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ABSTRACT

Reverse skyline queries over uncertain databases have many im-
portant applications such as sensor data monitoring and business
planning. Due to the existence of uncertainty in many real-world
data, answering reverse skyline queries accurately and efficiently
over uncertain data has become increasingly important. In this pa-
per, we model the probabilistic reverse skyline query on uncertain
data, in both monochromatic and bichromatic cases, and propose
effective pruning methods to reduce the search space of query pro-
cessing. Moreover, efficient query procedures have been presented
seamlessly integrating the proposed pruning methods. Extensive
experiments have demonstrated the efficiency and effectiveness of
our proposed approach with various experimental settings.

Categories and Subject Descriptors

H.2.8 [Information Systems]: Database Management—Database
applications, Spatial databases and GIS; H.3.3 [Information Sys-
tems]: Information Storage and retrieval—Information search and
retrieval, Search process

General Terms

Algorithms, Design, Experimentation, Performance, Theory

Keywords

Uncertain database, monochromatic reverse skyline, bichromatic
reverse skyline

1. INTRODUCTION

Recently, the skyline query has played an increasingly impor-
tant role in many real applications, such as multi-criteria decision
making, market analysis, environmental surveillance and quantita-
tive economics research. Given a d-dimensional database D, object
p(p1,p2, ..., pa) dominates object o(o1, 02, ..., 04), if it holds that:
1) p; < o; for each dimension 1 < ¢ < d, and 2) p; < o; for at
least one dimension 1 < j < d, where o0; and p; are the attributes
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of o and p, respectively. A traditional skyline (a.k.a static sky-
line query) retrieves all the objects in the database whose attribute
vectors are not dominated by others. For static skylines, once the
database is given, the skylines as well as the dominant relationships
are fixed. Figure 1(a) illustrates an example of static skyline over
data collected sensors, where five data points, a ~ e, represent five
(temperature, humidity)-pairs, respectively. From the figure,
data point a dominates points d and e, since a has lower temper-
ature and smaller humidity than d and e. Similarly, sensor data b
also dominates points ¢ and d. Since a and b are not dominated by
any other points in the space, they are static skyline points [2].

In addition to static skyline, dynamic (relative) skyline queries
have been proposed [20, 10, 9], where the attributes of each object
are dynamically calculated based on query predicates. Specifically,
each d-dimensional object p is mapped to a new d’-dimensional
point p" = (f1(p), f2(p), ..., fa (p)), where f; is a dynamic func-
tion. In this paper, for the sake of simplicity, we assume that d’ = d
and for a given query point ¢ f;(p) = |g; — pi|, which are also used
by Dellis and Seeger [9]. Note, however, that the proposed ap-
proaches still hold for a more general class of functions [9]. We
give an example with these assumptions below.
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Figure 1: 2D Sensor Examples of Skyline

Figure 1(b) illustrates the dynamic skyline in the example of sen-
sor data. Assume point b(b1, b2) is a query object. For any data
point, for instance, a(a1, az), its dynamic attributes are computed
from its (absolute) humidity and temperature differences from query
object b, that is, |a1 — b1 | and |a2 — b2, respectively. Since we con-
sider the absolute differences, as shown in the figure, we map all
the points onto the first quadrant of a new coordinate space with
origin b (e.g. mapping a and e to a’ and ¢€’, respectively; c and d
remain the same since they are already in the first quadrant). The
dynamic skyline query is issued to obtain all the sensors whose dy-
namic attribute vectors are not dominated by others (in that quad-



rant). In our example, sensor data d, g, and c are the dynamic sky-
line points of b. Semantically, these dynamic skylines are close to
the query point b for all attributes and better (closer to b) than other
non-skyline points along at least one attribute (e.g. temperature or
humidity).

In Figure 1(b), g is one of dynamic skyline points of b, and b is
called a reverse skyline [9] of q. Specifically, given a query pat-
tern g, a reverse skyline query obtains data objects whose dynamic
skyline contains q. As shown in the example, the query pattern
q is closer to its reverse skyline b than other sensor data along at
least one dimension. The reverse skyline query is very useful for
environmental monitoring applications. For example, in an appli-
cation of monitoring the forest, a number of sensors are deployed
in a monitoring area to collect data such as temperature and humid-
ity. Assume the query g represents the value thresholds of possible
fire disaster on different data attributes. If we find that the number
of reverse skylines of ¢ within a monitoring area is greater than an
alarm threshold, it indicates that, rather than individual malfunc-
tioned sensor data, many sensing values are in the dangerous state
(i.e. either temperature is too high or the air is too dry). In this case,
we can take immediate actions to prevent the disaster.
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Figure 2: Monochromatic Probabilistic Reverse Skyline Query

In reality, sensor data often contain noises resulting from envi-
ronmental factors, transmission delay, or device failures. In the lit-
erature of uncertain databases, each sensor data can be considered
as an uncertainty region [6, 28]. Figure 2 shows an example of re-
verse skyline over uncertain database, in which each (temperature,
humidity)-pair locates in an uncertainty region (shaded region
with rectangular shape) with any distribution. Thus, the goal of this
work is to find out reverse skylines of ¢ among uncertain objects.

Although previous work [9] has studied the reverse skyline search
problem over precise data, they cannot directly handle the uncertain
database. The reason is that, each object is now represented by an
uncertainty region, instead of a precise point, and the dynamic at-
tributes (with respect to query and data objects) are thus variables
rather than exact values. In this paper, we define the reverse skyline
query over uncertain database, namely monochromatic probabilis-
tic reverse skyline (MPRS), which retrieves all the uncertain ob-
jects in a database whose dynamic skylines contain a user-specified
query object with a probability greater than or equal to a user-
specified threshold. Note that, the MPRS query has clear advan-
tages that its answers are invariable to scales in different dimen-
sions and it does not require users to specify any heuristic query
parameters, which invalidate other query types like nearest neigh-
bor or range query in our examples above.

Apart from the MPRS query over one single data set, we also
study the bichromatic probabilistic reverse skyline (BPRS) query,
involving two distinct data sets. Specifically, given two distinct un-
certain databases A and 55 and a query object ¢, a BPRS query
obtains those points o € A such that the dynamic skyline of o in

the data set B contain g. Note that, in both MPRS and BPRS, ¢ can
be either certain or uncertain object. For simplicity, we first use a
certain query object q to illustrate the MPRS and BPRS definitions
and retrieval methods. In fact, our proposed methods can be easily
extended to the case of an uncertain query object, which will be
discussed in Section 6. Figure 3(a) illustrates a set of customers’
preferences to laptops, denoted as A, which are represented by un-
certainty regions (note: it is a common practice for customers to
specify a price/weight range of laptop that they are interested in
rather than a single value). Figure 3(b) shows a set of objects, de-
noted as B, corresponding to the existing/future laptops in the mar-
ket. If a company wants to produce a new laptop model ¢, a BPRS
query with query point g can be issued to retrieve those customers
in A that may be potentially interested in this new product among
all the existing/future models (€ B) in the market. If there are few
customers who are interested in the new model, the company may
need to change the specifications of the new model in order to at-
tract more customers.

Since the retrieval of MPRS and BPRS requires examining the
entire data set(s) to compute the probabilities according to the defi-
nitions listed in Section 3, it is quite inefficient and even infeasible.
We propose novel pruning methods, namely spatial and probabilis-
tic pruning, to reduce the search space. Specifically, the spatial
pruning method utilizes the spatial relationship among data objects
to conduct the filtering, and the probabilistic one uses the data dis-
tribution information of uncertain objects to facilitate the pruning.
Most importantly, both pruning techniques can be seamlessly inte-
grated into the MPRS and BPRS query procedures, and the filtering
time can be further reduced through pre-computation.

In summary, we make the following contributions in this paper.

1. We formalize novel queries, including monochromatic and
bichromatic probabilistic reverse skyline (MPRS and BPRS,
respectively) queries, over uncertain databases.

2. We propose effective spatial and probabilistic pruning meth-
ods, which are not trivial, to help reduce the search space for
both MPRS and BPRS queries. The proposed pruning meth-
ods can be seamlessly integrated into our query procedure
and efficiently retrieve the query results.

3. We further improve the efficiency of our query procedures
via offline pre-computation.

4. Last but not least, we demonstrate through extensive exper-
iments the effectiveness of our pruning methods as well as
the efficiency of MPRS and BPRS query processing under
various experimental settings.
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Figure 3: Bichromatic Probabilistic Reverse Skyline Query

The rest of this paper is organized as follows. Section 2 briefly
reviews the (reverse) skyline query in “certain” database and query
processing over uncertain databases. Section 3 formally defines our



problem of probabilistic reverse skyline query in both monochro-
matic and bichromatic cases. Section 4 and Section 5 illustrate
the pruning heuristics and query procedures for MPRS and BPRS,
respectively. Section 7 presents the query performance of our pro-
posed approaches in answering MPRS and BPRS queries over the
uncertain database. Finally, Section 8 concludes this paper.

