
Probabilistic Group Nearest Neighbor Queries
in Uncertain Databases

Xiang Lian, Student Member, IEEE, and Lei Chen, Member, IEEE

Abstract—The importance of query processing over uncertain data has recently arisen due to its wide usage in many real-world

applications. In the context of uncertain databases, previous works have studied many query types such as nearest neighbor query,

range query, top-k query, skyline query, and similarity join. In this paper, we focus on another important query, namely, probabilistic

group nearest neighbor (PGNN) query, in the uncertain database, which also has many applications. Specifically, given a set, Q, of

query points, a PGNN query retrieves data objects that minimize the aggregate distance (e.g., sum, min, andmax) to query set Q. Due

to the inherent uncertainty of data objects, previous techniques to answer group nearest neighbor (GNN) query cannot be directly

applied to our PGNN problem. Motivated by this, we propose effective pruning methods, namely, spatial pruning and probabilistic

pruning, to reduce the PGNN search space, which can be seamlessly integrated into our PGNN query procedure. Extensive

experiments have demonstrated the efficiency and effectiveness of our proposed approach, in terms of the wall clock time and the

speed-up ratio against linear scan.

Index Terms—Probabilistic group nearest neighbor queries, uncertain database.

Ç

1 INTRODUCTION

RECENTLY, query processing over uncertain data has

drawn much attention from the database community,

due to its wide usage in many applications such as sensor

network monitoring [8], object identification [1], and moving

object search [3], [2], [15]. Many real-world application data

inherently contain uncertainty. For example, sensor data

collected from different sites may be distorted for various

reasons like the environmental factors, device failures, or

battery power. Moreover, in the mobile environment, the

positions of mobile users stored in the database may deviate

from their actual values at the query time due to the

precision of positioning devices, transmission delay, and so

on. Therefore, in these situations, each object can be modeled

as a so-called uncertainty region [3], [24], instead of a precise

point. For simplicity, in this paper, we assume that the

uncertainty region is of hypersphere shape [3], [24]. Fig. 1

illustrates a 2D example of uncertain database, where each

uncertain object can locate within a circle with arbitrary

distribution.
While many proposed techniques for answering queries

(e.g., nearest neighbor (NN) query and range query) assume
that data objects are precise, they cannot be directly applied
to handle uncertain data (otherwise, inaccuracy or even
errors may be introduced). Thus, it is crucial to design novel
approaches to efficiently and accurately answer queries

over uncertain objects. In the context of uncertain databases,
previous works have studied query types such as range
query [4], [5], [24], NN query [3], [4], [14], top-k query [20],
[23], skyline query [19], and similarity join [13].

In this paper, we focus on another important type of
query, namely, GNN query [17], [18], in uncertain databases,
which, to the best of our knowledge, no other work has
studied before. Specifically, in a “certain” database D
(containing precise data objects), given a set of query
points, Q ¼ fq1; q2; . . . ; qng, a GNN query [17], [18] retrieves
one data object o 2 D that minimizes an aggregate distance
function adistfðo;QÞ, where adistfðo;QÞ is defined as a
monotonically increasing function fð::Þ1 with respect to
object o and query set Q. That is,

adistfðo;QÞ ¼ fðdistðo; q1Þ; distðo; q2Þ; . . . ; distðo; qnÞÞ;

where distðx; yÞ is the euclidean distance between two data
objects x and y. As an example, for sum aggregate distance
function, we have adistsumðo;QÞ ¼

Pn
i¼1 distðo; qiÞ. In the

sequel, we refer to adistfðo;QÞ as adistðo;QÞ for brevity
unless specific aggregate function f is used.

In an uncertain database, however, each data object has
“dynamic” attributes, which means that the value of an
attribute locates within a range with some probability.
Therefore, the pairwise distance between any two objects is
no longer a constant; instead, it is a variable. Correspond-
ingly, we have to redefine the GNN query over uncertain
objects. In particular, in an uncertain database, a probabilistic
group nearest neighbor (PGNN) query retrieves a set of
uncertain objects such that their probability of being GNN
is greater than a user-specified probability threshold �,
where � 2 ð0; 1�.

The PGNN query is important in many applications. For
instance, in a forest where many sites are on fire, the exact

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 6, JUNE 2008 809

. The authors are with the Department of Computer Science and
Engineering, The Hong Kong University of Science and Technology, Clear
Water Bay, Kowloon, Hong Kong, China.
E-mail: {xlian, leichen}@cse.ust.hk.

Manuscript received 1 Aug. 2007; revised 27 Nov. 2007; accepted 14 Jan.
2008; published online 13 Feb. 2008.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number
TKDE-2007-08-0394.
Digital Object Identifier no. 10.1109/TKDE.2008.41.

1. Function f is monotonically increasing iff: 8i, xi � x0i 7!fðx1; . . . ; xnÞ
� fðx01; . . . ; x0nÞ.

1041-4347/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 15, 2008 at 01:30 from IEEE Xplore. Restrictions apply.

location of each site on fire is not precise (e.g., due to wind or
moving speed of the fire), which can thus be modeled as an
uncertain object. Several firefighters located at different
places want to get together so as to put out fires (assuming a
single firefighter cannot put out fire alone). In this case, they
can issue a PGNN query (with locations of firefighters as
query points) to find a site that minimizes either their total
traveling distance (sum aggregate distance) or minimum
(maximum) time (traveling distance) for them to reach the
site (i.e., min ðmaxÞ aggregate distance). In an image
database, the stored images may contain noises due to the
inaccuracy of capturing devices or some environmental
factors. Thus, the feature vectors extracted from these
images can be considered as uncertain data, which means
that each real feature value locates within a range.
Furthermore, due to the gap between semantic concepts
and low-level image features [22], a single image is often not
enough to express a semantic concept that users want to
query. In this case, we can select a group of example query
images and issue a PGNN query to find images that have the
minimum sum aggregate distance to the query set. For
instance, if users want to search all the images about
“sunset,” they can select a set of query images with different
sunset scenes, such as sunset in mountains, sea, and
grassland, and conduct a PGNN query over uncertain image
feature vectors in the database.

The PGNN query can be also used when a military unit

wants to find moving enemy that minimizes the maximum

distances to troops at different locations. As a meteorology

example, consider a system that monitors severe weather

phenomena (e.g., typhoons). We can issue a PGNN query to

identify ships or moving vehicles that are under the highest

potential danger based on their distances to any phenom-

enon and warn them as early as possible. In addition to

stand-alone methods, PGNN can be integrated into other

related problems such as k-medoids or outlier detection [17],

where the underlying data are imprecise.
Motivated by the fact that previous methods can only

handle the GNN query over precise data [17], in this paper,

we propose efficient and effective approaches to address

PGNN queries over uncertain databases.
Specifically, we make the following contributions:

1. We formalize, in Section 3, the problem of PGNN
query over the uncertain database.

2. We propose, in Section 4, the effective pruning
methods, namely spatial pruning and probabilistic
pruning, to reduce the PGNN search space which
can be seamlessly integrated into a general frame-
work for answering PGNN queries discussed in
Section 5.

3. We generalize, in Section 6, our proposed solutions
to answer PGNN queries not only with precise
query points but also uncertain query objects.

4. We demonstrate through extensive experiments, in
Section 8, the effectiveness of the pruning methods
as well as the efficiency of our proposed PGNN
query procedure.

In addition, Section 2 briefly overviews previous methods
to retrieve GNN over precise data objects and related work
on query processing in uncertain databases. Section 7
discusses variants of the PGNN query. Finally, Section 9
concludes this paper.

2 RELATED WORK

Section 2.1 reviews previous methods to answer GNN
queries in the “certain” database. Section 2.2 illustrates
query processing over uncertain databases.

2.1 Group Nearest Neighbor (GNN) Queries

GNN was first proposed by Papadias et al. [17], which
retrieves data objects in the database that minimize their
sum aggregate distances to a user-specified set of query
points. Specifically, given a database D and a set, Q, of
n query points, q1; q2; . . . and qn, a GNN query obtains a
data object o that minimizes the sum distance from o to the
query set Q, that is,

Pn
i¼1 distðo; qiÞ, where distðx; yÞ is the

euclidean distance between two data objects x and y. Later,
the authors [18] generalized sum to any monotonically
increasing aggregate distance function f , in which they also
demonstrated how min and max aggregate distance
functions can be solved in the same framework for GNN.
Note that, GNN query with aggregate distance function is
also called aggregate nearest neighbor (ANN) query in [18].
Throughout this paper, however, we always name this kind
of query (with aggregates) as GNN, unless otherwise
specified.

Papadias et al. [17] proposed three methods to answer
GNN queries with the assumption that all the data objects
in the database are indexed by a multidimensional
structure, R-tree [9]. The first proposed approach, namely,
multiple query method (MQM), applies the threshold algo-
rithm [7] to retrieve the top-1 data point that minimizes the
score (i.e., the sum distance to the query set Q).
Specifically, MQM traverses the R-tree index in either
depth-first or best-first manner to incrementally obtain
NNs of each query point. The algorithm also maintains a
global threshold, best dist, to record the summation of
distance distðqi; cur NNðqiÞÞ (for 1 � i � nÞ from each
query point qi to its current NN cur NNðqiÞ that is visited.
MQM accesses NNs of query points in a round-robin
fashion. Each time when a data point o is retrieved, the
sum aggregate distance distðo;QÞ from o to query set Q is
computed. In case the minimum sum distance among all
the retrieved data points so far is below the threshold
best dist, the procedure MQM can terminate, since those
data objects that have not been accessed would not have
the sum distance smaller than best dist.

The second approach, namely, the single point method
(SPM), calculates the centroid q of query set Q and uses q to
prune data objects/nodes when traversing the R-tree. In

810 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 6, JUNE 2008

Fig. 1. A group nearest neighbor (GNN) query in the uncertain database.

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 15, 2008 at 01:30 from IEEE Xplore. Restrictions apply.

particular, it computes the lower bound of the sum
aggregate distance from object/node to query set via q
using the triangle inequality. If the lower bound is larger than
or equal to the smallest sum distance best dist among
objects we have visited so far, then we can safely prune this
object/node.

