases of ν < 0 and ν > 0, we give
all possible exact solutions of φ(ξ) under different
parameter conditions and different h values defined
by H(φ, y) = h in (4).

2. Bifurcations of Phase Portraits

Let us consider the following regular system associ-
ated with (3)

dφ

dζ
= y(c+ ν cos(φ)),

dy

dζ
= (νy2 − 1) sin(φ).

(5)

It has the same level curves as (4), where dξ =
(c + ν cos(φ))dζ. The dynamics of the two sys-
tems (3) and (5) is different in the neighborhood
of the straight line φ = ±φs. Specially, the variable
“ζ” is regarded as a fast variable while the variable

“ξ” is slower in the sense of the geometric singular
perturbation theory (see [Li, 2013]).

One may easily see that the system (5) always
has three equilibrium points E1(0, 0), E2(±π, 0),
which may be identified in the phase cylinder
S1 ×R. When ν > 0, 0 < c

ν < 1, the system (5)
has four equilibrium points E3±(−φs,±Y0) and
E4±(φs,±Y0).

Let M(φj , 0) be the coefficient matrix of the
linearized system of (5) at the equilibrium point Ej .
We have

J(0, 0) = detM(0, 0) = ν + c,

J(π, 0) = detM(π, 0) = ν − c,

J(±φs,±Y0) = detM(±φs,±Y0)

= −2ν2Y 2
0 sin2(±φs) < 0.

Let

h0 = H(0, 0) = −1
2
(ν + 4c),

hπ = H(π, 0) =
1
2
(4c− ν),

hs = H(±φs,±Y0) =
c2

ν
+

1
2
ν.

By the above information, we may do a qualitative
analysis and have the following bifurcations of the
phase portraits for the system (5), which are shown
in Figs. 2(a)–2(f).
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Fig. 2. Bifurcations of phase portraits for the system (6) in the expanding phase plane.
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Fig. 2. (Continued)

3. Traveling Wave Solutions of the
Fokas Equation in the Case
of c

ν
< 0

Without loss of generality, we assume that c is fixed
and c > 0. We know from (4) that

y2 =
h+ ν cos2(φ) + 2 cos(φ) − 1

2
ν

(c+ ν cos(φ))2
.

Thus, by using the first equation of (10), we have

ξ =
∫ φ

φ0

(c+ ν cos(φ))dφ√
h− 1

2
ν + 2cos(φ) + ν cos2(φ)

. (6)

Letting ψ = tan(φ2 ), (6) becomes

ξ = 2(c− ν)
∫ ψ

ψ0

dψ√
A+ Cψ2 − Eψ4

+ 4ν
∫ ψ

ψ0

dψ

(1 + ψ2)
√
A+ Cψ2 − Eψ4

, (7)
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where

A = h+
1
2
ν + 2c = h− h0,

C = 2
(
h− 3

2
ν

)
,

E = h+
1
2
ν − 2c = hπ − h.

Some technical calculations of (7) will yield exact
traveling wave solutions of the Fokas equation (1).

3.1. Case −∞ < c
ν

< 1 [see Fig. 2(a)]

In this case, the system (3) has no singular straight
line.

(i) Corresponding to the family of oscillating orbits
enclosing the origin E1(0, 0) defined byH(φ, y) = h,
h∈ (h0, hπ), there exists a family of periodic wave
solutions to the Fokas equation (1). Let us now write
the function

A+ Cψ2 − Eψ4 as E(a2 + ψ2)(b2 − ψ2),

where

a2 =
1

2E
(−C +

√
C2 + 4AE ),

b2 =
1

2E
(C +

√
C2 + 4AE).

