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A multifunctional radar system can only acquire limited and
discontinuous wideband pulses, which form sparse aperture (SA)
observations of a target. To carry out radar activities (detection,
tracking, and imaging) simultaneously for multiple targets, inverse
synthetic aperture radar (ISAR) imaging exploiting these SA data is
essential for multifunctional radar. In this paper, we study the phase
adjustment and full-aperture (FA) reconstruction for SA-ISAR
imaging of maneuvering targets. A modified eigenvector-based
autofocus approach is proposed to correct phase errors within SA
measurements of maneuvering targets. After phase correction, the
FA data are reconstructed from SA measurements via sparse
representation under a redundant chirp–Fourier dictionary. An
efficient algorithm is developed to solve the sparse decomposition
optimization, and ISAR images of the maneuvering target are
obtained by adaptive joint time-frequency imaging approaches with
the reconstructed data. Both simulated and real data sets are used to
confirm the effectiveness of the proposed methods.
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I. INTRODUCTION

Recent development in active phased array radar
techniques has enabled modern radar system to integrate
multiple functions without increasing system complexity
[1]. In the multifunctional radar system, the source of
system time and power is optimally allocated for different
tasks, such as searching, multitarget tracking, and imaging.
Radar activities are usually executed simultaneously by
using a periodic or nonperiodic time-sharing mechanism.
In spite of great benefits, new challenges arise through use
of these time-sharing mechanisms. For inverse synthetic
aperture radar (ISAR) imaging acquiring a long and
continuous wideband observation of a target is difficult
because of its contention with other important tasks. For
example, the radar beam needs to switch from among
several directions to track multiple targets continuously
and simultaneously. As a result, for each target, the
wideband observation for ISAR imaging is limited and
sparsely recorded. Multisourced interferences may also
contaminate some portions of acquired data, yielding
gaps. These incomplete data form sparse aperture (SA)
measurements. Moreover, the SA measurements would be
introduced in a netted radar system with multiple angular
diversities [2, 3]. High-resolution ISAR imaging with
limited SA measurements is essential to increase the
flexibility and robustness of multifunctional radar.

Recent studies show the suppression of discontinuous
aperture effects on radar imagery, and many approaches
have been proposed. Generally speaking, recently
developed approaches may be sorted into four kinds: 1)
Modern spectral estimate algorithms can effectively
handle SA data. They estimate the complex-value
amplitude and frequency of each sinusoidal signal
component from gapped data by interpolating missing
samples under certain constraints. Gapped-data amplitude
and phase estimation [4, 5] algorithms are two of those
representative approaches. 2) Prediction-based
interpolation and extrapolation algorithms can solve the
missing data problem in some situations where the
available data are fitted into a linear prediction model.
The missing data are recovered by the model coefficients
and available observations [6–8]. 3) CLEAN techniques
[9, 10] treat image formation from SA data as a
deconvolution procedure. They estimate and subtract the
main lobes of the strong scattering center responses
iteratively until reaching convergence, which suppresses
the high-gating lobes from missing data, to a certain
degree. 4) Full-resolution imaging with SA can be
converted into an optimization problem of sparse signal
reconstruction, where the sparsity priority of the target
scattering field is exploited to reconstruct the missing data
[11–13]. Generally speaking, almost all currently existing
methods for SA imaging deal with target echoes as
multicomponent complex sinusoidal signals. For ISAR
imaging, the sinusoidal signal assumption is only suitable
for expressing the echo from a stable moving target within
a relatively short coherent processing interval (CPI). ISAR
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targets, such as flying planes and vessels on the sea, are
usually noncooperative, and considerable maneuvering is
involved in their motion, yielding time-varying Doppler
modulation in the echoed signal. To image the
maneuvering target, signal components are modeled as
chirps or high-order frequency-modulated signals [14–19].
As a result, the assumption prevents current approaches
from handling SA imaging of maneuvering targets. On the
other hand, because of missing data within SA collections,
current imaging approaches for a maneuvering target
developed on the full-aperture (FA) data model, such as
adaptive joint time-frequency analysis (AJTFA) [20–22],
also fail to achieve ISAR images of high quality. To our
knowledge, there is not yet a straightforward approach
capable of accomplishing the task of high-resolution
SA-ISAR imaging of maneuvering targets, which
motivates our work reported in this paper.

Motion error is one of the most challenging problems
in SA-ISAR imaging of maneuvering targets. Together
with translational motion, severe vibration of the target or
radar platform could induce significant high-frequency
motion error in the received signal. The conventional
motion compensation procedure for FA-ISAR data is
composed of two independent steps: range alignment and
phase adjustment [20]. Range alignment is the correction
of range migration between different pulses. After that,
phase adjustment is necessary to remove the phase error,
which is usually viewed as autofocus processing. As one
knows, some range alignment approaches are applicable to
SA-ISAR data, such as the minimum entropy–based
method [23]. However, phase adjustment for SA-ISAR
data is difficult when using straightforward autofocus
methods. Autofocus approaches inherently imply that the
focused image and the range-compressed phase history
constitute a pair of Fourier transforms. This assumption is
an intrinsic basis of conventional phase adjustment
approaches, such as [24–27]. However, this assumption
fails in SA-ISAR imaging of maneuvering targets because
of missing samples and the target movement, resulting in
failure of most autofocus methods in SA cases. As an
exception, eigenvector-based autofocus has been shown to
be applicable in SA-ISAR imaging of stable targets [23].
Nevertheless, its performance dramatically degrades in
SA-ISAR imaging of maneuvering targets because the
maneuvering characteristics are not taken into account.
Recently, some novel sparsity-driven methods [28–30]
have also been proposed for phase correction in ISAR
imaging with sparsely sampled data. These approaches
usually convert the joint image formation and phase
correction with incomplete measurements into an
optimization problem of sparse representation, and the
phase error is overcome in imaging processing in an
iterative manner. Solving the optimization problem
usually involves a large computation load, which may be
an important obstacle in some real-time scenarios.

In this paper, we investigate robust and precise
SA-ISAR imaging of maneuvering targets and mainly
focus on phase adjustment and FA signal reconstruction.