The third approach, namely, minimum bounding method
(MBM) uses a minimum bounding rectangle (MBR, denoted as
MBRðQÞ) to bound all the query points in Q. Then, MBRðQÞ
is considered as the representative of query points and can
be applied to the query procedure to facilitate pruning data
points/node MBRs. Similar to SPM, the lower bound
distance between MBRðQÞ and any data point/node MBR
is calculated. If this lower bound is larger than or equal to
the minimum distance best dist among data points that
have been found so far, then the data point/node MBR can
be safely pruned.

The experimental results of GNN queries reported in [18]
indicate that SPM and MBM outperform MQM. This is
reasonable, since SPM and MBM traverse R-tree for only
one pass (i.e., each node is accessed, at most, once), whereas
MQM has to find NNs for query points by traversing the
R-tree for multiple times.

2.2 Query Processing in Uncertain Databases

Query processing over uncertain data has attracted much
attention from the database community due to its im-
portance in many applications [8], [1], [3], [2], [15], [21],
[23], where real-world data inherently contain uncertainty
themselves. Since traditional approaches for answering
queries always assume that data are precise, they are not
directly applicable to handle uncertainty. Therefore, many
techniques have been designed specifically for uncertain
databases, with queries such as range query [4], [5], [24], NN
query [3], [4], [14], top-k query [20], [23], skyline query [19],
and similarity join [13]. To the best of our knowledge, so far,
no existing work has studied the GNN query in the context
of the uncertain database, which assumes that data objects
can have “dynamic” attributes in the data space (i.e.,
locating anywhere within the uncertainty regions). Due to
the inherent uncertainty in many real-world data from
various applications, we need to find a solution that can
efficiently answer the GNN query in uncertain databases.

The most related work to our GNN problem in the
uncertain database is the probabilistic nearest neighbor query
(PNNQ) in applications with 1D sensor data [4] and
2D moving objects [3]. In contrast, GNN query specifies
multiple query points in arbitrary d-dimensional space. Only
in a special case where GNN query specifies one query
point, our PGNN query degrades to PNNQ. In particular, a
PNNQ returns the expected probability of each object that
can be the NN of a given query point. The proposed
solution [3], [4] to solve the PNNQ problem includes four
phases. The first projection phase computes the uncertainty
region of each object by the application model. Then, in the
second pruning phase, we sequentially scan the database and
obtain the minimum and maximum possible distances from
the query point to each uncertain object. Let best dist be the
smallest maximum distance from query point to uncertain
objects. Then, all the data objects that have their minimum
distances to the query point greater than or equal to

best dist can be safely pruned. Next, in the bounding phase, a

bounding circle centered at the query point with radius

best dist can be conceptually drawn. Any data outside the

bounding circle can be ignored during query processing.

Finally, in the evaluation phase, for each remaining candi-

date, we calculate its expected probability of being NN of

the query point, by only considering those data objects

within the bounding circle. In contrast to PNNQ, our PGNN

problem in the context of uncertain databases is more

complex, since multiple query points are involved, and

moreover, different aggregate distance functions such as

sum, min, and max are used. Like the statement in [17] and

[18] that the solutions for the NN query cannot be used

directly for the GNN query in the “certain” database,

previous methods to answer PNNQ cannot be directly

applied to solve our PGNN problem in the uncertain

database.
Ljosa and Singh [15] propose another equally natural

interpretation of NN over uncertain data, considering the

expected distance from query point to uncertain objects under

L1-norm. Specifically, the curve of expected distance for

every possible position of query point along each dimen-

sion is offline precomputed and approximated by piece-

wise-linear method. Then, a tree index, APLA-tree, is

constructed for range and kNN queries. In contrast, our

work is more related to the natural definition of PNNQ [3]

(i.e., applying the probability integration) with multiple

query points, where APLA method with the expected

distances cannot be used in our problem. Moreover, in this

paper, we focus our work on 1-PGNN problem that

retrieves the probabilistic group 1-nearest neighbors, which

has not been addressed before. The variant of the k-PGNN

case (obtaining probabilistic group k-nearest neighbors) will

be discussed in Section 7.

3 PROBLEM DEFINITION

In this section, we formally define the problem of PGNN in

an uncertain database D. Specifically, assume that each data

object o in D can be represented by an uncertainty region

URðoÞ [3], [24], in which o locates at position o0 2 URðoÞ
with probability pdfðo0Þ � 0 (note that, in case o0 is not in

URðoÞ, pdfðo0Þ ¼ 0), where pdfð�Þ is the probability density

function (pdf) of object o. This probabilistic representation of

uncertain objects has many practical applications. For

example, in sensor networks, data collected from sensors

contain noises, however, often within a tolerance range; in

mobile applications, the position of each mobile user can be

inferred from the last reported position and the maximum

moving speed. In this work, we assume that uncertain

objects in the database are independent of each other.

Similar assumptions have been made in some previous

works [4], [3], [19].

Definition 3.1 (PGNN). Given an uncertain database D, a set of

n query objects, Q ¼ fq1; q2; . . . ; qng, and a user-specified

probability threshold � 2 ð0; 1�, a PGNN query retrieves a set

of data objects o 2 D, such that they are expected to be the

GNN of query set Q with a probability greater than �, that is,

LIAN AND CHEN: PROBABILISTIC GROUP NEAREST NEIGHBOR QUERIES IN UNCERTAIN DATABASES 811

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 15, 2008 at 01:30 from IEEE Xplore. Restrictions apply.

Z rmax

rmin

Prfadistðo;QÞ ¼ rg �
Y

8p2Dnfog
Prfadistðp;QÞ � rg

0
@

1
A

dr > �;

ð1Þ

where adistðo;QÞ (or adistðp;QÞ) is defined as a mono-
tonically increasing function

fðdistðo; q1Þ; distðo; q2Þ; . . . ; distðo; qnÞÞ

(or fðdistðp; q1Þ; distðp; q2Þ; . . . ; distðp; qnÞÞ), and rminðrmaxÞ
is the minimum (maximum) possible aggregate distance
adistðo;QÞ from o to Q.

In this paper, due to the popularity in many applications,
sum, min, and max aggregate distance functions adistðo;QÞ
(i.e., f ¼ sum, min, or max) are used as presentation
examples, which are denoted as adistsum, adistmin, and
adistmax, respectively. Our proposed methods, however,
can be easily extended to other aggregate distance functions
f , as will be discussed later. Specifically, we have

adistsumðo;QÞ ¼
Xn
i¼1

distðo; qiÞ; ð2Þ

adistminðo;QÞ ¼ minni¼1distðo; qiÞ; ð3Þ

adistmaxðo;QÞ ¼ maxni¼1distðo; qiÞ; ð4Þ

where distðx; yÞ is the euclidean distance between two data
objects x and y.

Intuitively, the LHS of (1) indicates the expected
probability that object o is a GNN of Q. Specifically, within
the integration, the first term is the probability that o has r
(aggregate) distance to query set Q, whereas the second
term corresponds to the probability that other data objects
p 2 D n fog have (aggregate) distances to Q never smaller
than r (here, we can multiply probabilities of all objects due
to the object independence as assumed by many previous
works [4], [3], [19]). Thus, if the resulting integration for
object o on the LHS of (1) is greater than a user-specified
threshold � 2 ð0; 1�, then o is a qualified PGNN.

To the best of our knowledge, no previous work has
studied the PGNN problem. Therefore, the only straightfor-
ward method is the linear scan, which sequentially scans all
the data objects on disk and check, for each object o,
whether or not it is a qualified PGNN by (1). Since (1)
involves complex integration, this method requires inten-
sive computations as well as large I/O cost, which is quite

inefficient. Motivated by this, in the sequel, we propose
effective filtering methods, namely, spatial pruning and
probabilistic pruning, to facilitate the PGNN search, which
can be integrated into our efficient PGNN query procedure.
The basic idea is as follows: From the PGNN definition, our
goal is to prune those data objects that have the expected
probability (LHS of (1)) smaller than or equal to �, which,
obviously, would not introduce any false dismissals (answers
to the query that are, however, not in the final result). Fig. 2
summarizes the commonly used symbols in this paper.

4 PROBABILISTIC GNN

Fig. 3 illustrates our general framework for retrieving
PGNNs. In particular, the framework consists of three
phases: index construction, filtering, and refinement. In the
first phase, in order to facilitate efficient PGNN queries, we
construct a multidimensional index I over all the uncertain
objects in the database D (line 1). Without loss of generality,
in this paper, we use one of the most popular indexes,
R-tree [9], to index uncertain objects. That is, we tightly
bound the uncertainty region of each object with a
bounding hyperrectangle, and then insert the hyperrectan-
gle into an R-tree, on which the PGNN query can be
answered. Note that, here, we use a standard insertion
operator in the R-tree. Other indexes such as M-tree [6] or
SR-tree [12] can be applied as well, as our proposed
methodology is independent of the underlying index. As a
second step, given a set of query points, Q ¼ fq1; q2; . . . ; qng,
specified by the PGNN query, our goal is to retrieve all
PGNNs of Q. Since the aggregate distance from any
uncertain object to the query set is a variable instead of a
fixed value, previous pruning methods [17] that handle
“certain” data cannot be directly applied. Thus, in the
filtering phase, we use novel pruning methods to filter out
those unqualified data objects. Specifically, we propose two
effective methods, namely spatial pruning and probabilistic
pruning, to significantly reduce the PGNN search space yet
without introducing any false dismissals (lines 2-3). Finally,
in the last refinement phase, we further refine the remaining
candidates by checking (1) and return the qualified PGNNs
(line 4).

In the sequel, we focus on illustrating the PGNN pruning
heuristics in the filtering phase, including both spatial and
probabilistic pruning, which will be discussed in Sections 4.1
and 4.2, respectively. In particular, the spatial pruning
approach filters out those data objects that are definitely
not PGNNs, which can be applied to the case where the
distribution of each object within its uncertainty region is

812 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 6, JUNE 2008

Fig. 2. Meanings of notations.
Fig. 3. The framework for answering PGNN queries.

