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Future Stream Time Series
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Abstract—With the advance of hardware and communication technologies, stream time series is gaining ever-increasing attention
due to its importance in many applications such as financial data processing, network monitoring, Web click-stream analysis, sensor
data mining, and anomaly detection. For all of these applications, an efficient and effective similarity search over stream data is
essential. Because of the unique characteristics of the stream, for example, data are frequently updated and real-time response is
required, the previous approaches proposed for searching through archived data may not work in the stream scenarios. Especially, in
the cases where data often arrive periodically for various reasons (for example, the communication congestion or batch processing),
queries on such incomplete time series or even future time series may result in inaccuracy using traditional approaches. Therefore, in
this paper, we propose three approaches, polynomial, Discrete Fourier Transform (DFT), and probabilistic, to predict the unknown
values that have not arrived at the system and answer similarity queries based on the predicted data. We also apply efficient indexes,
that is, a multidimensional hash index and a B*-tree, to facilitate the prediction and similarity search on future time series, respectively.
Extensive experiments demonstrate the efficiency and effectiveness of our methods for prediction and answering queries.

Index Terms—Similarity search, stream time series, prediction, polynomial, DFT, probabilistic.

1 INTRODUCTION

ECENTLY, stream time series data management has

become a hot research topic due to its wide application
usages such as Internet traffic analysis [8], sensor network
monitoring [51], moving object search [11], financial data
analysis [44], [49], and the like. All these applications
require continuously monitoring stream time series data in
real time. Compared to traditional archived time series
data, stream time series data have their own characteristics,
that is, data are frequently updated. Therefore, previous
methods for similarity search over archived time series data
may not work in this scenario. For example, in sensor
networks, the system continuously receives data from
sensors, which often arrive periodically due to various
reasons such as communication congestion in the network
or batch processing [2]. In this case, for similarity queries
over the time when data are not being updated, previous
approaches can only perform searches on incomplete time
series (or previously received time series). Thus, the answer
is often inaccurate due to the missing data. Furthermore,
some other applications may even request a similarity
search on the data some time in the future. As an example,
in a real-world coal mine surveillance application [45],
hundreds of sensors are deployed throughout channels to
measure the density of oxygen, gas, and dust, together with
the temperature, humidity, and structural integrity in the
mine. For the safety of workers, the coal mine manager
needs to detect as early as possible the gas leakage or low
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oxygen density, which follows certain patterns in a contour
map. In this case, since we do not have any knowledge of
the exact future subsequences (from sensor data), queries
cannot be answered without guesswork. Therefore, it is
very important to predict future subsequences (patterns)
and efficiently perform a similarity search over them to find
emergency events following particular patterns. Motivated
by this, in this paper, we focus on tackling the problem of
predicting values that have not arrived in the stream time
series and building efficient indexes for both prediction and
similarity search on these “future” series.

Previous work on predicting future data mainly use
fuzzy methods [25], [32] or data mining techniques [18],
[41], [43], [31] to extract features from the training data set
and perform the prediction tasks on real-time series.
However, in order to achieve accurate results that are
insensitive to the evolving data, these methods usually
require training the predictors on the actual data at high
cost. Therefore, although these approaches can lead to
good offline prediction accuracy given appropriate train-
ing, they are generally not suitable for the online stream
environment, which requires low prediction and training
costs. Moreover, previous methods often design compli-
cated models that are specific to some concrete applica-
tions, for example, prediction in binary time series [17].
However, in this paper, we are seeking general solutions
that are straightforward yet effective. Furthermore, pre-
vious approaches do not give any confidence for the
prediction (the confidence can be arbitrary within [0, 1]),
whereas one of our proposed methods, the probabilistic
approach, can predict values while explicitly providing a
confidence, which has many applications. As in the earlier
example [45], predicting an emergency (for example, the
dust density exceeds a threshold in a coal mine) often
requires the prediction confidence.

The main contributions of our paper are summarized as
follows:
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1. We present the polynomial approach that predicts
future values based on the approximated curve of
the most recent values.

2. We illustrate the Discrete Fourier Transform (DFT)-
based prediction technique that forecasts the future
values using approximations in the frequency
domain.

3. We propose another prediction method, the prob-
abilistic approach, to predict future values according
to aggregates of all the data in history. Moreover,
our probabilistic approach can provide the confi-
dence of predicting values and is adaptive to the
possible change of data, because it can efficiently
feed the prediction error back.

4. We present indexes for the probabilistic approach
that efficiently facilitate prediction and similarity
queries in the stream environment.

5. Last but not least, we further extend the probabilistic
approach to the group probabilistic approach by
utilizing the correlations among stream time series.

The rest of the paper is organized as follows: We present

a brief review on the related work about the similarity
search on the archived time series and prediction techni-
ques in Section 2. Section 3 formally defines our problem
and illustrates the general framework. We demonstrate our
polynomial, DFT, and (group) probabilistic approaches in
Section 4. Section 5 discusses indexes for the probabilistic
method. We evaluate the prediction and query accuracy, as
well as efficiency, with extensive experiments. Finally, in
Section 7, we conclude this paper.

2 RELATED WORK

Section 2.1 reviews the traditional similarity search in time-
series databases, as well as various dimensionality reduc-
tion techniques. Section 2.2 briefly presents the previous
work on value predictions.

2.1 Similarity Search in Time Series Databases

Similarity search over time series data has been studied for
many years. Most of the proposed methods focus on
searching over historical data. Specifically, given a query
sequence Q (={qi,q,.-.,qr}) of length L and similarity
threshold ¢, a similarity query finds all the (sub)sequences
S (={s1,52,...,s.}) with length L in the database that are
similar to @, satisfying dist(Q, S) < e, where the distance
function dist(Q, S) between @ and S can be L,-norms [1],
[13], Dynamic Time Warping (DTW) [3], [23], [26], [47],
Longest Common Subsequence (LCSS) [5], [12], [40], Edit
Distance on Real Sequence (EDR) [11], Edit Distance with Real
Penalty (ERP) [9], or some other measures. For simplicity,
throughout this paper, we use the euclidean distance
(Lg-norm) between @ and S as our metric, which is defined
as follows:

dist(Q,S) =

In order to efficiently perform the similarity search,
Agrawal et al. [1] and Faloutsos et al. [13] transform the
(sub)sequences of length L to lower s-dimensional points

(s < L) with a dimensionality reduction technique, DFT
[1], and then insert them into an R-tree [4]. Other
reduction techniques include Singular Value Decomposition
(SVD) [21], Discrete Wavelet Transform (DWT) [33], Piece-
wise Aggregate Approximation (PAA) [46], Adaptive Piecewise
Constant Approximation (APCA) [22], and Chebyshev Poly-
nomials (CP) [10]. All of these techniques follow the lower
bounding lemma, that is, the distance between any two
converted s-dimensional points is never greater than that
between the original points in the L-dimensional space.
This crucial feature can guarantee no false dismissals
during the similarity search in the reduced space. In
particular, the similarity query can be answered by
issuing a normal range query over the R-tree index [4]
and filtering out false alarms in the retrieved candidate set.
Other queries such as k nearest neighbor (KNN) queries
[37] can be easily extended by applying the similar filter-
refinement framework.

Some previous methods for the similarity search
assume knowing the underlying data model of time
series in advance. For example, Kalpakis et al. [20]
assume that the time series follow the Auto-Regressive
Integrated Moving Average (ARIMA) models, which can be
represented by a few autoregression coefficients. Kalpakis
et al. defined a similarity measure between two time
series using the euclidean distance between their cepstral
coefficients derived from autoregression coefficients and
applied it to cluster ARIMA time series. Other data
models include the Markov model [34], the autoregressive
tree (ART) model [31], and so on.