Based on the SA-chirp model, we develop an improved
eigenvector autofocus method that precisely corrects the
phase error in SA data of maneuvering targets. In our
method, range cells containing dominant scatterers are
selected to estimate the phase error in an iterative manner.
Within the iteration, the first- and second-order phase
terms of these dominant range cells are adaptively
removed before the coherence matrix calculation for
eigenvector autofocus processing; therefore, the negative
effect from time-varying Doppler on phase error
estimation is eliminated. The second method lies in FA
reconstruction of missing data by sparse representation.
Because the major energy of the target scattering field is
contributed by a small number of scattering centers, the
signal components of the received data are very limited.
Under a redundant SA chirp–Fourier basis, the signal of
each range cell can be represented sparsely, which means
that the coefficients of the signal are sparse. FA data can
be optimally reconstructed from SA data by solving an
l1-norm optimization problem. The l1-norm optimization
for sparse signal reconstruction is usually concerned in
compressive sensing theory [31–33]. In this paper, an
orthogonal matched-pursuit (OMP) algorithm is
implemented to solve the optimization of FA data
reconstruction under the SA chirp–Fourier basis. By
adopting the recovered data, straightforward conventional
rotation compensation can be applied, and
range-instantaneous Doppler (RID) images of
maneuvering targets are obtained by AJTFA approaches.
Both the proposed phase adjustment and FA signal
recovery methods are extended so that migration through
range cells (MTRC) induced by target rotational motion is
not nominal or to be neglected. Simulated and real data
sets are utilized to confirm the effectiveness of the
proposed methods in dealing with SA-ISAR imaging of
maneuvering targets. Comparisons are also provided to
show the improvement of the modified autofocus method.

The paper is organized as follows. In Section II, the
SA-ISAR signal model for maneuvering targets is briefly
introduced. In Section III, we present the improved
eigenvector autofocus method. This section also
formulates the optimization for FA data reconstruction in
the framework of sparse representation, and extensions to
MTRC cases are discussed in detail. Section IV provides
numerical results to show the effectiveness and advantages
of the proposed methods. Finally, some conclusions are
summarized in the last section.

II. SA-ISAR SIGNAL MODEL FOR
MANEUVERING TARGETS

In this section, we first introduce the ISAR geometry
and signal models for maneuvering targets with
three-dimensional rotation. Based on the ISAR geometry,
the SA-ISAR signal model with phase error subsequently
is developed.

Assuming the translational motion is corrected, the
ISAR geometry of a maneuvering target is represented by
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Fig. 1. ISAR geometry of maneuvering targets.

Fig. 1 [15]. XY Z defines a Cartesian coordinate with the
rotating center of the target. The imaging plane � is
determined by vectors ω and R = [xR, yR, zR]T

(
√

x2
R + y2

R + z2
R = 1), which represent the unit vectors of

the angular velocity of the target and the unit vector along
the radar line of sight, respectively. Without loss of
generality, ω can be decomposed into ωe and ωR , which
correspond to the components perpendicular and parallel
to R, respectively. Rotation from ωR does not cause radial
motion or Doppler modulation in the echoed signal,
whereas rotation from ωe contributes all Doppler
modulation with respect to the synthetic aperture.
Therefore, ωe is defined as the effective rotation. For the
convenience of the following derivation, we write the
effective rotational velocity as ωe = [

ωex, ωey, ωez

]T
. The

symbol O stands for the origin of the coordinate system,
which is actually the rotation center of the target. Let P be
a scattering center with coordinate (x, y, z). For a
maneuvering target, during the observation interval, its
effective rotation is generally nonuniform, which means
both the magnitude and direction of ωe may be time
variant. The time variance of ωe for the maneuvering
target can be expressed by the first-order approximation⎧⎪⎨

⎪⎩
ωex ≈ ωx0 + αxtm

ωey ≈ ωy0 + αytm

ωez ≈ ωz0 + αztm

, (1)

where ω0 = [
ωx0, ωy0, ωz0

]T
is the starting rotational

velocity, α = [
αx, αy, αz

]T
is the vector of rotational

acceleration, and tm denotes the slow time. In this
maneuvering target model, the effective rotation velocity
is time varying, which is the main difference between
maneuvering targets and stable ones. Assuming the radar
transmits a signal with chirp waveform

sT (τ ) = rect

(
τ

Tp

)
· exp

(
jπγ τ 2

)
, (2)

where τ denotes fast time, Tp is the pulse duration, and γ

is the chirp rate, after dechirping-on-receive and residue
video phase compensation [15], we have the received

signal as

sp (τ, tm) = δp · rect

[
τ − 2Rp (tm; x, y, z)

c

]

· exp

[
−j

4π

c
γ
(
τ − 2Rref (tm)

/
c
)
�Rp (tm)

]

· exp

[
−j

4π

λ
�Rp (tm)

]
, (3)

where δp stands for the scattering coefficient, c is light
speed, λ is the wavelength, and Rref (tm) is the reference
range at tm. The instantaneous range difference
�Rp (tm) = Rp (tm) − Rref (tm) corresponds to rp • R. By
applying the Fourier transform (FT) with respect to τ and
neglecting the constants, we have the range-compressed
signal expression

sp (r, tm) = δp · sinc

[
2γ Tp

c

(
r − �Rp (tm)

)]

· exp

[
−j

4π

λ
�Rp (tm)

]
. (4)

According to the 3D rotational model in Fig. 1, the
radial range induced by the effective rotation can be
expressed by

�Rp (tm) =
∫ tm

t0

(
ωe × rp

) • Rdt. (5)

Substituting (1) into (5), we have

�Rp (tm) =
∫ tm

t0

[ω0 • r + (α • r) tm]dtm

= (ω0 • r) tm + 1

2
(α • r) t2

m

= aptm + 1

2
bpt2

m + �rp (t0) , (6)

where ap = ω0 • r, bp = α • r, r = [(yzR − zyR),
(zxR − xzR), (xyR − yxR)]T , and �rp (t0) is the range of
the scattering center at time t0. Symbol “•” denotes the dot
multiplication of vectors. The orientation of ωe is
changing during CPI, leading to fluctuation of the image
plane. The rotational motion of the target is not known a
priori. As a result, conventional range-Doppler (RD)
imaging fails to deal with maneuvering targets. To handle
the problem of a time-varying image plane, adaptive
time–frequency representations are usually applied to
achieve a sequence of target scattering projections on the
instantaneous Doppler planes, which forms RID images.