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 15, 2008 at 01:30 from IEEE Xplore. Restrictions apply.

either known or unknown. On the other hand, the probabil-
istic pruning technique corresponds to the case under the
assumption that we know the distribution of each object in
advance. Thus, the proposed pruning method can utilize the
distribution information to achieve even higher pruning
ability, that is, discarding those objects with the expected
probability of being PGNNs smaller than or equal to �, for
some � 2 ½0; ��. As will be described later, both spatial and
probabilistic pruning can be seamlessly integrated into our
PGNN query procedure.

4.1 Spatial Pruning

First, we propose the spatial pruning method. Specifically,
we prune those uncertain objects in the database that are
definitely not PGNNs. In other words, we want to filter out
those objects o with 0 expected probability (LHS of (1).

Fig. 4 illustrates the intuition of our spatial pruning
method. In particular, Fig. 4a shows the uncertainty region
(circle) URðoÞ of object o, centered at point Co and with
radius ro, as well as a set, Q, of three PGNN query points q1,
q2, and q3. Note that, although object o has “dynamic”
attributes, it can only locate within its uncertainty region
URðoÞ. Therefore, the distance from query point q1 to
uncertain object o is lower bounded by ðdistðq1; CoÞ � roÞ
and upper bounded by ðdistðq1; CoÞ þ roÞ. Similarly, the
distance from query point q2 ðq3Þ to object o is within

½distðq2; CoÞ � ro; distðq2; CoÞ þ ro�
ð½distðq3; CoÞ � ro; distðq3; CoÞ þ ro�Þ:

As a result, the aggregate distance adistðo;QÞ from o to Q
can be also bounded by an interval

½LB adistðo;QÞ; UB adistðo;QÞ�;

where LB adistðo;QÞ and UB adistðo;QÞ for different
aggregates (i.e., sum, min, and max) are given below.

When adistðo;QÞ is the sum aggregate distance function
adistsumðo;QÞ, we have

LB adistsumðo;QÞ ¼
Xn
i¼1

distðCo; qiÞ � n � ro; ð5Þ

UB adistsumðo;QÞ ¼
Xn
i¼1

distðCo; qiÞ þ n � ro: ð6Þ

Similarly, for the min and max aggregate distance
functions, adistminðo;QÞ and adistmaxðo;QÞ, respectively,
we have

LB adistminðo;QÞ ¼ minni¼1distðCo; qiÞ � ro; ð7Þ

UB adistminðo;QÞ ¼ minni¼1distðCo; qiÞ þ ro; ð8Þ

LB adistmaxðo;QÞ ¼ maxni¼1distðCo; qiÞ � ro; ð9Þ

UB adistmaxðo;QÞ ¼ maxni¼1distðCo; qiÞ þ ro: ð10Þ

Fig. 4b illustrates intervals of aggregate distances for
three uncertain objects p, o, and o0 in the 2D
object-distance space. In particular, assume that the
aggregate distance adistðp;QÞ from object p to Q is within
interval [1, 3]. Similarly, we have adistðo;QÞ 2 ½3:5; 5� and
adistðo0; QÞ 2 ½2; 4:5�. Without loss of generality, suppose
we have accessed uncertain object p so far and obtained
its interval [1, 3]. Next, we encounter the second object o
and need to decide whether or not o is a PGNN
candidate. Since the lower bound distance LB adistðo;QÞ
of object o (i.e., 3.5) is greater than the upper bound
distance UB adistðp;QÞ of object p (i.e., 3), o is guaranteed
not to be PGNN. The reason is that, within the integration
of LHS of (1), it always holds that Prfadistðp;QÞ � rg ¼ 0,
for r � UB adistðo;QÞ and adistðo;QÞ � LB adistðo;QÞ.
Thus, for any positive threshold �, (1) cannot hold and
we can safely prune object o, which is the basic heuristics
of our spatial pruning method. On the other hand, for the
third data object o0 we encounter, since it holds that

LB adistðo0; QÞ < UB adistðp;QÞ;

there exists possibility that o0 becomes GNN among the
three objects (i.e., p, o, and o0). So, object o0 cannot be pruned
and it is a PGNN candidate.

Therefore, our spatial pruning method can be briefly
summarized as follows: Assume that object p has the smallest
upper boundUB adistðp;QÞ of aggregate distance among all
data objects that we have seen so far. For any data object o, as
long as it holds thatLB adistðo;QÞ � UB adistðp;QÞ, object o
can be safely pruned, where LB adistðo;QÞ is the lower
bound of aggregate distance from o to Q. The following
lemma guarantees that spatial pruning method can correctly
prune data objects and provide PGNN candidates.

Lemma 4.1. No false dismissals are introduced by the spatial
pruning method, while answering a PGNN query.

Proof. By contradiction. Assume that (at least) one false
dismissal o is introduced due to the spatial pruning. That
is, as mentioned above, data object o satisfying
LB adistðo;QÞ � UB adistðp;QÞ is the answer to the
PGNN query. Therefore, according to GNN definition,
there must exist a position (instance) o0 for object o and a
position p0 for object p, such that adistðo0; QÞ <
adistðp0; QÞ holds. However, since LB adistðo;QÞ �
adistðo0; QÞ and adistðp0; QÞ � UB adistðp;QÞ, by the
inequality transition, we have

LB adistðo;QÞ < UB adistðp;QÞ;

which is contrary to our initial assumption. Hence, no
false dismissals are introduced by the spatial pruning
method. tu
Note that, in the 1D space and with one query point, the

pruning criterion of our spatial pruning degrades to the one
proposed in [4].

LIAN AND CHEN: PROBABILISTIC GROUP NEAREST NEIGHBOR QUERIES IN UNCERTAIN DATABASES 813

Fig. 4. Heuristics of spatial pruning.

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 15, 2008 at 01:30 from IEEE Xplore. Restrictions apply.

4.2 Probabilistic Pruning

As a second step, we present a probabilistic pruning method

to answer PGNN queries. Recall that, the spatial pruning

method reduces the PGNN search space by pruning those
data objects that are definitely not PGNNs. This method

only utilizes the geometric property of uncertain objects

(i.e., uncertainty regions); thus, we can apply spatial pruning

to the case where the distribution of each object (within its

uncertainty region) is unknown. Obviously, it can also be
applied to the case where we know the object distribution.

However, if we indeed have additional distribution

information, we should be able to achieve even higher

pruning power, compared with the spatial pruning, which

motivates us to propose the probabilistic pruning approach.
In the sequel, we propose a novel probabilistic pruning

approach, which utilizes the precomputed information
from object distributions in their uncertainty regions. While

the spatial pruning method discards those data objects with

the expected probability (LHS of (1)) equal to zero, the

probabilistic pruning aims to prune those objects with

probability never greater than �, for some � 2 ½0; ��, where
� 2 ð0; 1� is a probability threshold specified by PGNN

queries. This also indicates that probabilistic pruning has at

least no worse pruning power than spatial pruning.

Specifically, since the formula of the expected probability

(LHS of (1)), denoted as PPGNNðoÞ, is very complex
involving integrations, we relax it with its upper bound

probability. That is, if the upper bound probability of

PPGNNðoÞ is smaller than or equal to � 2 ½0; ��, then object o

can be safely pruned. Obviously, no false dismissals are

introduced while using this upper bound probability.
We first introduce the concept of

ð1� �Þ-hypersphere �1�� ðpÞ

for an uncertain object p, which will be used in the

probabilistic pruning.

Definition 4.1 (ð1� �Þ-Hypersphere). As illustrated in Fig. 5,

given the uncertainty region URðpÞ of object p centered at Cp
and with radius rp, a ð1� �Þ-hypersphere �1�� ðpÞ is a

hypersphere, with the same center Cp and a radius r1��
p , such

that o locates in hypersphere �1��ðpÞ with probability ð1� �Þ.
The complement part of �1��ðpÞ in URðpÞ is denoted as

�1��ðpÞ (i.e., �1��ðpÞ ¼ URðpÞ n �1��ðpÞ).

From the definition of ð1� �Þ-hypersphere, we can see

that the uncertainty region URðpÞ of object p is exactly 1-

hypersphere when � ¼ 0. Furthermore, we have an im-

mediate corollary below.

Corollary 4.1. Any object p locates in the complement part

�1��ðpÞ with probability �.

Definition 4.1 assumes the continuous pdf within the

uncertainty region of each object. Usually, we use discrete

samples [3], [13], [14] to represent the distribution with

continuous pdf. Thus, in such discrete case, we can

compute ð1� �Þ-hypersphere as follows: Assume each

uncertain object has, for example, l, random samples.

According to Definition 4.1, any hypersphere that contains

dð1� �Þ � le samples is a ð1� �Þ-hypersphere of this object.

(Note: In fact, there may exist many of such hyperspheres

with different radii. In order to achieve the highest pruning

power, however, we use the one with the smallest radius.)

Thus, for each object p, we can select the geometric

centroid Cp of all the samples [10], compute the distances

from Cp to these samples, and finally sort samples in

ascending order of distances. The radius rp of ð1�
�Þ-hypersphere is given by the dð1� �Þ � leth smallest

distance among samples. Therefore, for each � value, the

time complexity of offline computing ð1� �Þ-hyperspheres

of data set D is OðjDj � l � loglÞ, where jDj is the data size of

D. The PGNN query with discrete pdf (i.e., with instances

in each uncertain object) is similar to the continuous case

(with samples). Note that, since we can obtain ð1�
�Þ-hyperspheres from samples/instances, the object distri-

bution within the uncertainty region can be arbitrary (e.g.,

uniform, normal, or binomial).

Now, we give our probabilistic pruning method as follows:

Given an uncertain database D and a set, Q, of PGNN query

points, the probabilistic pruning method can prune data

object o (with its aggregate distance adistðo;QÞ bounded by

interval ½LB adistðo;QÞ; UB adistðo;QÞ�), if there exists an

uncertain object p, such that

UB adistðp1��; QÞ < LB adistðo;QÞ;

where object p1�� locates within the region of ð1�
�Þ-hypersphere for some � 2 ½0; ��, and UB adistðp1��; QÞ
is the upper bound of aggregate distance from p1�� to Q.