Then, (7) implies that the Fokas equation (1)
has the following parametric representations of the
family of smooth periodic wave solutions:

φ(χ) = 2 arctan(ψ(χ))

= 2 arctan(bcn(χ, k)),

ξ(χ) =
2

(C2 + 4AE)
1
4

(
(c− ν)χ

+
2ν

1 + b2
Π(arccos(cn(χ, k)), α2, k)

)
,

(8)

where k2 = b2

a2+b2
, α2 = b2

1+b2
, Π(·, α2, k) is the ellip-

tic integral of the third kind, and sn(u, k), cn(u, k)
are the Jacobian elliptic functions (see [Byrd &
Fridman, 1971]).

(ii) When h = hπ, the level curves defined by H(φ,
y)=hπ are two homoclinic orbits of the system (3)
in the phase cylinder S1 × R. Usually, in the

expanding phase plane, the two curves are hetero-
clinic orbits connecting to two equilibrium points
E2(−π, 0) and E2(π, 0). Now, we have

A+ Cψ2 − Eψ4 = 4c+ 4(c− ν)ψ2.

By (7), we know that the two homoclinic orbits
have the following parametric representations:

φ(χ) = ±2 arctan(ψ(χ))

= 2 arctan
(√

c

c− ν
sinh(χ)

)
,

ξ(χ) =
√
c− νχ

− 2
√

|ν| arctanh

(√
|ν|
c− ν

tanh(χ)

)
,

(9)

which yield two solitary wave solutions of the Fokas
equation (1). Without identification of E2(−π, 0)
and E2(π, 0), they are kink and anti-kink wave
solutions.

(iii) If h ∈ (hπ,∞), the level curves defined by
H(φ, y) = h are two families of rotating periodic
orbits of the system (3) in the phase cylinder S1×R.
Since E < 0 now, the function

A+ Cψ2 − Eψ4

can be rewritten as

|E|(a2 + ψ2)(b2 + ψ2),

where

a2 =
1

2|E| (C +
√
C2 − 4A|E|) and

b2 =
1

2|E| (C −
√
C2 − 4A|E|).

Thus, (7) reads as the following parametric repre-
sentation:
φ(χ) = ±2 arctan(ψ(χ)) = ±2 arctan(btn(χ, k)),

χ ∈ (−2K(k), 2K(k)),

ξ(χ) =
2(c− ν)
a
√|E| χ

− a

b4
√|E|dn(F (arctan(tn(χ, k)), k), k)

× tn(F (arctan(tn(χ, k)), k))

+
1

ab2
√|E|E(arctan(tn(χ, k)), k),

(10)
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where k2 = a2−b2
a2 , F (·, k), E(·, k) are the ellip-

tic integral of the first and second kinds, and
tn(u, k),dn(u, k) are the Jacobian elliptic functions
(see [Byrd & Fridman, 1971]). Equation (10) gives
rise to two families of periodic wave solutions of the
Fokas equation (1).

3.2. Case c
ν

= −1 [see Fig. 2(b)]

In this case, we have ν = −c, h0 = hs = −3
2c,

hπ = 5
2c. The singular straight line φ = φs = 0

passes though the origin E1(0, 0).

(i) The level curves defined by H(φ, y) = h, h ∈
(h0, hπ) are two families of open orbits for the sys-
tem (3), which lie in two areas among the straight
line φ = 0 and two manifolds of the saddle points
E2(±π, 0) either stable or unstable. By Theorem B,
these orbits generate two families of compactons for
the Fokas equation (1) [see Fig. 3(a)].

The parametric representations of the two fam-
ilies of compactons in Fig. 3(a) are provided by

φ(χ) = ±2 arctan(ψ(χ)) = ±2 arctan(bcn(χ, k)),

ξ(χ) =
4c

(C2 + 4AE)
1
4

×
(
χ− 1

1 + b2
Π(arccos(cn(χ, k)), α2, k)

)
,

χ ∈ (−K(k),K(k)),

(11)

where k and a2, b2, α2 are the same as (8).