For clarity of the autofocus and FA reconstruction
approaches, we first assume that the MTRC induced by
rotation can be neglected. Extensions to MTRC cases will
be discussed in the next section in detail. By substituting
(6) into (4), we have

sp (r, tm) ≈ δp · sinc

[
2B

c

(
r − �rp (t0)

)]

· exp

[
−j2π

(
θp + fptm + 1

2
γpt2

m

)]
, (7)
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Fig. 2. SA-ISAR signal geometry.

where θp = 2�rp(t0)
λ

, fp = 2ap

λ
, and γp = 2bp

λ
represent the

phase, Doppler frequency, and chirp rate, respectively.
In the above signal model, we assume that the

translational motion is precisely compensated by range
alignment and phase adjustment. Despite the missing
pulse, the range alignment approaches in [23, 34, 35] are
applicable. However, most of the autofocus approaches
lose their efficacy in SA cases, because the vacant
apertures break the FT relationship between the
range-compressed data and the RD image. To complement
the real SA-ISAR case, the residual phase error must be
taken into account. A certain range cell after range
compression is given by

s (tm) =
P∑

p=1

sp (tm) · exp [−j · φ (tm)]. (8)

We assume that the range cell contains P scattering
centers, and the signal component of the pth scattering
center is still denoted by sp (tm) = δ′

p · exp
[− j2π(

fptm + 1
2γpt2

m

) ]
. In (8), φ (tm) represents the multisource

phase error at tm. For our convenience, we express the
signal in the discrete form

s(m)=
P∑

p=1

sp (m) · exp [−j · φ (m)] 1 ≤ m ≤ M, (9)

where the FA data are assumed to contain a total of M

pulses. φ is an M-dimensional vector representing the
phase error. Therefore, the signal of the pth scattering
center can be rewritten as

sp (m) = δ′
p · exp

[
−j2π

(
fpm�T + 1

2
γpm2�T 2

)]

1 ≤ m ≤ M. (10)

In the above context, we first introduce the signal
model for maneuvering targets. Then, we extend it to the
SA-ISAR cases. Because we consider that ISAR systems
observe multiple moving targets simultaneously, radar
illumination has to switch from one target to another very
frequently, which leads to SA data for each target. Let the
range cell be denoted still by the vector s. We assume K

SAs for a target consisting of a long aperture. Fig. 2 shows
the geometry of apertures. The FA data should contain M

pulses with an index from 1 to M. Suppose that the kth SA
consists of Lk pulses (whose index ranges from Nk + 1 to
Nk + Lk) represented by Īk = [Nk + 1 · · · Nk

+ Lk]TLk×1. Then, the vector corresponding to the kth SA

is given by

sk = [
s (Nk + 1) s (Nk + 2) · · · s (Nk + Lk)

]T
Lk×1 .

(11)

Thus, the SA data vector corresponding to the range
bin is

s̄ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1

...

sk

...

sK

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

M̄×1

. (12)

We note that the SA vector has M̄ = L1 + L2 + · · ·
+ LK (M̄ < M) pulses. To clarify the expression,
we define the index of pulses consisting of the valid
apertures in SA data as Ī = [

ĪT

1 · · · ĪT

K

]T
M̄×1,

and the index of pulses corresponding to FA data as
I = [

1 2 · · · M
]T
M×1 .

III. EIGENVECTOR-BASED AUTOFOCUS
AND SIGNAL RECONSTRUCTION

A. Eigenvector-Based Autofocus for SA Data
of Maneuvering Targets

Together with time-variant Doppler, most existing
autofocus approaches fail to remove the phase error in the
SA data. However, there is one exception: the
eigenvector-based autofocus method. It was first proposed
in [36] and employed to correct phase error for compressed
ISAR imaging in [23]. Different from conventional phase
correction, the method estimates the phase error from the
eigenvector corresponding to the largest eigenvalue. It has
no requirement on the aperture pattern and is suitable to
SA-ISAR imaging of nonmaneuvering targets. In this
section, we introduce some modifications to the
eigenvector-based autofocus method in terms of phase
correction for maneuvering targets with SA
measurements. The modified eigenvector-based autofocus
method includes the following steps:

1) Sample Selection: For a man-made target, some
range gates usually have dominant scattering centers.
These range gates are optimal samples in the
eigenvector-based autofocus approaches because of their
high signal-to-noise ratio (SNR), which makes the
estimation more efficient and precise. The amplitude of a
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range cell with a dominant scatterer has small variance.
The minimum variance criteria for sample selection [24] is
applicable not only in conventional ISAR processing but
also in SA-ISAR cases. Contrast [35] also is another useful
selection criteria. Suppose N dominant range cells are
selected, then the nth selected range cell may be given by

s̄n = δn ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e−j[2π(fn�T + 1
2 γn�T 2)+ϕ(1)]

...

e−j[2π(fnm�T + 1
2 γn(m�T )2)+ϕ(m)]

...

e−j[2π(fnM�T + 1
2 γn(M�T )2)+ϕ(M)]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

M̄×1

+ σ n m ∈ Ī, (13)

where δn represents the complex amplitude of the nth
dominant range cell, σ n denotes a complex white
Gaussian noise, and fn, γn, and ϕ (m) stand for Doppler
frequency, chirp rate, and the phase error in the mth pulse,
respectively. The selected range cells are aligned into the
following matrix s̄ :

s̄ = [
s̄1 · · · s̄n · · · s̄N

]
M̄×N

+ �M̄×N. (14)

2) Doppler Frequency Compensation: For the
selected range of cells, after zero-padding in the vacant
apertures and Fourier transform, the Doppler cell with the
strongest response is circularly shifted to zero Doppler,
which removes the Doppler offset. In this step, we first
fulfill the vacant apertures by padding zeros, and then
follow with azimuth fast Fourier transform (FFT) to obtain
a blurred RD image, where the Doppler bin with the
strongest response is determined. Because the Doppler
offset corresponds to a linear phase in the time domain,
instead of using a circular shift to move the strongest
response to the zero Doppler, we multiply the
corresponding linear phase function with the zero-padded
signal in the time domain. The vacant apertures are
removed from the time domain data directly after
multiplication. Assuming the Doppler frequency of each
dominant range cell is removed, the signal is given in the
form

s̄n = δn ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e−j[πγn�T 2+ϕ(1)]

...

e−j[πγn(m�T )2+ϕ(m)]

...

e−j[πγn(M�T )2+ϕ(M)]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

M̄×1

+ σ n. (15)

It should be emphasized that in the beginning
iterations, because of the presence of second-order phase
terms together with phase error, the precision of Doppler
frequency removal is not as optimal as expected. However,
with the increase in iteration number, both second-order
phase and phase error are suppressed at a low level, the

strong response can represent the Doppler offset of each
strong scattering center, and its removal can be achieved
accurately. On the other hand, accurate Doppler offset
removal feeds back to more precise phase error estimation
in the following steps.