Lemma 4.2. The probabilistic pruning method will not introduce
false dismissals while answering a PGNN query.

Proof. It is sufficient to prove, that as long as there exists an

object p satisfying UB adistðp1��; QÞ < LB adistðo;QÞ,
the expected probability PPGNNðoÞ that object o is a

PGNN (i.e., LHS of (1)) is smaller than or equal to

� 2 ½0; ��. We start from the PGNN definition of object o,

that is,

PPGNNðoÞ ¼
Z rmax

rmin

Prfadistðo;QÞ ¼ rg

�
Y

8p02Dnfog
Prfadistðp0; QÞ � rg

!
dr;

ð11Þ

where rmin ¼ LB adistðo;QÞ and rmax ¼ UB adistðo;QÞ.

814 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 6, JUNE 2008

Fig. 5. Illustration of ð1� �Þ-hypersphere.

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 15, 2008 at 01:30 from IEEE Xplore. Restrictions apply.

Since each probability in (11) is within [0, 1], we have

PPGNNðoÞ �
Z rmax

rmin

Prfadistðo;QÞ ¼ rg

� Prfadistðp;QÞ � rg
!
dr;

ð12Þ

for object p 2 D n fog.
Furthermore, since object p may locate in either

�1��ðpÞ or �1��ðpÞ, it holds that

Prfadistðp;QÞ � rg
¼ Prfp 2 �1��ðpÞg � Prfadistðp1��; QÞ � rjp 2 �1��ðpÞg
þ Prfp 2 �1��ðpÞg � Prfadistðp1��; QÞ � rjp 2 �1��ðpÞg;

ð13Þ

where p1�� and p1�� locate in �1��ðpÞ and �1��ðpÞ,
respectively.

From the assumption of the lemma, since object p
satisfies the condition that

adistðp1��; QÞ � UB adistðp1��; QÞ
< LB adistðo;QÞ ¼ rmin � r;

in the first term of (13), Prfadistðp1��; QÞ � rjp 2
�1��ðpÞg ¼ 0 holds. Moreover, based on Corollary 4.1,
we have Prfp 2 �1��ðpÞg ¼ �, and the second term
of (13) is smaller than or equal to � (since
Prfadistðp1��; QÞ � rjp 2 �1��ðpÞg � 1) . Thus, from
(13), we obtain Prfadistðp;QÞ � rg � �, which can be
substituted into (12), resulting in

PPGNNðoÞ � � �
Z rmax

rmin

ðPrfadistðo;QÞ ¼ rgÞdr ¼ �: ð14Þ

Hence, if object p satisfies

UB adistðp1��; QÞ < LB adistðo;QÞ;

it holds that PPGNN � � � �, indicating that object o can
be safely pruned. tu
From Lemma 4.2, we can precompute the radius of ð1�

�Þ-hypersphere for each uncertain object in the database, for a
number of � values within [0, 1]. In order to check whether
or not an object o is a qualified PGNN, we only need to test if
the condition UB adistðp1��; QÞ < LB adistðo;QÞ holds for
other objects p, using the largest precomputed � value
satisfying � 2 ½0; ��. Since the resulting precomputation for
each � value takes OðjDjÞ space for data setD, the number of
� values that we can offline precompute depends on the
available disk space. Moreover, the � values that we use for
offline precomputation can be uniformly distributed in [0, 1],
in case � specified by queries can be arbitrary. If we know
the � distribution of queries (from historical data), however,
we can do some optimizations by precomputing ð1�
�Þ-hyperspheres with � following the same distribution as
�. This way, during query processing, the selected largest
� 2 ½0; �� is expected to approach �.

Note that, our probabilistic pruning essentially applies
the idea similar to spatial pruning. That is, it utilizes
smaller offline precomputed ð1� �Þ-hyperspheres to prune

other objects, whereas the spatial pruning uses the entire
uncertainty region. However, the probabilistic pruning can
achieve higher pruning power (due to the smaller radius
in UB adistðp1��; QÞ) and, thus, result in higher online
query efficiency.

5 QUERY PROCESSING

In this section, we illustrate the PGNN query processing in
detail. In particular, we utilize our two pruning methods,
spatial pruning and probabilistic pruning, proposed in the last
section, and integrate them into the PGNN query procedure
to reduce the search PGNN space. In the sequel, Section 5.1
first illustrates the pruning heuristics of pruning inter-
mediate entries of the index. Then, Section 5.2 presents the
PGNN query procedure, corresponding to filtering and
refinement steps in our PGNN framework.

5.1 Pruning Intermediate Entries

As mentioned earlier, we index the uncertainty region of
each data object in the R-tree, on which the PGNN query
can be processed. R-tree is one of the popular multi-
dimensional tree indexes, which recursively groups data
objects with MBRs until one final node (root) is obtained.
Now, we study the condition of pruning an intermediate
entry in the R-tree.

Recall that, during the point-by-point pruning of the
PGNN search (discussed in Section 4.1), given the smallest
upper bound UB adistðp;QÞ of aggregate distance from p to
Q among all the objects we have seen so far, any
object o 2 D can be safely pruned, if UB adistðp;QÞ �
LB adistðo;QÞ holds, where Q is a set of n query points
specified by the PGNN query. Similarly, in the case of an
intermediate entry e containing many uncertain objects, as
long as any object x in entry e satisfies the condition that
UB adistðp;QÞ � LB adistðx;QÞ, we can safely prune the
entire entry e. However, since the exact positions of objects
x in entry e are unknown without accessing its correspond-
ing subtree, we relax the pruning condition as follows:

The Condition to Prune Intermediate Entries. Any
intermediate entry e in the R-tree can be safely pruned, if
UB adistðp;QÞ � LB adistðe;QÞ holds, where object p has the
minimum UB adistðp;QÞ among all the objects that we have
seen so far, and LB adistðe;QÞ is the minimum possible
aggregate distance from any point x 2 e to query set Q.

In particular, for sum, min, and max aggregate distance
functions, we let

LB adistsumðe;QÞ ¼
Xn
i¼1

mindistðqi; eÞ;

LB adistminðe;QÞ ¼ minni¼1mindistðqi; eÞ;
LB adistmaxðe;QÞ ¼ maxni¼1mindistðqi; eÞ;

ð15Þ

where mindistðqi; eÞ is the minimum distance from object qi
to any point in e.

Since (15) needs OðnÞ computation cost for large n value,
we can bound all the query points with one MBR, MBRðQÞ,
and compute LB adist0ðe;QÞ using MBRðQÞ with only
Oð1Þ cost. We name this pruning method the probabilistic
minimum bounding method ðPMBMÞ. Specifically, for differ-
ent aggregate distance functions, we have

LIAN AND CHEN: PROBABILISTIC GROUP NEAREST NEIGHBOR QUERIES IN UNCERTAIN DATABASES 815

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 15, 2008 at 01:30 from IEEE Xplore. Restrictions apply.

LB adist0sumðe;QÞ ¼ n �mindistðMBRðQÞ; eÞ;
LB adist0minðe;QÞ ¼ mindistðMBRðQÞ; eÞ;
LB adist0maxðe;QÞ ¼ mindistðMBRðQÞ; eÞ;

ð16Þ

where mindistðMBRðQÞ; eÞ is the minimum possible dis-
tance between two points coming from MBRðQÞ and e,
respectively.

From (16), the performance (e.g., pruning power) of
PMBM depends on the property of query set Q. For
example, when query points in Q are very sparse, the
resulting MBRðQÞ would be large; thus, LB adistðe;QÞ
in (16) would be very small, leading to low pruning
power. Thus, instead of bounding all the query points qi
(for i 2 ½1; n�) with an MBR as PMBM does, we also
propose a probabilistic single point method ðPSPMÞ.
Specifically, we use the geometric centroid q of all the
query points as representative to prune intermediate
nodes. That is, by applying the triangle inequality, we can
obtain LB adistðe;QÞ with Oð1Þ cost by letting

LB adist00sumðe;QÞ ¼ n �mindistðq; eÞ �
Xn
i¼1

distðqi; qÞ;

LB adist00minðe;QÞ ¼ mindistðq; eÞ �maxni¼1distðqi; qÞ;
LB adist00maxðe;QÞ ¼ mindistðq; eÞ �minni¼1distðqi; qÞ;

ð17Þ

where distðqi; qÞ ð1 � i � nÞ are calculated only once when
query set Q arrives.

5.2 PGNN Query Procedure

Up to now, we have discussed the pruning heuristics of
intermediate nodes in the R-tree index I , as well as the
point-by-point pruning. Next, we present the detailed
PGNN query procedure over I (using PMBM to prune
intermediate entries) in Fig. 6. Specifically, procedure
PGNN_Processing takes a set, Q, of query points and a
probability threshold � as input, and returns a PGNN set, S,
by traversing the R-tree index I in a best-first manner.

In particular, we maintain a minimum heap H accepting
entries in the form ðe; keyÞ (line 1), where e is the node MBR
in the R-tree, and key is the sorting key of the heap which is

defined as the lower bound of aggregate distance from any
point in MBR node to query set Q. Moreover, we also
initialize a PGNN candidate set S to be empty and set
variable best adist to þ1 (line 2), where best adist is the
smallest upper bound of aggregate distance for all the data
objects that have been seen so far. Then, we insert the root,
rootðIÞ, of the R-tree into heap H (line 3). Each time we pop
out an entry ðe; keyÞ from heap H (line 5), and check
whether or not key is greater than or equal to best adist. If
the answer is yes, then it indicates that all the remaining
entries in heap H would have their minimum aggregate
distance to Q not smaller than best adist. Thus, they cannot
contain any PGNNs and procedure PGNN_Processing can
terminate (line 6).

During the PGNN search, whenever we encounter a leaf
node e, for each uncertain object o in e, we check by spatial
pruning whether or not the lower bound distance
LB adistðo;QÞ from object o to query set Q is smaller than
or equal to best adist (lines 7-9). If the spatial pruning
method cannot prune object o, then we add o to PGNN
candidate set S (line 10), and update best adist with
UB adistðo;QÞ (line 11). In case we know object distribu-
tions in their uncertainty regions, we can perform the
probabilistic pruning over the candidate set S (line 12);
otherwise, we use o to spatially prune candidates in S
(line 13).

