
Similarity Search in Arbitrary Subspaces

Under Lp-Norm

Xiang Lian and Lei Chen

Department of Computer Science and Engineering
Hong Kong University of Science and Technology

Clear Water Bay, Kowloon
Hong Kong, China

{xlian, leichen}@cse.ust.hk

Abstract— Similarity search has been widely used in many
applications such as information retrieval, image data analysis,
and time-series matching. Specifically, a similarity query retrieves
all data objects in a data set that are similar to a given
query object. Previous work on similarity search usually consider
the search problem in the full space. In this paper, however,
we propose a novel problem, subspace similarity search, which
finds all data objects that match with a query object in the
subspace instead of the original full space. In particular, the
query object can specify arbitrary subspace with arbitrary number
of dimensions. Since traditional approaches for similarity search
cannot be applied to solve the proposed problem, we introduce
an efficient and effective pruning technique, which assigns scores
to data objects with respect to pivots and prunes candidates
via scores. We propose an effective multipivot-based method to
pre-process data objects by selecting appropriate pivots, where
the entire procedure is guided by a formal cost model, such
that the pruning power is maximized. Finally, scores of each
data object are organized in sorted list to facilitate an efficient
subspace similarity search. Extensive experiments have verified
the correctness of our cost model and demonstrated the efficiency
and effectiveness of our proposed approach for the subspace
similarity search.

I. INTRODUCTION

Similarity search has been used in a wide spectrum of

applications such as information retrieval [18], image data

analysis [15], time-series matching [2], [8], and the like. In

particular, a similarity query retrieves all the data objects in

the database that are similar to a query object. Formally,

given a database D containing n-dimensional data objects

and an n-dimensional query object q, a similarity query finds

all data objects o ∈ D, such that dist(q, o) ≤ ε, where

dist(x, y) is a distance function to measure the similarity

between objects x and y, and ε the user-specified similarity

threshold. As a concrete example, assume that we have a very

large image database, in which each image contains n features

(dimensions), such as RGB histograms, texture, shape, local

descriptors or interest points. In order to retrieve images of

particular interest, we can specify an n-dimensional feature

vector (possibly from a sample image) as query object (vector)

and issue a similarity query to find all the similar images

whose feature vectors are within ε distance from the query

vector, where ε is a given similarity threshold.

In reality, however, since the sample image may not be

always available or the number of features, n, is too large

(e.g., a hundred), users have to post a query point with only

a few features as well as a query radius, and then issue a

range query. As in the content-based image retrieval (CBIR)

[20], [14], indexes are constructed separately on different

subsets of features that users are interested in. Users would

issue range queries over one of indexes that contains their

preferred features. It is natural that two different users can

have different preferences to query features [10], and moreover

they can specify different numbers of features [24], [17], [20].

These make the similarity search problem much more complex

than the traditional one where a full n-dimensional match is

performed between query and data objects. In this case, what

is involved is a match of a k-dimensional query object to n-

dimensional data objects, where k < n and k may be different

for different queries.

Apart from image databases, this problem is also very

common in business analysis which processes data based

on ad-hoc subspace in on-line analytical processing (OLAP)

applications [1]. In particular, a data analyst could explicitly

choose an ad-hoc subspace that he/she thinks important to

search. Therefore, two data analysts may be interested in

different subspaces for their own purposes, which needs the

support of query processing on arbitrary subspaces. Note that,

the selection of good subset of features (or subspaces) for a

specific application is known as feature selection problem [13],

which is not the focus of this paper. We are interested in the

following question. Given a subset of features on the fly, how

to conduct an efficient search over very large databases. There

are two aspects of this problem. One is that query features

are not known beforehand. Second, the search is based on

subspace similarity search defined below.

Definition 1.1: (Subspace Similarity Search) Given a data

set D containing data objects in n-dimensional space DIM
and a k-dimensional query object q(k) in a space DIM ′, where

DIM ′ ⊆ DIM and k � n, let o(k) be a k-dimensional point

(vector) obtained from the projection of data object o ∈ D
on DIM ′. A subspace similarity query retrieves all objects

o ∈ D, such that dist(q(k), o(k)) ≤ ε, where dist(·, ·) is a

distance function and ε a user-specified similarity threshold.

According to Definition 1.1, the search subspace DIM ′ is

specified by query object q(k). Since different queries may

specify different query objects, subspaces DIM ′ in subspace
similarity queries may also be different. That is, subspace

DIM ′ can be the arbitrary combination of k out of n
dimensions in the full space DIM , where we assume that

k ∈ [kmin, kmax] (1 ≤ kmin ≤ kmax � n). Thus, there

are totally
∑kmax

k=kmin
(n
k) possible subspaces for queries. In

a special case where kmin = kmax, there are (n
k) possible

subspaces, which is very large for a large n.

