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Abstract It is proven that on a symplectic submanifold the restricted c-KdV flow is just the
interpolating Hamiltonian flow of invariant for the restricted Toda flow, which is an integrable
symplectic map of Neumann type. They share the common Lax matrix, dynamical r-matrix
and system of involutive conserved integrals. Furthermore, the procedure of separation of
variables is considered for the restricted c-KdV flow of Neumann type.
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I. Introduction

It is well known that the nonlinearization method of Lax pair is applied to generate fi-
nite dimensional continuous integrable systems as well as discrete integrable systems.[!=" In
continuous case we can obtain finite dimensional integrable Hamiltonian systems, while in
discrete case the integrable symplectic maps. For example, in continuous case two kinds of
nonlinearized c-KdV flows (Bargmann and Neumann types) were proven to be completely in-
tegrable finite dimensional Hamiltonian systems by Cao and Geng.[l And in discrete case two
kinds of integrable symplectic maps (discrete Bargmann and Neumann types) were studied
by Ragnisco, Cao and Wu.l8"] Whether finite dimensional integrable Hamiltonian systems or
integrable symplectic maps, all of them possess sufficiently many involutive conserved inte-
grals. In general, an integrable symplectic map has a set of continuous invelutive conserved
integrals.[7:8]

In Ref. [9], we reported an interesting and amazing fact: the discrete and continuous in-
tegrable systems share the same Lax matrix and r-matrix with the good property of being
nondynamical. Recently, Qiao and Strampp have found three further pairs of different con-
tinuous integrable systems sharing the common r-matrix again being nondynamical.l'¥ To
our knowledge, these are so far the only four examples of pairs of different finite dimensional
integrable systems possessing the above property. Then the question arises whether or not
these pairs can be restricted into a symplectic submanifold to retain the above property. We
will give a sure reply in this paper.

Applying the previous ideal'!l to a symplectic submanifold, we shall show that on this
symplectic submanifold the restricted ¢-KdV flowl is just the interpolating Hamiltonian flow
of invariant of the restricted Toda flow being an integrable symplectic map of Neumann type.
They share the common Lax matrix, dynamical r-matrix and system of involutive conserved
integrals. The whole paper is organized as follows. In the next section, beginning with a Lax
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matrix endowed with two different auxiliary matrices, we present another Lax representation
for the restricted Toda flow (a discrete system of Neumann type) ever considered in Ref. [6] and
the Lax representation for the restricted c-KdV flow (a continuous system of Neumann type).
In Sec. III, introducing Dirac bracket on a symplectic -submamfold we inlay the restricted
c-KdV flow in it. Then we give the common r-matrix (dynamical) of the restricted c-KdV
flow and the restricted Toda flow under this Dirac bracket, which guarantees the integrability
of them. Section IV is devoted to describing the separability of variables for the restricted
c-KdV flow. Some remarks are given in the last section.

Before displaying our main results, let us give some basic symbols and notations. Let dpA
dg = E;V , dp; Adg; be astandard symplectic structure in the Euclid space R = {(p,q)lp =
(p1,---,oN)yq = (q1,- - ,an)}s A1, ---, An be N arbitrary given distinct parameters, Aand g
be two different spectral parameters, and {, ) stands for the standard inner-product in the
Buclid space RY. Denote A by A = diag (A1,---,An). On symplectic manifold (R*N,dpAadg)
the Poisson bracket of two Hamiltonian functions F, G is defined by

N
iy ik O Pi Ugi
I1. Lax Representations of the Restricted Toda and c-KdV Flows
In the light of thought in Ref. [11], we first introduce the following 2 x 2 traceless matrix

cetona-(§ ) Ers (g )= ).

When viewing the variables ¢ and p as the functions of continuous variable z, we give an

(the Lax matrix)
1

auxiliary matrix U as
i (—%M%uﬁq,q) ~ 1 (p,p) )
1)/

~1 g 5(ig,q)—
After a direct calculation, we have the following theorem.