In case we encounter a nonleaf node e, for each entry ei in
e, we try to prune ei using the lower bound LB adistðei; QÞ
of aggregate distance from entry ei to query set Q.
Specifically, we first prune entry ei by utilizing the lower
bound LB adist0ðei; QÞ given in (16) (line 16), which requires
only Oð1Þ computation cost. Note that, here we use PMBM
to prune intermediate nodes by MBRðQÞ. For PSPM,
however, we can easily replace the underlined part of line
16 with the lower bound LB adist00ðei; QÞ given in (17). If
entry ei cannot be pruned (i.e., either LB adist0ðei; QÞ �
best adist holds for PMBM or LB adist00ðei; QÞ � best adist
holds for PSPM), we apply a tighter lower bound distance
LB adistðei; QÞ given in (15) (line 17), which has higherOðnÞ
computation cost and high pruning power as well. When
both lower bounds cannot prune entry ei, we insert it into
heap H with the key LB adistðei; QÞÞ for the further
filtering. This procedure repeats until either heap H is
empty (line 4) or line 6 holds.

After the filtering phase with spatial pruning and
probabilistic pruning, we start to refine the remaining PGNN
candidates in S (i.e., the refinement phase, line 19). In
particular, for each candidate o in S, we calculate the
expected probability PPGNNðoÞ that o is PGNN of Q (given
by LHS of (1)). Note that, here we compute the expected
probability (integration) by applying the numerical method,
similar to that used in [4] and [3]. If PPGNNðoÞ is smaller
than or equal to the given probabilistic threshold �, then
object o can be safely discarded; otherwise, it is a qualified
answer to the PGNN query. One interesting observation is
that, although the integration on the LHS of (1) requires to
scan all the data objects in the database (i.e., computeQ
8p2Dnfog Prfadistðp;QÞ � rg for all objects p 2 D n fog), we

can ignore those data objects p0 that are not in the candidate
set S yet without introducing any inaccuracy. The reason

816 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 6, JUNE 2008

Fig. 6. PGNN query processing ðPMBMÞ.

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 15, 2008 at 01:30 from IEEE Xplore. Restrictions apply.

for this is as follows: According to our query procedure, any

object p0 that is pruned directly by spatial pruning must

have its lower bound distance higher than best adist. In

other words, it always holds that Prfadistðp0; QÞ � rg ¼ 1,

where r is the aggregate distance of a candidate in S. Thus,

for objects with aggregate distance beyond best adist, 1 is

multiplied into integration, which would not affect the final

result. Note that, when applying the probabilistic pruning,

we also need to consider those objects in S that are marked

as false alarms (as given in procedure Probabilistic_Pruning).

Although these objects are pruned by probabilistic pruning,

they may still be involved in calculating the probability

integration later. Since the threshold best adist that bounds

S is given by spatial pruning in procedure PGNN_Proces-

sing, the contents of S with and without probabilistic

pruning are the same (the only difference is that for S with

probabilistic pruning, some candidates in S are not

necessary to be refined in the refinement step if they are

marked as false alarms). Therefore, we can correctly

compute the probability for the probabilistic pruning.

Assuming the computation of one probability Prf�g
requires Oð1Þ cost, the cost of refining each candidate is,

thus, OðjSjÞ in our query procedure. Thus, the total

refinement cost of our method is given by OðjSj2Þ, which

is smaller than OðjSj � jDjÞ directly using (1).
Finally, we discuss procedure Probabilistic_Pruning in

line 12 of procedure PGNN_Processing. Note that, in

procedure PGNN_Processing, we issue the probabilistic

pruning only if object o cannot be spatially pruned. This is

because the probabilistic pruning requires to load the ð1�
�Þ-hypersphere of object o from the disk (line 4 of procedure

Probabilistic_Pruning), which is costly (if we do that for

every object we encounter in the leaf nodes). Thus, in order

to reduce the cost, we load the ð1� �Þ-hypersphere only for

those PGNN candidates in the candidate set S. After we

add a PGNN candidate o to S, we invoke procedure

Probabilistic_Pruning to further filter out false alarms in the

candidate set S, whose details are illustrated in Fig. 7. In

particular, via probabilistic pruning, we first use object o to

invalidate existing candidates p in S n fog (lines 1-3) and

then symmetrically use other candidates to invalidate o

(lines 4-6). If any object is invalidated, we simply mark it as

an unqualified PGNN candidate (line 3 or 6). For the

probabilistic pruning approach, given a new candidate o, we

invalidate existing candidate p 2 S by using the ð1�
�Þ-hypersphere �1��ðoÞ of object o, where � is the largest

precomputed value such that � 2 ½0; �� (as given by

Lemma 4.2); vice versa.

6 THE PGNN QUERY WITH UNCERTAIN QUERY

OBJECTS

Up to now, we have discussed the PGNN query processing

when the query points are precise. In this section, we further

consider the case where query objects of PGNN queries are

also uncertain. Fig. 8 illustrates an example of the PGNN

query with uncertain query objects. Assume we have three

uncertain query objects q1, q2, and q3, which correspond to

their uncertainty regions URðq1Þ, URðq2Þ, and URðq3Þ
centered at Cq1

, Cq2
, and Cq3

, with radii qr1, qr2, and qr3,

respectively. Based on the PGNN definition, we want to

retrieve all data objects (e.g., o) satisfying the condition in

(1) (i.e., the expected probability of being GNN is greater

than a user-specified probability threshold �).
Similar to the PGNN query processing with precise

query points, we have two corresponding pruning meth-

ods, spatial and probabilistic pruning. For the spatial pruning,

we only need to redefine the lower bound of the aggregate

distance LB adistðo;QÞ ðLB adistðe;QÞÞ from data object o

(entry e) to query set Q. In particular, as illustrated in Fig. 8,

the minimum (maximum) possible distance from query

object q1 to object o is given by

distðCq1
; CoÞ � ro � qr1 ðdistðCq1

; CoÞ þ ro þ qr1Þ:

Similarly, for query objects q2 and q3, we can also obtain

their minimum (maximum) distances to object o. Thus, this

way, we can compute the lower (upper) bound of different

aggregate distance functions adistðo;QÞ defined as follows:

LB adistsumðo;QÞ ¼
Xn
i¼1

distðCo; qiÞ � n � ro �
Xn
i¼1

qri;

UB adistsumðo;QÞ ¼
Xn
i¼1

distðCo; qiÞ � n � ro þ
Xn
i¼1

qri;

LB adistminðo;QÞ ¼ minni¼1distðCo; qiÞ � ro �maxni¼1qri;

UB adistminðo;QÞ ¼ minni¼1distðCo; qiÞ � ro þmaxni¼1qri;

LB adistmaxðo;QÞ ¼ maxni¼1distðCo; qiÞ � ro �maxni¼1qri;

UB adistmaxðo;QÞ ¼ maxni¼1distðCo; qiÞ � ro þmaxni¼1qri;

ð18Þ

where qri is the radius of URðqiÞ for uncertain query object

qi for i 2 ½1; n�.
Furthermore, during the query processing of PGNN over

the R-tree index, we need to redefine the lower bound

LB adistðe;QÞ of aggregate distance from an entry e to

query set Q, in order to prune the PGNN search space. For

the PMBM method, we rewrite (16) as

LIAN AND CHEN: PROBABILISTIC GROUP NEAREST NEIGHBOR QUERIES IN UNCERTAIN DATABASES 817

Fig. 7. Procedure of probabilistic pruning.
Fig. 8. Illustration of the PGNN query with uncertain query objects.

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 15, 2008 at 01:30 from IEEE Xplore. Restrictions apply.

LB adist0sumðe;QÞ ¼ n �mindistðMBRðQ0Þ; eÞ �
Xn
i¼1

qri;

LB adist0minðe;QÞ ¼ mindistðMBRðQ0Þ; eÞ �maxni¼1qri;

LB adist0maxðe;QÞ ¼ mindistðMBRðQ0Þ; eÞ �maxni¼1qri;

ð19Þ

where MBRðQ0Þ is an MBR bounding centers Cqi of URðqiÞ
for all i 2 ½1; n�.

Similarly, for the PSPM method, we rewrite (17) as

LB adist00sumðe;QÞ

¼ n �mindistðq; eÞ �
Xn
i¼1

distðqi; qÞ �
Xn
i¼1

qri;

LB adist00minðe;QÞ
¼ mindistðq; eÞ �maxni¼1distðqi; qÞ �maxni¼1qri;

LB adist00maxðe;QÞ
¼ mindistðq; eÞ �minni¼1distðqi; qÞ �maxni¼1qri;

ð20Þ

where q is the geometric centroid of centers Cqi of URðqiÞ for
all i 2 ½1; n�.

Therefore, in the case of uncertain query objects,
either (19) or (20) can be used in line 15 of procedure
PGNN_Processing to prune entries ei, whereas (18) can
be applied to line 9 to prune data objects o.

For the probabilistic pruning, similarly, we need to
update the lower bound distances. Specifically, given an
uncertain database D, data object o 2 D can be safely
pruned, if there exists an uncertain object p, such
that UB adistðp1��; QÞ < LB adistðo;QÞ, where the lower
(upper) bound LB adistðo;QÞ (UB adistðp1��; QÞ) of
aggregate distance adistðo;QÞ ðadistðp1��; QÞÞ are defined
in (18).

With this update, we have the following lemma:

Lemma 6.1. The probabilistic pruning with an uncertain query
object set will not introduce false dismissals while answering a
PGNN query.

Proof. The proof is similar to that in Lemma 4.2. In
particular, the key step of the proof is the derivation of
(13). By applying the new definition of LB adistðo;QÞ
and adistðp1��; QÞ in (18), from the assumption of the
lemma, since object p satisfies the condition that

adistðp1��; QÞ � UB adistðp1��; QÞ < LB adistðo;QÞ ¼ rmin
� r;

in the first term of (13), Prfadistðp1��; QÞ � rjp 2
�1��ðpÞg ¼ 0 holds. The other proof procedures are the
same. tu
Thus, this way, we can apply both spatial and probabilistic

pruning to query procedure PGNN_Processing in Fig. 6, to
handle the case of uncertain query objects.

