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In this paper, we study peakon, cuspon, and pseudo-peakon solutions for two gen-
eralized Camassa-Holm equations. Based on the method of dynamical systems, the
two generalized Camassa-Holm equations are shown to have the parametric repre-
sentations of the solitary wave solutions such as peakon, cuspon, pseudo-peakons,
and periodic cusp solutions. In particular, the pseudo-peakon solution is for the
first time proposed in our paper. Moreover, when a traveling system has a singu-
lar straight line and a heteroclinic loop, under some parameter conditions, there
must be peaked solitary wave solutions appearing. C© 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4835395]

I. INTRODUCTION

In recent years, nonlinear wave equations with non-smooth solitary wave solutions, such as
peaked solitons (peakons) and cusped solitons (cuspons), attract much attention in the literature.
Peakon was first proposed by Cammasa and Holm,1, 2 and thereafter other peakon equations were
developed (see Degasperis and Procesi,3 Degasperis, Holm, and Hone,4 Qiao,5, 6 Li and Dai,7

Novikov,8 and cited references therein). Peakons are the so-called peaked solitons, i.e., solitons with
discontinuous first order derivative at the peak point. Usually, the profile of a wave function is called
peakon if at a continuous point its left and right derivatives are finite and have different sign.9 But if
its both left and right derivatives are positive and negative infinities, then the wave profile is called
cuspon.

In this paper, we shall show that there exists pseudo-peakon solution for nonlinear wave equa-
tions. The so called “pseudo-peakon” means that the wave profile looks like peakon, but the solution
still has continuous first order derivative. By using the dynamical system approach, it has theoret-
ically been proved that there exists at least one singular straight line in the traveling wave system
corresponding to some nonlinear wave equation such that the traveling wave solutions have peaked
profiles and lose their smoothness. In fact, the existence of a singular straight line leads to a dynam-
ical behavior with two scale variables. For a singular nonlinear traveling wave system of the first
class, the following two results hold (see Li and Dai,7 Li and Chen,10 and more recently Li11).

Theorem A ( The rapid-jump property of the derivative near the singular straight line). Suppose
that in a left (or right) neighborhood of a singular straight line there exists a family of periodic
orbits. Then, along a segment of every orbit near the straight line, the derivative of the wave function
jumps down rapidly on a very short time interval.
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Theorem B ( Existence of finite time interval of solution with respect to wave variable in the
positive or negative direction). For a singular nonlinear traveling wave system of the first class with
possible change of the wave variable, if an orbit transversely intersects with a singular straight line
at a point or it approaches a singular straight line, but the derivative tends to infinity, then it only
takes a finite time interval to make moved point of the orbit arrive on the singular straight line.

In order to understand rigorously the occurrence of “peaked” traveling wave solutions and
the change of wave profiles, we hope to obtain exact parametric representations of traveling wave
solutions for a given nonlinear partial differential system. Using exact solution formulas, we can see
the change of wave profiles. In this paper, we take the following two nonlinear wave equations as
examples to achieve this goal.

1. The generalized Camassa-Holm (CH) equation with real parameters k, α:

ut + kux − uxxt + αuux = 2ux uxx + uuxxx . (1)

Equation (1) with α = 3 is exactly the standard CH equation1 as a shallow water model.
2. The two-component Camassa-Holm system with real parameters k, α, e0 = ± 1 (see Olver

and Rosenau,12 Chen, Liu, and Zhang,13 and Chen, Liu, and Qiao14):

mt + σumx − Auxx + 2σmux + 3(1 − σ )uux + e0ρρx = 0,

ρt + (ρu)x = 0,
(2)

where m = u − α2uxx − k
2 .

The corresponding traveling wave systems of equations (1) and (2) have one and two singular
straight lines, respectively (see Secs. II and III). Under some particular parameter conditions, there
exists at least one family of periodic orbits such that the boundary curves of the period annulus are
a homoclinic orbit or a heteroclinic loop (see the phase portraits in Secs. II and III). Applying the
classical analysis method, we can obtain the parametric representations for these boundary curves.
When we take these homoclinic orbits and heteroclinic loops into account as the limit curves of
period annulus, these exact parametric representations provide very good understanding for the
occurrence of peaked traveling wave solutions. Namely, the homoclinic curve gives rise to a solitary
peakon-like wave solution (called pseudo-peakon), while the curve triangle (heteroclinic loop) gives
rise to a solitary wave solution with some peak (peakon).