3)

Theorem 1. The continuous Lax equation

L,=[UL=UL-LU, L,=0L/8z, (4)
is equivalent to a continuous Neumann type of finite dimensional Hamiltonian system (called
the restricted c-KdV flow)

Piz = —3A;p; + $((Ag,q) — L)p; + (p, P}y,

Qe = —Pj + '""3‘13 i _((AQ}"J') = L)g;, i=12,---,N,
@way=1  {op)=3- (5)
Set
u={Ag,q) -1, v={(pp), (6)
then equation (5) reads
Piz = —3\Dj + 3up; +vgj, @iz = —P; + 1Ajg; — Sug;,  §=1,2,---,N,
@ay =1  (&p) =3 (")
which is the c-KdV spectral problem!(!?l
1 ;
wz:( 2:@& %,\i%@)@ (®)

with the above two constraints (6), A = A;, ¥ = (p;,q; Y. Simultaneously, the potentials
u, v determined by Eq. (6) exactly give the Neumann type of constraintl! G_; = (1,1)T =
Zj:;l(cf)\j /8u, 6, /6v)T of the ¢-KdV spectral problem (8).
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\ Now, we turn to the Lax matrix (2). After introducing another auxiliary matrix U,

n

d o 0 a

' U= 9
). ‘ (—1/a (/\-—b)/a) ©)
d " with a2 = (Aq — p,Ag — p) + {Ag,q) — (Ag,q)? and b = (Ag,q) — 1, we have the following
\ theorem through a lengthy but direct calculation.

3 Theorem 2. The discrete Lax equation

L'0=0L, L =L)\p ") ' (10)

A | is equivalent to a discrete Neumann type of finite dimensional symplectic map H: (p,q)T —
= | (p',¢")" from R2N to 12V,
h.u | P;=Gst Q.';:aﬁl()\g%—pj_b%)v j:].,z,"',N, (Q:Q):la (Q:p>: ;ﬁ! (11)
e
5 | which is called the restricted Toda flow.

| Remark I. When we understand the above two matrices L' and 7 in the sense L' — Ly,

‘ U — Un (i€, ¢ = Gn, P = Pny @ = Qn, b — by, here n s the discrete variable), then

(1) the restricted Toda flow (11) on the symplectic submanifold M = {(g,p) € R\ e gyi=1,
{q,p) = %} is nothing but the discrete Neumann system studied by Ragnisco.(®!

Remark 2. For the restricted Toda flow (11), two other Lax representations were presented

g in Refs [6] and [13). Comparing with them, our Lax matrix (2) is much like that in Ref. [13],
but the auxiliary matrix U is evidently different. Due to the choice of our matrices (2) and

(2) U, from the next section we can see that the procedure of r-rnatrix is simple.

- III. Dynamical r-Matrix and Integrability

In the last section, starting from the Lax matrix (2), we obtained a discrete finite di-
| mensional symplectic map (11) and a continuous finite dimensional Hamiltonian system (5)
(3) through introducing two different auxiliary matrices. Since their Lax matrices are the same,
they should have a common r-matrix. In this section, the dynamical common r-matrix is pre-
sented, and with the aid of this 7-matrix, equations (5) and (11) are shown to be completely
integrable in Liouville's sense.

(4) To see this, on the symplectic submanifold in RN M ={(q,p) € R?|F = {q,q)—1=0,
lled G = {q,p) — 1/2 = 0}, we introduce a Dirac bracket
{f.g}p ={f,9} + ({7, FHG. g} — {f,GHF'g}), (12)

which can be easily proven to be a Poisson bracket. With Eq. (12), a direct calculation yields

Proposition 1. The restricted ¢-KdV flow (5) can cast the Hamiltonian canonical equation
(5) in the Dirac bracket ’

Qj,:c:{er-FI}D: Pj.:l:z{pj:H}Da jzl,Z,---,N

| (6) _ with a Hamiltonian
H = }{Ap,q) — §(p.p)- (13) |
(1) Proposition 2. Let A()), B(}), C(}) be defined in Eq. (2). Then
{AN), Aw}p ={C(N), C(w)}p =0,
(8) {B(A), B()}o ‘“2[3( ) = B()] + 4[A(N)B(p) — A(w)B(A)],
Ll {A(), B(w)}p = —~[B( ) — B(u)] = 2C(N)B(p),
7 = | 2