7 OTHER VARIANTS OF PGNN QUERIES

In this section, we discuss some variants of PGNN queries.
First, since the PGNN query is not restricted to sum, min,
and max aggregates (as discussed above), it can be defined
by any monotonically increasing distributive aggregate
distance functions f . Note that, f is a distributive aggregate

function [11], [16] if and only if there exists a function g such
that fðI 0Þ ¼ gðfðIÞ; vÞ, where fðIÞ is the aggregate value,
fðI 0Þ is the aggregate after updating with value v. Aggre-
gates like sum, min, and max are distributive aggregates,
however, median is not a distributive aggregate (thus, we
cannot apply our methods and have to access the entire
database in order to obtain the query results).

We list a few PGNN variants with distributive aggre-
gates as follows: For mean function, given an uncertain
object o and a query set Q, we have the aggregate distance
function

adistmeanðo;QÞ ¼ fðdistðo; q1Þ; distðo; q2Þ; . . . ; distðo; qnÞÞ

¼
Pn

i¼1 distðo; qiÞ
n

:

Note that, since n can be considered as a constant once it is
specified by the query, the PGNN query with the mean
aggregate would have the same PGNN results as that with
sum due to adistmeanðo;QÞ ¼ adistsumðo;QÞ=n for any object
o in the database. For other types of aggregate distance
functions f , we can compute the lower (upper) bound of
adistfðo;QÞ (or adistfðe;QÞ) from any uncertain object o (or
MBR node e) to query set Q, similar to sum, min, or max,
which can be used to facilitate pruning data objects/MBR
nodes.

Previously, we only consider the aggregate distance
function f as a function of distðo; q1Þ; distðo; q2Þ; . . . , and
distðo; qnÞ with equal weight wð¼ 1Þ. One variant of the
PGNN query can be that with a weighted aggregate
distance function. For example, the weighted sum function,
adistfW ðo;QÞ, can be defined as

adistfW ðo;QÞ ¼ fW ðdistðo; q1Þ; distðo; q2Þ; . . . ; distðo; qnÞÞ

¼
Xn
i¼1

ðwi � distðo; qiÞÞ;

where wi is a positive weight for query point qi. In this case,
our proposed method can be easily extended by redefining
the lower (upper) bound of adistfW ðo;QÞ (or adistfW ðe;QÞ)
incorporating the weights wi. For example,

LB adistsumW
ðo;QÞ ¼

Xn
i¼1

ðwi � distðCo; qiÞÞ � ro �
Xn
i¼1

wi:

In this paper, we will not discuss the details.
In addition to PGNN query with different aggregate

functions, we also discuss a variant of PGNN, namely,
k-PGNN, which retrieves uncertain objects that are expected
to be group k-nearest neighbors with probability at least
� 2 ð0; 1�. Formally, given a database D, we want to retrieve
objects o 2 D such that

Pk�PGNNðoÞ ¼
Z rmax

rmin

ðPrfadistðo;QÞ ¼ rg

�
X
8T�D

Y
8t2T

Prfadistðt; QÞ � rg

�
Y

8p2DnðT[fogÞ
Prfadistðp;QÞ � rgÞdr > �;

where T is a subset of D with size ðk� 1Þ. Intuitively, the
answer set of the k-PGNN query contains objects o such that

818 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 6, JUNE 2008

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 15, 2008 at 01:30 from IEEE Xplore. Restrictions apply.

with high probability ð> �Þ, there exist ðk� 1Þ objects (e.g.,
that in T) whose aggregate distances are not greater than
adistðo;QÞ and other objects have their aggregate distances
not smaller than adistðo;QÞ. Although the formula of
Pk�PGNNðoÞ is more complex than the PGNN definition,
the pruning idea is similar. Specifically, for the spatial
pruning, instead of finding minimum upper bound of
aggregate distance as the pruning threshold in the PGNN
problem, in the k� PGNN case, we obtain the kth smallest
upper bound of aggregate distance, k best adist, and safely
prune those objects whose lower bound distances are not
smaller than k best adist. The probabilistic pruning cannot
be applied to handle the k-PGNN case, since there is a
summation defined in the formula of Pk-PGNNðoÞ, which is
different from the PGNN case.

8 EXPERIMENTAL EVALUATION

In this section, we empirically evaluate the efficiency
and effectiveness of our proposed pruning methods
(including both spatial and probabilistic pruning) to
answer the PGNN query. Since the real data sets are
not available, we test our approaches over synthetic data
sets in a d-dimensional data space, U ¼ ½0; 1; 000�d, similar
to [3], [5], and [24]. In particular, we generate uncertain
objects as follows: For each uncertain object o 2 D, we
first decide the center location Co of its uncertainty region
URðoÞ, and then randomly produce the radius ro
of URðoÞ within ½rmin; rmax�. For brevity, we denote
lUrU ðlUrGÞ as the data set with center locations Co of
Uniform distribution and radius ro 2 ½rmin; rmax� of Uni-
form distribution (Gaussian distribution, with mean
ðrmin þ rmaxÞ=2 and variance ðrmax � rminÞ=5). Similarly,
lSrU ðlSrGÞ represents the data set with center locations
Co of Skew ðZipfÞ distribution ðskewness ¼ 0:8Þ and
radius ro 2 ½rmin; rmax� of Uniform distribution (or Gaussian
with the same settings). In case we know the object
distributions within their uncertainty regions, for each
uncertain object o, we can offline precompute ð1�
�Þ-hypersphere UR1��ðoÞ for some � 2 ½0; 1�. Fig. 9 shows
the precomputation time for each � value with different
data sizes jDj, where the dimensionality is 3, and 100
samples per object are used for probability integration.
Since different object distributions may produce different
sizes (i.e., radii) of UR1��ðoÞ, the resulting bounds of
aggregate distances would be different, which also
indicates different pruning abilities during the probabil-
istic pruning (note: the spatial pruning would not be
affected). For simplicity, in our experiments, we assume
that each object o 2 D is uniformly distributed within its
uncertainty region URðoÞ. We also did experiments over

data sets with other parameter values or object
distributions, however, due to space limit, we do not
present the results (which have the similar trends as the
results obtained from uniform distributions). After
generating data sets, we index them with R-tree [9],
on which PGNN queries can be processed, where the
page size is set to 4 Kbytes.

In order to produce PGNN (precise) query points, we
first generate a random point in the data space U following
the same distribution as center locations of data objects.
Next, within a hyperrectangle centered at the generated
point and with a side length ð1;000	�Þ ð� 2 ½0; 1�Þ along
each dimension, we randomly pick up n query points as the
input of the PGNN query, where � is a parameter
indicating the size of MBRðQÞ for all query points. For
PGNN queries with uncertain query objects, we first
generate n precise points mentioned above as n centers of
uncertain query objects, respectively, and then randomly
produce the radius (of uncertainty region) for each query
object within ½qrmin; qrmax�, where the radius distribution of
uncertain query objects is the same as that of the data set
(i.e., either uniform or Gaussian).

In our experiments, we use the wall clock time to measure
the filtering time of PGNN query processing, which is the
time cost of retrieving (filtering) PGNN candidates (exclud-
ing the time for refining PGNN candidates by probability
integrations in (1)). It consists of two portions, CPU time
and I/O cost, where we incorporate the cost of each page
access (i.e., I/O) by penalizing 10 ms [25], [26].

To the best of our knowledge, no previous work has
studied the PGNN problem in the context of uncertain
databases. Therefore, the only available method to
answer PGNN queries is the linear scan, which sequen-
tially scans all the objects on disk for each PGNN
candidate in order to check the condition in (1).
However, this is very costly. As an example, given
30,000 3D data objects and 4 Kbytes page size, even the
I/O cost of the linear scan method (somewhat like nested
loop operation) requires 10 ms

1;000 ms=s	
30;000	3	4

4;000 	 30;000	3	4
4;000 ¼

81 seconds (assuming a floating number needs 4 bytes). In
the sequel, we will list the speed-up ratio of our methods,
defined as the wall clock time of linear scan divided by
that of our methods. All our experiments are conducted
on Pentium IV 3.2-GHz PC with 1-Gbyte memory, and
the reported results are the average of 1,000 queries.

8.1 Performance versus �

In the first set of experiments, we evaluate the query
performance of our proposed approaches, namely, PMBM
and PSPM, in terms of the wall clock time, in which the
probabilistic pruning is processed under different precom-
puted values of �. In particular, as illustrated in Section 4.1,
PMBM bounds all the query points with an MBR and uses
this query MBR to help prune objects/nodes. In contrast,
upon the arrival of PGNN queries, PSPM first computes the
geometric centroid of (precise) query points and then uses this
centroid to facilitate reducing the PGNN search space. In
order to apply the probabilistic pruning for both PMBM and
PSPM, we precompute the radius of ð1� �Þ-hyperspheres of
objects offline, for some � 2 ½0; 1�. Whenever a PGNN query
with probability threshold � 2 ½0; 1� arrives, we would use

LIAN AND CHEN: PROBABILISTIC GROUP NEAREST NEIGHBOR QUERIES IN UNCERTAIN DATABASES 819

Fig. 9. Precomputation cost versus data size jDj.

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 15, 2008 at 01:30 from IEEE Xplore. Restrictions apply.

the largest precomputed � value satisfying � 2 ½0; �� for the
probabilistic pruning.