Gao and Wang [15] propose a framework for answering
similarity queries on future data. In particular, they apply
DFT reduction on the predicted data to find cross
correlations of time series before the actual data arrive
and perform either nearest neighbor or range query after the
actual data income, considering the prediction error
between the actual and predicted values. However, the
authors only present a general framework, in which any
prediction method can be used, and they did not propose
any specific prediction method. In their experiments,
synthetic prediction errors (that is, square root, linear, and
square errors) are used. Gao et al. [14] also present a disk-
based framework to answer continuous nearest neighbor
queries via prefetching, which applies a simple prediction
method by estimating the value with the actual values at the
previous time stamp.

In summary, previous work on similarity search either
are based on complete archived time series or provide a
framework for preparing (predicted) data before the actual
data arrive and answering queries after the data’s arrival.
Our work, however, focuses on effectively predicting the
(incomplete) future time series in a streaming scenario over
which an accurate query result can be obtained even before
the actual data arrive.

2.2 Prediction Techniques

Related work on predicting values involve techniques that
apply fuzzy rules [25], [32] and data mining approaches
[18], [41], [43]. The problem of predicting unknown values
is defined as follows: Assume we know H consecutive
values, z1,22,..., and xy, and want to predict the next
At future values xpi1,%gi2,..., and zgia;.. The tradi-
tional fuzzy predictor predicts values directly on the raw
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time series, where the fuzzy rules are in the form “if
1 = valuey, T = values, ..., xy = valuey, then xp = valuey,
k€ [H+1,H + At].” However, this approach can guaran-
tee the prediction accuracy only if the time series’
statistics are stationary. Otherwise, with a dynamic series,
it might fail to give accurate results. Kim and Lee [25]
proposed a new predictor that is based on rules with
differences of consecutive values, that is, if 1 — 25 = value,
To —x3 = waluesy,..., Ty 1 —ry = valuey_1, then xp_ 1 —
xp = valueg_1, where k€ [H + 1, H + At].” Policker and
Geva [32] use the existing fuzzy clustering algorithm, the
unsupervised optimal fuzzy clustering algorithm (UOFC) in
[16], and the deterministic annealing approach in [36] to
classify a large set of time series such that the series in each
cluster are close and their temporal probabilistic behavior is
similar. As a second step, the proposed algorithm predicts
the future data from a mixture probability distribution
function (PDF). In particular, for each future value, the
fuzzy membership of each cluster is calculated, and the
results are combined to produce an estimate of this future
value.

For data mining techniques, Gestel et al. [18] make use of
Least Squares Support Vector Machines (LS-SVMs) within the
Bayesian evidence framework [30] to infer nonlinear models
of financial time series, where a least squares error and
equality constraints (instead of the inequality constraints)
are applied. After training the prediction model, the
predictor not only predicts the future financial time series
but also tells the associated prediction risk for people to
make optimal investment decisions. Wang et al. [43]
propose the wavelet packet multilayer perceptron (WP-MLP)
for prediction, based on the work of the wavelet multilayer
perceptron (W-MLP) by Zhang and Benveniste [48]. Meek
et al. [31] construct an ART over the training data set, which
is a decision tree with an autoregressive (AR) model. During
the prediction, they first traverse the tree from the root to
the leaf node and then use the AR model stored in the leaf
node to predict future values of time series. On the other
hand, instead of predicting frequently appearing patterns in
the future, Vilalta and Ma [41] predict the infrequent (rare)
target events in a database containing event sequences.
Vilalta and Ma assume that these target events are highly
infrequent yet always having at least one very frequent
event preceding themselves. Therefore, they apply the
association rule mining techniques to retrieve such frequent
event sets occurring before the target events and construct a
rule-based model to predict the infrequent events.

These approaches, for example, clustering or training the
neural network, however, incur a very high update cost for
either mining fuzzy rules or training parameters in different
models. Therefore, they are not applicable to efficient online
processing in the stream environment, which requires low
prediction and training costs. In this paper, we propose
three approaches that can exactly achieve the requirement
of the prediction efficiency and accuracy in stream time
series.

3 PROBLEM DEFINITION AND FRAMEWORK

In this section, we formally define the similarity search in
the future time series problem and present our two goals.
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Fig. 1. The framework for our solution.

Fig. 1 illustrates the general framework, which mainly
focuses on two tasks, that is, 1) predicting future values for
each time series, and 2) answering similarity queries on
subsequences in the future. Assume that we have n stream
time series 71,75,..., and T, in the stream environment,
each containing m ordered values at the current time stamp
(m —1), that is, T; = {tio, ti1, ..., tign—1)}, Where t;; is the
value at time stamp j in 7;. Due to various reasons, for
example, the batch processing [2], these n stream time series
would receive data periodically for every At time stamps.
In other words, for each time series T;, the future values
Lims tigm+1)s - - - AN Eimpni—1) corresponding to time stamps
m, (m+1),..., and (m + At — 1), respectively, arrive in a
block fashion at the same time stamp (m + At). Therefore,
during the period from time stamp m to (m+ At—1),
called the blocked period, the system knows nothing about
At future values in each series. In order to answer similarity
queries on future subsequences, we have to use a predictor
to predict these unknown values based on the most recent
H values and extract subsequences from them. After the
actual data arrive at the system, the predictor is trained
correspondingly.

The first goal of our work is to efficiently predict the
n - At future values for n time series so that the prediction
error is as low as possible. In particular, we define the
prediction error as the squared euclidean distance (defined in
(1)) between the predicted and actual values divided by the
maximum possible prediction error. That is, for time series
T;, the prediction error Errp,.q(T;) is measured by

m+At—1
ET'rp'red(Ti) - Z (tij -

j=m

tij/)Z/Emax: (2)

where t}; corresponds to the predicted value of ¢;;. Note that
in (2), Enax is the maximum possible error between the
actual and predicted series (defined as At - (maz-min)?,
where each value t;; in T; are within [min, maz] [6], [19]),
and Erry,.q(T;) is a relative error.

We denote as T;[j : k] the subsequence {t;, t(j11),- - ., ti}
of Tj, where j < k. Those subsequences that contain at least
one future value are called future subsequences. Specifically,
Ti[j: k] is a future subsequence if and only if m <k <
(m + At — 1) holds. Given a query sequence @ of length L,
the similarity search in the future time series is to retrieve
all future subsequences Tj[k— L+ 1:k| with length L
from T; such that dist(T;[k—L+1:k],Q)<e, where
m < k< (m+ At —1). Therefore, our second goal is to
extract all future subsequences from n time series with
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TABLE 1
Symbols and Their Descriptions

Symbols Descriptions

the i-th time series

the number of time series

the number of data in series at present
the length of the query Q

the similarity threshold

the number of historical data used to predict
the number of predicted values

the cardinality of the alphabet table

S; the symbol in the alphabet table

the length of each segment in PAA

h the height of the trie (h=H /)

kEm%hngﬁ

~

predicted values and then efficiently answer similarity
queries on them so that the query accuracy is as high as
possible. In particular, the query accuracy is measured by
the recall ratio of the query result:

recall_ratio = M, (3)
act_num
where recall_num is the number of candidates in the query
result that indeed match with query sequence @, and
act_num is the actual number of future subsequences that
are in e-match with Q. Table 1 summarizes the commonly
used symbols in this paper.

4 THREE PREDICTION APPROACHES

In this section, we present three approaches, polynomial,
DFT, and probabilistic, to predict the future values of stream
time series.

4.1 Polynomial Prediction

As mentioned before, we are interested in prediction
techniques that are suitable for the stream environment,
which requires low prediction and training costs. One
approach that satisfies this requirement is to 1) use some
commonly used curves to approximate the historical data
and 2) predict future values according to curves.