3) Second-Order Phase Compensation. Before the
phase error estimation, the second-order phase terms of
selected strong scattering centers should be removed
precisely. After Doppler offset removal in the last step, s̄n

chirp rate γn is obtained by means of an exhaustive linear
search over the variable γ in a predefined interval
[γmin, γmax] . Maximum peak is used to determine an
optimal estimate, which is given by the optimization

〈γ̂n〉 = max
γ

peak
{
FFT

{
s̄n 	 g (γ )

}}
, (16)

where g (γ ) = [
ejπγ�T 2 · · · ejπγ (M�T )2 ]T

M̄×1
,

peak {•} denotes the maximum element of a vector, and
FFT {·} is a discrete FFT operator for a vector. After
compensation of the second-order phase, the signal matrix
can be written as

s̄n = δn · θ M̄×1 + σ n, (17)

where θ M̄×1 = [
e−jϕ(1) · · · e−jϕ(M)

]T
M̄×1 is the

vector corresponding to the phase error. Therefore, the
sample matrix can be rewritten as

s̄ = [
s̄1 · · · s̄n · · · s̄N

]
M̄×N

= θ M̄×1 · (αN×1)T + �M̄×N, (18)

where αN×1 = [
δ1 · · · δN

]
N×1 is the amplitude

vector and �M̄×N is the noise matrix. This step is
significant for phase adjustment of SA data, by which
quadratic phase terms induced by target maneuvering are
corrected for all selected dominant scattering centers. As a
result, the interference of quadratic phase on the phase
error estimate with the eigenvector-based approach
effectively is eliminated, yielding primary precision
improvement of the phase adjustment.

4) Phase Error Estimate: In general, the variance of
noise in each dominant range cell is assumed to follow an

identical distribution. Let Ĉ = 1
N

SSH = 1
N

N∑
n=1

s̄n · (s̄n)H .

Then, the maximum likelihood estimation [9] of θ M̄×1

allows the choice of θ̂ satisfying θ̂
H

θ̂ = N and
maximizing the function

Q = θ̂
H

Ĉ θ̂ =
N∑

n=1

λn |zn|2, (19)

where the vector z = [
z1 · · · zn · · · zN

]H
= PH θ M̄×1, P is the eigenmatrix of Ĉ , and λ1 is the
eigenvalue corresponding to z1 with λ1 ≥ λ2 · ·· ≥ λM̄.

Apparently, choosing θ̂ = z1 maximizes Q. Phase
adjustment is achieved by applying the eigenvector to
correct the phase error. Thus, the eigenvector method is
suitable for compensating the phase error of the SA-ISAR
data.
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5) Iterative Estimation and Correction: Phase
correction of the selected range cells is performed through
the phase error vector computed from the eigenvector
corresponding to the maximum eigenvalue. Then steps 2,
3, and 4 are repeated in sequence. In an iterative manner,
because the image of dominant range cell trends to be
focused, the response of an individual dominant point
becomes more compact and SNR improves. The Doppler
frequency and chirp rate estimation become more precise,
which in turn enhances the accuracy of phase error
estimation with the eigenvector-based method. In general,
convergence is achievable within only several iterations. It
should be noted that using the original eigenvector
autofocus approach to perform coarse phase correction is
helpful in accelerating autofocus processing, and the
modified eigenvector may be applied as a fine correction in
a further step. In some cases in which the high-frequency
phase error is characteristic, coarse correction can
accelerate convergence of the proposed approach
effectively. Another significant aspect of the algorithm is
the stopping criteria of the iterative approach. As the
estimate of phase error proceeds, Doppler frequencies and
chirp rates of the samples tend to be more precise, and the
largest eigenvalue λ1 increases until convergence is
achieved. One may assume it is accurate enough when the
difference between the largest eigenvalues of two
sequential iterations is smaller than a predetermined
threshold, such as 1 percent of λ1. To enhance the
robustness of the eigenvector autofocus method in strong
noise circumstances, different weights can be added to the
selected dominant range cells to encourage contribution
from high-quality cells to the estimate [24].

Fig. 3 shows a clear flowchart of motion compensation
for SA-ISAR imaging of maneuvering targets. In the
flowchart, the original and the proposed eigenvector
autofocus methods are performed in sequence. The former
is utilized for coarse phase compensation, and the
modified method implements the fine correction.

B. Full-Aperture Signal Reconstruction From SA Data

In this section, we consider FA data reconstruction
from SA data. After phase error correction, the SA signal
s̄ for a range gate is rewritten as

s̄ =
P∑

p=1

s̄p + σ , (20)

where P scattering centers are assumed in the range cell,
and the pth component is given by

s̄p (m) = δ′
p · exp

[
−j2π

(
kp

m

M
+ 1

2
yp

m2

M2

)]
m ∈ Ī .

(21)

Let γp = 1
(M·�T )2 · yp and fp = 1

M·�T
· kp. Clearly,

each signal component is a chirp with unknown Doppler
frequency, chirp rate, and complex-value amplitude. For
our convenient derivation, let k and y stand for the

Fig. 3. Motion compensation for SA-ISAR data of maneuvering targets.

Doppler frequency and chirp rate, respectively; then, a SA
chirp–Fourier basis can be constructed as

d̄ (k, y) = 1√
M̄

· Fk 	 Cy (22)

Fk = [
wk · · · wkm · · · wkM

]T
M̄×1 (23)

Cy =[
qy · · · qym2 · · · qyM2 ]T

M̄×1
m ∈ Ī, (24)

where “	” denotes Hadamard multiplication;
w = exp

(−j 2π
M

)
, q = exp

(−j π
M2 �y

)
, and �y is the

grid step of the chirp rate. The Doppler series corresponds
to [1 : M]TM×1(identical to I), and the chirp rate extends to
the vector y = [−Y/2 + 1 : Y/2]TY×1 · �y, where Y is
supposed to be an even integer and selected so that y
includes the chirp rates of all signal components in (21).
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We then have the SA chirp–Fourier dictionary as

D̄ =
{

d̄ (1, 1) · · · d̄ (M, 1)︸ ︷︷ ︸
M

· · ·

· · · d̄ (1, Y ) · · · d̄ (M, Y )︸ ︷︷ ︸
M

}
M̄×(M·Y )

. (25)

In a condensed form, the SA signal of the range cell
can be rewritten as

s̄ = D̄w + σ . (26)