(ii) The level curves defined by H(φ, y) = hπ stand
for the stable and unstable manifolds of the two
saddle points E2(π, 0) and E2(−π, 0) for the sys-
tem (3). The unstable manifold of the saddle point
E2(−π, 0) has the following parametric representa-
tion:

φ(χ) = 2 arctan(ψ(χ))

= 2 arctan

(√
2

2
sinh(χ)

)
, χ ∈ (−∞, 0)

ξ(χ) =
√

2cχ− 2
√
c arctanh

(√
2

2
tanh(χ)

)
,

(12)

while the stable manifold of the saddle point
E2(−π, 0) has parametric representation as follows:
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Fig. 3. The profiles of two compacton families and cuspons
of the Fokas equation (1). (a) Two compacton families and
(b) cuspon and anti-cuspon.

φ(χ) = −2 arctan(ψ(χ))

= −2 arctan

(√
2

2
sinh(χ)

)
, χ ∈ (0,∞)

ξ(χ) =
√

2cχ− 2
√
c arctanh

(√
2

2
tanh(χ)

)
.

(13)

By (12) and (13), we may draw their figures, which
are called cuspons of the Fokas equation (1) [see
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Fig. 3(b), the lower curves]. Similarly, the stable
and unstable manifold of the saddle point E2(π, 0)
yield an anti-cuspon of the Fokas equation (1) [see
Fig. 3(b), the upper curves].

3.3. Case −1 < c
ν

< 0 [see Fig. 2(c)]

In this case, we have ν < −c < 0, 0 < φs <
π
2 ,

hs < h0 < hπ. As h varies, the level curves defined
by H(φ, y) = h are changed as well. Their graphs
are shown in Figs. 4(a)–4(e), where we also draw
two singular straight lines φ = ±φs.
(i) If h ∈ (hs, h0), there exist four families of open
orbits for the system (3) corresponding to the level
curves defined by H(φ, y) = h [see Fig. 4(a)]. By
Theorem B, these orbits give rise to four fami-
lies of compactons for the Fokas equation (1) [see
Fig. 5(a)].

Corresponding to the open orbit on the right-
hand side of the singular straight line φ = φs of
Fig. 4(a), we have

A+ Cψ2 − Eψ4 = (a2 − ψ2)(ψ2 − b2),

where

a2 =
1

2E
(C +

√
C2 + 4AE ),

b2 =
1

2E
(C +

√
C2 − 4AE ).

Hence, this curve has the following parametric rep-
resentation:

φ(χ) = 2 arctan(ψ(χ)) = 2 arctan(adn(χ, k)),

ξ(χ) =
2
a

(
(c− ν)χ

+
2ν

1 + a2
Π(arcsin(sn(χ, k)), α2

1, k)
)
,

χ ∈ (−χs, χs),

(14)

where k2 = a2−b2
a2 , α2

1 = a2−b2
1+a2 , and χs satisfies

2 arctan(adn(χs, k)) = φs.
Corresponding to the open orbit on the left-

hand side of the singular straight line φ = φs of
Fig. 4(a), we have

φ(χ) = 2 arctan(ψ(χ))

= 2 arctan(bnd(χ, k)), χ ∈ (−χs, χs)

ξ(χ) =
2
a
((c − ν)χ+ 2ν(1 + b2)

× F (arcsin(sn(χ, k)), k)

− b2Π(arcsin(sn(χ, k)), α2
2, k)),

(15)

where k2 = a2−b2
a2

, α2
2 = k2

1+b2
, and χs satisfies

2 arctan(bnd(χs, k)) = φs.
By the symmetric property in Fig. 4(a), we

may directly get the parametric representations of
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Fig. 4. Graphs of the level curves defined by H(φ, y) = h.
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(e) h ∈ (hπ,∞)

Fig. 4. (Continued)

the other two families of compactons for the Fokas
equation (1).

(ii) When h = h0, the level curves defined by
H(φ, y) = h0 are two stable and two unstable man-
ifolds to the saddle points E1(0, 0) and two open
curves [see Fig. 4(b)].