Here, we choose the polynomial curve, since it is simple
and efficient for online processing. In particular, among the
family of polynomial curves, we focus on two types, linear
and quadratic [35]. Fig. 2 illustrates an example of predicting
the time series with linear and quadratic prediction methods.
Following the convention [6], [19], we assume that all the
values in time series T; have a domain [min, max].

Assume that we use H values xzi,z9,..., and xy to
predict At consecutive values i1, Zg+2,..., and xgias in
the future. Without loss of generality, let z; be the value at
time stamp 1, x, at time stamp 2, and so on. We first
consider the linear prediction, which assumes that all the
(H + At) values can be approximated by a single line in the
form x=a-t+b, where t is the time stamp, z is the
estimated value, and parameters a and b characterize these
(H + At) data. Therefore, the predicted At values with a
linear predictor are (H+1)-a+0b,(H+2)-a+b,..., and
(H+ At)-a+b, corresponding to zpyi1,2g42,..., and
THyat, Tespectively.

T; linear prediction

i\

Fig. 2. Example of polynomial prediction.

max

quadratic
\ prediction

T

| Lim-1

[ /

I # current

L/ timestamp
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We measure the approximation error of the linear curve on
historical data by the squared euclidean distance between the
actual series and the estimated one. That is,

Errorlinear_appr = Zi:l ....H(a i4+b— xi)2- (4)

In order to obtain a good approximation, we aim at finding
appropriate coefficients a and b such that the error
Errorinear_appr is minimized. This can be achieved by the
differential of Erroripear_appr- Specifically, a and b must
satisfy the following conditions: 1) Errorinear_appr/0a = 0
and 2) OETrorjinear_appr/Ob = 0. As a result, we have

H
a=12- 3~ (H+1)/2) -xi/H(H—i—l)(H— 1),

P (5)
b=6-3(i ~ 2H +1)/3) -a:i,/H(l —H).

Similarly, for the quadratic prediction, we approximate
values by a quadratic curve in the formz =a-t*+b-t +¢,
where q, b, and c are parameters that characterize the data.
The approximation error of a quadratic curve is measured by

Errorguad_appr = Zi:l “”H(a 2 4beite—x) (6)

In order to minimize the error, three conditions must
hold: 1) IErToryad_appr/0a =0, 2) OETTored_appr/0b =0,
and 3) OErrorgued_appr/0c = 0. Thus, we can obtain coeffi-
cients a, b, and ¢ by solving these equations with Cram’s rule.

As in Fig. 2, when the approximating curve (either linear
or quadratic) intersects with the lower/upper bound
min/maz [6], [19], the predicted values after this time
stamp would become meaningless. Furthermore, if the
number of predicted values that are meaningful is not
greater than At, curves of higher orders may have to be
used. Nevertheless, the computational cost is high and,
moreover, the prediction accuracy may not even be as good
as low-order curves. Therefore, for simplicity, when the
predicted value is below min (above max), we just treat the
value as min(max).

Another important issue is how to choose the value of H.
Since stream data are changing all the time, we can adapt the
value of H to such changes. In particular, we build up
histograms for angles of any two consecutive values on
historical data. Obviously, when the variance of the
histogram is high, indicating the irregularity of the under-
lying data, a smaller value of H can achieve higher accuracy.
Thus, as indicated by the histogram, we can select the value
of H to better adapt to the stream data. Since the cost of
either creating or maintaining the histogram is linear, it is
especially suitable for tuning H during the online stream
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Fig. 3. Example of DFT prediction.

processing. In this way, our method can be adaptive to the
change of data.

4.2 DFT Prediction

The polynomial approach above approximates the most
recent data with a polynomial curve and predicts the
unknown data with the curve, where the prediction process
is based on the time domain. In the sequel, we propose the
second method, DFT prediction, which approximates the
historical data in a different domain, that is, the frequency
domain.

Specifically, as illustrated in Fig. 3, assume that we use
H historical values ,%2,..., and zy to predict At
consecutive values xg.1,Tg2,..., and zg a; in the future.
The DFT prediction first obtains H DFT coefficients [1]
x), ..., and z; of the most recent H historical data
r1,T9,..., and xzy and then uses these H coefficients to
reconstruct (H + At) values, say, y1,¥2,...,Yr+ar. The At
reconstructed data yg 1, yg42,. .., and yya; are considered
as the predicted values of zpii,Zpi2,..., and zgia,
respectively. Formally speaking, the resulting H DFT
coefficients are formulated as follows:

R ‘
= ﬁ;xt cexp(—j-2m (f —1)(t—1)/H)

(7)
f=12,...,H,
1 H
Yt :mzx}'CXP(j'QW(f— (t—1)/(H + At))
7=

t=1,2,...,(H+ Ab).
(8)

The rational of the DFT prediction is that the frequencies of
the H historical data and (H + At) values (including both
H historical data and At future data) are expected to be
quite similar. Therefore, in the frequency domain, the
H DFT coefficients from historical data are also similar to
the first H coefficients of (H + At) values. We tested
24 benchmark data sets [23], [50], [9], which will also be
used in our experimental study later, to verify this
assumption, where these data sets cover a wide spectrum
of applications and have different data characteristics.
Specifically, we measure the relative error of H DFT
coefficients from H historical data and (H + At) values
(including H historical data and At future data), that is, the
euclidean distance between H DFT coefficients from

JANUARY 2008

relative error

1357 911135;7

24 benchmark dataseltg 2123

Fig. 4. Relative error of DFT coefficients.

H historical data and that from (H + At) values divided
by the sum of H square coefficients from (H + At) values.
Fig. 4 illustrates the experimental results, where H = 512,
and At = 256. We can see that errors are quite small, that is,
most of them are below 15 percent, which confirms our
assumption.

Therefore, if data remain approximately the same in the
frequency domain on historical and future data, it is very
likely that the DFT method will offer an accurate result. As
mentioned in the polynomial approach (Section 4.1), given
the fixed system parameter At, the value of H can be
dynamically adjusted by building up a histogram that
contains the frequency of different angles from historical
data at consecutive time stamps and detecting the change of
data. Furthermore, the DFT prediction approach has a very
nice feature that DFT coefficients can be incrementally
computed by the work of Kontaki and Papadopoulos [27].
In particular, it requires only O(1) cost to update each DFT
coefficient upon the arrival of new data. Thus, this method
is efficient for online processing.

4.3 Probabilistic Prediction

Our third prediction approach is based on the observation
that those subsequences that appear frequent in history have
a higher probability of occurring again in the future.
Motivated by this, we utilize statistics on the entire historical
data, rather than a few most recent in the polynomial or DFT
solution, to predict future values. Specifically, we propose
our probabilistic approach, which extracts the symbolic
representation of historical subsequences, as well as their
aggregate information, to predict the future symbols with
probabilities based on aggregates that summarize the entire
historical data and finally output future subsequences for
similarity search.

Without loss of generality, we consider the prediction
problem on a single time series 7, which can be easily
extended to the case of n(> 1) time series. The details of the
approach are listed as follows: Assume that at the current
time stamp, we know the most recent H historical data and
have to predict the future At values. In order to store the
statistics in history, we maintain a structure, called the
aggregate trie. Specifically, for each historical subsequence of
length H, we update the aggregate trie in four steps:

1. divide it into h disjoint segments with identical
length [, thatis, H =h -1,

2. obtain the mean value avg; for each segment i, where
1<i<h,
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Fig. 5. The discrete version of a time series.