Our goal is to reconstruct the unknown vector w based
on the definite partial chirp–Fourier dictionary D̄ and the
SA vector s̄. It should be noted that the chirp-Fourier
dictionary D̄ is deterministic but not parametric, so we do
not require the target rotational parameters a priori to
construct the dictionary or to estimate them by exhaustive
search before image formation. The key step is in
estimating the optimal parameters yp, kp, and δp for each
signal component, by which the FA signal can be easily
reconstructed. The ISAR imagery shows distribution of
the target scattering field, where strong scattering centers
usually take up only a fraction of whole image bins but
contribute the major energy. Therefore, such an ISAR
signal is regarded as sparse. Moreover, as range
compression is applied, the limited scatterers are
distributed over a set of range bins. Each range cell
contains only a few scatterers rather than all scatterers of
the target. As a result, w presents strong sparsity. Such
sparsity is utilized to recover the high-dimension vector w

by an l1-norm optimization

〈ω̂〉 = arg min
σ

‖w‖1 , s.t.
∥∥s̄ − D̄w

∥∥
2 ≤ ε, (27)

where ‖•‖1 denotes the l1-norm of a vector, and ε = ‖σ‖2
is the noise term. The noise term can be estimated by
range bins containing pure noise [37]. One can see that the
optimization is composed of two different terms: the
l2-norm constraint that preserves the data fidelity of the
solution and the l1-norm optimization that imposes mostly
small elements, with a few large ones, in accordance with
the sparsity of the ISAR signal. The optimization problem
can be solved efficiently by some approaches [38–43].
However, the high dictionary dimension leads to a great
computational load and memory requirement, which
hinders the application of currently existing algorithms in
practice. On the basis of the standard OMP algorithm, we
develop an effective solver for the optimization problem
(27). Implemented by FFT and interpolation, the solver is
efficient and precise. The reconstruction and imaging
procedure takes the following steps.

1) We need to estimate the first chirp component of s̄,
which is s̄e1. Its Doppler frequency k1 and chirp rate y1

are achieved when the inner product of s̄ and the basis in
D̄ reach its maximum; that is,

〈k1, y1〉 = max
k,y

∣∣d̄ (k, y)H · s̄
∣∣ . (28)

It is not difficult to understand that estimation of k1 and
y1 is inherently limited to the grid resolution of D̄, namely,

Fig. 4. Illustration of grid refinement with interpolation. (a) Before
interpolation. (b) After interpolation.

the Doppler and chirp rate grids. However, if we decrease
the grid steps, then the dimension of D̄ increases and leads
to computational inefficiency. For a discrete chirp–Fourier
dictionary, the chirp rate step is suggested as �y = 1

M

[44]. The Doppler step unit is set to avoid ambiguity. Then,
we apply FFT and interpolation to enhance both precision
and efficiency in the inner product computation. Suppose
the inner product matrix corresponding to the dictionary is

IP (k, y) = d̄ (k, y)H · s̄. (29)

Apparently, IP is an M × Y matrix. Instead of
calculating its elements one by one, we may obtain a row
through the computation

IP (:, y) = FFT
{

s̄ 	 Cy

}
. (30)

Before we seek the maximum element in IP,
interpolation is applied to refine its grid. Fig. 4 shows the
interpolation grid refinement for IP.

By the refined estimation of (k1, y1), we may achieve
the signal estimate as

s̄e1 = w1 · d̄ (k1, y1) and w1 = d̄ (k1, y1)H · s̄. (31)
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2) The residual signal is calculated by s̄res = s̄ − s̄e1.
3) We use s̄res to find the next basis a (k2, y2) with the

maximum inner product criteria as shown in step 1. Then,
a dictionary with two subspaces is obtained as
D̄2 = [

d̄ (k1, y1) , d̄ (k2, y2)
]
, and the corresponding

amplitude is estimated by w2 =
[
w1

w2

]
= (

D̄H

2 D̄2
)−1

D̄H

2 s̄, where w1 is renewed under D̄2. The second signal
estimate is obtained by s̄e2 = D̄2 · w2.

4) Steps 2 and 3 repeat until the energy of the residual
signal is below the noise level. Assume the procedure is
implemented by P ′ iterations. The estimated parameters
include: a dictionary D̄P ′ corresponding to the P ′ signal
components, the amplitude vector wP ′ , and Doppler and
chirp rate vectors kP ′ and yP ′ , which are given as

D̄P ′ = [
d̄ (k1, y1) d̄ (k2, y2) · · · d̄ (kP ′, yP ′)

]
M̄×P ′ ,

(32a)

wP ′ = [
w1 w2 · · · wP ′

]T
P ′×1 , (32b)

kP ′ = [
k1 k2 · · · kP ′

]T
P×1 , (32c)

yP ′ = [
y1 y2 · · · yP ′

]T
P ′×1 . (32d)

5) After signal decomposition into the partial
chirp–Fourier dictionary, with the above estimated
parameters, the FA signal can be reconstructed through the
formulations

s =
P ′∑

p=1

sp and sp (m) = wp

· exp

[
−j2π

(
kp

m

M
+ 1

2
yp

m2

M2

)]
1 ≤ m ≤ M. (33)

By sparse decomposition under the chirp-Fourier
dictionary, the amplitude, Doppler frequency, and chirp
rate of each scattering center are achieved simultaneously.
Of course, the deterministic relationship between the
Doppler parameters and target rotation variables in (6) is
not clear so far; however, the achievement of RID images is
straightforward. The time frequency (TF) slice of the range
bin may be computed through the Wigner–Ville distribution
(WVD) [45] to each reconstructed signal component

T F =
P ′∑

p=1

W V D
{

sp

}
. (34)

After the FA reconstruction for all range bins, their TF
slices are arrayed to generate a sequence of RID images as
traditional AJTFA-based ISAR images for maneuvering tar-
gets. Of course, RID images generated with (34) are of high
resolution and free of cross-terms, but the computational
load in (34) is relatively high. Efficient TF representations,
such as adaptive optimal kernel TF representation [46], can
be used on the reconstructed signal s to leverage a balance
between resolution and cross-terms in RID images.

C. Extensions to MTRC Cases

The above introduction of both the autofocus approach
and FA reconstruction does not account for MTRC caused
by rotation. In high-resolution ISAR imaging of targets
with large size, MTRC is usually present. With
accommodation of some useful techniques, the negative
effects of MTRC on the eigenvector autofocus and FA
data recovery can be overcome effectively.