2. RELATED WORK

The skyline operator is very important in many real applications
such as multi-criteria decision making, market analysis, environ-
mental surveillance and quantitative economics research. In partic-
ular, the skyline query can be classified into two categories, static
[2] and dynamic (relative) [20, 10, 9]. For the static skyline [2], the
attributes of each object in the database are fixed, and skyline points
are thus determined once a static database is given. For the dy-
namic (relative) skyline [20, 10, 9], however, the attributes of each
object are dynamically calculated with respect to queries. Specif-
ically, Papadias et al. [20] defined the dynamic attributes of each
object by several dimension functions. Deng et al. [10] presented
the multi-source skyline query, in which attributes of each object
are defined as the shortest path lengths on road networks from this
object to multiple query objects, respectively. Dellis and Seeger [9]
considered a dynamic skyline where attributes of each object are
dynamically computed as the absolute coordinate differences from
a query object for all the dimensions. In this paper, we use the
definition of dynamic attributes the same as Dellis and Seeger [9].

Dellis and Seeger [9] proposed a novel query, namely reverse
skyline, which retrieves those objects in the database whose dy-
namic skylines contain a given query point. They propose an effec-
tive pruning method to reduce the search space with respect to pre-
cise points. In contrast, our work in this paper aims to effectively
reduce the search space over uncertain data without introducing
false dismissals. Moreover, in [9], efficient query procedure and
optimization techniques have been proposed to answer the reverse
skyline query through the R-tree index. Since the proposed ap-
proaches assume the query processing over the precise data points
in the “certain” database, they cannot be simply extended to the
uncertain scenarios, where real-world data inherently contain un-
certainty in many applications such as sensor data monitoring or
business planning as mentioned earlier. One straightforward way
to answer reverse skyline queries over uncertain data might be to
take center of each uncertain data and then apply traditional tech-
niques on centers. However, the query result is clearly inaccurate or
even erroneous due to the loss of distribution information of uncer-
tain objects. This motivates our work in this paper to study efficient
and accurate query processing of reverse skyline query, considering
the unique characteristics of data uncertainty. Besides, Dellis and
Seeger [9] only discuss the monochromatic reverse skyline query in
a single database. Our work, however, also investigates the bichro-
matic case in which two uncertain databases are involved. Previ-
ous work on the bichromatic query type include the reverse nearest
neighbor query [27, 13].

In literature [11, 7, 8, 28, 1, 16, 6, 4, 24, 18, 26, 17, 21, 3, 5,
19, 22, 25, 32], uncertain query processing is very important in
many applications, due to the wide existence of uncertainty in real-
world data. Many techniques have been designed specific for query
types in the context of uncertain databases, including range query
[7, 8, 28, 3], nearest neighbor query [6, 7, 17, 5], skyline query
[21], and similarity join [16, 19]. Pei et al. [21] defined the prob-
abilistic skyline query where each object contains discrete random
instances. Effective pruning rules have been proposed to facilitate
the search process. Moreover, in the probabilistic database with
possible worlds semantics [14], top-k query [23, 26, 15] has re-

cently been studied. To the best of our knowledge, this is the first
work to study the probabilistic reverse skyline query on uncertain
data, considering both monochromatic and bichromatic cases.

3. PROBLEM DEFINITION

In this section, we formally define the monochromatic and bichro-
matic probabilistic reverse skyline (MPRS and BPRS, respectively)
over uncertain databases. Given a query object g, we say object
u dynamically dominates object p with respect to ¢ (denoted as
u <4 p), if it holds that: 1) |u; — g;| < |ps — ¢:|, for all dimensions
1 <4 < d, and 2) there exists at least one dimension j, such that
lu; — q;| < |p; — ¢;|, where u; and p; are the i-th coordinates of
objects u and p, respectively. Based on this dominance definition,
the reverse skyline [9] is given as follows.

DEFINITION 3.1. (Reverse Skyline [9]) Given a database D
and a query object q, object uw € D is a reverse skyline of q, if
there does not exist any object p € D\{u} such that p <., q.

Given an uncertain database D, a data object uw € D is repre-
sented by an uncertainty region U R(u) where u can locate any-
where with any probabilistic distribution (u cannot appear outside
UR(u)). In this paper, we model each uncertainty region as of
hyperrectangular shape [7, 21]. Following the convention [7, 6,
21], we assume uncertain objects in the database are independent
of each other, and coordinates of each object are also independent.
An MPRS query over uncertain data can be defined as follows.

DEFINITION 3.2. (Monochromatic Probabilistic Reverse Sky-
line, MPRS) Given a d-dimensional uncertain database D, a query
object q, and a probability threshold o € (0, 1], a monochromatic
probabilistic reverse skyline (MPRS) query retrieves those objects
w € D such that w is a reverse skyline point of q with probability
Phriprs(u) greater than or equal to «, that is,

Prprs(u) (e)]

- /uEUR(u) (PT{U}. H

(1 — Pr{p’ <. q})) do > «,
p’€D\{u}

where Pr{p’ <u q} = [T{_, Pr{lp} — wil < lgi —uil}.

Inequality (1) calculates the expected probability Parprs(u)
that object w is a reverse skyline of g, and checks whether Pasprs (u)
is greater than or equal to a probability threshold «. If the answer
is yes, then object u is a qualified MPRS point; otherwise, it can
be discarded. In order to obtain Pasprs(u), for each possible po-
sition of w in U R(u), we need to compute the probability that ¢ is
the dynamic skyline of w, that is, the probability that ¢ is not dy-
namically dominated by other objects p’ € D\{u} (with respect
to u). Due to the assumption of object independence, this prob-
ability can be obtained by [ cp\ 1,3 (1 — Pr{p’ <. ¢}. Simi-
larly, due to the independence among coordinates, Pr{p’ <. q} =
I, Prilp; - wl < la: — w}.

Similarly, a BPRS query over uncertain databases is given below.

DEFINITION 3.3. (Bichromatic Probabilistic Reverse Skyline,
BPRS) Given two d-dimensional uncertain databases A and B, a
query object q, and a probability threshold o« € (0,1], a bichro-
matic probabilistic reverse skyline (BPRS) query obtains those ob-
jects u € A such that u is a reverse skyline point of q in B with
probability Peprs(u) greater than or equal to o, that is,

Ppprs(u) (2)

/ueUR(u) <Pr{u} I a-Prip’ <. Q})) do > «,

p'eB



Symbol [ Description |

D (Aand B) | the uncertain database(s)

d the dimensionality of data objects

o (u,p,orq) | the uncertain object

UR(o) the uncertainty region of object o

P <o q object p dynamically dominates object g with respect to object o
« the user-specified probability threshold

Ny the farthest point in U R(p) from query object ¢

My, the middle point between g and N,

Me the point in node e closest to g

Figure 4: Symbols and Descriptions

where Pr{p’ <., q} refers to Definition 3.2.

Note that, the BPRS query is more complex than MPRS, since
it involves two data sets .4 and B as indicated by Definition 3.3.
Thus, the search of BPRS points must be able to explore both data
sets efficiently, whose query processing is not trivial.

The existing approach for the reverse skyline search [9] only
handles “certain” data in the monochromatic case, and cannot be
directly applied to the uncertain scenarios with both MPRS and
BPRS. Therefore, the only available method so far is the linear
scan, which calculates the probability of each object by sequen-
tially scanning all the other objects on disk. However, this method
is clearly not efficient, due to the complex computation of Inequal-
ities (1) and (2) as well as the high I/O cost. Motivated by this, in
this paper, we propose effective pruning methods to facilitate an-
swering MPRS and BPRS queries efficiently. Moreover, we further
improve the query performance via pre-computation techniques.

Procedure PRS_Framework {
Input: an uncertain database, a query object g, and a probability threshold o
Output: the answer to the probabilistic reverse skyline query
(1) construct a multidimensional index structure /I indexing phase
(2) perform spatial and/or probabilistic pruning over the index // pruning phase
(3) refine the retrieved candidates and return the answer set  // refinement phase

Figure 5: Framework for Probabilistic Reverse Skyline Queries

Figure 5 illustrates a general framework for MPRS/BPRS query
processing, which consists of three phases, indexing, pruning, and
refinement phases. Specifically, the indexing phase builds up a
multidimensional index over uncertain database(s). Since our pro-
posed querying methodology is independent of the underlying in-
dex, in this paper, we simply use one of the popular indexes, R-tree
[12]. In particular, we insert the uncertainty region of each object
into an R-tree index, which recursively groups objects with mini-
mum bounding rectangles (MBRs). After the construction of the
index, the second pruning phase aims to prune those objects that
are not qualified as query results (i.e. Inequality (1) or (2) does not
hold). In this phase, we propose spatial and/or probabilistic prun-
ing methods to significantly reduce the search space. Finally, for
each remaining candidate o that cannot be pruned, the refinement
phase checks Inequality (1) (or (2)) by computing the actual proba-
bility Parprs(0) (or Peprs(0)), and reports the qualified objects.
Figure 4 summarizes the commonly used symbols in this paper.

4. MONOCHROMATIC PROBABILISTIC RE-

VERSE SKYLINE (MPRS)

In this section, we propose the pruning techniques for MPRS and
later in Section 5 we discuss how the solutions can be applied to

BPRS. Sections 4.1 and 4.2 present two pruning heuristics, spatial
and probabilistic pruning, respectively, followed by a discussion
of retrieving MPRS candidates in Section 4.3. Finally, Section 4.4
seamlessly integrates the pruning methods and refinement step into
an MPRS query procedure.