AN, Cp }D—

[C(u) - CN] + 20(NC (k)
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4 ;
{B(A\),C(w)}p = ;_;'—_A{A(A) — A(p)] +2C () — 4ANC (1) - (14)
Let Li(A) = L(N) @1 and La(p) = I ® L(p), here I is the 2 X 2 unit matrix. Then from the

above proposition we have

Theorem 3. The Lax matrix L defined by Eq. (2) satisfies the fundamental Poisson bracket

(L) @ L)} = [riz(h 1), L] = [ran (s ), La (k)] (15)
with a dynamical r-matrix r12(A, p) = —[2/(p — 2P + S12(X, 1), rar(A ) = Pria(p, AP,
where

Fi;is a special 2 X 2 matrix with i-th row and j-th column element €;; = 1, other elements 0;
P = (I+ }:?:1 0; ® 0;) is a permutation matrix; o5 (j = 1,2,3) are Pauli matrices.

By the r-malrix relation expression (15), we immediately obtain(*4]

{L2(\) © L)} p = [Fra(h ), Li(A)] = [P (1, 2), La(w)]

1 1
v = 3 LI W I La(w), 8 =12, 2L (16)
k=0 =0
Then, it follows from Eq. (16) that
A{Tx L2(A), Tr L3 ()}p = T {Z7(N) § L*(W)}p =0 (17)

Apparently, the Lax matrix (2) yields

N
1 1 E;
det L(A) = —5 Tr L)) = 3+ Y —t=

e,

=1
N (@p —pigi)’
E; = Ei(p,q) = piti + Z -L)\-J"—__“;—J", gre=L oy I (18)
ptig=t

Substituting Eq. (18) into Eq. (17), we get {Ei,Ei}p = 0, ,5,= 1,---,N. For the
restricted Toda flow (11) on the symplectic submanifold M, we have E;(p',q') = E;i(p,q)
as well as Yo By = {p,q) = % from the discrete Lax equation (10). Therefore, among
Ey, Eq,+--,En only Ey, Eg, -, Byn_1 are independent of M. Thus, we obtain

Proposition 3. The restricted Toda flow H is completely integrable, and its independent
and invariant (N — 1)-involutive systems are (B}

For the restricted c-KdV flow on M, we have H = -12—2;.\;1 );E; — 5, which implies
{(H,E;}p=0,7=1,2,-- , N. Therefore, we get

Proposition 4. The restricted c-KdV flow (H) (5) is completely integrable, and its inde-
pendent (N — 1)-involutive systems are {Ek}fz_ll, too.

Remark 3. As shown above and in Ref. [9], the restricted (i.e. Neumann type) Toda flow and
restricted c-KdV flow, and the constrained (i.e. Bargmann type) Toda flow and the constrained
c-KdV flow share the completely same involutive conserved integrals, respectively. Thus, we
say that both the restricted and constrained finite dimensional integrable c-KdV flows are the
interpolating Hamiltonian flow of invariant of the corresponding Toda integrable symplectic
map.

IV. Separability of Variables for the Restricted c-KdV Flow
The separation of variables for the restricted Toda flow was studied in Ref. [6]. In this
section, we consider the separation of variables of the restricted c-KdV flow on M.

- N
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As usual,['9] let us first introduce new coordinates on the 2N — 2 dimensional symplectic
submanifold M in R?M. Let uy,---,un_1 be the N — 1 zero points of C'(A) and vy, -+, 9y_1
be the half values of A(A) on these points, i.e.,

i ¢ LSO -w)
i=1 A=A ﬂ}\':l(f\ —Aj)

For these new N — 1 pairs of variables ug, vy, it is easy to show(6]

U;,_:%A(uk), k=12, ,N—1. (19)

Proposition 5. New coordinates {uy, vk}kN:_ll are canonically conjugated on the symplectic
submanifold M in R?V, ie.,

{uj,ux}p = {vj,ve}p =0, {uj,ve}p = i, jk=1,2,-- ,N—1. (20)
Write
det L{\) = P(A)/K()), (21)
where K (}) =4 Hszl()\— Ap) = 42;}':1(_1);5%;/\!\:’—;'1 and PQ) = AN+ Py 2V-14...4 B
is a polynomial of order N in terms of A\. Equation (21) yields

Py_) = —a; 4+ 2, Py _os=ag—2a; +8H 1. (22)
Generally, each P is consisted of involutive functions E; and constants A;, thus Py and P;

are in involution. For our Hamiltonian function H, we have H = é(_PN._g — 1+ 20 — ag).