To reduce the degradation of the eigenvector autofocus
approach in the presence of MTRC, we can perform the
phase error estimation on the raw data at a lower
resolution by down-sampling. Down-sampling is first used
in [47] to reduce the influence of residual range cell
migration on the phase autofocus for SAR data. Herein,
this process eliminates MTRC by summing several
neighboring range bins into a single bin. Also, the
processing can be implemented by extracting only a part
of the frequency band from the raw data to obtain the
range-compressed data block [47], which is similar to
summing up processing. Combining adjacent range bins
should cover the range of MTRC. Then, range bin samples
are selected from the down-sampled SA data for phase
error estimation, but phase compensation is performed on
the original SA data.

For maneuvering targets, the magnitude of MTRC
depends on the target size and rotation angle within CPI.
In general, rotation-induced MTRC is restricted within
only several range gates in real scenarios, because a small
rotation angle can be used to achieve high resolution in
azimuth (e.g., ∼3–5 deg). Subband division processing
may be leveraged to reduce degradation of the SA data
reconstruction when MTRC arises. In the FA data
reconstruction after phase correction, the SA data are split
into several subbands in the range frequency domain, and
each subband signal is transformed back into the
range-compressed domain. Similar to down-sampling
processing, MTRC is eliminated because of the decrease
of range resolution. Then, the FA data reconstruction of
each subband is performed independently. The FA data of
an entire frequency band are constructed by combining the
recovered FA subband data sets together. It should be
emphasized that during the subband procedure, the
frequency band division is also deficient. As the resolution
decreases in each subband signal, signal sparsity is
reduced as well, since the number of scattering centers
within a single range gate may increase. The SNR is
distinctively reduced, as well. The decrease in sparsity and
SNR may degrade the performance of FA signal
reconstruction. In this sense, the number of subbands
should be preferred to suppress MTRC and
simultaneously retain the precision of FA reconstruction.
Empirically, the rotation-induced MTRC is usually slight,
and the frequency band of SA data can be separated into
several subbands. For example, we can separate the data
into four subbands, which indicates that the MTRC
varying within four range cells can be overcome by the
subband division. After reconstruction, MTRC should be
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Fig. 5. Flowchart of FA reconstruction and RID imaging with subband
division.

compensated on the FA data. Keystone transform [48, 49]
removes the linear MTRC on the reconstructed FA data
effectively by eliminating the first-order coupling term in
the frequency domain. After the correction of MTRC,
AJTFA algorithms are ready to generate RID images. In
summary, FA reconstruction with the subband technique
for MTRC cases is illustrated by the flowchart in Fig. 5.

From the flowchart, one can find evident differences in
the proposed ISAR imaging procedure from ISAR
formations with conventional sparse representations.
Instead of direct ISAR image formation from incomplete
measurements with the sparsity constraint optimization, in
the proposed scheme, FA data reconstruction from SA
measurements is first performed via sparse representation
under a redundant chirp–Fourier dictionary, and then
conventional MTRC correction follows. Finally, the ISAR
image of the maneuvering target is generated by using
AJTFA approaches through the reconstructed data. The
MTRC correction on the FA data plays a significant role in
resolving the coupling between range and azimuth

dimensions. Moreover, because both FA reconstruction
and AJTFA imaging are performed in azimuth, the whole
SA-ISAR imaging scheme involves only one-dimensional
sparse decomposition, not two-dimensional (2D)
decomposition as in other sparse decomposition–based
imaging algorithms [50, 51], yielding efficiency
enhancement at a possible price of precision loss. Another
significant reason why conventional AJTFA imaging is
required in our scheme is because, as Fig. 1 shows, the
effective rotational vector of maneuvering targets is
time-varying during the CPI. Conventional RD imaging
approaches are based on a 2D rotation model; that is, the
effective rotational vector is fixed during the CPI, which is
not suitable for maneuvering cases. However, AJTFA
imaging can generate a sequence of RID images to adjust
the change in direction of image planes during the CPI,
and the RID images also pave a possible way to analyzing
the aspect change of target during CPI.

IV. EXPERIMENTS

A. Simulated Data Description

This subsection comprises two parts. First, we analyze
the performance of the proposed eigenvector autofocus
approach for the SA-ISAR data of maneuvering targets
and compare with the original eigenvector method.
Second, the FA data reconstruction is tested, and its
performance metrics are evaluated.

The data set applied in this subsection is the B727
plane data simulated by the Naval Research Lab. Some
radar system parameters are listed as follows: The center
frequency is 9 GHz, the pulse repeat frequency is 20 kHz,
the FA data set consists of 256 pulses in total, and the
signal bandwidth is 150 MHz. The range profiles are
presented in Fig. 6(a). Considerable maneuvering causes
serious blurring of the RD image, as shown in Fig. 6(b).
From Fig. 6(a), one can note that explicit MTRC arises in
the range-compressed data. In the following experiments,
the frequency band of SA data is divided into four
subbands in the FA data reconstruction with sparse
representation to reduce the negative effects from MTRC.
The original data set is free of phase noise. SA-ISAR data
with different SNRs (from 0 to 20 dB) are generated by
extracting pulses from the original data set and adding
complex white Gaussian noise. Herein, SNR is defined as
the ratio of signal energy and noise energy.

In some special situations, multisource phase error has
substantial high-frequency properties. For example, severe
vibration of both the target or radar platform together with
jetting of analog/digital sampling and signal transmission
could cause random phase errors. Of all type of phase
errors, random errors are the most complicated and severe,
and usually the most difficult to correct. To show the
robustness of the eigenvector-based autofocus approaches,
random phase is added (see Fig. 7) in all experiments.

To evaluate the performance of phase error estimation,
the standard deviation between the estimated and the
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Fig. 6. Simulated B727 data. (a) Aligned range profiles. (b) RD image
with serious blur.

Fig. 7. Added random phase error (unit is radian).

actual added phase error is used, as in

STD = std
[
θ̂ − θ

]
, (35)

where std [•] denotes the operator calculating the standard
deviation of a vector. The performance of FA

Fig. 8. Sparse aperture patterns. (a) SA-1. (b) SA-2.

reconstruction is evaluated by two factors: noise
interference and pulse number. To provide a quantitative
evaluation for the performance of the FA reconstruction,
we view the coherence coefficient of the reconstruction
and the original data as a metric, which is defined as

Rcoef =
〈
S 	 Ŝ

〉
|S|F ·

∣∣∣Ŝ∣∣∣
F

, (36)

where S and Ŝ denote the original FA and reconstructed FA
data sets, respectively, and the symbol 〈·〉 is the operator
for summing up all components of a matrix. Apparently,
when Rcoef is close to 1, the FA data reconstruction is
optimal and close to the ideal signal, whereas low Rcoef

indicates serious reconstruction degradation.