4.1 Spatial Pruning

In this subsection, we illustrate the basic pruning heuristics of
our MPRS query procedure using a 2D example in Figure 4.1.
Specifically, let ¢ be a query point and p € D be an MPRS can-
didate to the top-right of ¢. We can draw a line segment from ¢
to its farthest point, IV, in uncertainty region U R(p), and take the
middle point M, between g and N,,. The shaded region with bot-
tom left corner M, is called pruning region PR(q, p). Obviously,
any object o € D that is fully contained in this region PR(q, p)
cannot be the reverse skyline of ¢, since object p is always dy-
namically dominating ¢ with respect to o (i.e. p <, ¢, due to
|pi — 0i] < |gi — os] for all dimensions ¢ = 1, 2). Thus, object o
can be safely pruned.

My pruning region
PR(¢,P)

Figure 6: Heuristics of Spatial Pruning

Based on the example above, we give the formal definition of the
pruning region PR(q, p):

DEFINITION 4.1. (Pruning Region, PR(q,p)) Assume uncer-
tain object p € D has its uncertainty region UR(p) = (p7,p7;
Py, DY iP5, DY), where [p;,p;] is the uncertain interval of
UR(p) along the i-th dimension (1 < i < d). Given a query point
q, if there exists one dimension j such that p; < q; < p;" then the
pruning region, PR(q, p), is empty; otherwise, the i-th dimension
of PR(q, p) is given by [“5 +oc] if i < p;, or [~o0, “5]

if gi > pf, for1 <i<d.

Note that, the pruning region defined in Definition 4.1 can be
used not only in our MPRS query, but also the BPRS query as well,
which will be discussed later. Now, based on Definition 4.1, we
propose our monochromatic spatial pruning method as follows.

LEMMA 4.1. (Monochromatic Spatial Pruning) Given a query
object q and an MPRS candidate p € D, any object o € D can
be safely pruned if it is fully contained in the non-empty pruning
region PR(q, p), that is, UR(0) C PR(q,p).

Proof. We only need to prove that p <, ¢ under the assump-
tion that o is fully covered by the pruning region PR(g, p). Recall
from Definition 4.1, for object p with uncertainty region U R(p) =

_ _ _ . .. QH-:D;r
(py,pTps,p3 ;s g . Py ). the pruning region is defined as [ 57

+o0] if ¢; < p;; or [—oo, %] if ¢ > pf, where 1 < i <
d. Since object o is fully contained in the region, we have: 1)

qi +p:r < & +p;
2

< o0if g < p;,or2)o; < if ¢ > p;L (for
1 <4 < d). We prove that, in these two cases, we have p <, q.

)



Case 1 (¢; < p; and

+
i+p . .
% < 0;). From the case assumption, it

it+ai itp; oy
holds that ¢; = “F% < 5P < B28 < o, Ifp; — 0; > 0
(Case 1.1), we have |p; — 0i| = p;i —0; < pj —0;i < 0i —q; =

: + a+p] . .
|oi —qi| (since p; < p;” and 5+ < 0;); otherwise (Case 1.2, 1.e.,

pi —0; < 0), it holds that |p; — 0;| = 0; —p; < 0 —qi = |0i — ¢
(due to g; < p; < pi).
Case 2 (; > p;” and o; < q#%). Omitted due to space limit
(with proof similar to Case 1).
In summary, in both cases, we can always obtain the inequality
|pi — 0i] < |gi — o;] forall 1 <4 < d, indicating that p <, ¢. O
From Lemma 4.1, we can see that the spatial pruning method
only discards those objects that definitely cannot be MPRS points.
Therefore, this pruning method would not introduce any false dis-
missals (i.e. the actual answers to the query which are however not

in the query result).

4.2 Probabilistic Pruning

The spatial pruning method only utilizes the spatial property of
uncertain objects, that is, the bounds of uncertainty regions, to re-
duce the MPRS search space. In case we know the distributions of
objects in their uncertainty regions, we should be able to use such
information to enhance the pruning ability for our MPRS search.
In this subsection, we propose a novel and effective probabilistic
pruning method, which exactly aims to utilize this distribution in-
formation to increase the pruning power.

Recall that, any object o is an MPRS point, if its expected prob-
ability Parprs(0) (in Inequality (1)) to be the reverse skyline of
query point g is greater than or equal to a € (0, 1]. The rationale
of our probabilistic pruning is to discard those objects with prob-
ability Prrprs(o) smaller than or equal to some 8 € [0,«). In
particular, in order to enable such pruning, we introduce the con-
cept of (1 — 3)-hyperrectangle for uncertain objects.

DEFINITION 4.2. ((1 — B)-Hyperrectangle, UR,_g(+)) As il-
lustrated in Figure 7, assume we have an uncertain object o with
its uncertainty region U R(0) centered at point C,. The (1 — 3)-
hyperrectangle of object o is defined as a smaller hyperrectangle
URi1_g(0), such that object o locates in UR1_g(0) with proba-
bility (1 — ). The complement part of URy_g(0) in UR(0) is
denoted as UR1_3(0), and object o locates in UR1_g(0) with
probability (.

(1-B)- Hyperrectangle

i
! objectp
e ey 0
: L/, | [y center Co
. X } of UR (0)

P 7ZzZ% / 7777777777 W44
/My e ! uncertainty region
UR .
/ X 1@ object o UR(9)
& query point q

Figure 7: Ilustration of (1 — 3)-Hyperrectangle

Note that, since we know the distribution of each object o in its
uncertainty region U R (o), we are able to pre-compute the (1 — 3)-
hyperrectangle U R; — 3(0) offline, for some 3 € [0, 1].

Next, we provide our monochromatic probabilistic pruning method
for an MPRS query.

LEMMA 4.2. (Monochromatic Probabilistic Pruning) Given a
query object q, an MPRS candidate p € D, and a probability
threshold o, any object o € D can be safely pruned if it holds

that the (1 — B3)-hyperrectangle UR1_g(0) is fully contained in
PR(q,p), that is, UR1_3(0) C PR(q,p), for 3 € [0, cv).

Proof. We only need to prove that, as long as UR1_3(0) is fully
contained in the pruning region PR(q, p), the expected probability
Prrprs(0) (in Inequality (1)) that object o is a reverse skyline of ¢
is smaller than or equal to 8 € [0, ). Recall from Inequality (1):

PIWPRS(O) = /EUR( ) (P’!‘{O}' H (1 — P7-{p/ <o q})) do.

p’€D\{o}
Since the probability Pr{p’ <. ¢} in Pmprs(o) is always
within [0, 1], we have:

Puprs(e) < [ (Pr{o}-(L-Prip <, a))do, )
JoeUR(o)
where p € D\{o}.

Since uncertain object o can locate in either U R; _5(0) or UR1_g(0)
and any probability is non-negative (i.e. Pr{-} > 0), we can
rewrite Pr{p <, ¢} as:

Pr{p <o q} = Pr{p=<,4qlo€ UR1-g(0)} - Pr{o € UR1-g(0)}
+Pr{p <o qlo € UR1_g(0)} - Pr{o € UR1_p(0)}
Pr{p <o gqlo€ UR1_g(0)} - (1 =B)+0-8

Pr{p <o qlo € UR1_g(0)} - (1 = B) “)

v

Note that, due to the assumption of the lemma that UR;_ (o) is
fully covered by PR(g, p), we have Pr{p <, glo € UR1_g(0)} =
1 (with a proof similar to that of Lemma 4.1), which can be substi-
tuted into Inequality (4) and result in:

Pri{p<oq} >1-0. )

Therefore, by combining Inequalities (5) and (3), we have:

Prvprs(o) <

/ (Pr{o}-(1— (1 - B)))do
0€UR(0)

= 4. / Pr{o}do = . 6)
JoeUR(o)

Hence, object o has the expected probability Prprs(0) to be
reverse skyline of ¢ not greater than 3 (i.e. smaller than «), and
thus it can be safely pruned. a

As shown in the example of Figure 7, the pruning region PR(q, p)
with respect to ¢ and p (shaded area) fully contains the (1 — (3)-
hyperrectangle U R1_3(0) of object 0. Thus, o can be safely pruned
by our monochromatic probabilistic pruning method in Lemma 4.2.
In contrast, the monochromatic spatial pruning cannot prune o since
the uncertainty region of o is only partially covered by PR(q, p).
According to Lemma 4.2, we know that no false dismissals are in-
troduced after the monochromatic probabilistic pruning.

4.3 Retrieval of MPRS Candidates

Up to now, we have considered monochromatic spatial/probabilistic
pruning methods with respect to one MPRS candidate in the database
D. In fact, any object p in D can be an MPRS candidate. However,
their resulting pruning regions can be either large or small (i.e. with
high or low pruning ability). Thus, we want to find those MPRS
candidates with pruning regions as large as possible.

Figure 8 illustrates a query point ¢ and two objects p and p'.
We observe that the two pruning regions, PR(q, p) and PR(q, p"),
have the containment relationship, that is, PR(g,p) D PR(g,p").
In this case, the pruning region PR(q, p’) is redundant, since any
object o that is fully contained in PR(q, p) can be also pruned by
PR(q, p). Thus, it is desired that we obtain PR(q, p), rather than
PR(q, p’), during the retrieval process of MPRS candidates. We
have the following lemma.