3. convert each avg; into a symbol s;, that is, transform-
ing the subsequence to its symbolic representation
$189...8,, and

4. insert the string s;s;...
with height h.

The first three steps transform the time series to its
symbolic representation as proposed by Lin et al. [28] and
Keogh et al. [24]. Fig. 5 illustrates an example of this
transformation. Assume that the value domain of a time
series T" is [-1.5, 1.5]. We partition it into three smaller ranges
of equal size, say, [0.5, 1.5], [-0.5, 0.5), and [-1.5, -0.5), which
correspond to three symbols q, b, and ¢, respectively. Note
that in case a priori knowledge of stream data is known, one
can divide the value domain into small ranges of different
lengths [28], [24]. As a second step, we divide the time series
T’ of length H into seven segments of equal length, take the
average value avg; within each segment 4, and finally convert
each avg; into a unique symbol. For example, the mean value
avg, in the first segment falls into the range [0.5, 1.5], so we
map it to the symbol “a.” After the discretization, T" is
represented by a string consisting of ordered symbols (also
called SAX representation). Specifically, the discrete version
of T' is the string “abcbbaa.” One of the advantages of
discretizing the time series is its space efficiency. That is, if
there are in total K symbols in the alphabet table, each
sequence requires only h - [logs(K)] bits at most, where
h = H/I. Note that although the symbolic representation is
only an approximation of the time series, as demonstrated in
our experimental section later, it can be applied to predict
the future values effectively.

The fourth step inserts all the time series strings into an
aggregate trie. However, in contrast to an ordinary trie,
each node entry in our aggregate trie contains a triple
< freq, hit,miss >, where freq is the frequency that a
string (from the root to leaf) appears in the time series, hit
is the times that our prediction succeeds, and miss is that
it fails. Intuitively, if the frequency freq of a particular
string is high, then it will have a higher probability of
appearing in the future. On the other hand, if our
prediction of a certain string fails quite often, that is, its
aggregate miss is large, then we have to lower the chance
of choosing this string as the prediction result. In other
words, our prediction error can be fed back by such
aggregates.

In the sequel, we use Fig. 6 as an example to
illustrate our probabilistic approach. Assume that h =4,
=2, and At =6 (that is, H = 8). Initially, the aggregates
in each node of the trie are in the form < 0,0,0 > . Let
the current time stamp be 7. The historical subsequence

s, into the aggregate trie

level 4 level 2

H=hl=42=8 At=6
P — level 3 level 1

7> 8 E root

/o

~ =
o
LSIEN

g 0> a <1,0,0>
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X1 T[5: 1]
a X2 X4, Xe,
0123456 7891011121314
nmcsz‘amp when

X3, X5
‘ T[6:12]

current timestamp T [8:13] arrives

Fig. 6. Probabilistic prediction with aggregate trie.

T[0:7] of length 8 is first transformed to a string “aaba.”
Then, we insert it into the trie through the path “aaba.”
Meanwhile, increase by 1 the frequency freq of each
entry on the path in the form < freq, hit,miss >, that is,
updating < 0,0,0 > to <1,0,0> in the example.
Next, we illustrate the process of predictions using the
example in Fig. 6. In particular, we want to predict
symbols X;,Xs,..., and Xg, based on the trie, corre-
sponding to subsequences TI[7:8],T[8:9],..., and
T[12:13], respectively. For simplicity, we only consider
predicting the symbol X;. Since the symbolic representa-
tion of T[1: 8] is “aacX;,” we traverse the trie from the
root to entry “a” on level 4 and, then, “a” and “c” on
levels 3 and 2, respectively. After we have reached “c”
on level 2, we should decide which symbol is most 11kely
to be X, that is, the procedure of the prediction. One
intuitive idea is to select the next symbol with the
highest frequency. For example, if the frequency of both
symbols “a” and “c¢” is 0, whereas that of “b” is 2, then
the string “aacb” has higher probability than “aaca” or
“aacc” to appear in future. Therefore, we can choose b as
Xj. Although this intuitive idea can predict the future
based on historical data, it cannot quickly adapt to the
change of data. In this paper, we predict future values
based on both frequency and hit ratio. Since we also
store hit and miss information in each entry of the trie,
our approach takes into account the feedback of the
prediction error in a probabilistic way. In particular, for
each symbol s, with < freg.s;, hit_s;,miss_s; >, the
probability Prob_s; of selecting s; as X, is proportional
to freq.s; - hit_s;/(hit_s; + miss_s;). Moreover, in the
string “aacX;,” suffixes “ac” and “c” of “aac” can also
be used to predict X; but in a less accurate way due to
fewer known symbols. Therefore, we can assign decreas-
ing weights to “aac,” “ac,” and “c¢” during predictions. In
the sequel, however, we only consider predicting future
symbols with the longest string, for example, “aac,” for
simplicity. Note that in some situations, for example, the
freq aggregates of all the possible symbols of X; is zero,
we handle such exceptions by simply setting X; to its
previous symbol in the string, that is, “c” in string
“accX;.” Let Prob; be the probability of predicting X;.
Similarly, other symbols such as X;,Xs,..., and X; are
predicted with probabilities Proby, Probs,..., and Probs,
respectively. This method has the advantage of telling
users the confidence of our predicting a value, which is
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Fig. 7. Choosing appropriate values of H.

useful in many prediction applications, compared to the
previous polynomial and DFT methods.

After all the unknown symbols have been predicted,
future subsequences of length L are extracted without any
difficulty. During the blocked period, whenever a query
sequence ) of length L arrives, we can 1) perform the
similarity search on these subsequences (in symbolic
representation) and 2) output candidates whose lower
bound distances from () are not greater than the similarity
threshold e. Issues of indexing future subsequences are
discussed in Section 5.

Finally, at time stamp 14, data 7'[8],79],..., and T[13]
will arrive in a batch. At this point, the actual symbols of
X1,Xs,..., and X come out. As an example, for symbol
Xy, if the prediction of X; is b, whereas the actual one is
a (wrong prediction), then we feed the error back by
increasing miss in all entries < freg, hit,miss > on the
path of “aacb” by Prob; and freq on that of “aaca” by 1.
Otherwise, if the actual symbol of X; is indeed b (correct
prediction), then in all entries on path “aach,” we increase
freq by 1 and hit by Prob;. For other symbols, the
procedure of updating aggregates in the trie is similar.
Here, Prob, is the confidence that a symbol is predicted.
If the symbol is wrongly predicted, we feed back this
confidence by adding it to aggregate miss as a penalty.
The higher the confidence is, the heavier the penalty is in
the case of failure. Similarly, with correct prediction,
Prob; is added to aggregate hit as a bonus. As a result,
since we feed back the prediction error with a penalty/
bonus, the predicted error is expected to be small, which
will be confirmed in our experimental section. Note that,
however, for “acX;X3” of T[3:10], when we update
either a hit or a miss aggregate, we always increase its
value by Prob; - Probs, since the prediction of X3 is based
on the predicted result of X;.

4.3.1 Selection of H

Fig. 7 illustrates an example of prediction with two
different values of H, H;, and H,. If we build a trie with
the large value H; of an H, pattern A may appear very
frequently, thus having more chance to predict the shape
of pattern A (for example, a sudden burst in Fig. 7) in the
future time stamps. On the other hand, for a smaller
value H,; of H, the trie we construct will contain
pattern B with high frequency, so future values are more
likely to be smooth. Now, the problem of how to choose
an appropriate value of H arises. Our solution is to
ensure the accuracy of user-specified queries. That is, if
the user specifies the query @ of fixed length L, the value
of H should be about the same value as L. In the
previous example, the length L of @ is close to Hj, that
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is, @ has a higher probability to capture a sharp curve.
Therefore, we choose H; to build the trie. In the case of
various query lengths, we suggest using different values
of H, for example, Hyin,2+ Hyin, ..., and 2771 H,,,, that
are exponentially increasing, where H,,;, is the minimum
possible query length, and 2"l . H,, is the maximum.
When a query of length L arrives, we select the trie with
2" . Hym such that 2071 H,,, < (L+At) <2 Hyp. In
this way, our approach can achieve good query accuracy
that is adaptive to the query length L.