B. Performance Versus SNR

The aim of the first experiment is to analyze the
influence of SNR on the performance of the various
approaches. To compare noise tolerance of the original
eigenvector and the proposed autofocus approaches, we
consider three different aperture patterns: full aperture,
random sampled SA (SA-1), and block sampled SA
(SA-2). SA-1 and SA-2 are shown in Figs. 8(a) and 8(b),
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Fig. 9. Standard deviations of phase estimate errors. (a) Full-aperture case. (b) SA-1 case. (c) SA-2 case.

Fig. 10. Coherence coefficients with respect to SNRs. (a) Full-aperture case. (b) SA-1 case. (c) SA-2 case.

respectively. Both consist of 128 pulses. We generate
experimental data sets with different SNRs (from 0 to
20 dB). The two autofocus approaches are conducted to
estimate phase errors, and the standard deviations are
calculated corresponding to the ideal phase error in Fig. 7.
Before the computation of standard deviations, the linear
and quadratic phase terms within the estimates are
removed. During the proposed eigenvector autofocus
approach, at least three iterations are usually needed to
guarantee convergence. With respect to SNR and standard
deviation curves corresponding to the three aperture
patterns, three comparisons are shown in Figs. 9(a), 9(b),
and 9(c), respectively. The standard deviation curves
evaluate the estimated accuracy of the two
eigenvector-based autofocus approaches. From Fig. 9, one
can see that the performance of the two algorithms
depends on SNR, and strong noise degrades their
performance distinctively. In all cases, the proposed
eigenvector method achieves lower standard deviations
than does the original eigenvector method. This indicates
that high accuracy is achieved by the modified eigenvector
approach. Because the proposed eigenvector accounts for
the time-varying Doppler characteristic of the target
signal, a better phase estimate is achieved, as presented in
Fig. 9, which consequently supports optimal FA
reconstruction from SA measurements and RID imaging
of maneuvering targets.

After phase correction, the recovery of FA data follows
in sequence. The same processing is performed for the
full-aperture pattern data, which can be regarded as signal
decomposition and denoising. Thus, the reconstructions
for the three aperture patterns are compared with the
original FA data in Fig. 10(a) by calculating their
coherence coefficients with the reference data set. In the

analysis, we perform Monte Carlo analyses with 100
signal cases. The mean values of coherence coefficients
have been exploited to evaluate FA reconstruction
performance. In the three cases, the smoothed coherence
coefficient curves with respect to SNR are shown in Figs.
10(a), 10(b), and 10(c), respectively. Fig. 10 shows that
the FA reconstruction depends on SNR and autofocus
approaches distinctively, and the coherence coefficient
curves are also in accordance with the phase estimate
standard deviation curves in Fig. 8. When noise increases,
the reconstruction deviates from the ideal signal
correspondingly, no matter which autofocus approach is
applied. Because the proposed eigenvector autofocus
approach overcomes the phase error in a more precise
manner, it obtains better reconstruction performance than
does the original eigenvector autofocus method. This
result is evident by both precision of the phase correction
and reconstruction in all cases. One can see that, in both
SA cases, the coherence coefficients are high—up to
0.95—with SNR up to 10 dB if the proposed autofocus
approach is utilized. However, the original autofocus
approach cannot ensure this reconstruction performance
even in high-SNR scenarios.

To show the effectiveness of the phase adjustment and
FA reconstruction for the three data sets, RID images are
generated according to the procedure in Fig. 11. Three
instantaneous moments (t1, t2, and t3) correspond to the
64th, 128th, and 192nd pulse, respectively. In this section,
all RID images are shown in decibels with identical scales.

First, we look at the full-aperture case. Figs. 11(a) and
11(b) show the resulting RID images with different SNRs
(4 and 8 dB) in the full-aperture case. Fig. 11(a) shows the
RID images using the original autofocus approach, and
Fig. 11(b) shows RID images from the proposed autofocus
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Fig. 11. RID images with full-aperture data under different SNRs. (a)
Images from original autofocus approach. (b) Images from the proposed

autofocus approach.

method. Generated by the FA reconstruction signal after
the proposed autofocus processing, RID images are free of
blurring and noise. However, after phase correction with
the original autofocus method, significant residual phase
error exists, which consequently causes degradation of the
following FA reconstruction and RID imaging. As a result,
some blur and false points are present in Fig. 11(a). For a
clear comparison, we highlight the image regions
contaminated by false points with circles. The image
degradation with increased noise is also evident in the RID
images, since false points are present when SNR decreases
down to 4 dB, and this phenomenon is not evident when
we apply the proposed autofocus approach, as seen in the
resulting RID images in the 4-dB case compared with
those in the 8-dB case. This result may be a case in which
optimal phase error removal would improve the denoising
performance in the RID images.

In the following discussion, we investigate the SA
imaging case. Fig. 12 shows typical RID images with
different SNRs (4 and 8 dB) in the SA-1 case, and Fig. 13
images show the SA-2 case. Figs. 12(a) and 13(a) show
the RID images with phase adjustment by the original
autofocus approach; meanwhile, Figs. 12(b) and 13(b)
have RID images with phase correction by the proposed
autofocus method. In both Figs. 12 and 13, the first row
presents RID images corresponding to the three
instantaneous times under SNR = 8 dB. The second row
gives RID images under SNR = 4 dB. Given a close
insight into the details of the RID images, we can find that
all images are focused, but those from the proposed
approach are more precise. The first conclusion that
should be emphasized is the effectiveness of

Fig. 12. RID images with SA-1 signal under different SNRs. (a) Images
from original autofocus approach. (b) Images from the proposed

autofocus approach.

Fig. 13. RID images with SA-2 signal under different SNRs. (a) Images
from original autofocus approach. (b) Images from the proposed

autofocus approach.

eigenvector-based autofocus processing for SA data sets.
Accommodating the time-varying Doppler characteristic
of the signal, the proposed autofocus method achieves
higher precision, yielding optimal FA reconstruction and
RID imaging performance in both SA cases. We also
highlight the regions containing false points with circles in
both Fig. 12 and Fig. 13. Image degradation with increase
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Fig. 14. Standard deviations with respect to NOPs. (a) SA-1 case. (b)
SA-2 case.

in noise is also evident in the RID images, especially with
the original autofocus method when SNR decreases down
to 4 dB. Nevertheless, the high quality of RID images
generated by the proposed autofocus method remains
when noise increases, which is very close to that in the FA
data case.