Surprisingly, in spite of many related work on similarity
search in the full dimensional space [2], [8], to the best of our

knowledge, only a few previous work has studied the search

efficiency problem of the subspace similarity search, where

the similarity search can be performed in arbitrary subspaces

specified by users. Yiu and Mamoulis [31] studied the nearest
neighbor (NN) and reverse nearest neighbor (RNN) search

in ad-hoc subspaces with help of sorted lists. In contrast, our

work focuses on the range query in arbitrary subspaces.

One straightforward way to solve the subspace similarity
search problem is to build

∑kmax

k=kmin
(n
k) multidimensional

indexes on data objects for all possible subspaces separately,

and then perform the similarity search on one of them, whose

dimensions correspond to the subspace specified by the query

object. However, this approach is not feasible due to the large

number of possible subspaces, which results in far more space

consumption than necessary. As an example, when n = 20 and

k = 3, there are more than 1,000 ((203) = 20×19×18
3×2×1) possible

subspaces, and it is unacceptable to build a thousand indexes

for the same data set.

Another possible solution is to build a single n-dimensional

index, such as R-tree [12], on data objects in the full space

DIM , and perform a similarity search on the index in sub-

space DIM ′ by ignoring other dimensions (DIM −DIM ′).
However, when the dimensionality of data objects is high

(e.g. more than 20), the n-dimensional index would encounter

the “dimensionality curse” problem, having even worse query

performance than a linear scan. Previous dimensionality re-

duction techniques [19], [2], [22] are useless in this case, since

they are only used for the full space similarity search, rather

than subspace.

The third possible approach is to insert every dimension

of data objects into a 1-dimensional index, such as B+-tree.

Given a k-dimensional query object q(k) in DIM ′ and a sim-

ilarity threshold ε, we issue k range queries for k dimensions

of DIM ′, respectively, union candidate sets obtained from

query results, and finally refine them by checking their real

distances to q(k). This method incurs high space cost, since

we have to store n copies of object id in the index, where n
is the dimensionality of the full space. Furthermore, too many

false positives (candidates that do not belong to the actual

answer set) are introduced, and it is not efficient either to

refine candidates. As a consequence, traditional methods for

similarity search cannot be directly applied to the subspace
similarity search.

In this paper, we present a novel approach, that can

successfully solve the subspace similarity search problem

for arbitrary subspaces. In particular, we select several data

objects in D as pivots, assign 1-dimensional scores to each

data object with respect to the chosen pivots, and finally use

these scores to efficiently prune candidates. Since the entire
search procedure including the pivot selection is based on our

proposed formal cost model, which aims at maximizing the

pruning power and reducing the computation cost, our method

is efficient and effective to answer the subspace similarity
query.

We make the following contributions:

1) We present an efficient approach to perform the sub-
space similarity search, which selects pivots in the data

set, assigns 1-dimensional scores to each data object

with respect to pivots, and finally utilizes scores to

efficiently prune candidates.

2) We provide a formal cost model for our proposed

method, namely multipivot-based, in light of which

pivots are chosen such that the pruning power and

computation cost of the subspace similarity search can

be maximized and minimized, respectively.

3) Last but not least, we demonstrate through extensive

experiments that our approach can efficiently and ef-

fectively give the answer to subspace similarity query.

In the sequel, Section II briefly reviews the related work on

similarity search. Finally, Section VII concludes this paper.

II. RELATED WORK

Similarity search has been intensively studied ever since

the early 1990s along with the research on the content-based

image retrieval [26]. Much of the literature focuses on this

topic due to its wide application to different media, whose

unique characteristics may introduce new challenges to users

or applications.

Previous work on similarity search usually consider the

search problem in the full space, in the sense that the search

space of the query object is the same as that of data objects.

In general, there are two important issues involved. The first

issue is the design of “good” distance functions that meet the

requirement of different applications. In this paper, we focus

on the search problem under Lp-norm for 1 ≤ p ≤ ∞, and

leave the discussion of using other interesting measures as our

future work. In particular, Lp-norm has been widely used in

many applications [29], for example, L1-norm is robust against

impulse noise [29], L2-norm is often used for similarity search
[5], [7] and spatial queries [12], and L∞-norm can be applied

to atomic matching [29].