Figure 8: Containment Relationship Between Pruning Regions

LEMMA 4.3. For any two objects p and p' in D that have non-

empty pruning regions, assume Np(n1,nz, ...,nq) and Ny (n}, ny,
...,y are two points in U R(p) and U R(p"), respectively, farthest
from query point q, where n; € {p; ,pj } and n; € {p/",p/"}
for1 <4 < d. Ifit holds that: 1) (n; — q;) - (n; — q;) > 0 for
all i, 2) |n; — qi| < |n} — qi| for all i, and 3) there exists at least
one dimension j, such that |nj — q;| < |n); — q;|, then we have
PR(q,p) D PR(q,p’).
Proof. Since p (or p) has non-empty pruning region, we have
either ¢; < p; or ¢ > pj (¢ < p,” or ¢i > p;"), for any
1 <4 < d. According to Condition 1) that (p; — ¢:) - (p; — g:) > 0
for all ¢, we consider two cases:

Case 1 (n; > g¢; and n; > ¢; for some 7). From the case
assumption and the fact that PR(g, p) and PR(g, p’) are not empty,
we have p; > ¢; and p,_ > ¢;. Based on Definition 4.1, the

+
q9;+p;
: p) * 7+OO]

pruning region PR(g, p) along the i-th dimension is [

S
and PR(gq, p’) along the i-th dimension is [M%, ~+00]. Moreover,

from Conditions 2) and the assumption of Case 1, we obtain n; —
¢ = |ni —qi| < |nf—qi| = nl—qi (.e. ni < nj). Since n; = p;

Lt ot
and n} = p/t, it holds that [qﬁ%, +o0] D [qﬁ%, +o0].

Case 2 (n; < g; and n, < g; for some 7). Omitted due to space
limit (with proof similar to Case 1).

According to the two cases above, we have PR(q, p) O PR(q,
p’), since PR(q, p) contains PR(q, p’) in all dimensions. Due to
Condition 3), the set equality does not hold for the j-th dimension
(i.e. when @ = j) in the proof above. Hence, the lemma holds that
PR(q. p) D PR(q, p"). O

For brevity, if points IV, and N, satisfy the three conditions in
Lemma 4.3, we say N, globally dominates N, . If a point N,, is
not globally dominated by any other points (e.g. NV,/), we call it
global skyline point.

Lemma 4.3 indicates that as long as point NV, globally dominates
point IV,,» with respect to g, the resulting pruning region PR(q, p)
would contain PR(g, p’). Let M, and M, be the middle points
from g to N, and N, (i.e., corners of PR(g, p) and PR(g,p)),
respectively. From Lemma 4.3, we have an immediate corollary
below.

COROLLARY 4.1. If M, globally dominates M, then we have
PR(q,p) O PR(q, ). o

Therefore, in order to achieve high pruning ability (i.e. large
pruning region), we need to access and obtain those objects p whose
M), are global skyline points (i.e. having pruning regions not fully
covered by others).

4.4 MPRS Query Processing

In this subsection, we discuss the detailed MPRS query process-
ing which progressively retrieves those objects p having M), as

global skyline points (i.e. with pruning regions not fully covered
by others), and, meanwhile, utilizes the pruning regions to prune
other objects via the spatial and/or probabilistic pruning method(s)
as mentioned earlier. Specifically, we index all the uncertain ob-
jects in the database D with an R-tree Z [12], on which the MPRS
query is processed. In order to facilitate an efficient MPRS search,
we need to prune intermediate nodes of the R-tree index as early
as possible to avoid costly accessing the MBRs/objects under these
nodes (in terms of computation and I/O cost). Therefore, we first
design a method to prune intermediate entries of Z in the following
lemma.

LEMMA 4.4. (Pruning Intermediate Entries for MPRS) Assume
we have an intermediate entry e in the R-tree index T constructed
over uncertain database D, a query object q, and an MPRS candi-
date p. Let m. be a point in e that is the closest to query point q,
where q; < e; or q; > e;-" foralll < i < d. IfPR(g,m.) C
PR(q, p), then e can be safely pruned.

Proof. Derived from Corollary 4.1. Omitted due to space limit. O

MPRS Query Procedure. Figure 9 illustrates the MPRS query
procedure, MPRS_Processing, in detail, which retrieves the qual-
ified MPRS objects by traversing the R-tree index Z in a best-first
manner. Specifically, we maintain a minimum heap H with entries
in the form (e, key) (line 1), where e is an MBR node of index Z
and key is defined by function key(g, €) = mingec{>."_, |¢; —
x;|/2} [20]. The function key(q, e) defines the L;-norm distance
from query point ¢ to m. in e (as given in Lemma 4.4). Intu-
itively, small key(q, ) may result in large pruning region PR(q, p)
for some point p € e. We also initialize two empty sets, Scanq and
Srfn (line 2), where Scanq is used to store MPRS candidates, and
Srfn stores those pruned objects/nodes that, however, may help
refine MPRS candidates in the refinement phase.

First, we insert the root root(Z) of R-tree into heap H (line 3).
Every time we pop out an entry (e, key) from H with the mini-
mum key value (line 5). Then, according to Lemma 4.4, we verify
whether or not PR(g, m.) is fully contained in PR(g, p’) for some
object p’ in the candidate set Scanq. If it is true, then all the points
in e would have their pruning regions fully covered by PR(q, p’),
and thus e can be safely pruned by (line 6); otherwise, we process
e as follows.

If e is a leaf node, we need to verify each object p in entry e
(lines 7-8). In particular, if object p can be spatially pruned by
some candidate p’ from the candidate set Scq.q and, moreover, M, p
is globally dominated by M, for some p’ € Scana, we add it to
the refinement set Sy s, (lines 9-11), since p is neither an MPRS
candidate nor an object that has PR(g, p) not fully covered by oth-
ers. Note that, we do not discard p immediately but add it to S ¢,
since it may be useful for helping refine MPRS candidates during
the refinement phase. In case p is not an MPRS candidate but has its
PR(g, p) not covered by other pruning regions, we add it to Scand
and mark it as false alarm (line 12, note: we can still use PR(g, p)
to perform the pruning); in case p is an MPRS candidate, we simply
add it to S¢ana (line 13). Note that, if p is added to S¢qnq and more-
over we know the distribution of object p € U R(p), we can load its
corresponding (1—3)-hyperrectangle U R1_g(p), for a largest pre-
computed [ value in [0, «). In addition, we use object p to prune
candidates p’ € Scang (line 14) by either spatial or probabilistic
pruning (determined by whether or not we know the position dis-
tribution of p’), as given in Lemma 4.1 or Lemma 4.2, respectively.
Here, we only mark the pruned candidates in Scqnq as false alarms
without removing them (since their corresponding pruning regions
can still help prune more objects/nodes). When e is an intermedi-
ate node, we scan each entry e; in e and check whether or not e;



can be pruned (lines 16-20). Specifically, by Lemma 4.4, if it holds
that PR(g, m.,) C PR(q,p’) for some p’ € Secqnd, We insert it into
Srfn (lines 17-18); otherwise, we add an entry (e;, key(q, e;)) to
heap ‘H (lines 19-20).

Procedure MPRS_Processing {
Input: R-tree Z constructed over D, a user-specified probability threshold c
Output: the MPRS query result
(1) initialize a min-heap 7 accepting entries in the form (e, key)
@) Scana = ¢, Srpn = . 7lt = ¢;
(3) insert (root(Z), 0) into heap H
(4) while H is not empty
%) (e, key) = de-heap H
(6)  ifPR(g, m.) C PR(q,p") forsome p’ € Scand
Il M is the nearest point in entry e from q, Lemma 4.4

7 if e is a leaf node

®) for each uncertain object p € e

9) if p is fully contained in PR(q, p’) for some p’ € Scand

(10) if M, is globally dominated by Mp/ for some p’ € Scanda

(11) Srfn = Srfn U {p}

(12) else Scand = Scand U {p} and mark p as false alarms

(13) else Scand = Scanda U {p} /I Lemma 4.1, spatial pruning
(14) mark candidate p” € Scqnq as false alarms if it can be pruned by p

/I Lemmas 4.1, 4.2 and 4.3, spatial/probabilistic pruning

(15) else 1 intermediate node

(16) for each entry e; in e

a7 if PR(q, me,;) C PR(q, p’) me, for some P € Scand
(18) Srfn = Srpn U{ei} /I Lemma 4.4
(19) else

(20) insert (e;, key(q, e;)) into heap H

(21)  rit = Refinement(q, Scand, Srfn, a);
(22) return rit

1/ refinement phase

Figure 9: MPRS Query Processing

Final Refinement. The iterations of traversing the R-tree repeats
until heap 7 is empty (line 4). After that, we obtain an MPRS
candidate set S.and, in which we filter out false alarms (line 21).
That is, for each candidate p € Scqnd, We need to access objects
in D and compute the actual probability Pasprs(p) using numeric
method [7, 6]. Note that, since objects in D are either in Scqrnd Or
in the refinement set .S, y,, we can access Sy, to avoid visiting
tree nodes twice. If it holds that Pasprs(p) > a, p is a qualified
MPRS point; otherwise, o is discarded. Finally, the actual answers
to the MPRS query, rlt, can be returned (line 22).