How to classify traveling wave solutions seems kind of interest for a given traveling system.
Lenells15, 16 studied traveling wave solutions for some nonlinear shallow water wave models admit-
ting smooth, peaked, and cusped solutions, as well as stumpons. Qiao and Zhang investigated all
possible single soliton solutions of the CH equation through the procedure of functional analysis.17

Our method is different from those two approaches.15–17 Adopting the method of dynamical systems
with Theorem A and Theorem B, we can obtain dynamical behavior of all traveling wave solutions
to integrable PDE models. Therefore, we know which orbit gives rise to what wave profiles and how
the wave profiles are changed depending on the parameters. In addition, applying the first integrals
of the integrable traveling wave systems, we are able to get some explicit solutions (see Li et al.,18, 19

and Li11).
This paper is organized as follows. In Secs. II and III, we discuss the exact solutions of equation

(1) and equation (2), respectively.

II. PEAKON, PSEUDO-PEAKONS, CUSPON, AND PERIODIC CUSP WAVE SOLUTIONS
OF EQUATION (1)

Let u(x, t) = φ(x − ct) = φ(ξ ), where c is the wave speed. Substituting it into (1) and integrating
once, we have

(φ − c)φ′′ = −1

2
(φ′)2 + 1

2
αφ2 + (k − c)φ − g,
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where g is an integral constant and “′” is the derivative with respect to ξ . The above equation with g
= 0 is equivalent to the following differential system

dφ

dξ
= y,

dy

dξ
= −y2 + 2(k − c)φ + αφ2

2(φ − c)
, (3)

which has the following first integral:

H (φ, y) = (φ − c)y2 − [(k − c)φ2 + 1

3
αφ3] = h. (4)

System (3) has two critical points E0(0, 0) and E1
( 2(c−k)

α
, 0

)
in the φ-axis. Making the trans-

formation dξ = (φ − c)dζ , φ �= c, system (3) becomes its regular associated system10

dφ

dζ
= 2y(φ − c),

dy

dζ
= −y2 + 2(k − c)φ + αφ2. (5)

Apparently, the straight line φ = c is a solution of system (5). On this straight line, system (5) has
two critical points S1,2(c,±√

Y0) when Y0 = αc2 + 2(k − c)c > 0. By the results10 and Theorem
A and Theorem B in Sec. I, we know that the dynamics of systems (3) and (5) are different in
the neighborhood of the straight line φ = c. Specially, the variable “ζ” is a fast variable while the
variable “ξ” is a slow variable in the sense of the geometric singular perturbation theory.

Let h0 = H (0, 0) = 0, h1 = H
( 2(c−k)

α
, 0

) = 4(c−k)3

3α2 , hs = H (c,±√
Y0) = c2

[
(c − k) − 1

3αc
]
.

Under the parameter condition of c > 0, k < c, system (5) has the phase portraits shown below in
Figs. 1(a)–1(c).

Let us first consider the parametric representations of the bounded orbits given by Fig. 1(a).
(i) For the family of periodic orbits of Eq. (3) defined by H(φ, y) = h, h ∈ (0, h1) in (4), we

see that y2 = α(− 3h
α

+ 3
α

(c−k)φ2−φ3)
3(c−φ) = α(r1−φ)(φ−r2)(φ−r3)

3(c−φ) . Thus, from the first equation of system (3) we
have

ξ =
√

3

α

∫ r1

φ

(c − φ)dφ√
(c − φ)(r1 − φ)(φ − r2)(φ − r3)

,

which leads to the parametric representation

φ(χ ) = r1 − α2
0 (c−r1)sn2(χ,k)
1−α2

0 sn2(χ,k)
,

ξ (χ ) = 2(c−r1)
√

α√
3(c−r2)(r1−r3)

	(arcsin(sn(χ, k)), α2
0, k),

(6)

where k2 = (r1−r2)(c−r3)
(c−r2)(r1−r3) , α2

0 = r1−r2
c−r2

,	(·, α2, k) is the elliptic integral of the third kind,
sn(u, k), cn(u, k), dn(u, k) are the Jacobian elliptic functions (see Byrd and Fridman20).