4.4 Group Probabilistic Prediction

The probabilistic approach predicts the future values for
each stream time series individually, based on the historical
data, as well as previous prediction feedbacks. In this
section, we study a special case where a number of stream
time series appear to have correlations with each other.
Formally, given two subsequences R; = {ri1,712,..., 1w}
and Ry = {ra1,722,..., 72} of length w with means z; and
2, respectively, the correlation coefficient corr(R;, Ry) is
given as follows [49]:

1 w
w 2ui=1T1iT2; — K142

VI — m P o — )

In many real applications [49], stream time series are
often correlated. For example, some stock price time series
may have quite a similar trend, since they are affected by
the same types of financial factors. Moreover, in sensor
networks, sensor data like temperature or humidity are
collected from various sites, and those data obtained from
spatially close sites tend to follow similar patterns.
Inspired by this fact, we propose a novel group probabilistic
approach, which utilizes this correlation information
among a group of stream time series to correct the results
predicted by the probabilistic approach. Specifically, we
illustrate our basic idea using a simple example. Assume
that we have a group of three correlated stream time
series, which have three strings S = abbc, S = bcbe, and
S3 = abba, where the first three symbols in the strings are
known, and the last ones in the strings (that is, ¢, ¢, and a)
are predicted by the probabilistic approach. Here, let
symbol a represent interval [0, 1] and b(c) represent
interval (1, 2] ((2, 3]). We consider the last two symbols of
each string, that is, bc, bc, and ba in strings S, Sz, and Ss,
respectively. Assuming that the three strings are corre-
lated, they thus tend to have similar patterns. However,
the last two symbols, bc of S; and S, correspond to an
increasing trend, whereas ba in S3; has a (conflicting)
decreasing trend. Obviously, since there are two strings
having the increasing trend, compared to one with
decreasing trend, it is very likely that S; is falsely
predicted. Therefore, our group probabilistic approach
corrects this confliction by letting the last symbol a of
Sg to c.

In particular, we implement our group probabilistic
approach by maintaining an array of size

corr(Ry, Ry) =

2K — 1(=2(K — 1) + 1),

where K is the total number of symbols in the alphabet.
Specifically, (K —1) entries of the array correspond to
increasing trends (for example, ab, bc, and ac in the previous
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example), (K — 1) other entries correspond to decreasing
trends (for example, ba, cb, and ca), and the last one is used
for the constant trend (for example, aa, bb, and cc). Note that
ab and be (ba and ¢b) correspond to the same entry because
they have the same increasing (decreasing) trend. Initially,
these entries are set to zero. Then, for each stream time
series in the correlated group, we obtain its predicted trend
and increase the value of its corresponding entry by 1.
Finally, we choose the trend that has the highest counting
value as the major trend and correct the prediction results for
all the series in the group. In the case where multiple entries
have the same highest counting values, we do not perform
the correction operation (that is, the prediction results are
the same as that of the probabilistic approach), since it is not
known which one is the best trend. We make use of the
trends represented by the last two symbols instead of more.
This is because more symbols would result in many
possible combinations of symbols (trends) and smaller
counting value in the major trend entry. In the worst case,
each entry has the value at most 1 (that is, many entries
have the same highest counting value 1). As a consequence,
the group probabilistic approach becomes less effective in
correcting the symbols predicted by the probabilistic
approach.

Now, we discuss how to apply this prediction method to
the stream scenario. Since the group probabilistic prediction can
achieve good prediction accuracy only if the group contains
correlated time series, we need to detect the correlations
among stream time series. In particular, Zhu and Shasha [49]
proposed an efficient method to incrementally monitor the
correlations among multiple stream series. We use this
method to efficiently calculate correlations among series and
periodically check and validate the group membership for
stream time series during the stream processing. Within
each group, we apply the group probabilistic approach to
correct the results obtained from the probabilistic approach,
whereas for those outliers (that is, the group size is smaller
than 3), we would just apply the probabilistic prediction
approach. In this way, our group probabilistic approach can
perform the prediction for correlated groups adaptive to the
stream time series data.

As will be indicated by our empirical study in Section 6.6,
the group probabilistic approach can achieve higher predic-
tion accuracy and recall ratio for similarity queries than the
probabilistic one.

5 INDEXES FOR THE PROBABILISTIC APPROACH

In previous sections, we only consider prediction and
similarity search on a single stream time series. In such a
scenario, since there is only one trie for a single time series
and the number At of predicted symbols is relatively small,
in most cases, both prediction and similarity search can be
processed in memory. However, in the scenario of n stream
time series, for example, thousands of time series, the
problem becomes more complex. For one thing, it is very
unlikely that the memory can retain n tries (built from
n series, respectively) and n - At predicted symbols without
any overflow. Once we decide to flush some tries or
predicted symbols back to the disk, the I/O cost becomes
the bottleneck of the online processing, especially when
tries are of a great height. Another thing is that without
indexes, the sequential scan might be the only way to

hash directory Dir
initial depths (2, 1)
growth depth 1

mask track
hash directory Dir

initial depths (1, 1)
growth depth 0

level 1

local depth
oo0[_—[B1G 5T oo[0
001'| NULL local depths 01
4] @)
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00 ——> 1 l)P o0 — o071
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Fig. 8. Example of a 2D extendible hash. (a) Starting state. (b) Directory
doubling.

perform the similarity search on n- At predicted subse-
quences but with very high cost.

Motivated by this, we aim to build up efficient indexes to
reduce the I/O cost. Section 5.1 discusses predictions,
Section 5.2 illustrates the similarity search, and Section 5.3

presents the update method to aggregates (that is, error
feedback).

5.1 The Alternative Index for Trie

As we have mentioned, it is not feasible to maintain
n aggregate tries separately with great height h. Further-
more, we do not even need to materialize an actual trie.
This is based on the observation that each path of the trie
can be uniquely identified by a number of ordered
integers (key). As an example, given the descending path
“acb” of a trie, instead of traversing the trie from the root
to leaf, we can alternatively retrieve entries with a
multidimensional key corresponding to the path, for
example, a unique key < 1,3,2 > of “ach,” assuming that
a, b, and c are mapped to integers 1, 2, and 3, respectively.

Based on the above idea, we construct a single
h-dimensional hash index HI for all the n time series.
Here, we choose the hash index because of its good
retrieval efficiency, compared to other multidimensional
indexes such as R-tree [4]. That is, the cost of either
searching or inserting one data in the hash structure is
always O(1). The only difference of our index from an
ordinary hash such as the extendible hash is that keys of
hash entries are multidimensional.