Note that, from Inequality (1), the calculation of Paprs(0) re-
quires scanning all the uncertain objects in the database D, which
is quite inefficient. In order to reduce this cost, we define a refine-
ment region, such that any uncertain object p that falls outside this
region can be excluded from the calculation of Inequality (1). In
brief, there are two types of the refinement region, depending on
whether or not g; is within [o; , 0] ] for some 1 < i < d. Figure
10 illustrates these two cases in a 2D example, where object o is
an MPRS candidate and ¢ is a query point. Figure 10(a) presents
the first case, where 1 ¢ [0} ,07] and g2 ¢ [05, 03] along the
horizontal and vertical axes, respectively. Let N, be the middle
point of line segment gLo, where N, is the farthest point in U R(0)
from g. The hyperrectangle that has ¢ and L, as diagonal corners
is defined as our refinement region. Furthermore, in Figure 10(b),
if there exists a dimension, for example, the horizontal axis, such
that g1 € [0} , 0] ], we divide the space into two halfplanes by line
T = q1, and obtain the refinement region in each halfplane similar
to the first case. The final refinement region is the union of these
two small regions (i.e. shaded area shown in Figure 10(b)).

With regard to the refinement region, we have the lemma below.

LEMMA 4.5. Any uncertain object p that is fully outside the
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wmann LY
SO .o
 candidate o L\ 1/ candidate o
o R refinement region »
query point ¢ query point q
(a) Case 1 (b) Case2

Figure 10: Ilustration of Refinement Region

refinement region would not affect the calculation of Inequality (1).

Proof Sketch. From Figure 10, we can see that if object p is outside
the refinement region, then ¢ would dynamically dominate p with
respect to o, that is, ¢ <o p. In other words, we have Pr{p <,
g} = 0. Thus, 1 (= 1 — Pr{p <o ¢}) will be multiplied into the
term [l eo oy (1— Pr{p’ <, q}) in Inequality (1), for object p,
which however does not have any effect on the result. O

In the examples of Figure 10(a) or 10(b), object p can be safely
pruned, since it is entirely outside the shaded region. Only those
objects that intersect with the refinement region (e.g. objects p’
and p’’) are necessary to participate in calculating the probability in
Inequality (1). Thus, in the refinement phase, instead of scanning
the entire database D, we only need to retrieve those objects that
overlap with the refinement region of each candidate, through the
index, and compute the expected probability to obtain the actual
answer to the BPRS query.
Analysis. Based on Corollary 4.1, in order to achieve the maxi-
mum pruning power, our query procedure progressively retrieves
the objects whose pruning regions are not full covered by others
(or equivalently, the global skyline points of M), for p € D). Since
M, is the corner of the pruning region PR(g, p) with respect to
g, we can finally obtain the maximum pruning region. Similar to
BBS algorithm [20], procedure MPRS_Processing finds global
skyline points M), of objects p in the database, where the global
dominance is used. In other words, we progressively compute the
candidate set and meanwhile use the pruning regions from Scand
to prune the MPRS search space. We have the following lemma.

LEMMA 4.6. The number of node accesses over L invoked by
line 10 of procedure MPRS_Processing is I/O optimal to obtain
all the global skyline points from the data set D.

Proof Sketch. Our procedure MPRS_Processing to compute the
global skyline points is equivalent to applying BBS algorithm [20]
to obtain skyline points within space partitions, which are obtained
by dividing the space at ¢; for each dimension ¢. Since each node in
7 is accessed at most once in our procedure and BBS algorithm is
/0 optimal, procedure MPRS_Processing is I/0 optimal. m|

4.5 Enhanced Query Processing with Pre-
Computation

In this subsection, we further propose a novel and more efficient
approach, aiming to reduce the cost of MPRS query processing via

offline pre-computation. Recall that, in procedure MPRS_Processing,

for each newly incoming MPRS query with query point g, we need
to re-calculate the pruning regions from scratch. However, if two
query points are very close, they are very likely to share the same



or similar pruning regions. Observing this, we can improve the
MPRS query efficiency by offline pre-computing some pruning re-
gions as well as MPRS candidates, such that the cost of searching
them through the index (in terms of computation and I/O) can be
significantly saved.

cell C3 3 (orCg)

1 Mp
2 P || e ~d
3 i B = ~.  offline
e My pruning region
4 - B PR(Cy, p)
5 p' *
6 k online
p" pruning region
; PR(¢,p)
1 "2 3 4 56 7

datae space [0, 1] 2 for data set B

Figure 11: Heuristics of Enhanced Query Processing

We illustrate the rationale of our enhanced query processing with
an example in Figure 11. Without loss of generality, we only show
three relevant objects p, p’, p’’ from database D. For the i-th dimen-
sion, the uncertain intervals of p, p’, and p” are given by [p; , p;].
[p;*7 p;+], and [p;/*7 p;’Jr], respectively. Based on the endpoints
of these intervals along each dimension, we can partition the data
space into a grid that contains a number of cells. As shown in the
example, the horizontal dimension is split by endpoints pll_, p/1+,
Py, pT, pll/_, and p/l/+ from left to right; and similarly, the vertical
dimension is split by endpoints p3 p; , p;+, p;_, pg+, and p;/_
from top to bottom. Denote C}; ; as a cell that is on the i-th column
and j-th row of the grid.

The framework for our MPRS query processing with offline pre-
computation is as follows. First, for each cell C}, ;, we pre-calculate
the offline pruning regions with respect to cell C; ; (assuming C;,;
is the query region). Moreover, based on these pruning regions,
we obtain a superset of MPRS candidates for any query point ¢’ in
Cj,;. Whenever an MPRS query is issued with query point g, we
directly access a cell Cy where ¢ falls into, retrieve its correspond-
ing offline MPRS candidates together with objects p that were used
to define the offline pruning regions, and compute the online prun-
ing regions (i.e. PR(q, p)) to filter out MPRS candidates. Finally,
procedure Refinement is invoked to refine candidates by access-
ing the index and calculating the actual probability Pasprs(0) as
discussed in Section 4.4.

Below, we define the offline pruning regions using the example
of Figure 11. Consider the cell C'5 3 (denoted as C;) and an object
p. Obviously, for each possible position ¢’ of ¢ in the cell Cy,
we can obtain a pruning region PR(q’, p) with respect to ¢’ and p.
Regardless of ¢’s actual position, the offline pruning region is given
by the intersection of regions PR(¢’, p) for all ¢ € C,, that is,
Nvgre Cy PR(¢’, p). In Figure 11, point M,, is exactly the bottom-
left corner of such intersection. Formally, we have:

DEFINITION 4.3. (Offline Pruning Region, PR(Cy,p)) Given
a cell Cq and an object p, if there exists one dimension j such
that (C;, C’;Lj) ﬂ(p;,pj) # ¢, then the offline pruning region,
PR(Cy,p), is empty, where (C;, C’;j) is the side of cell Cy along
the j-th dimension. Otherwise, if C’;; < p; holds, then PR(Cy,p)
cl+rf

along the i-th dimension is given by [—>—, +o0]; if p; < Cui

holds, then PR(Cy, p) along the i-th dimension is [—o0, %]

Therefore, our offline pre-computation can be accomplished as
follows. For each cell Cj in the data space, we invoke the query
procedure MPRS_Processing to obtain a candidate set Scand,
with the new pruning regions given in Definition 4.3. Here, the
candidate set Scqna also includes those objects that are marked as
false alarms (in lines 12 and 14 of procedure MPRS_Processing),
however, they still contribute their pruning regions. In our exam-
ple, objects p, p’, and p” determine three offline pruning regions,
respectively, for cell C'; as shown in Figure 11 (shaded area).

Interestingly, regarding the offline pruning regions, we have the
following lemma.

LEMMA 4.7. Assume we have an offline pruning region PR(Cy,
p), which is not fully covered by non-empty PR(Cy, p') of any other
objects p' € D. Then, it holds that, the online pruning region,
PR(q, p) (with respect to q € Cy), cannot be fully covered by any
other PR(q,p) for p’ € B either; vice versa.

Proof Sketch. Derived from the lemma assumption and the prop-
erty of our grid partitioning. Omitted due to space limit. a

From Lemma 4.7, we can see that if we retrieve all the offline
pruning regions PR(Cl, p) that cannot be fully covered by other
offline ones, then their online versions would achieve large pruning
area (since they are not fully contained in any other regions). More-
over, from Figure 11, we can see that the online pruning region
always contains its offline version, that is, PR(g, p) D PR(Cq, p).
Thus, the resulting offline MPRS candidate set would be a super-
set of the online one with respect to query point g (i.e. no false
dismissals introduced).

During our enhanced query processing via pre-computation, we
directly obtain those offline MPRS candidates and perform fast fil-
tering by online pruning regions. Therefore, in contrast to proce-
dure MPRS_Processing, the cost of searching MPRS candidates
through the index can be significantly saved, in terms of both com-
putation and I/O.

Note that, our enhanced approach trades the space for efficiency.
The space cost of the pre-computation is proportional to |D|?. For
each cell Cy, we store uncertainty regions of objects from Scand.
In order to reduce the space cost, coarser cells can be used, which
however may result in smaller pruning regions and thus more MPRS
candidates to be refined. Moreover, compression methods can be
also applied to save the space cost of storing MPRS candidates,
trading the decompression cost for space efficiency. For example,
Hilbert curve can compress a sequence of coordinates to a single
value, which is also able to be reconstructed back to data series (i.e.
decompression). Due to space limit, we would not discuss details
in this paper.