We notice from Fig. 1(a) that when parameter α is very close to 3(c−k)
c , we have 0 < |hs| and

hs is arbitrarily small. It implies that a segment of the homoclinic orbit defined by a branch of the
level curve H(φ, y) = 0 completely lies in a left neighborhood of the singular straight line φ = c.
By using Theorem A, the state coordinate y of the points in this segment rapidly jumps (following
ξ varies) from a positive number to negative number, such that this homoclinic orbit gives rise to a
solitary cusp wave.

In addition, from (6), one can easily see that

dφ

dξ
=

√
3α2

0sn(χ, k)cn(χ, k)dn(χ, k)√
α(1 − α2

0sn2(χ, k))
. (7)

When |h − hs| � 1, i.e., |1 − k| � 1 (�1 means very close to 1), the graph of dφ

dξ
is shown in

Fig. 2(a). Clearly, when χ = 4nK(k), n = 0, ± 1, ± 2, · · · , dφ

dξ
= 0, where K(k) is the complete

elliptic integral of the first kind with the modulo k. By Theorem A, when χ passes through 4nK(k),
its sign changes from + to − and its value jumps rapidly from a positive maximum to a negative
maximum. This fact implies that the wave profile of φ(ξ ), determined by the periodic orbit closing
to the homoclinic orbit, is a smooth periodic cusp wave (see Fig. 2(b). Finally, when h → 0, k → 1,
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(a)  alpha > 3(c−k)/c (b)  alpha = 3(c−k)/c

(c) 2(c−k)/c < alpha < 3(c−k)/c

FIG. 1. The phase portraits of (5) for c > 0, k < c.

the period of the periodic cusp wave solutions tends to ∞, thus, the homoclinic orbit in Fig. 1(a)
gives rise to a smooth solitary cusp wave solution of (3) (see Fig. 2(c)). Because for φ(ξ ) given by
(8), we have dφ

dξ
|ξ=0 = 0, therefore, the solitary cusp wave solution defined by (8) is not a peakon,

it is a pseudo-peakon.
(ii) For the homoclinic orbit defined by H(φ, y) = 0, let PM(φM, 0) be the intersection point of

the homoclinic orbit with the φ-axis. We know that φM = 3(c−k)
α

. When h = h0 = 0, Eq. (4) becomes

y = ±
√

αφ2(φM −φ)
3(c−φ) . Using the first equation of system (3) and taking initial value φ(0) = φM, we

obtain the parametric representation of the homoclinic orbit to the critical point E0(0, 0) defined by
H(φ, y) = 0 as follows:

φ(χ ) = 2cφM

(c−φM ) cosh(
√

cφM χ)+(c+φM )
,

ξ (χ ) =
√

3
α

[
cχ ∓ (

ln
∣∣√(φM − φ)(c − φ) + φ − 1

2 (c + φM )
∣∣ − ln

(
1
2 (c − φM )

))]
,

for χ ∈ (−∞, 0] and for χ ∈ [0,∞), respectively.

(8)

In a short, we have the following conclusion.
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FIG. 2. The change of wave profiles of φ(ξ ).

Theorem 1.
(1) When the parameter group (α, k, c) of system (3) satisfy the condition α > 3(c−k)

c with c >

0, k < c, there exists a homoclinic orbit of system (5) given by a branch of the curves H(φ, y) = 0.
The homoclinic orbit has the exact parametric representation given by (8).

(2) When α − 3(c−k)
c � 0 (�0 means very close to zero), i.e., 0 < |hs| � 0 (namely, |hs| is

strictly positive and arbitrarily small), as a limit curve of a family of periodic orbits of system (3)
defined by the closed branch of the curves H(φ, y) = h, h ∈ (h1, 0)) in Fig. 1(a), the homoclinic orbit
gives rise to a smooth solitary cusp-like wave solution (a pseudo-peakon) of equation (1).

(3) When h varies from h1 to h0 = 0, periodic wave solutions of equation (1) determined by
periodic orbits of system (3) will gradually become peaked periodic wave, and evolve from non-
peaked periodic waves to the smooth periodic cusp-like waves and finally converge to a smooth
solitary cusp-like wave (a pseudo-peakon).