Previous work by Lin et al. [29] proposed a 3D extendible
hash structure to organize the red, green, and blue (RGB)
color data. Fig. 8 illustrates its basic idea with an example of
a 2D extendible hash. Assume that each entry in the hash
index contains a 2D integer key within the domain [0, 7] (for
example, < 010,011 > ). As in Fig. 8a, the hash directory Dir
initially contains two initial depths (1, 1), a growth depth 0,
and the global depth 2 (= 1+ 1 + 0). Now, suppose directory
entries Dir[10] and Dir[00] point to buckets A and B,
respectively. When a new data with key < 110,011 >
arrives, we first extract the most significant bit from each
dimension (the number of chosen bits depends on the initial
depths), that is, 1 and 0, combine them together as the initial
address “10,” and insert data into bucket A pointed by
Dir[10]. If bucket A overflows, however, we have to double
the directory (see Fig. 8b) and increase the growth depth by
1. Moreover, we create a new bucket C that is pointed by
Dir[110]. Then, bucket A is split along the dimension with
the highest variance (for example, the first dimension). We
distribute to bucket C those entries (for example, data with
key < 110,011 >) in A that have 1 as their second most
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Fig. 9. Example of processes of predictions, queries, and updates.

significant bit along the first dimension. In addition, we keep
track of the split history for future search in an array, called
mask track, whose details are omitted here. When we search a
specific data, the mask track is first looked up with its key
level by level until the address of the bucket where the data
possibly lie is obtained. Then, the data can be fetched by
scanning entries in the bucket sequentially.

Although the work by Lin et al. [29] only used a
3D extendible hash structure, we can easily extend it to an
index with arbitrary dimensions. By applying such a
hash structure, we can index all the entries in the trie.
Specifically, assuming that there are a total of K symbols in
the alphabet table, we map them, for example, si,s9,...,
and sk, to integers 1,2,..., and K, respectively. Any path
“$i189 ...8;," of the trie for T; can be transformed to
h integers iy, s, ... and ;. In particular, we extract the first
(h—1) integers < ii,is,...,ip—1 > as the first (h—1)
ordered dimensions < keyi, keys, ..., key,_1 > in the hash
entry, whereas the hth dimension key;, corresponds to the
ID i of the time series Tj, for example, the ID 1 for time
series 1. Taking advantage of the fast retrieval in the hash
index, we can either insert or search an entry very
efficiently, with integers from “s;si2...5;;-1)” and the
series ID tid. Specifically, the initial hash address can be
obtained as follows: We extract the most significant d, bits
of integer i, corresponding to s; for all 1 <r <h—1, as
well as the least significant dy;4 bits of tid in reverse order,
concatenate these (dy +dy + ...+ dj_1 + dyq) bits to form
the initial address of the hashing directory. The reason for
our using the least significant bits of tid is its nice scalability
in the hash index. In other words, when a new stream time
series, for example, T}, 11, comes to the system, we assign to
it with a greater ID (n + 1), which will not ruin the least
significant bits of other series but will do to the most
significant ones. As an example, assume that the total
number of stream time series is originally three and only
two bits are used to form addresses. When a new stream
time series joins the system, it is assigned with ID 4 (with bit
representation “100”). If we consider the most significant
two bits, the stream time series with ID 3 (with bit
representation “11” or “011”) would change its two bits
from the original “11” to “01,” which leads to the costly
update to hash index. On the other hand, if we consider the
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least significant two bits of the ID, its bits would not change,
which is scalable to the total number of series.

In our probabilistic approach, each entry of the bucket in
HI is in the form < Hash(PA), tid, freq, hit,miss > , where
Hash(PA) is a hashing function converting the path PA of
length A in the trie into a single value, tid is the ID of the time
series, and the last three attributes are aggregates the same as
those stored in the trie. Note that here, the string
“si18i2...s;” on the path PA can be mapped to a value
Hash(PA) by concatenating all the bits of h integers
i1,42,..., and ¢, from h symbols s;i,sp,..., and s,
respectively. As an example, assume that there are three
symbols, s;, s2, and s3, in total and the height h of a trie is 4.
The string “sis3ses1” can be converted into a value
“01,11,10,01” in bit representation, and Hash( "s1s3sss!) is
thus 121 in decimal representation. Note that given a hashed
value Hash(PA), we can also reversely obtain its original
string “s;s35951.” Entries in the bucket are sorted in the order
of tid and Hash(PA) for the convenience of prediction. For
the group probabilistic approach, the index HI is built in the
same way as that of the probabilistic approach. After we get
the predicted results from HI, the group probabilistic
approach can be applied to improve the prediction accuracy.

5.2 The Index for Similarity Search
The second index we propose is a Bf-tree FI, which
temporarily stores all the predicted future subsequences
and facilitates the similarity search. In particular, the search
key in FI is computed by converting h symbols of a
predicted string into a single value, similar to the calcula-
tion of Hash(PA) in HI mentioned before. Each entry of the
leaf node is in the form < Hash(PA),tid,offset, ptr >,
where Hash(PA) is the key, tid is the ID of the time series,
offset is the end offset of the predicted subsequence, and ptr
is a pointer pointing to the corresponding entry in HI.
During the blocked period, similarity queries are per-
formed on FI. In particular, given a query @ of length L, our
goal is to find candidate subsequences in the future such that
their lower bound distances to () are within . We illustrate
the basic idea of our search procedure in an example in
Fig. 9, where the B*-tree FI has height ' = 3. Without loss
of generality, assume that the segment mean representation
SM(Q) of a query series @ has three (that is, h, = L/I)
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segments corresponding to symbols ¢, ¢2, and g3, respec-
tively. We start from the root of FI, considering the first
[he/W (= [L/(W -1)] =1) symbol ¢ of SM(Q). For each
entry N; in the root, if the minimum possible (squared)
distance LB.dist? from ¢ to (the first symbol of) any
subsequence in N; is smaller than €2, then we need to access
the children of N;; otherwise, N; is ignored (since it cannot
contain any query result). Note that since each symbol
represents a value interval, the minimum distance between
any two symbols is defined as the minimum possible
distance between their corresponding intervals. We continue
the running example by accessing a child N of N; on the
second level of FI, considering the next [h,/h’] (that is, one)
symbol ¢ of SM(Q). This time, if the minimum possible
(squared) distance LB_dist? from g, to (the second symbol
of) any subsequence in N/ is smaller than e? — L B_dist?, then
we have to access its children; otherwise, N can be safely
pruned. Similarly, on the leaf level (that is, the last level of
FI), we calculate the minimum (squared) distance LB_dist3
from g to the third symbol of any subsequence S in the leaf
node. If it holds that LB_dist§ <er— LB_distf — LB_dist%,
then subsequence S is a candidate; otherwise, S is a false
alarm. Finally, we use the actual values in @ to further refine
the retrieved candidate set.

5.3 Combining All Together

By combining all the indexes together, we illustrate the
entire process of the similarity search in future time series
in an example in Fig. 9. Assume that the alphabet table is
{a,b,c} and the height h of the trie is 3. Let a be “01” in bit
representation, b be “10,” and ¢ be “11.” At the current
time stamp, we consider predicting the future string
“acX,” for time series 7). First (step 1(a)), we convert
3D vector < a,c,1> into a single value “011” in bit
representation by extracting the first bit from a (“01”) and
¢ (“11”), respectively, and the last bit “1” of tid 1. By
searching “011” in HI, we find three entries

< Hash("aca"),1, freq_a, hit_a, miss_a >,
< Hash("acb"),1, freq_b, hit_b, miss_b >, and
< Hash("ace"), 1, freq_c, hit_c, miss_c >

7T

in a bucket, corresponding to strings “aca,” “acb,” and
“acc,” respectively. As discussed in the previous section,
we compute the probability of selecting each entry as
our prediction result and choose the one proportional to
its probability. Without loss of generality, let the chosen
symbol be b with probability Prob;. Note that for the
group probabilistic approach, after predicting values over
a group of correlated stream time series, we can further
correct the predicted symbols by considering the major
trend in the group. Next (step 1(b)), we construct a
B*-tree FI for indexing future subsequences. In particu-
lar, we insert the entry < Hash("bca”),1,offsety,ptr >
into FI with the key Hash("bca”) and pointer ptr
pointing to < Hash("acb"),1, freq-b, hit_b,miss b > in
HI, where offset; is the end offset of the future
subsequence. Predictions of other future subsequences
are similar.