S. BICHROMATIC PROBABILISTIC
REVERSE SKYLINE (BPRS)

In this section, we first illustrate the detailed differences in com-
puting MPRS and BPRS. Then, we discuss how to modify the pro-
posed pruning techniques for MPRS to efficiently answer BPRS
queries.

5.1 Computation Differences Between MPRS
and BPRS
Different from the MPRS query, the BPRS problem involves two

data sets. Therefore, the BPRS query processing is more complex
than MPRS.



According to the BPRS definition, Figure 12 illustrates one straight-

forward approach to answer the BPRS query, where a BPRS query
is issued with query point g over two data sets .A and B. Each time
the retrieval process considers one possible query result o € A in-
dividually consisting of two steps. First, we conceptually insert o
into the data set 3 and obtain an updated data set B’ = (B U {o}).
As a second step, we find the probabilistic reverse skylines of ¢ in
the updated data set B’. In other words, we issue an MPRS query
with query point g over B3, using the pruning methods that we men-
tioned in Section 4. In particular, we can obtain the pruning regions
in the data set B’, and check whether or not object o € A is fully
contained in any of these regions. If the answer is yes, then o can be
safely pruned; otherwise, we have to refine o by computing its prob-
ability Pgprs(o) (in Inequality (2)) to be the probabilistic reverse
skyline in B’, and output o as the BPRS result if Psprs(0) > «
holds.
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Figure 12: Differences Between MPRS and BPRS Queries

Therefore, in contrast to the MPRS query processing which cal-
culates the pruning regions over one data set and prunes objects
within this data set itself, BPRS requires computing the pruning re-
gions over data set B and utilizing them to prune objects from the
second data set A at the same time. Although the straightforward
approach mentioned above can produce the correct answer to the
BPRS query, its time complexity is quite high (i.e. proportional to
the sizes of both data sets), and thus not scalable to large data sizes.

In the sequel, we assume that data sets A and B are indexed
by two R-trees [12], Z4 and Zp, respectively. The goal of this
work is to provide effective pruning methods to reduce the BPRS
search space and efficiently retrieve BPRS objects through R-tree
indexes. Section 5.2 presents the pruning heuristics of the BPRS
query processing. Section 5.3 demonstrates details of our BPRS
query processing as well as the offline pre-computation technique
to speed up the query procedure.

5.2 Pruning Heuristics

In this subsection, we illustrate the pruning heuristics of the BPRS
query using a 2D example shown in Figure 13. Given a query ob-
ject g and an uncertain object p € B, we define the pruning region
PR(q, p) as given in Definition 4.1. In particular, we obtain the far-
thest point N, in UR(p) from ¢, and take the middle point M),
between g and N,. PR(q, p) is the shaded area having M), as its
bottom-left corner.

By utilizing pruning regions, we have bichromatic spatial and
probabilistic pruning methods below, similar to the MPRS case.

LEMMA 5.1. (Bichromatic Spatial Pruning) Given a query point
q and two uncertain databases A and B, any object o € A can be
safely pruned, if it is fully contained in a non-empty pruning region
PR(q, p) with respect to object p € B.

LEMMA 5.2. (Bichromatic Probabilistic Pruning) Given a query
point q, two uncertain databases A and B, and a probability thresh-

E‘J -- data set A
y
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Figure 13: Pruning Heuristics of BPRS Query Processing

old o, any object o € A can be safely pruned, if its (1 — [3)-
hyperrectangle, U R1_3(0), is fully contained in a non-empty prun-
ing region PR(q, p) for object p € B, where 3 € [0, ).

5.3 BPRS Query Processing

In this subsection, we integrate the bichromatic spatial and/or

probabilistic pruning methods into our BPRS query procedure. Specif-

ically, given a query point g and two data sets, .4 and BB, our BPRS
query procedure progressively obtains pruning regions from data
set 13, and meanwhile uses them to reduce the search space in the
data set A. Specifically, in order to achieve high pruning ability, we
find all the pruning regions PR(g, p) of objects p € B that are not
fully covered by PR(gq, p’) of other objects p’ € B, that is, those
objects p in B whose M, are globally skyline points, as indicated
by Corollary 4.1.

BPRS Query Procedure. Figure 14 illustrates the BPRS query
procedure, BPRS_Processing, in detail. In contrast to the MPRS
query over a single index, BPRS query processing needs to traverse
two indexes, Z 4 and Zp for databases A and B, respectively, and
handle two types of pruning: 1) pruning objects/nodes in Z 4 (i.e.
reducing BPRS candidate size), and 2) pruning objects/nodes in
T3 (i.e. filtering out the pruning region candidates). As a result, we
have two pruning rules:

1. Objects p € B can prune objects/nodes e4 in Z 4, if e4 (or
UR1_g(e4) in case ey is an object for some 8 € [0, «)) is
fully contained in its pruning regions PR(g, p); and

2. Object p € B can prune object p’ in B, if it holds that M,
globally dominates M, ; object p € B can prune node ep
in Zp, if it holds that PR(q,p) 2 PR(q,p’) for any point
p' € eg, in other words, PR(g,p) 2 PR(gq,me,) (since
PR(q, me, ) has the largest possible area for any p’ € ep),
where m. is the closest point in ep from q.

Therefore, in order to retrieve the BPRS query results, we ac-
cess Z4 and Zp in a way similar to MPRS, while performing the
pruning only if one of pruning rules above is satisfied. In particu-
lar, procedure BPRS_Processing (Figure 14) maintains a min-
imum heap for each R-tree (i.e. Ha and Hp for Z4 and Ip,
respectively) with entries in the form (e, key) (line 1), where e
is an MBR node and key is defined by function keya(g,e) or
keys(q,e). Specifically, when e is a node from Z4, we have
keya(g,e) = ijl min{|q; —e; |,|q: — e; |}, which is the min-
imum L1 -norm distance from q to e; when e is a node from Zg, we
have keyps(q,e) = S0, min{|gi — e; |/2,|q; — e, |/2}, which
is the minimum possible L;-norm distance from g to the corner of
the pruning region PR(gq, m. ), where m. is a point in e closest to g.
In addition, we keep three sets Sa, Sp, and S, ,,, which are initial-
ized to empty (line 2). Set S4 is used to store BPRS query results;
Sp stores objects p € BB with global skyline points Mp; and S, s,



contains MBRs/objects from Zp that are pruned, however, might
be useful for refining BPRS candidates during the refinement step.

Procedure BPRS_Processing accesses nodes in both Z4 and
I in ascending order of their keys. First, the roots of Z 4 and Zp
are inserted into heaps H 4 and Hp, respectively (line 3). Then,
each time we pop out a heap entry from one of the heaps (selecting
the one with minimum key) (line 6 or 9). If the current popped
entry e is from heap H 4, we invoke procedure Node_Handler_A
(lines 6-7), which checks whether e can be pruned by any pruning
regions PR(q, p) (as given by the first pruning rule); otherwise, we
invoke procedure Node_Handler_B (lines 8-10), which pops out
top entry (ep, keyp) from heap H; and applies the second pruning
rule given above. The iteration stops when one of heaps is empty
(line 4). After that, if heap H 4 is not empty (i.e. Hp is empty),
we invoke procedure Node_Handler_A to handle each remaining
entry e4 in H 4 (line 11). In case heap H 3 is not empty, we simply
add all the heap entries in H 5 to the refinement set S, ¢, (line 12),
which may be used for refining BPRS candidates. Finally, proce-
dure Refinement is called to refine the BPRS candidates stored in
Sa (line 13). In particular, for each candidate o, we access those
objects/nodes in Sy, and Sp that intersect with its refinement re-
gion, and calculate the expected probability. If this probability is
greater than or equal to «, then o is output as the query results (line
14); otherwise, it is discarded. Detailed BPRS query procedure is
described in Figures 14, 15, and 16.

Procedure BPRS_Processing {

Input: two R-trees Z 4 and Zp for data sets A and 13, respectively, a query point g,

and a user-specified probability threshold o
Output: the BPRS query result S 4
(1) initialize two min-heaps H 4 and H ;3 accepting entries in the form (e, key)
2) Sa=8=Srtn=4¢;

Procedure Node_Handler_B {
Input: a query point g, entry e g from Iz, sets Sp and Sy ¢y, , and heap H 3
(1) if PR(g,mep) C PR(q, p’) for some p’ € Sp
/I e g is the nearest point in entry e from q
?2) Syfn = Srgn U {p} and return;
(3) if ep is aleaf node
@ for each object p € ep

5) if My, is globally dominated by M,/ for any p' € Sp//Lemma4.3
(6) Srfn = Srfn U {p}

7 else

(8) Sp = Sp U {p}

9) else // intermediatg node of I

(10)  foreachentry e}, € ep
(11) ifPR(q,mej ) CPR(q,p’) forsome p’ € Sp
B

1/ m_j is the nearest point in entry e% from q

B,
(12) Srfn = Srn U{eh}
(13) else ) )
(14) insert (e%;, keyp (g, e73)) into heap Hp

Figure 16: Handling Nodes from Data Set 3

our query procedure is performed over data set 3, analogue to BBS
algorithm [20] that retrieves skyline points (in our case, the corner
points of pruning regions). Thus, similar to Lemma 4.6, we have:

LEMMA 5.3. The number of node accesses over L invoked by
line 10 of procedure BPRS_Processing is I/0 optimal to obtain
Sp such that, for any p € Sg, the pruning region PR(q, p) are not
fully covered by others. O

Furthermore, with regard to the candidate set S4, we have the
following lemma.