Second, let us consider the parametric representations of the orbits given by Fig. 1(b). Now, we
have h0 = hs = 0.

(iii) For the family of periodic orbits of Eq. (3) defined by H(φ, y) = h, h ∈ (0, h1) in (4), we
have the same parametric representation as (6).

(iv) For two straight line orbits connecting the equilibrium points (0, 0) and (c, Y± ) of (4)
defined by H(φ, y) = 0, we have y2 = 1

3αφ2. Thus, by Theorem B in Sec. I, we can take initial
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value as φ(0) = c. Then, we have

u(x, t) = φ(ξ ) = ce
√

α
3 |ξ |

, (9)

which is a real peakon solution to equation (1). Therefore, we have

Theorem 2.
(1) When the parameter group (α, k, c) of system (3) satisfy the condition α = 3(c−k)

c with c >

0, k < c, there exists a heteroclinic loop of system (5) given by three branches of the curves H(φ, y)
= 0.

(2) As the limit curves of a family of periodic orbits of system (3), the curve triangle (i.e.,
heteroclinic loop) in Fig. 1(b) gives rise to a solitary peaked wave solution (a peakon) of equation
(1), which has the exact parametric representation given by (9).

(3) When h varies from h1 to 0, periodic wave solutions of equation (1) determined by periodic
orbits of system (3) will gradually become peaked periodic wave, and evolve from non-peaked
periodic waves to the smooth periodic cusp-like waves and finally converge to a solitary peaked
wave solution (a peakon).

Third, we discuss the exact solutions for the orbits shown in Fig. 1(c).
(v) For the family of periodic orbits of (3) defined by H(φ, y) = h, h ∈ (hs, h1) in (4), we see

that y2 = α(− 3h
α

+ 3
α

(c−k)φ2−φ3)
3(c−φ) = α(r1−φ)(φ−r2)(φ−r3)

3(c−φ) . Thus, we have from the first equation of (3) that

ξ =
√

3

α

∫ φ

r2

(c − φ)dφ√
(c − φ)(r1 − φ)(φ − r2)(φ − r3)

,

which implies the parametric representation

φ(χ ) = r2 + (r2−r3)sn2(χ,k)
1−α2

1 sn2(χ,k)
,

ξ (χ ) =
√

4α
3(c−r2)(r1−r3)

[
(c − r3)χ − (r2 − r3)	(arcsin(sn(χ, k)), α2

1, k)
]
,

(10)

where k2 = (r1−r2)(c−r3)
(c−r2)(r1−r3) , α1 = r1−r2

r1−r3
.

(vi) For the arch orbit defined by H(φ, y) = hs in (4), we have y2 = α
3 (cm − mφ + φ2), where

m = c − 3
α

(c − k). Hence, we obtain the parametric representation of the smooth periodic cusp-like
wave solution of (1) as follows:

φ(ξ ) = 1

2

[
−

√
m(m − 4c) cosh

(√
α

3
ξ

)
+ m

]
, 0 ≤ |ξ | ≤ cosh−1

(
m − 2c√

m(m − 4c)

)
. (11)

(vii) For the stable and unstable manifolds in the right phase plane of the critical point E0(0, 0)

defined by H(φ, y) = 0 in (4), we have y2 = α( 3
α

(c−k)−φ)φ2

3(c−φ) ≡ α(e1−φ)φ2

3(c−φ) .

On the basis of Theorem B in Sec. I, we can take initial value φ(0) = c. Using the first equation
of (3), we have the following cuspon solution of equation (1):

φ(ξ ) = 2e1c
(e1−c) cosh(χ)+(e1+c) , χ ∈ (−∞, 0] and χ ∈ [0,∞), respectively,

ξ (χ ) =
√

3
α

[√
c
e1

χ ∓ (
ln

∣∣√(e1 − φ)(c − φ) + φ − 1
2 (e1 + c)

∣∣ − ln
(

1
2 (e1 − c)

))]
.

(12)

According to (12), we may plot the graph of cuspon solution to equation (1) shown in Fig. 3.