Algorithm Prob_Prediction

// step 1(a): prediction

1. for each time series T;[0: m - 1] (1 <i<n)

2. for each subsequence T;[(m -1+j)-H+1:m-1+j](1 < j < At)

3. convert it into symbolic representation s;;sj,. .51 X
// Xis the symbol to predict

., and sjp.p) to integers s;', si', ..

5. search HI with keys <s;1', s5', ..., sig.1)', >

transform s;;, Sp, .. ., and s;g..7)'
6. retrieve all entries in the form <Hash("suSp...sim-0X")i,
freq_Xi,hit_X;,miss_X;>
7.  predict X as X' with probability Prob(X') oc freq_X"hit_
X'/ (hit_X'+miss_X")
// step 1(b): construct the index for similarity search
8. insert entry <Hash("Xs; Sp...si-1)"), i, (m-1+j), ptr> into FI
with the key Hash("susp...siX") where ptr points to
<Hash("susi. . .si-nX""), 1, freg_X', hit_X', miss_X'>
// step 2: answer similarity queries on FI
1. Similarity_Search (FI, Q, L);
// step 3(a): after At timestamps, batch update
1. batch scan all the leaf nodes of FI
2. for each entry <Hash("Xsy sip...sig-"), i, (m - 1 +j), ptr>
// step 3(b): update statistics
3. obtain the true value X'' of X in T; with end offset (1-1+j)
4, obtain entry <Hash("susp...sinX' "), i, freq_X', hit_X',
miss_X'> in HI through ptr
if X'=X"
freq_X'=freq_X' + 1 and hit_X'=hit_X' + Prob(X")
else miss_X' = miss_X' + Prob(X'")
retrieve entry <Hash("sisi...sipnX'" "), i, freq_X"', hit_X"',
miss_X''>
9. set freq_X'"' = freq_ X" +1
10. recycle all the node in HI and repeat step 1 predicting the next

® N

At values
End Prob_Prediction

Fig. 10. The pseudocode of probabilistic prediction.

During the blocked period, we always perform the
similarity search on index FI (step 2). Then, after At time
stamps, the actual data arrive at the system. We batch scan
all the leaf nodes in FI (step 3(a)). For each entry we
encounter, for example, < Hash("bca"),1,offseti,ptr >,
we obtain the true value of X; in the subsequence with end
offset offset; in time series Tj. If X; is indeed b (as we
predicted), access the entry

< Hash("acbh"), 1, freq_b, hit_b,miss b >

in HI through ptr and increase freq_b and hit_b by 1 and
Prob;, respectively; otherwise (wrong prediction, for ex-
ample, X; = a), update the entry by increasing miss_b by
Proby, retrieve the entry of

HI < Hash("aca"), 1, freq_a, hit_a, miss_a >

(insert a new one if it does not exist), and increment freq_a
by 1 (step 3(b)). When all the leaf nodes of FI have been
processed and aggregates in HI have been updated, we
recycle all the nodes in FI and start a new round to predict
values in the next At time stamps. Fig. 10 illustrates the
pseudocode of the probabilistic algorithm.
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Fig. 11. Prediction error versus K(l) (periodic data set). (a) Erryeq
versus K. (b) Errp.q versus l.

6 EXPERIMENTAL EVALUATION

In order to evaluate the effectiveness and efficiency of our
proposed approaches, we run extensive experiments with
both synthetic and real data sets. Specifically, synthetic data
sets include the periodic data set (100,000, [http://kdd.ics.
uci.edu/summary.data.type.html]) and the randomwalk data
set (5,120 sequences of length 512) [22], [23], [50], whereas
real data sets consist of 24 benchmark data sets (200 se-
quences of length 256 for each data set) [23], [50], [9] and the
sstock data set (5,120 sequences of length 512) [42]. In
particular, the real data sets, 24 benchmark data sets and the
sstock data set, represent a wide spectrum of applications
and data characteristics, which can be used to verify the
universal usefulness of our approaches. Furthermore, when
we perform our predictions, we always assume that the
underlying data models are not known in advance. In order
to verify the effectiveness, we compare the probabilistic
prediction with linear, quadratic, and DFT predictions in
terms of prediction and query accuracy under different
parameters, that is, K, [, H, At, and e. Section 6.1
demonstrates the experimental settings and tunes para-
meters K and [ for the following experiments. Section 6.2
evaluates the prediction accuracy and efficiency of our
probabilistic approach compared to that of linear, quadratic,
DFT, fuzzy, and ART solutions. Section 6.3 presents the
query accuracy of similarity search with the predicted
future subsequences. In Sections 6.4 and 6.5, we present
results of efficiency and scalability tests, respectively, for
the similarity search. Section 6.6 illustrates the performance
of the group probabilistic approach.

6.1 Experimental Settings and Parameter Tuning
The first set of experiments study the impact of parameters
K and [ on the prediction accuracy of our probabilistic
approach and then fix their values for all the subsequent
experiments, where K is the cardinality of the alphabet
table, and [ is the length of each segment in PAA. Note that,
however, each predicted value in our proposed probabilistic
approach is not a single value but a range corresponding to
a symbol, for example, [bound, (i), bound,(i)] at time stamp
i. Let act be the actual value. We define the prediction error
specific to our probabilistic approach, namely, the probabil-
istic error Erry.q, as follows:

m+At—1
; ((bound,(i) 4+ bound,+1(2)) (©)

/2 — act)?/ Emax.

Errpo(act) =
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Fig. 12. Prediction error versus H(At) (periodic data set). (a) Erryeq
versus H. (b) Erry,.q versus At.
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Intuitively, the probabilistic error Erry.,, is the (squared)
euclidean distance from the actual value to the middle value
of the predicted range, that is, (bound, (i) + bound,+1(7))/2,
divided by the maximum possible prediction error Ej.y.

Fig. 11a illustrates the effect of parameter

K (=8,16,32,64,128),

that is, the total number of symbols in the alphabet table,
on the prediction accuracy with the periodic data set,
where | = 128, H =512, and At = 256. When K is small,
that is, the value range of the time series is divided into
only a few ranges, errors of the probabilistic method are
high, since the granularity of the discretization is too
coarse to give a precise result. When K is too large,
however, errors are also high. This is mainly because
aggregates in the hash index may not be well trained.
Fig. 11b shows the effect of [ on prediction errors on the
periodic data set, where [=64,96,128,256, and 512,
H =512, and At =256. Recall that given a fixed value
of H, a large [ indicates a small number of segments and
coarse approximation of the historical data. Therefore,
with the increase of [, the prediction error also increases
dramatically. On the other hand, when [ is too small, the
resulting key concatenation of indexes may incur more
cost. Thus, we can try different pair combinations of K
and [ values and empirically select a pair with a low
prediction error, based on historical data. With similar
results on other data sets, in the following experiments,
we fix the value of K to 32 and [ to 128.