The right unstable manifold of the saddle points
E1(0, 0) has the following parametric representation

φ(χ) = 2 arctan(ψ(χ))

= 2 arctan(Msech(χ)), χ ∈ (−∞,−χs)

ξ(χ) =
c− ν√|ν| − c

χ

+
2ν√|ν| − c

ln(2(M cosh(χ) + sinh(χ)))

+ 2
√

|ν| arctanh

(√
|ν| − c

|ν| tanh(χ)

)

−Ψ0,

(16)
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Fig. 5. The wave profiles of four compacton families defined by H(φ, y) = h.

where

M =

√
|ν| − c

c
,

Ψ0 =
c− ν√|ν| − c

sech−1


tan

(
1
2
φs

)
M




+
2ν√|ν| − c

× ln




2M2 + 2M

√
M2 − tan2

(
1
2
φs

)

tan
(

1
2
φs

)



+ 2
√

|ν|

× arctanh

(√
c

|ν|
(
M2 − tan2

(
1
2
φs

)))

and χs satisfies φ(χs) = φs. The right stable mani-
fold of the saddle points E1(0, 0) has the following
parametric representation

φ(χ) = 2 arctan(ψ(χ))

= 2 arctan(Msech(χ)), χ ∈ (χs,∞)

ξ(χ) =
c− ν√|ν| − c

χ

− 2ν√|ν| − c
ln(2(M cosh(χ) + sinh(χ)))

− 2
√

|ν| arctanh

(√
|ν| − c

|ν| tanh(χ)

)
+ Ψ0.

(17)

Using (16) and (17) to draw wave profiles leads
to a cuspon shown in Fig. 6(a) (upper curve). Mak-
ing the transformation φ �→ −φ in (16) and (17), we
have the parametric representations of left unstable
and stable manifolds of the saddle points E1(0, 0),
which yield an anti-cuspon shown in Fig. 6(a) (lower
curve).

In (16) and (17), taking χ ∈ (−χs, 0) and
χ ∈ (0, χs), respectively, we may obtain the para-
metric representations of two compactons given by
two open orbits in Fig. 4(b).

(iii) If h ∈ (h0, hπ), there exist four families of open
orbits of the system (3) corresponding to the level
curves defined by H(φ, y) = h [see Fig. 4(c)]. These
orbits give rise to four compacton families of the
Fokas equation (1) shown in Fig. 5(b).

The open curves lying on the right-hand side of
the singular straight line φ = φs have the following
parametric representations

φ(χ) = 2 arctan(ψ(χ))

= 2 arctan(bcn(χ, k)), χ ∈ (−χs, χs)
1550136-9
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Fig. 6. Four wave profiles of cuspon and anti-cuspon defined by H(φ, y) = h0, hπ. Given by (a) H(φ, y) = h0 and
(b) H(φ, y) = hπ.

ξ(χ) =
2

(C2 + 4AE)
1
4

(
(c− ν)χ

+
2ν

1 + b2
Π(arccos(cn(χ, k)), α2, k)

)
,

(18)

where k and a2, b2, α2 are the same as (8), and χs
satisfies 2 arctan(bcn(χs, k)) = φs.

The upper open curves lying between the sin-
gular straight lines φ = −φs and φ = φs have the
following parametric representations:

φ(χ) = 2 arctan(ψ(χ))

= 2 arctan(kbsd(χ, k)), χ ∈ (−χs, χs)

ξ(χ) =
2

(C2 + 4AE)
1
4

(
(c− ν)χ

+
2ν

1 − b2
(F (arcsin(sn(χ, k)), k)

− b2Π(arcsin(sn(χ, k)), α2, k))
)
,

(19)

where b2 = 1
2E (−C +

√
C2 + 4AE), a2 = 1

2E (C +√
C2 + 4AE), k2 = a2

a2+b2
, α2 = k2(1 − b2), and χs

satisfies 2 arctan(kbsd(χs, k)) = φs.