(3) insert (root(Za), keya (q, root(Z 4))) and (root(Zg), keyr(q, root(Zg)))

into heaps H 4 and H g, respectively
(4) while both H 4 and H 5 are not empty
5) iftop(Ha).keya < top(Hg).keyp

(6) (ea, keya) =de-heap(H 4) /] access index T 5

(@) Node_Handler_A (q,ea,Sa,SB, Ha,a) /I pruning rule 1
) else

9) (eB, keyp) = de-heap(H ) /Il access index Iz

(10) Node_Handler_B (q,ep,SB, Srfn, HB) /I pruning rule 2
(11) if H 4 is not empty, invoke procedure Node_Handler_A for each e 4 in H 4
(12) if H 5 is not empty, add all the remaining entries to S,

(13) Refinement (Sa, Sp, Srfn, o)

(14) return S 4;

Figure 14: BPRS Query Processing

Procedure Node_Handler_A {
Input: a query point g, entry e o from Z 4, sets S4 and S, heap H 4, and a
user-specified probability threshold o
(1) if e4 is aleaf node
2) for each object o € e 4

3) if UR(0) (or UR1_g(0)) is not fully contained in pruning regions
obtained from S // bichromatic spatial (or probabilistic) pruning
4) Sa =SaUf{o}

(5) else // intermedia{e node of T o
6) foreachentry e’y € ea

(@) if 6{4 is not fully contained in pruning regions obtained from S
) ) /I bichromatic spatial pruning
®) insert (e’ , keya(q, €’;)) into heap H 4

Figure 15: Handling Nodes from Data Set A

Analysis. While ignoring lines 6-7 of procedure BPRS_Processing,

LEMMA 5.4. Inprocedure Node_Handler_A (line 3), if U R(o)
is not fully contained in pruning regions, then those remaining
MBRs/objects ep in heap Hp cannot prune object o either, that
is, the pruning region PR(q, eg) of es will not fully cover U R(0).

Proof. By contradiction. Assume there exists a subsequent MBR
/object e from H, such that U R (o) is fully contained in its prun-
ing region PR(q, es). However, as guaranteed by line 5 of proce-
dure BPRS_Processing, for any subsequent MBR/object ep €
‘H that we access, we have keya(q, 0) < keyg(q, es), which is
equivalentto >, min{|g; —o; |, |gi—o; |} < S0, min{|qi —
€5:l/2,]a: — e};1/2}. This indicates that, there must exist an
integer 1 < j < d, such that min{|q; — o |,|q; — of |} <
min{lq; — ep;|/2,1q; — e§j|/2} holds. Thus, U R(0) cannot be
fully covered by PR(g, ep) at least on the j-th dimension, which is
contrary to our initial assumption. Hence, the lemma holds. a

From Lemma 5.4, we can infer that if we only apply the spatial
pruning (in case the position distribution of objects is unknown),
every object added to S4 (in line 4 of procedure Node_Handler_A)
must be a BPRS candidate, which cannot be pruned by any pruning
regions from 5.

Enhanced Query Processing with Pre-computation. Similar to
the MPRS case, we can improve the query efficiency by some of-
fline pre-computations. Recall that, our proposed approach in pre-
vious subsections first compute the pruning regions online, with
respect to query point ¢, via index Zp, then use them to prune ob-
jects/nodes in index Z 4, and finally refine the retrieved candidates
through index Zp again. Although our query procedure is I/O ef-
ficient for index Zp (as guaranteed by Lemma 5.3) upon the ar-
rival of each new BPRS query, we have to re-calculate the pruning
regions from scratch, which requires much computation and I/O



costs. Motivated by this, we pre-compute the BPRS candidates as
well as offline pruning regions (as defined in Definition 4.3), and
speed up the BPRS query efficiency.

In particular, we construct a grid over data set B in the same
way as that mentioned in Section 4.5. Then, for each cell Cy, is-
sue the query procedure BPRS_Processing to obtain set Sg in
which objects are used to define offline pruning regions (as defined
in Definition 4.3), together with BPRS candidates in S4. S and
Sp are sequentially stored on disk with respect to Cy. If a BPRS
query with query point g arrives, we directly access cell Cj, that ¢
is in, which points to its corresponding sets S4 and Sp. Next, we
refine the candidate set S4 by using online pruning regions from
g and Sp. Finally, procedure Refinement is invoked to refine the
remaining candidates through index Z (mentioned in Section 4.4).

6. DISCUSSIONS

Our proposed approaches for MPRS and BPRS can be easily ex-
tended to the case where the query object q is also uncertain locat-
ing anywhere within a hyperrectangle U R(gq). In this case, with re-
spect to U R(q) and an object o, the pruning region PR(UR(q), 0)
can be defined similar to the offline pruning region (replacing C
with UR(q)) in Definition 4.3. Thus, we can invoke the MPRS
or BPRS query procedure via the pruning region PR(UR(q), 0)
for each candidate o, and obtain an MPRS/BPRS candidate set.
Finally, for each candidate, we retrieve objects that overlap with
its refinement region and calculate its expected probability to be
MPRS/BPRS answer. If the expectation is not smaller than «, it is
reported as an MPRS/BPRS result; otherwise, it is discarded.

Furthermore, in the discrete case of MPRS or BPRS, suppose
each uncertain object o contains (o) random samples, s1(0), s2(0),

., S1(0) (0) (assuming samples appear with equal probability which
can be easily extended to that with weighted probabilities). Given a
query point g, the probability Pysprs(0) (or Peprs(0)) in Defi-
nition 3.2 (Definition 3.3) can be rewritten by replacing integration
with summation on s;(0) € o, Pr{o} with 1/i(0), and Pr{p’ <,

o 1si(@D1si(p) <5 (o)l . .
q} with W. Note that, our previously discussed

pruning methods can be still used for the discrete scenario, since
we consider every possible position of objects in their uncertainty
regions. In particular, we bound all the samples of each object
with a hyperrectangle and insert it into an index (e.g. R-tree). Fur-
ther, we offline pre-compute (1 — 3)-hyperrectangle U R1_3(0)
from discrete samples (such that (1 — 3) of (o) samples appear in
URi1-3(0)), which is used for probabilistic pruning during MPRS
/BPRS query processing discussed in previous sections.

7. EXPERIMENTAL EVALUATION

In this section, we test the efficiency and effectiveness of our
proposed pruning methods for both MPRS and BPRS query pro-
cessing with and without pre-computations. Since real uncertain
data sets are not available, in our experiments, we synthetically
generate uncertain objects with various parameter values, similar
to [6, 8, 28]. In particular, in order to produce an uncertain ob-
ject o, we first pick up the center C, of o in a d-dimensional data
space with domain [0, 1000] in each dimension. Then, we select a
radius 7, within [Fmin, Fma=], Which indicates the maximum de-
viation of object position from center C,. Finally, we randomly
generated a hyperrectangle U R(o0) that is tightly bounded by the
sphere centered at C, and with radius r,. We consider two types of
location distributions for C',, Uniform and Skew (skewness of Zipf
distribution is set to 0.8); and moreover two types of radius distri-
butions for r,, Uniform and Gaussian (with mean (7min+7maz) /2
and variance (maez — Tmin)/5). Within the uncertainty region of
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Figure 17: Performance vs. 3 (MPRS)

each object, we generate random samples following uniform dis-
tribution. Note that, due to space limit, we do not present the ex-
perimental results for data sets with other parameter settings (e.g.
skewness, mean, and variance) or sample distributions, which have
similar query performance. For brevity, we denote [U (I.S) as the
data set with center location C, of Uniform (Skew) distribution,
whereas rU (rG) as the one with radius 7, of Uniform (Gaussian)
distribution within [min, Tmaez]. Therefore, we have four types of
data sets (with parameter combinations), denoted as [UrU, UrG,
1SrU, and [STG. We index the uncertainty regions of objects with
R-tree [12], where the page size is set to 4K.

In order to evaluate the performance of MPRS and BPRS queries,
we randomly generate 50 query points following the same distribu-
tion as (center locations of) objects in data sets D and B, respec-
tively. For either MPRS or BPRS, we compare two of our pro-
posed approaches, with and without pre-computations, in terms of
the filtering time during the pruning phase. In particular, the filter-
ing time consists of two parts, CPU time and 1/O cost, where each
page access is incorporated by penalizing 10ms [29, 30]. More-
over, to the best of our knowledge, this is the first work to study
MPRS and BPRS query processing in uncertain databases. The
only available method is the linear scan, which calculates the prob-
ability Prrprs(0) (Peprs(0)) of each object o in D (A) by se-
quentially scanning other objects (samples) on the disk for MPRS
(BPRS) queries. Furthermore, we also show the speed-up ratio
of our approaches, which is defined as the total running time of
the linear scan method divided by that of our approaches. All our
experiments are conducted on a Pentium IV 3.2GHz PC with 1G
memory. The reported results are the average of 50 queries.