Theorem 3. When the parameter group (α, k, c) of system (3) satisfy the condition 0 < α <
3(c−k)

c with c > 0, k < c, corresponding to the stable and unstable manifolds in the right phase plane
of the critical point E0(0, 0) in Fig. 1(c) defined by H(φ, y) = 0, equation (1) has a cuspon solution
given by (12) (because its left and right derivatives equal to positive infinity and negative infinity,
respectively).
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FIG. 3. The cuspon wave of equation (1).

III. PEAKON AND PSEUDO-PEAKON SOLUTIONS OF EQUATION (2)

Let u(x, t) = φ(x − ct) = φ(ξ ), ρ(x, t) = v(x − ct) = v(ξ ), where c is the wave speed. Then,
the second equation of (2) becomes

−cv′ + (vφ)′ = 0,

where “′” stands for the derivative with respect to ξ . Integrating this equation once and setting the
integration constant as B, B �= 0, it follows that

v(ξ ) = B

φ − c
. (13)

The first equation of (2) reads as

−cφ′′′ = −(A + c)φ′ + 3φφ′ − σ

[
1

2
(φ′)2 + φφ′′

]′
+ e0vv′.

Integrating this equation yields

(σφ − c)φ′′ = −1

2
σ (φ′)2 − (A + c)φ + 3

2
φ2 + e0 B2

2(φ − c)2
− 1

2
g, (14)

where g is an integration constant. Equation (14) is equivalent to the following two-dimensional
system:

dφ

dξ
= y,

dy

dξ
= −σ y2(φ − c)2 + (φ − c)2[3φ2 − 2(A + c)φ − g] + e0 B2

2(φ − c)2(σφ − c)
, (15)

which admits the following first integral:

H (φ, y) = y2(σφ − c) − φ3 + (A + c)φ2 + gφ + e0 B2

(φ − c)
= h. (16)

Without loss of generality, the wave speed c > 0 is given. Then, system (15) is a four-parameter
planar dynamical system with the parameter tuple (A, B, g, σ ).
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Assume A > 0. Imposing the transformation dξ = (φ − c)2(σφ − c)dζ for φ �= c, c
σ

on system
(15) with e0 = ± 1, leads to the following regular system:

dφ

dζ
= y(φ − c)2(σφ − c),

dy

dζ
= −1

2
σ y2(φ − c)2 + 1

2
[(φ − c)2(3φ2 − 2(A + c)φ − g) + e0 B2].

(17)

Apparently, two singular lines φ = c and φ = c
σ

are two invariant straight line solutions of (17). Near
these two straight lines, the variable “ζ” is a fast variable while the variable “ξ” is a slow variable
in the sense of the geometric singular perturbation theory.

To see the equilibrium points of (17), let us mark and calculate the following

f (φ) = (φ − c)2(3φ2 − 2(A + c)φ − g) + e0 B2, (18)

f ′(φ) = 2(φ − c)[6φ2 − 3(A + 2c)φ + c(A + c) − g], (19)

f ′′(φ) = 2(18φ2 − 6(A + 4c)φ + c(4A + 7c) − 2g. (20)

Apparently, f ′(φ) has one zero at φ = φs1 = c. When 
 = 9A2 + 12Ac + 12c2 + 24g > 0, f ′(φ)
has two zeros at φ = φ̃1,2 = 1

12 [3(A + 2c) ∓ √

]. So, we have f(c) = e0B2, f ′(c) = 0, and f ′′(c) =

2(c2 − 2cA − g), f(0) = e0B2 − gc2.
In the φ-axis, the equilibrium points Ej(φj, 0) of (17) satisfy f(φj) = 0. Geometrically, for a

fixed c > 0, the real zeros φj (j = 1, 2 or j = 1, 2, 3, 4) of the function f(φ) can be determined
by the intersection points of the quadratic curve y = 3φ2 − 2(A + c)φ − g and the hyperbola
y = − e0 B2

(φ−c)2 . Obviously, system (17) has at most 4 equilibrium points at Ej(φj, 0), j = 1, 2, 3, 4. On
the straight line φ = c, there is no equilibrium point of (17) if B �= 0. On the straight line φ = c

σ
,

there exist two equilibrium points S∓
(

c
σ
,∓Ys

)
of (17) with Ys =

√
f ( c

σ
)

σ ( c
σ
−c)2 , if σ f ( c

σ
) > 0.