C. Performance Versus Pulse Number

We now investigate how the sample amount affects
recovery performance. We test the reconstructed results of
the two SA patterns by varying the number of pulses
(NOP). With different numbers of pulses and constant
SNR (8 dB), we first correct the SA data sets by the
proposed eigenvector autofocus method and then
reconstruct the FA signal and RID images. The pulse
number is set to decrease from 196 to 60. The standard
deviation curves reveal the estimate accuracy of the two
eigenvector-based autofocus approaches, as shown in
Fig. 14, and the coherent coefficient curves are shown in
Fig. 15. One can see that, with relatively high SNR, a
highly coherent coefficient is achievable, which indicates
optimal recovery in both SA cases, and the reconstructed
FA signal is closer to the ideal data. This phenomenon is

Fig. 15. Coherence coefficients with respective to NOPs. (a) SA-1 case.
(b) SA-2 case.

not explicit when the pulse amount is small, such as NOP
= 60, because the coherence coefficient decreases down to
a small value.

Figs. 16 and 17 show typical RID images with two
different SA pulse amounts (108 and 60), by which we
investigate the performance of approaches with specific
pulse numbers. By comparing Figs. 16 and 17, in all cases,
the proposed approaches are capable of precisely
reconstructing the FA signal and generating RID images
with high quality in both SA patterns. Inspecting Figs. 16
and 17, we find that although the original eigenvector
autofocus approach works in both SA cases, its
performance may be still unacceptable simply because the
error and false points (highlighted by circles) degrade the
RID image to some degree. We can make this inference
because the focal quality of the RID image of the
maneuvering target obtained using the proposed phase
adjustment and FA reconstruction is satisfactory. These
results indicate that the proposed phase correction
suppresses phase error optimally by considering the
time-varying Doppler of the target signal and is suitable
for generating high-quality RID images by combining the
FA reconstruction based on sparse representation.
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Fig. 16. SA-1 RID images under different pulse numbers (in decibels).
(a) Original eigenvector autofocus. (b) Proposed eigenvector autofocus.

Fig. 17. SA-2 RID images under different pulse numbers (in decibels).
(a) Original eigenvector autofocus. (b) Proposed eigenvector autofocus.

D. Real Data Experiments

In this subsection, real, measured data are utilized to
test the performance of the proposed methods. The data
set of a Yak-42 airplane is recorded by a C-band
(5.52 GHz) ISAR experimental system. The transmitting
signal is a 400-MHz linear modulated chirp signal. The
received signal is dechirped and I/Q sampled. In this data
set, the pulse repetition frequency is 100 Hz (i.e., 256
pulses are used). Range alignment is performed to remove
the range shift induced by translational motion in advance.

Fig. 18. Yak-42 data and RD image. (a) Aligned range profiles.
(b) RD image.

Significant movement is involved during target
maneuvering. As a result, not only time-varying Doppler
but also explicit MTRC are induced in the recorded data.
The aligned profiles are shown in Fig. 18(a), where MTRC
can be inspected clearly. The RD image generated by all
256 pulses after phase correction with the eigenvector
autofocus is shown in Fig. 18(b). Maneuvering during
observation causes evident RD image smearing. The
original recorded data has considerable noise, so we do not
add any synthesized noise into the data. SA data sets with
128 pulses are generated by extracting pulses from the
original data. A random sampled SA pattern is assumed.
In FA reconstruction processing, data sets are divided into
four subbands in the frequency domain to reduce the
negative effect from MTRC. Keystone transform is
applied to the reconstructed FA data for MTRC removal
before RID image processing. At first, we investigate the
autofocus performance of both the original and proposed
eigenvector approaches with the full aperture data. The
AJTFA RID images corresponding to the three
instantaneous moments are provided in Figs. 19(a) and
19(b). Their image contrast and entropy are also calculated
to investigate focal performance. The effectiveness of
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Fig. 19. FA experiment results.

Fig. 20. SA experiment results.

eigenvector autofocus methods for the maneuvering
airplane is confirmed. From Fig. 19, one can see that, for
the maneuvering characteristic of the target, the proposed
autofocus approach removes the phase error optimally,
yielding significant focal improvement over the original
approach. As can be seen, some evident blurs in Fig. 19(a)
are eliminated in Fig. 19(b). Next, we investigate the SA
case. The RID images are arrayed in Figs. 20(a) and 20(b)
for comparison. As expected, ideal FA reconstruction is
not available because we cannot remove the phase error
correctly with the original autofocus approach, which is
inferred, in that the coherence coefficient of FA
reconstruction and ideal data is only 0.911. However,
when the proposed autofocus approach is applied, we can
get better FA reconstruction, and the coherence coefficient
is up to 0.942. With a high-coherence coefficient of FA
reconstruction, the AJTFA RID imaging scheme
apparently provides ideal focusing performance
(Fig. 20(b)), exhibiting the geometrical structure of the
target. In terms of image entropy and contrast, the
performance improvement of the proposed algorithms is

shown clearly. One should also note that residual phase
error affects the FA reconstruction dramatically,
consequently leading to considerable focal loss and false
points in the RID images, as shown in Fig. 20(a).

V. CONCLUSIONS

ISAR imaging by SA data is essential for
multifunctional radar because it is capable of furnishing a
single radar system with the imaging ability of multiple
uncooperative targets. In this paper, we focused on phase
correction and signal reconstruction in SA-ISAR imaging
of maneuvering targets. A modified eigenvector-based
autofocus approach was proposed that can correct the
high-frequency phase error within SA data of a
maneuvering target. Improvement by a modified
eigenvector–based autofocus approach over the traditional
one is demonstrated. Instead of direct ISAR formation
from incomplete measurements with conventional sparse
optimization approaches, in the proposed image scheme,
FA data reconstruction from SA measurements is first
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performed via sparse representation under a redundant
chirp–Fourier dictionary. Then, conventional MTRC
correction can be applied to the FA data. Finally, an ISAR
image of the maneuvering target is generated by AJTFA
approaches through the reconstructed data. This procedure
is flexible and efficient for imaging maneuvering targets in
real scenarios. Both simulated and real data experiments
validate the effectiveness of the proposed approaches for
the SA-ISAR imaging of maneuvering targets. Finally, it
should be pointed out that sparse decomposition paves a
potential way to bridge the Doppler parameters to target
rotation during RID image formation. And if a
deterministic relationship between them can be developed,
rotation estimation and azimuth scaling for a maneuvering
target image is possible. Some important problems, such
as shadow and amplitude modulation in signal modeling,
are ignored, which limits application of the proposed
method in some real scenarios. These problems will be
investigated in the near future.
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