7.1 The Performance of MPRS Queries

For brevity, we denote the MPRS query processing without pre-
computation as MPRS (or M in figures), and the one with pre-
computation as MPRS+PC (or P in figures). Specifically, during the
pruning phase, MPRS traverses the R-tree index to obtain MPRS
candidates, whereas MPRS+PC retrieves a superset of pre-computed
MPRS candidates (and objects that define offline pruning regions
as well) from disk and perform the filtering by online pruning re-
gions with respect to query point. After the pruning phase, both
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Figure 18: Performance vs. [T1in, Tmaz] (MPRS)

MPRS and MPRS+PC access the index to obtain objects that in-
tersect with the refinement regions and refine MPRS candidates by
calculating the actual probability (discussed in Section 4.4).

Effect of 5 on MPRS. In the first set of experiments, we test the
effect of 5 on the MPRS query performance, over four types of
data sets [UrU, IUrG, ISrU, and ISrG. Figure 17 illustrates the
experimental results by setting o = 1 in order to test the perfor-
mance in case the maximum pre-computed (3 value is 0, 0.2, 0.4,
0.6, 0.8, or 1, where the data size N = 100K, the dimensional-
ity d = 3, the range [T'min, "mas] of radius 7, is [0, 5], and 100
samples are used for each object in the probability integration. In
particular, the columns in figures indicate the filter time of MPRS
and MPRS+PC, whereas the curves represent the speed-up ratio
of our approach compared with the linear scan. The numbers on
columns show the percentage of MPRS candidates compared with
the total data size (i.e. IN), after the pruning phase. From figures,
we can see that our approaches outperform the linear scan by about
4-5 orders of magnitude. When the largest used 8 € [0, «) in-
creases, the speed-up ratio becomes higher over all the four data
sets, with fewer MPRS candidates, which confirms the efficiency
and effectiveness of our monochromatic spatial/probabilistic prun-
ing methods. In general, data sets with skew center locations (i.e.
1.S) have higher filtering cost than those with uniform locations (i.e.
lU), since more MPRS candidates are required to be refined. All
the subsequent experimental results show similar trends. Moreover,
the filtering time of MPRS+PC is by more than one order of mag-
nitude smaller than that of MPRS, which confirms the efficiency of
our MPRS+PC method.

In the sequel, we test the robustness of our MPRS query pro-
cedure over data sets with various parameter settings (e.g. NV, d,
[FPmin, "'maz], and so on). In particular, since when [ is set to 0, the
MPRS query performance is the worst for all possible 3 (i.e. with
the lowest pruning ability and speed-up ratio). Thus, in the subse-
quent experiments, we would test the worst-case performance by
setting 3 to 0, which can be used for either case where the position
distributions of objects are known or unknown.

Effect of ["min, "maz| on MPRS. Figure 18 illustrates the worst-
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case query performance of MPRS and MPRS+PC over the four
types of data sets, by varying the range [rmin, "'maz] Of 7o from
[0,2] to [0, 10], where 3 = 0, the data size N = 100K, the di-
mensionality d = 3, and 100 samples are used for each object
in the probability integration. From the results, we can see that
the filtering time increases when the range [Fmin, Tmaz| becomes
large. This is mainly because more MPRS candidates are required
to be refined when the uncertainty regions of objects become large.
Correspondingly, the speed-up ratio decreases with the large range,
which, however, remains high (i.e. by 4-5 orders of magnitude bet-
ter than linear scan). Moreover, MPRS+PC has lower filtering time
and higher speed-up ratio than MPRS, for all the tested data sets.

Effect of Dimensionality d on MPRS. Figure 19 presents the worst-
case query performance, by setting the dimensionality d of data
sets to 2,3,4, and 5, where 3 = 0, the data size N = 100K,
[Pmin; Tmaz) = [0, 5], and 100 samples are used for each object
in the probability integration. The results show that our proposed
approaches outperform the linear scan method by 4-5 orders of
magnitude. Furthermore, we find that both filtering time and the
speed-up ratio increase when d is varied from 2 to 5. The filtering
cost goes up for higher dimension, since the query performance of
R-tree index usually degrades with the increasing dimensionality
[31]. On the other hand, the high speed-up ratio in higher dimen-
sion indicates the nice scalability of our approaches with respect to
dimensionality. Moreover, our MPRS+PC always shows better per-
formance than MPRS in terms of both filtering time and speed-up
ratio (especially when the dimensionality is high).

Effect of Data Size N on MPRS. In this set of experiments, we
demonstrate the scalability of our approaches, MPRS and MPRS+PC,
with respect to the data size N. In particular, we vary N from 20K
to 1M in Figure 20, where 8 = 0, the dimensionality d = 3,
[Pmin, "maz] = [0, 5], and 100 samples are used for each object in
the probability integration. The experimental results indicate that
the filtering time slightly increases when the data size N goes up
while the speed-up ratio remains high (i.e. by about 4-6 orders
of magnitude better than the linear scan), which confirms the nice
scalability of our approaches on data size.
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Figure 20: Performance vs. Data Size N (MPRS)
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Figure 21: Performance vs. 3 (BPRS)

7.2 The Performance of BPRS Queries

In this subsection, we study the query performance of BPRS
query processing, in terms of the filtering time and speed-up ra-
tio compared with the linear scan method. In particular, we denote
the BPRS query processing without pre-computation as BPRS (or
B in figures), and the one with pre-computation as BPRS+PC (or P
in figures). In particular, during the pruning phase, BPRS traverses
both indexes of data sets A and 55 and obtains BPRS candidates,
whereas BPRS+PC retrieves offline pre-computed candidates and
objects that define offline pruning regions from the disk. The re-
finement step of both approaches accesses the index of 3 to obtain
those objects involved in probability calculations. Due to space
limit, here we only present the experimental results over two pairs
of data sets, [UrG —lUrG and [SrG — U rG (in the form A — B),
with the same data size. The trends of query performance for other
data sets or data size combinations are similar.

Effect of 5 on BPRS. Figure 21 illustrates the query performance
of BPRS and BPRS+PC, by setting & = 1 and varying the largest
pre-computed 3 from O to 1 (similar to the MPRS case), where
N = 100K (for both data sets), d = 3, [Fmin, Tmaz] = [0, 5],
and 100 samples are used for each object in the probability inte-
gration. From figures, we can see that when (3 increases, BPRS
and BPRS+PC require less filtering time and have higher speed-up
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Figure 23: Performance vs. Data Size N (BPRS)

ratio, compared with the linear scan method, which indicates the
effectiveness of our bichromatic spatial/probabilistic pruning meth-
ods. The percentage of BPRS candidates (numbers on columns) in
the data set A is decreasing for large 3. Moreover, BPRS+PC per-
forms much better than BPRS over both data set pairs.

Effect of Dimensionality d on BPRS. Figure 22 illustrates the ex-
perimental results by varying dimensionality d from 2 to 5, where
B =0, N = 100K (for both data sets), ["'min, "'maz] = [0, 5], and
100 samples are used for each object in the probability integration.
The query performance is similar to the MPRS case. Note that,
for data set pair [STG — [UrG, the filtering time of MPRS+PC
for d = 5 is smaller than that of MPRS+PC for d = 4, since
fewer BPRS candidates (i.e. 0.87%) are needed to load from disk
(compared with 1.27%) and perform the filtering. In general, our
approaches perform much better than the linear scan.

Effect of Data Size N on BPRS. Finally, we evaluate the worst-
case BPRS performance of our approaches by letting 8 = 0. Specit-
ically, we study the effect of data size on our BPRS query process-
ing in Figure 23, where N = 20K, 50K, 100K, 500K, 1M (for
both data sets), d = 3, [F'min, Tmaz] = [0, 5], and 100 samples
are used for each object in the probability integration. The experi-
mental results show that, when the data size increases, the required
filtering time smoothly goes up. Moreover, the speed-up ratio re-
mains high (i.e. by 5-6 orders of magnitude compared with the
linear scan method), which implies a good scalability of our ap-
proaches. Note that, for the data set pair [StG — [UrG in Fig-
ure 23(b), the speed-up ratio for N = 100K is lower than that
for N = 50K, since more candidates (i.e. 1.13% compared with
0.92%) are needed to be refined. In general, BPRS+PC consis-
tently outperforms BPRS in terms of the speed-up ratio.

We also did experiments with other parameters (e.g. [Fmin, T"maz])
whose results are similar to the MPRS case and omitted due to
space limit. In summary, our proposed approaches can efficiently



answer both MPRS and BPRS queries, in terms of the filtering time
and speed-up ratio compared with the linear scan method, under
various types of data sets and with different settings.

8. CONCLUSIONS

Reverse skyline query has many important applications, which
retrieves data objects whose dynamic skyline points contain a given
query point. Due to the inherent uncertainty in many real-world
data, the query processing techniques that are designed for precise
data cannot be directly applied to handle uncertain data. In this pa-
per, we focus on the reverse skyline query processing over uncer-
tain data, namely probabilistic reverse skyline, in both monochro-
matic and bichromatic cases (i.e. MPRS and BPRS, respectively).
In particular, we propose effective pruning methods to reduce the
search space of MPRS and BPRS queries, and seamlessly inte-
grate them into efficient query procedures. Moreover, the enhanced
query processing methods are also proposed via pre-computation
techniques. Extensive experiments have demonstrated the efficiency
and effectiveness of our proposed approaches in answering MPRS
and BPRS queries, under various experimental settings.
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