Next, we assume that e0 = 1. Let hi = H(φi, 0) and hs = H
(

c
σ
,∓Ys

)
, where H is given by

(16).
For a given wave speed c > 0, assume that one of the following two conditions holds:
(1) g > 0, c < A +

√
A2 + g. For given A and g, f (φ̃1) < 0, f (φ̃2) < 0.

(2) g < 0, A2 + 4g > 0, A −
√

A2 + g < c < A +
√

A2 + g. For given A and g, f (φ̃1) <

0, f (φ̃2) < 0.
Then, Eq. (17) has four simple equilibrium points Ej(φj, 0), j = 1, 2, 3, 4, satisfying φ1 < φ̃1 <

φ2 < c < φ3 < φ̃2 < φ4. Notice that for every j = 1, 2, 3, 4, φj does not depend on the parameter σ .
Suppose that σ < 1. Then, we have the following different topological phase portraits of

Eq. (15) shown in Figs. 4(a)–4(c).
Let us first consider exact solutions of the orbits shown in Fig. 4(a).
From (16), for a given integral constant h, we have

y2 = (φ − c)[φ3 − (A + 2c)φ2 − gφ + h] − e0 B2

(φ − c)(σφ − c)
≡ G(φ)

(φ − c)(σφ − c)

= φ4 − (A + 2c)φ3 + (c2 + Ac − g)φ2 + (h + cg)φ − (ch + e0 B2)

(φ − c)(σφ − c)
. (21)

In light of the first equation of (15) and taking integration on a branch of the invariant curve H(φ, y)
= h with initial value φ(ξ 0) = φ0, one can obtain

ξ − ξ0 = ±
∫ φ

φ0

√
(φ − c)(σφ − c)

G(φ)
dφ. (22)

(i) The homoclinic orbit of system (15) to the saddle point E3(φ3, 0) is a closed branch of the level
set H(φ, y) = h3, which is around the center E4(φ4, 0) in Fig. 4(a). In this case, function G(φ) in (21)
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(a) (b)

(c)

FIG. 4. The bifurcations of phase portraits of system (15) when σ < 1 and φ4 < c
σ

.

can be written as G(φ) = (φM − φ)(φ − φ3)2(φ − φm), where (φM, 0) is the intersection point of
the homoclinic orbit with the φ-axis. Thus, the right-hand side of (22) reads as

√
σ

∫ φM

φ

√
( c
σ

− φ)(φ − c)dφ

(φ − φ3)
√

(φM − φ)(φ − φm)
= √

σ

∫ φM

φ

[
φ√

F1(φ)
+ A11√

F1(φ)
+ A12

(φ − φ3)
√

F1(φ)

]
,

(23)

where F1(φ) = ( c
σ

− φ)(φM − φ)(φ − c)(φ − φm), A11 = φ3 − c(σ−1 + 1), A12 = c2σ−1 +
φ3[φ3 − c(σ−1 + 1)].

So, we have the following parametric representation of the solitary wave solution of (2):

φ(χ ) = φM − c
σ
α2

1 sn2(χ,k)

1−α2
1 sn2(χ,k)

,

ξ (χ ) = g̃
√

σ
[
±

(
A11 + c

σ
+ σ A12

(c−σφ3)

)
χ

+(φM − c
σ

)	(arcsin(sn(χ, k)), α2
1, k)

+ A12(c−σφM )
(φM −φ3)(c−σφ3)	(arcsin(sn(χ, k)), α2

2, k)
]
,

(24)
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where g̃ = 2√
( c

σ
−c)(φM −φm )

, α2
1 = φM −c

c
σ
−c , α2

2 = α2
1 ( c

σ
−φ3)

φM −φ3
, k2 = (φM −c)( c

σ
−φm )

( c
σ
−c)(φM −φm ) ,	(·, α2, k) is the elliptic

integral of the third kind, sn(u, k) is the Jacobian elliptic function (see Byrd and Fridman20).
(ii) The homoclinic orbit of system (15) to saddle point E1(φ1, 0) is a closed branch of the level

set H(φ, y) = h1, which is around the center E2(φ2, 0) in Figs. 4(a)–4(c). In this case, function G(φ)
in (21) can be written as G(φ) = (φL − φ)(φM1 − φ)(φ − φ1)2, where (φM1 , 0) is the intersection
point of the homoclinic orbit with the φ-axis. Hence, the integral on the right side of (22) leads to