Given a PGNN query with precise query points and
� ¼ 1, Fig. 10 illustrates the query performance of our two
approaches over data sets lUrU , lUrG, lSrU , and lSrG, in
case the largest precomputed � value is 0, 0.2, 0.4, 0.6, 0.8,
or 1, where the radius range ½rmin; rmax� ¼ ½0; 15�, the
dimensionality d ¼ 3, the number of PGNN query points,
n ¼ 4, the parameter � ¼ 10 percent, and the data size
jDj ¼ 30;000. During the refinement phase, we assume that
100 random samples are used for each uncertain object to
compute the probability integration in (1). Note that, in all
figures, each stacked column has two parts, the time cost
of spatial pruning (the upper part) and that of probabilistic
pruning invoked by line 12 of procedure PGNN_Proces-
sing (the lower part); the numbers in brackets over
columns are the speed-up ratio of our methods, compared
with the linear scan.

The experimental results in Fig. 10 show that, when �
increases, the filter cost of both PMBM and PSPM
remains approximately the same but low (i.e., less than
0.7 second), in terms of wall clock time, for all the four types
of data sets and aggregate distances, sum (Figs. 10a and 10b),
min (Figs. 10c and 10d), and max (Figs. 10e and 10f). When

� ¼ 0, our query procedure, PGNN_Processing, only uses
the spatial pruning to prune objects and nodes; when � > 0,
both spatial and probabilistic pruning are applied. From the
figures, our approaches can outperform the linear scan by
about three orders of magnitude, showing the efficiency of
our query procedure. Moreover, the speed-up ratio becomes
larger with the increasing �, which confirms the effective-
ness of our probabilistic pruning. This is reasonable since we
always prune those objects with the expected probability
smaller than or equal to �. Thus, more objects are expected
to be pruned with large �. Furthermore, PMBM and
PSPM are comparable with similar speed-up ratios.

After evaluating the query performance with different �
values, in the sequel, we will study the robustness of our
proposed methods for PGNN query processing, over the
four types of synthetic data sets, under different parameter
settings. In particular, by fixing � ¼ 0:8, we vary the values
of different parameters (including ½rmin; rmax�, d, n, �, jDj,
and ½qrmin; qrmax�) and verify the effectiveness of our
pruning methods as well as the efficiency of the PGNN
query procedure. Due to space limit, we would only present
results of sum and min aggregates (that of max is similar to
min). In the sequel, we first consider PGNN queries with
precise query points (i.e., qrmin ¼ qrmax ¼ 0), whereas the
experimental results with uncertain query objects will be
presented in the last section.

8.2 Performance versus ½rmin; rmax�
In this section, we study the effect of the radius range
½rmin; rmax� of uncertainty regions URðoÞ on the PGNN
query performance. Specifically, we vary the radius range
½rmin; rmax� to [0, 10], [0,15], [0, 20], and [0, 25], where
� ¼ 0:8, the dimensionality d ¼ 3, the number of PGNN
query points, n ¼ 4, the parameter � ¼ 10 percent, the
data size jDj ¼ 30;000, and the number of samples per
object used for probability integration is 100. Table 1
illustrates the average number of objects that overlap with
an object in different data sets of ½rmin; rmax�. In particular,
when the radius range becomes larger, the number of
overlapping objects increases from about 0.2 to 3 for lU
data sets and from about 2 to 20 for lS data sets.

Fig. 11 shows the experimental results on four types of
data sets, with sum (Figs. 11a and 11b) and min (Figs. 11c
and 11d) aggregate distance functions. When the range
½rmin; rmax� increases from [0, 10] to [0, 25], the required wall
clock time of both PMBM and PSPM becomes higher.
Correspondingly, the speed-up ratio of our methods smoothly
decreases with the increasing radius range ½rmin; rmax�. This
is mainly because, if uncertain objects can locate anywhere in
larger uncertainty regions, their chances of being GNN would
increase. Thus, more PGNN candidates have to be included

820 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 6, JUNE 2008

Fig. 10. Performance versus � (precise query points). (a) lUrU and

lUrG ðsumÞ. (b) lSrU and lSrG ðsumÞ. (c) lUrU and lUrG ðminÞ.
(d) lSrU and lSrG ðminÞ. (e) lUrU and lUrG ðmaxÞ. (f) lSrU and

lSrG ðmaxÞ.

TABLE 1
Average Number of Overlapping Objects versus ½rmin; rmax�

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 15, 2008 at 01:30 from IEEE Xplore. Restrictions apply.

in the candidate set, which results in higher PGNN retrieval

cost. However, the speed-up ratio of our methods remains

high (i.e., by three orders of magnitude). Similar to previous

results, PSPM and PMBM are comparable in terms of wall

clock time and speed-up ratio.

8.3 Performance versus Dimensionality d

Next, we study the effect of dimensionality on the PGNN

query performance. Fig. 12 illustrates experimental results of

PMBM and PSPM where the dimensionality d ¼ 2; 3; 4; 5,

� ¼ 0:8, the radius range ½rmin; rmax� ¼ ½0; 15�, the number of

(precise) PGNN query points, n ¼ 4, the parameter
� ¼ 10 percent, the data size jDj ¼ 30;000, and the number
of samples per object used for probability integration is 100.
Table 2 shows the average number of overlapping objects
with an object for different data sets. Since the data sizes of
all the data sets are fixed to 30,000, higher dimensionality
results in less overlapping. In Fig. 12, we find, that when the
dimensionality, d, of data sets is 2, the wall clock time is the
highest. This is reasonable, since 30,000 (uncertain) data
objects in the 2D space are quite dense (as confirmed by
Table 2), compared to those with the same data size in 3D,
4D, and 5D spaces. Therefore, many data objects are
qualified as candidates in the 2D data sets, which alter-
natively increases the query processing cost in terms of the
wall clock time. Compared with the linear scan, the speed-up

ratios of PMBM and PSPM are similar and they increase
with the increasing dimensionality due to fewer PGNN
candidates to refine.

8.4 Performance versus Query Size n

Fig. 13 varies the query size, that is, the number, n, of
(precise) query points specified by PGNN queries, and
evaluates the query performance of PMBM and PSPM.
In particular, we set the query size n to 3, 4, 5, 6, where
� ¼ 0:8, the radius range ½rmin; rmax� ¼ ½0; 15�, the dimen-
sionality d ¼ 3, the parameter � ¼ 10 percent, the data

LIAN AND CHEN: PROBABILISTIC GROUP NEAREST NEIGHBOR QUERIES IN UNCERTAIN DATABASES 821

Fig. 11. Performance versus ½rmin; rmax� (precise query points). (a) lUrU

and lUrG ðsumÞ. (b) lSrU and lSrG ðsumÞ. (c) lUrU and lUrG ðminÞ.
(d) lSrU and lSrG ðminÞ.

Fig. 12. Performance versus dimensionality d (precise query points).

(a) lUrU and lUrG ðsumÞ. (b) lSrU and lSrG ðsumÞ. (c) lUrU and

lUrG ðminÞ. (d) lSrU and lSrG ðminÞ.

TABLE 2
Average Number of Overlapping Objects versus Dimensionality

Fig. 13. Performance versus n (precise query points). (a) lUrU and

lUrG ðsumÞ. (b) lSrU and lSrG ðsumÞ. (c) lUrU and lUrG ðminÞ.
(d) lSrU and lSrG ðminÞ.

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 15, 2008 at 01:30 from IEEE Xplore. Restrictions apply.

size jDj ¼ 30;000, and the number of samples per object
used for probability integration is 100. In general, for
lU data sets with uniform location distributions, the
filtering cost is increasing with respect to the increasing n

(since we need to calculate the lower bound distance
from each object/node to n query points during the
PGNN query processing); for lS data sets, the filtering
time varies due to the skew location distribution of
objects (i.e., the number of retrieved PGNN candidates
varies). Moreover, both PMBM and PSPM can outper-
form the linear scan with the speed-up ratio by about
three orders of magnitude under different n values.

8.5 Performance versus Parameter �

Fig. 14 demonstrates the PGNN query performance under
different values of � and over different data sets. Recall
that, we generate the query set Q by first selecting a random
point in the data space and then randomly picking up
n (precise) query points within a hyperrectangle (centered
at the selected point and with the side length ð1;000	�Þ).
Intuitively, parameter � can approximately indicate the size
of MBRðQÞ. With large � value, the area covered by
MBRðQÞ would be large. In the sequel, we vary parameter
� from 5 percent to 15 percent, where � ¼ 0:8, the radius
range ½rmin; rmax� ¼ ½0; 15�, the dimensionality d ¼ 3, the
query size n ¼ 4, the data size jDj ¼ 30; 000, and the
number of samples per object used for probability integra-
tion is 100.

When parameter � becomes large, higher wall clock time is
required for the PGNN retrieval. In particular, the PMBM

method is more sensitive to �, since large MBRðQÞ (i.e.,
large �) would result in lower pruning power. In contrast,
the effect of � on PSPM is smaller, which can be reflected
by smoother trends in the figures. Correspondingly, the
speed-up ratios of both methods decrease with large �.
However, we find that our approaches can still efficiently

answer PGNN queries with speed-up ratios by three orders
of magnitude, which confirms the effectiveness of our
pruning methods and efficiency of the proposed query
procedure.

8.6 Performance versus Data Size jDj
Fig. 15 tests the scalability of our proposed PMBM and
PSPM approaches, by varying the data size jDj.
Specifically, we evaluate the wall clock time of PSPM

and PMBM methods over data sets with data size
jDj ¼ 20;000; 30;000; 40;000; 50;000, where � ¼ 0:8, the
radius range ½rmin; rmax� ¼ ½0; 15�, the dimensionality
d ¼ 3, the query size n ¼ 4, parameter � ¼ 10 percent,
and the number of samples per object for probability
integration is 100.

Table 3 shows the average number of overlapping objects
in data sets with different data sizes. When the data size jDj
increases, the number of overlapping objects increases,
indicating higher density in the data space. Thus, more
objects are identified as PGNN candidates, which results in
higher processing cost. That is, the required wall clock time for
retrieving PGNN candidates increases with the increasing of
data size, which can be confirmed in Fig. 15. Furthermore,
compared with the linear scan, the speed-up ratio of our
methods PMBM and PSPM remains high (i.e., by three

822 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 6, JUNE 2008

Fig. 14. Performance versus � (precise query points). (a) lUrU and

lUrG ðsumÞ. (b) lSrU and lSrG ðsumÞ. (c) lUrU and lUrG ðminÞ.
(d) lSrU and lSrG ðminÞ. Fig. 15. Scalability test (versus data size jDj, precise query points).