In the following, motivated by Refs [17] and [18] we consider the separation of variables
for the Hamiltonian P(A). From Eq. (21),

P(ug) = —4vp K (uy,), k=1,--- N—1. (23)
Using the Lagrange interpolation, P(A) can be expressed as

N-1 N-1
P(A) = Q()) (A-i—?—al-i—Zuk) Z mmvﬁ, QN = [T -w). (24)

1
Replace v by 85/8uy and interpret the meﬂicxents of P(A), Py, Py, -+, Py_q, as the integral
constants. The Hamilton—Jacobi equation follows

we know

N—1
QMK (ug) (068
MNA+2—a - =P(A). 25
Q( )( + o F;uk) Z O —un)@Q’ (uk)(auk) (A) (25)
We wish to look for the action function § w1tl1 the form
N-1
S(ur, - un—1) = Y sk(ux) . (26)
k=1
Inserting Eq. (26) into Eq. (25), dividing the two sidcs by Q(A) and taking residue of
Eq. (25) at A = uy, we get 4(dsk/8uk) = —P(uy) /K (ug), -+, N — 1. Finally, we have
/ A)
/ —E(——~ dX. (27)
Therefore the linearized coordinates are
s 1 f Mo
D W —______d)\, =0,---,N—2. 28
@ orP;, 4 Z /—K(A\)P(X) J (28)

Thus, on the symplectic submanifold (M, Z dQ_, A dP;) the phase flow generated by the
Hamiltonian function H is

P=F2, Qi =Q%+ 16, N2z, §=0,1,:.- ,N—-2, (29)
where P::-:’ and Q? are 2N — 2 constants. This is the linearized equation of the restricted c-KdV

flow on M. In a further procedure we can obtain the algebraic-geometric solution of c-KdV
equation using the method described in Refs [11] and [16], which is omitted here.
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V. Conclusion

Before starting our conclusions, it seems necessary to re-stress the two “technical terms”
usually used in the theory of integrable systems in order to avoid confusion: one is “con-
strained flow”, which means the finite dimensional Hamiltonian flow or symplectic map in
R2N under the Bargmann type of constraint; the other “restricted flow” means the finite di-
mensional Hamiltonian flow or symplectic map on some symplectic submanifold of R*N under
the Neumann type of constraint. In the future, we shall insist on this principle.

In the present paper, we apply the idea proposed in Ref. [11] to some submanifold in R*N
determined to be symplectic by the Neumann type of constraint. By making use of the Dirac
bracket (i.e. Poisson bracket on a symplectic submanifold), it results in the two restricted flows
(one the discrete Toda symplectic map, the other the continuous ¢-KdV Hamiltonian system)
sharing the same r-matrix being dynamical instead of nondynamical. This point is innately
different from that in Refs [9] and [10].

Besides the pair of constrained Toda flow and ¢-KdV flow presented in Ref. [9], recently
other three further pairs!!® of different constrained flows are found to possess the common
r-matrix with an interesting property being nondynamical instead of dynamical. All those
results were given under the Bargmann type of constraint in the continuous cases. As for the
Neumann type of constraint, we first time discuss here the two restricted flows owning the
same r-matrix being dynamical on a symplectic submanifold.

Since the constrained or restricted discrete Toda and continuous c-KdV flows have the
same Lax matrix, r-matrix and involutive conserved integrals, we can come out this result:
can the discrete Toda symplectic map become an exact discretization of the continuous c-
KdV flow? This problem is still open. Additionally, because of the examples in Ref. [9] and
this paper, we would like to give a further conjecture: whether can any finite dimensional
continuous Hamiltonian flow correspond to a finite dimensional discrete symplectic map such
that they share a common Lax matrix? If this is OK, then the discrete integrable systems will
be greatly enlarged.
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