√
σ

∫ φM1

φ

√
( c
σ

− φ)(c − φ)dφ

(φ − φ1)
√

(φL − φ)(φM1 − φ)
= √

σ

∫ φM1

φ

[
φ√

F2(φ)
+ A21√

F2(φ)
+ A22

(φ − φ1)
√

F2(φ)

]
,

(25)

where F2(φ) = (φL − φ)( c
σ

− φ)(c − φ)(φM1 − φ), A21 = φ1 − c(σ−1 + 1), A22 = c2σ−1 +
φ1[φ1 − c(σ−1 + 1)].

Therefore, we obtain the following parametric representation of solitary wave solution of (2):

φ(χ ) = (φL −c)φM1 −c(φL −φM1 )sn2(χ,k)
(φL−c)−(φL −φM1 )sn2(χ,k) ,

ξ (χ ) = ĝ
√

σ
[(

A21 + c2

σφM1
+ A22

φL−φ1

)
χ

+ c(φM1 −c)
σφM1

	(arcsin(sn(χ, k)), α2
3, k)

+ A22(φL− c
σ

)
( c

σ
−φ1)(φL −φ1)	(arcsin(sn(χ, k)), α2

4, k)
]
,

(26)

where ĝ = 2√
(φL−c)( c

σ
−φM1 )

, α2
3 = φL −φM1

φM1 −c , α2
4 = (c−φ1)α2

φM1 −φ1
, k2 = ( c

σ
−c)(φL −φM1 )

(φL−c)( c
σ
−φM1 ) .

Second, we investigate exact parametric representations of the two heteroclinic orbits of (15)
defined through H(φ, y) = h3 = hs in Fig. 4(b).

(iii) In this case, function G(φ) in (21) can be written as G(φ) = ( c
σ

− φ)(φ − φ3)2(φ − φl).
Hence, taking integrals along the heteroclinic orbits E3S+ and E3S− , choosing initial value

φ(0) = c
σ

, we arrive at

± ξ√
σ

=
∫ φ

c
σ

dφ√
(φ − c)(φ − φl )

+ (φ3 − c)
∫ φ

c
σ

dφ

(φ − φ3)
√

(φ − c)(φ − φl)
. (27)

Thus, we obtain a new peakon solution of (2) as follows:

φ(χ ) = B0
2

[
eχ +

(
c−φl

2B0

)2
e−χ + c+φl

B0

]
, χ ∈ (−∞, 0]

ξ (χ ) = √
σ

[
χ −

√
φ3−c
φ3−φl

ln
(√

X (φ(χ)−φ3)+√
X (φ3))

φ(χ)−φ3
+ 2φ3−c−φl

2
√

X (φ3)

)
+ B1

] (28)

and

φ(χ ) = B0
2

[
e−χ +

(
c−φl

2B0

)2
eχ + c+φl

B0

]
, χ ∈ [0,∞),

ξ (χ ) = √
σ

[
χ +

√
φ3−c
φ3−φl

ln
(√

X (φ(χ)−φ3)+√
X (φ3))

φ(χ)−φ3
+ 2φ3−c−φl

2
√

X (φ3)

)
− B1

]
,

(29)

where X (φ) = (φ − c)(φ − φl), B0 = √
X ( c

σ
) + c

σ
− 1

2 (c + φl),

B1 =
√

φ3−c
φ3−φl

ln

(√
X ( c

σ
−φ3)+√

X (φ3)
c
σ
−φ3

+ 2φ3−c−φl

2
√

X (φ3)

)
.

Third, we consider exact cuspon solutions of (2) shown in Fig. 4(c).
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(iv) The stable and unstable manifolds in the right phase plane of the critical point E3(φ3, 0),
defined by H(φ, y) = h3 in (16), approach the singular straight line φ = c

σ
. The function G(φ) in

(21) can be written as G(φ) = (φL − φ)(φ − φ3)2(φ − φl). On the basis of Theorem B in Sec. I,
we can take initial value φ(0) = c

σ
. Thus, the right-hand side of (22) reads as

√
σ

∫ c
σ

φ

√
( c
σ

− φ)(φ − c)dφ

(φ − φ3)
√

(φL − φ)(φ − φl)
= √

σ

∫ c
σ

φ

[
φ√

F3(φ)
+ A11√

F3(φ)
+ A12

(φ − φ3)
√

F3(φ)

]
, (30)

where F3(φ) = (φL − φ)( c
σ

− φ)(φ − c)(φ − φl), A11 = φ3 − c(σ−1 + 1), A12 = c2σ−1 +
φ3[φ3 − c(σ−1 + 1)].