(a) lUrU and lUrG ðsumÞ. (b) lSrU and lSrG ðsumÞ. (c) lUrU and

lUrG ðminÞ. (d) lSrU and lSrG ðminÞ.

TABLE 3
Average Number of Overlapping Objects versus Data Size

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 15, 2008 at 01:30 from IEEE Xplore. Restrictions apply.

orders of magnitude), which indicates a good scalability of
our methods with respect to the data size.

8.7 Query Performance with Uncertain Query
Objects

Up to now, we have studied the PGNN query performance
under various parameter settings where the query points
are precise. We now test the PGNN query with uncertain
query objects. Recall that, we generate the center of each
uncertain query object in the same way as that with precise
query points. Then, we produce the query radius within
interval ½qrmin; qrmax� following the same radius distribution
as data objects.

Fig. 16 illustrates the PGNN query performance over four
data sets, by letting ½qrmin; qrmax� ¼ ½0; 10�; ½0; 15�; ½0; 20�; or
½0; 25�, where � ¼ 0:8, the radius range ½rmin; rmax� ¼ ½0; 15�,
the dimensionality d ¼ 3, the query size n ¼ 4, parameter
� ¼ 10 percent, data size jDj ¼ 30;000, and the number of
samples per object used for probability integration is 100.
From the figures, we find that the wall clock time of both
PMBM and PSPM increases when ½qrmin; qrmax� varies
from [0, 10] to [0, 25]. Compared with the PGNN query with
precise query points, due to the uncertainty of query objects,
more data objects are identified as PGNN candidates, and
smaller speed-up ratio is achieved. However, the speed-up ratio
is still high (i.e., by two-three orders of magnitude).

In summary, extensive experiments have demonstrated
the efficiency and effectiveness of our proposed methods,
PMBM and PSPM, in answering the PGNN query, over
different data sets and under various experimental settings.

9 CONCLUSIONS

Query processing over uncertain data has become increas-
ingly important due to the inherent uncertainty in many

real-world data from different applications. Previous works

on uncertain data query processing have studied queries in

the context of uncertain databases, for example, NN query,

range query, top-k query, skyline query, and similarity join. In

this paper, we focus on another important query, PGNN, in

the uncertain database, which, to the best of our knowledge,

no other work has studied before. Specifically, we propose

two novel approaches, namely, PMBM and PSPM, which

integrate effective pruning methods (i.e., spatial pruning and

probabilistic pruning) to facilitate reducing the PGNN search

space. Extensive experiments have demonstrated the

efficiency and effectiveness of our proposed methods,

under various settings.

ACKNOWLEDGMENTS

Funding for this work was provided by Hong Kong RGC

Grants under Project 611907, National Grand Fundamental

Research 973 Program of China under Grant 2006CB303000,

NSFC Key Project Grant 60736013, and NSFC Project Grant

60763001.

REFERENCES

[1] C. Böhm, A. Pryakhin, and M. Schubert, “The Gauss-Tree:
Efficient Object Identification in Databases of Probabilistic Feature
Vectors,” Proc. 22nd Int’l Conf. Data Eng. (ICDE), 2006.

[2] L. Chen, M.T. Özsu, and V. Oria, “Robust and Fast Similarity
Search for Moving Object Trajectories,” Proc. ACM SIGMOD, 2005.

[3] R. Cheng, D. Kalashnikov, and S. Prabhakar, “Querying Imprecise
Data in Moving Object Environments,” IEEE Trans. Knowledge and
Data Eng., vol. 16, no. 9, pp. 1112-1127, Sept. 2004.

[4] R. Cheng, D.V. Kalashnikov, and S. Prabhakar, “Evaluating
Probabilistic Queries over Imprecise Data,” Proc. ACM SIGMOD,
2003.

[5] R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J. Vitter, “Efficient
Indexing Methods for Probabilistic Threshold Queries over
Uncertain Data,” Proc. 30th Int’l Conf. Very Large Data Bases
(VLDB), 2004.

[6] P. Ciaccia, M. Patella, and P. Zezula, “M-Tree: An Efficient Access
Method for Similarity Search in Metric Spaces,” Proc. 23rd Int’l
Conf. Very Large Data Bases (VLDB), 1997.

[7] R. Fagin, A. Lotem, and M. Naor, “Optimal Aggregation
Algorithms for Middleware,” Proc. 20th ACM SIGMOD-SIGACT-
SIGART Symp. Principles of Database Systems (PODS), 2001.

[8] A. Faradjian, J. Gehrke, and P. Bonnet, “Gadt: A Probability Space
ADT for Representing and Querying the Physical World,” Proc.
18th Int’l Conf. Data Eng. (ICDE), 2002.

[9] A. Guttman, “R-Trees: A Dynamic Index Structure for Spatial
Searching,” Proc. ACM SIGMOD, 1984.

[10] S. Hochreiter, A.S. Younger, and P.R. Conwell, “Learning to Learn
Using Gradient Descent,” Proc. Int’l Conf. Artificial Neural Networks
(ICANN), 2001.

[11] E. Hung, Y. Deng, and V.S. Subrahmanian, “RDF Aggregate
Queries and Views,” Proc. 21st Int’l Conf. Data Eng. (ICDE), 2005.

[12] N. Katayama and S. Satoh, “The SR-Tree: An Index Structure
for High-Dimensional Nearest Neighbor Queries,” Proc. ACM
SIGMOD, 1997.

[13] H.-P. Kriegel, P. Kunath, M. Pfeifle, and M. Renz, “Probabilistic
Similarity Join on Uncertain Data,” Proc. 11th Int’l Conf. Database
Systems for Advanced Applications (DASFAA), 2006.

[14] H.-P. Kriegel, P. Kunath, and M. Renz, “Probabilistic Nearest-
Neighbor Query on Uncertain Objects,” Proc. 12th Int’l Conf.
Database Systems for Advanced Applications (DASFAA), 2007.

[15] V. Ljosa and A.K. Singh, “APLA: Indexing Arbitrary Probability
Distributions,” Proc. 23rd Int’l Conf. Data Eng. (ICDE), 2007.

[16] S. Madden, M.J. Franklin, J.M. Hellerstein, and W. Hong, “TAG: A
Tiny Aggregation Service for Ad-Hoc Sensor Networks,” Proc.
Fifth Symp. Operating Systems Design and Implementation (OSDI),
2002.

LIAN AND CHEN: PROBABILISTIC GROUP NEAREST NEIGHBOR QUERIES IN UNCERTAIN DATABASES 823

Fig. 16. Performance versus ½qrmin; qrmax� (uncertain query objects).

(a) lUrU and lUrG ðsumÞ. (b) lSrU and lSrG ðsumÞ. (c) lUrU and

lUrG ðminÞ. (d) lSrU and lSrG ðminÞ.

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 15, 2008 at 01:30 from IEEE Xplore. Restrictions apply.

[17] D. Papadias, Q. Shen, Y. Tao, and K. Mouratidis, “Group Nearest
Neighbor Queries,” Proc. 20th Int’l Conf. Data Eng. (ICDE), 2004.

[18] D. Papadias, Y. Tao, K. Mouratidis, and C. Hui, “Aggregate
Nearest Neighbor Queries in Spatial Databases,” ACM Trans.
Database System, vol. 30, no. 2, pp. 529-576, 2005.

[19] J. Pei, B. Jiang, X. Lin, and Y. Yuan, “Probabilistic Skylines on
Uncertain Data,” Proc. 33rd Int’l Conf. Very Large Data Bases
(VLDB), 2007.

[20] C. Re, N. Dalvi, and D. Suciu, “Efficient Top-k Query Evaluation
on Probabilistic Data,” Proc. 23rd Int’l Conf. Data Eng. (ICDE), 2007.

[21] A.D. Sarma, O. Benjelloun, A.Y. Halevy, and J. Widom, “Working
Models for Uncertain Data,” Proc. 22nd Int’l Conf. Data Eng.
(ICDE), 2006.

[22] A.W.M. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain,
“Content-Based Image Retrieval at the End of the Early Years,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 12,
pp. 1349-1380, Dec. 2000.

[23] M.A. Soliman, I.F. Ilyas, and K.C. Chang, “Top-k Query Proces-
sing in Uncertain Databases,” Proc. 23rd Int’l Conf. Data Eng.
(ICDE), 2007.

[24] Y. Tao, R. Cheng, X. Xiao, W.K. Ngai, and S. Prabhakar, “Indexing
Multi-Dimensional Uncertain Data with Arbitrary Probability
Density Functions,” Proc. 31st Int’l Conf. Very Large Data Bases
(VLDB), 2005.

[25] Y. Tao, D. Papadias, and X. Lian, “Reverse kNN Search in
Arbitrary Dimensionality,” Proc. 30th Int’l Conf. Very Large Data
Bases (VLDB), 2004.

[26] Y. Tao, D. Papadias, X. Lian, and X. Xiao, “Multidimensional
Reverse kNN Search,” The VLDB J., vol. 16, no. 3, pp. 293-316, 2007.

Xiang Lian received the BS degree from the
Department of Computer Science and Technol-
ogy, Nanjing University, in 2003. He is currently
working toward the PhD degree in the Depart-
ment of Computer Science and Engineering,
Hong Kong University of Science and Technol-
ogy, Hong Kong. His research interests include
stream time series and probabilistic databases.
He is a student member of the IEEE.

Lei Chen received the BS degree in computer
science and engineering from Tianjin University,
Tianjin, China, in 1994, the MA degree from
Asian Institute of Technology, Bangkok, Thai-
land, in 1997, and the PhD degree in computer
science from the University of Waterloo, Water-
loo, Ontario, Canada, in 2005. He is currently
an assistant professor in the Department of
Computer Science and Engineering, Hong
Kong University of Science and Technology.

His research interests include multimedia and time series databases,
sensor and peer-to-peer databases, and stream and probabilistic
databases. He is a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

824 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 6, JUNE 2008

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 15, 2008 at 01:30 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