6.2 Prediction Accuracy and Efficiency

After fixing values of K and I, we consider the effect of H
and At on the prediction accuracy of four methods: linear,
quadratic, DFT, and probabilistic. In particular, the prediction
accuracy of linear, quadratic, and DFT methods is measured
by the prediction error Erry,.q defined in (2), whereas that of
the probabilistic approach is measured by the probabilistic
error Errp. in (9). In Fig. 12a, we fix At =256 and vary
H = 64,96,128,196, 256, 384,512,640 and 768. Linear, quad-
ratic, and DFT predictions have errors that first decrease
and then increase when H increases. This indicates that the
most recent values have more importance in predicting
future values, whereas too few historical data may result in
a high prediction error. In contrast, the probabilistic
approach can adapt to data change and give better result
when more historical data are used (that is, H is large).
Fig. 12b varies At from 64 to 512, where H = 512. All the
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Fig. 13. Prediction accuracy versus data sets. (a) Twenty-four bench-
mark data sets (Erry.q). (b) Sstock and randomwalk (Errpeq).

four methods have higher errors when At is large. The
linear, quadratic, and DFT approaches show nice ability of
predicting short-term values. However, their errors drama-
tically increase with At, whereas the probabilistic one does
not increase so fast. In order to further validate the
effectiveness of our methods, we run the same set of
experiments on the 24 benchmark, sstock, and randomwalk
data sets. In particular, 24 benchmark consists of 24 real data
sets, each containing 200 time series of length 256, where we
set At =256 and H = 512. The sstock data set is real stock
data and contains 193 company stocks’ daily closing price
from late 1993 to early 1996, each consisting of 512 values.
The randomwalk data set is synthetic, containing time series
of length 512. For both sstock and randomwalk, we let At =
512 and H =1,024. Furthermore, we also compare our
proposed approaches with the fuzzy method [25] and the
ART method [31]. Recall that for the ART method, we
construct a decision tree over training data sets (subse-
quences from series) by using the WinMine Toolkit software
[7] and compute an AR model for the data in each leaf node
of the decision tree in order to predict future values. The
experimental results are depicted in Fig. 13, which shows
better performance of the probabilistic solution than that of
linear, quadratic, DFT, fuzzy, and ART. Note that for the
reason of clear illustrations, we sort the 24 benchmark data
sets in the chart by their errors of linear prediction. The
prediction error of the DFT method is not very stable. That is,
sometimes, it achieves the second lowest error only after
probabilistic, but sometimes, it achieves the worst of all
methods. This is because different data sets have their own
characteristics. If the underlying data properties change
dramatically from the historical to the future value in the
frequency domain, it is very likely that the DFT-based
prediction would give inaccurate results.

Fig. 14 illustrates the CPU time of these prediction
approaches on the 24 benchmark, sstock, and randomwalk data
sets. Note that for the probabilistic approach, we also include
the average construction time of indexes in CPU time. In
general, the CPU times of linear and quadratic are the lowest,
whereas that of probabilistic is higher than that of ART
(excluding the time for constructing the ART) but lower
than those of DFT and fuzzy by orders of magnitude. Note
that although ART requires less time to predict future
values than the probabilistic approach, it does not include the
time for constructing the ART on training data, which is
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Fig. 14. Prediction efficiency versus data sets. (a) Twenty-four bench-
mark data sets (CPU time). (b) Sstock and randomwalk (CPU time).

dataset

costly (for about several seconds, much larger compared to
10 ms for the probabilistic approach), inefficient for stream
processing, and not adaptive to the change of stream data.

6.3 Query Accuracy

Next, we demonstrate the query accuracy of the similarity
search in future time series. Specifically, we run our
experiments on two data sets, sstock and randomwalk. We
divide each data set into 128 time series, that is, n = 128.
Consistent to previous settings, we choose H = 1,024 and
At =512 and select L =384 as the query length
(1,024 > 512 + 384). Therefore, during each blocked per-
iod, there are a total of n-At(=128 x 512) predicted
values (future subsequences of length 384). We randomly
extract 128 subsequences of length 384 from each data set
and use them as our query sequences.

Fig. 15 illustrates the impact of the similarity threshold
on the query accuracy in terms of the recall ratio defined in
(3). Here, the query accuracy mainly depends on the
prediction accuracy. Furthermore, since people are usually
interested in finding future series that follow certain
patterns with false dismissals as few as possible, our major
concern is a high recall ratio. Interestingly, for both data sets,
the recall ratio of the probabilistic approach is much better
than those of linear, quadratic, and DFT predictions. When
the value of ¢ increases, the query result contains more
candidates. Therefore, the recall ratio appears to be increas-
ing for all the four approaches (the last half of the curve in
the probabilistic one). Note that due to the data character-
istics, the recall ratio of randomwalk with DFT remains nearly
the same. When ¢ is very small, however, both linear and
quadratic have very few candidates, that is, close to zero
candidate on the average, thus leading to a near-zero recall
ratio. In contrast, the results of the DFT and probabilistic

WM Linear (1 Quad [ Prob DFT
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Fig. 15. Query accuracy versus ¢. (a) Sstock. (b) Randomwalk.
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approaches contain more candidates with a small ¢, thus
having a higher recall ratio.

6.4 Query Efficiency

In this set of experiments, we evaluate the query efficiency of
the similarity search in terms of the wall clock time of each
query. Specifically, we compare the similarity search on the
Bf-tree index FI with that of the sequential scan. In
particular, the wall clock time consists of two parts, CPU
time and I/O cost, where each page access (I/O) is
penalized by 10 ms [38], [39]. For the sake of fair
comparisons, for the similarity search over index FI, we
also include the index construction time of FI into the wall
clock time of each query. We set the page size to 1,024 bytes
and run the experiments on data sets sstock and randomwalk,
respectively, where n =128, H =1,024, At=512, and
L = 384. Similar to the previous experiment settings, we
extract 128 query sequences of length 384. The value of ¢ is
chosen so that the selectivity of the query result is about
0.1 percent. Fig. 16 illustrates the wall clock time at different
query time stamps, where the vertical axis is in log scale.
From the experimental results, we can see that our
approach outperforms the sequential scan by an order of
magnitude in terms of the wall clock time.

6.5 Scalability

In this section, we evaluate the scalability of our
proposed probability approach with respect to the number
n of stream time series in terms of the average wall clock
time of queries. Specifically, Fig. 17 illustrates the
experimental results over data sets sstock and randomwalk,
where n = 64,96,128,192,256, H = 1,024, At =512, and
L = 384. In the figure, we can see that our approach is
always better than sequential scan by an order of
magnitude in terms of the wall clock time with different
numbers of time series, which confirms the scalability of
our probabilistic method. In summary, the probabilistic
approach works well on the prediction accuracy and also
achieves good query accuracy and efficiency.

6.6 Performance of the Group Probabilistic
Approach

Finally, we evaluate the performance of the group probabil-
istic approach over correlated time series. Specifically, we
first obtain a time series S of length 10,240 by concatenating
sequences of length 512 in the sstock (randomwalk) data set
and then generate 127 other correlated time series by
adding noise to value S[t] at each time stamp ¢, following a
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Fig. 17. The scalability test of query processing. (a) Sstock.
(b) Randomwalk.

Gaussian distribution with mean zero and variance o. Fig. 18
illustrates the prediction error and recall ratio (numbers over
columns in figures) of the group probabilistic approach
compared with the probabilistic approach, where n = 128,
H =1,024, At =512, L = 384, and the query selectivity is
set to 0.1 percent. From the figure, we find that when the
variance o increases (that is, series become less correlated),
the prediction error of the group probabilistic approach
increases, whereas that of the probabilistic approach is
insensitive to 0. Moreover, the query accuracy of the group
probabilistic approach in terms of the recall ratio is higher
than that of the probabilistic approach due to the prediction
correction with the correlation information.

7 CONCLUSIONS

In this paper, we address the issues of similarity search over
future stream time series. In many applications, data often
arrive periodically or in batches. In order to offer a
reasonably accurate answer, we need methods to predict
values and carry out similarity searches over these predicted
values. We propose three prediction techniques, polynomial,
DFT, and (group) probabilistic, to predict future values in the
stream environment. We also present efficient indexes to
facilitate the (group) probabilistic approach with both predic-
tion tasks and similarity searches in future time series.
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