So, we have the following parametric representation of the cuspon solution to (2):

φ(χ ) = c
σ
−φlα

2
5 sn2(χ,k)

1−α2
1 sn2(χ,k)

,

ξ (χ ) = ǧ
√

σ
[(

A11 + φL + A12
(φL−φ3)

)
χ

+( c
σ

− φL )	(arcsin(sn(χ, k)), α2
5, k)

+ A12(φL− c
σ

)
(φL −φ3)( c

σ
−φ3)	(arcsin(sn(χ, k)), α2

6, k)
]
,

(31)

where ǧ = 2√
( c

σ
−φl )(φL −c)

, α2
5 = c

σ
−c

φL−c , α
2
6 = α2

5 (φL−φ3)
( c

σ
−φ3) , k2 = (φL −φl )( c

σ
−c)

( c
σ
−φl )(φL−c) .

As an example, we take the following parameter values: A = 2.5, B = 0.6, g = 10.508762, σ =
0.55, and c = 3. Then, we have φ1 = − 0.7849973408, φ2 = 2.856376463, φ3 = 3.153057853, φ4 =
4.442229691, φs = 5.454545455, Ys = 5.847639686, and h1 = − 4.471516330, h2 = 49.07945187,
h3 = hs = 58.81955436, h4 = 67.80535766. Under this parameter condition, the phase portrait of
system (15) is shown in Fig. 5(a). Corresponding to the curve defined by H(φ, y) = h3 = hs, we
obtain a peaked solitary wave solution to equation (2) shown in Fig. 5(b).

Next, we take A = 2.5, B = 0.6, g = 10.49, σ = 0.55, and c = 3. Then, we have a similar phase
portrait as Fig. 4(a). In this case, we know that φM = 5.45224874, which is close to φ = φs1 = c

σ
=

5.454545455. In addition, φM1 = 2.993827677 is close to φ = φs2 = c = 3.
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FIG. 5. A peaked solitary wave solution defined by formulas (28) and (29).
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FIG. 6. The change of wave profiles of φ(ξ ).

By taking initial values φ(0) = φM1 − 0.001, φ(0) =φM1 − 0.0001, φ(0) = φM1 − 0.00001,

φ(0) = φM1 , respectively, we obtain three profiles of periodic cusped solutions and a pseudo-peakon
solution of equation (2) shown in Figs. 6(a)–6(d).

By taking other initial values φ(0) = φM − 0.1, φ(0) = φM − 0.001, φ(0) = φM − 0.00001,
φ(0) = φM, respectively, we may obtain three profiles of periodic cusped solutions and a pseudo-
peakon solution of equation (2) shown in Figs. 7(a)–7(d).

In a summary, we obtain the following results.

Theorem 4. Suppose that the travelling wave system (15) of equations (2) satisfies the parameter
condition σ < 0, g > 0, c < A +

√
A2 + g and for given A and g, f (φ̃1) < 0, f (φ̃2) < 0. Then, we

have the following results:
(1) If the parameter group (A, B, σ , g, c) make the numbers φM and φM1 very close to φ = c

σ

and φ = c, respectively, then, corresponding to two homoclinic orbits of system (17) defined by
H(φ, y) = h3 and H(φ, y) = h1 in (16), respectively, the formulas (24) and (26) give rise to two
pseudo-peakon solutions of equation (2).

(2) Corresponding to the heteroclinic loop of system (17) defined by H(φ, y) = hs in (16),
formulas (28) and (29) gives rise to a peakon solution of equation (2).

(3) Corresponding to the stable and unstable manifolds in the right phase plane of the critical
point E3(φ3, 0), defined by H(φ, y) = h3 in (16), formulas (31) gives rise to a cuspon solution of
equation (2).
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FIG. 7. The change of wave profiles of φ(ξ ).
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