(iv) If h = hπ, corresponding to stable and unsta-
ble manifolds of the saddle points E2(−π, 0) defined

by H(φ, y) = hπ, we have the following parametric
representations

φ(χ) = 2 arctan(ψ(χ))

= 2 arctan

(√
2

2
sinh(χ)

)
, χ ∈ (−∞, χs)

ξ(χ) = ± 1√
2c

(
(c− ν)χ

+ 2
√

2ν arctanh

(√
2

2
sinh(χ)

)
+ Ψπ

)
,

(20)

where Ψπ = −(c − ν) sinh−1(
√

2ψs) + 2
√

2ν ×
arctanh(

√
2ψs√

2+4ψ2
s

), ψs = tan(1
2φs), and χs satisfies

2 arctan(
√

2
2 sinh(χs)) = φs.

By the transformation φ �→ −φ applied to (20),
we can have the parametric representations for the
stable and unstable manifolds of the saddle points
E2(π, 0) defined by H(φ, y) = hπ. Using (20) to
draw wave profiles, we may obtain the cuspon and
anti-cuspon shown in Fig. 6(b).

(v) If h ∈ (hπ,∞), there exist two families of
bounded orbits between two singular straight lines
φ = ±φs corresponding to the level curves defined

1550136-10
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by H(φ, y) = h, which lead to two families of com-
pactons for the Fokas equation (1) with the follow-
ing parametric representations

φ(χ) = ±2 arctan(ψ(χ))

= ±2 arctan(btn(χ, k)), χ ∈ (−χs, χs),

ξ(χ) =
2(c− ν)
a
√|E| χ− a

b4
√|E|

× dn(F (arctan(tn(χ, k)), k), k)

× tn(F (arctan(tn(χ, k)), k))

+
1

ab2
√|E|E(arctan(tn(χ, k)), k),

(21)

where a2, b2, k2 are the same as (10), and χs satisfies
2 arctan(btn(χs, k)) = φs.

4. Exact Traveling Wave Solutions
of the Fokas Equation (1) in the
Case of c

ν
> 0

Let us discuss the following three subcases to give
exact traveling wave solutions of the Fokas equa-
tion (1) when c

ν > 0.

4.1. Subcase 0 < c
ν

< 1 [see Fig. 2(d)]

In this case, the equilibrium points E1(0, 0) and
E2(±π, 0) are center points and we have h0 < hπ <
hs, and π

2 < φs < π.

(i) If h ∈ (h0, hπ], the system (3) has one family
of periodic orbits, enclosing the equilibrium points
E1(0, 0) and the orbit defined by H(φ, 0) = h. It
gives rise to a family of periodic wave solutions of
the Fokas equation (1), which has the same para-
metric representation as (8). In particular, when
h = hπ, A = 4c, C = c − ν < 0, E = 0, the peri-
odic orbit defined by H(φ, y) = hπ has the following
parametric representation

φ(χ) = 2 arctan(ψ(χ))

= 2 arctan
(√

c

ν − c
sin(χ)

)
,

ξ(χ) = −√
ν − cχ

+ 2
√
ν arctan

(√
ν

ν − c
tan(χ)

)
.

(22)

(ii) If h ∈ (hπ, hs), the system (3) has two fam-
ilies of periodic orbits, enclosing the equilibrium
points E1(0, 0) and E2(±π, 0) and the orbits defined
by H(φ, y) = h. Since E < 0, the function A +
Cψ2 −Eψ can be written as |E|(a2 −ψ2)(b2 −ψ2),
where a2 = a2 = 1

2|E|(−C +
√
C2 − 4A|E|), and

b2 = 1
2E (−C −√C2 − 4A|E|).

The family of periodic solutions enclosing the
center E1(0, 0) has the following parametric repre-
sentation

φ(χ) = 2 arctan(ψ(χ)) = 2 arctan(bsn(χ, k)),

ξ(χ) =
2

a
√|E| (−(ν − c)χ

+ 2νΠ(arcsin(sn(χ, k)), α2, k)),

(23)

where k2 = b2

a2
, and α2 = −b2.

By making the transformation ψ �→ ψ + π,
we can obtain the parametric representation of
the family of periodic orbits enclosing the centers
E2(π, 0), which we omit it here.

Every periodic orbit of the system (3) defined
by H(φ, y) = h, hs−h� 1 has two segments, which
are close to the singular straight lines φ = ±φs.
Thus, by Theorem A, they give rise to periodic
cusp wave solutions. Corresponding to the two fam-
ilies of periodic solutions enclosing the equilibrium
points E1(0, 0) and E2(π, 0) and the orbits defined
by H(φ, y) = h, hs − h � 1, we have the wave
profiles of periodic cusp wave solutions shown in
Figs. 6(b) and 6(c). Corresponding to the family of
periodic solutions enclosing the equilibrium points
E1(0, 0) and the orbits defined by H(φ, y) = h,
h ∈ (h0, hπ), we have the wave profile of periodic
wave solutions shown in Fig. 6(a).

(iii) If h = hs, we have the following explicit solu-
tions of the system (3), y = ±1, φ ∈ (−π, φs),
φ ∈ (−φs, φs) and φ ∈ (φs, π). These orbits gen-
erate six compactons

φ = ±ξ,
ξ ∈ (−π, φs), (−φs, φs) and (φs, π), respectively.

(24)

(iv) If h ∈ (hs,∞), the level curves defined by
H(φ, y) = h are four families of rotating periodic
orbits of the system (3) in the phase cylinder S1×R.

The families of the rotating periodic solutions
between two singular straight lines φ = ±φs have

1550136-11
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Fig. 7. The wave profiles of periodic cusp waves defined by H(φ, y) = h.
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the following parametric representations

φ(χ) = ±2 arctan(ψ(χ))

= ±2 arctan(bsn(χ, k)), χ ∈ (−χs, χs)

ξ(χ) =
2

a
√|E| (−(ν − c)χ

+ 2νΠ(arcsin(sn(χ, k)), α2, k)),
(25)

where k2, α2, b2 are the same as (23), and χs satisfies
2 arctan(bsn(χs, k)) = φs.

4.2. Subcase c
ν

= 1 [see Fig. 2(e)]

In this case, we have ν = c, hs = hπ.

(i) If h ∈ (h0, hπ), the system (3) has one family
of periodic orbits, enclosing the equilibrium points
E1(0, 0) and the orbits defined by H(φ, 0) = h,
which leads to a family of periodic wave solutions
of the Fokas equation (1) with the same parametric
representation as (8).

(ii) If h = hπ = hs, we have the exact solution y =
±1, φ ∈ (−π, π) to the system (3), which produces
two compactons

φ = ±ξ, ξ ∈ (−π, π). (26)

(iii) The level curves defined by H(φ, y) = h, h ∈
(hs,∞) are two families of rotating orbits for the
system (3) in the phase cylinder S1×R, which yield
the same parametric representation as (10).

4.3. Subcase 1 < c
ν

< ∞ [see Fig. 2(c)]

(i) If h ∈ (h0, hπ), the level curves defined by
H(φ, y) = h are a family of periodic solu-
tions for the system (3), enclosing the centers
E1(0, 0). Their parametric representations are
the same as (8).

(ii) If h = hπ, the level curves defined byH(φ, y) =
hπ are two homoclinic orbits for the system (3)
in the phase cylinder S1×R, which lead to the
same parametric representation as (9).

(iii) The level curves defined by H(φ, y) = h, h ∈
(hπ,∞) are two families of rotating orbits for
the system (3) in the phase cylinder S1 × R,
which generate the same parametric represen-
tation as (10).
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