The second issue of the similarity search problem is the

development of efficient retrieval methods. In order to facili-

tate a fast similarity search, previous work usually construct

multidimensional indexes, such as R-tree [12], for the data

set, on which either range or nearest neighbor query is

issued. The query performance of the index, however, degrades

dramatically, that is, even worse than a linear scan, when the

dimensionality of objects becomes high, known as the “curse

of dimensionality” problem. Therefore, various dimensionality

reduction techniques are proposed to reduce the dimensionality

of data objects before indexing them. These techniques include

SVD [19], DFT [2], DWT [22], and so on. Furthermore, if

the underlying distance function is a metric measure, we can

utilize the property of the triangle inequality in the metric

space to prune false positives. For details of the similarity
search in high dimensional and metric spaces [30], [4], please

refer to two nice surveys [3] and [6], respectively.

In contrast, subspace similarity search also has many impor-

tant applications. As an example, in sub-image retrieval [17],

[23], only a subset of local features (dimensions) are used to

search for images. To the best of our knowledge, only a few

previous work has studied the search problem in the subspace,

where not all dimensions are specified by the query object.

Yiu and Mamoulis [31] searched for nearest neighbor (NN)

and reverse nearest neighbor (RNN) in ad-hoc subspaces.

The most relevant one to ours is to retrieve NN, while our

study focuses on the subspace range query. Specifically, they

construct a sorted list for each dimension of the data set for

sequential scan and compute the minimum possible distance

from query point to each data (by underestimating distances

along those dimensions that have not been seen yet). If a data

object has been seen in all dimensions and its real distance to

query point is smaller than the underestimated distances of all

other objects, then this object is NN of the query point.

Finally, there are some work that either propose partial

distance measures in order to closely mimic humans’ recog-

nition of similarity [10], [27] or utilize the partial distance

to facilitate efficient search [21]. However, the focus of their

work is still on the search in the full space.

III. PROBLEM DEFINITION

In this section, we formally define our problem of the

subspace similarity search in detail. Specifically, as described

in Definition 1.1, given a database D containing N data

objects in the n-dimensional full space DIM and a query

object q(k) in a k-dimensional subspace DIM ′ of DIM (i.e.

DIM ′ ⊆ DIM , k ∈ [kmin, kmax], and k � n), a subspace
similarity query retrieves all data objects o ∈ D such that

dist(q(k), o(k)) ≤ ε, where o(k) is a k-dimensional point ob-

tained from the projection of data object o on subspace DIM ′

and dist(·, ·) is Lp-norm (p ∈ [1,∞]) distance function. In

particular, given any two n-dimensional data objects x and y,

the Lp-norm distance function Lp(x, y) is defined as:

Lp(x, y) = p

√√√√
n∑

i=1

|x[i] − y[i]|p, (1)

where 1 ≤ p < ∞. Furthermore, when p = ∞, the L∞-norm

distance function L∞(x, y) is given by:

L∞(x, y) = max
n
i=1|x[i] − y[i]|, (2)

where x and y are two n-dimensional data objects.

In the sequel, we formalize the problem of the similarity
search in arbitrary subspaces.

Problem 3.1: Assume we have a database D containing n-

dimensional data objects in the full space DIM . Given any

k-dimensional query object q(k) in the subspace DIM ′ ⊆

TABLE I

MEANINGS OF SYMBOLS USED

Symbols Descriptions
D a data set of size N
Pi the i-th partition of the data set D
|D| or N the size of D
m the number of pivots or partitions

n the dimensionality of data objects

k the number of dimensionality in the subspace specified by the query
object

pivi the i-th n-dimensional pivot in D
o an n-dimensional data object in D
q(k) a k-dimensional query point specified by users

x(k) a k-dimensional point from object x projected on subspace DIM ′

φ(x) the cumulative distribution function (CDF) following a normal
distribution

DIM , we want to retrieve all data objects o ∈ D, such that

Lp(q(k), o(k)) ≤ ε, where Lp(·, ·) is a Lp-norm distance func-

tion for 1 ≤ p ≤ ∞, o(k) is a k-dimensional point obtained

from object o projected on DIM ′, and k ∈ [kmin, kmax].
Note that, we consider DIM in a numerical domain, and

leave other interesting domains (e.g. categorical domain) as

our future work. In a special case of Problem 3.1 where

kmin = kmax, query objects always specify subspaces with the

same number of dimensions (i.e. fixed value of k), however,

they may query different dimensions. Table I summarizes the

commonly-used symbols in this paper.

IV. SUBSPACE SIMILARITY SEARCH

In this section, we discuss details of our solutions to the sim-
ilarity search problem in arbitrary subspaces. The framework

for our subspace similarity search problem consists of three

steps, pre-processing, query processing and post-processing.

Specifically, the pre-processing step computes 1-dimensional

scores for each data object in the data set with respect to a set

of selected pivots. The second query processing step retrieves a

candidate set cand using pruning conditions on scores. Finally,

the post-processing step refines the candidate set and outputs

data objects that ε-match with the query object.

A. A Brief Review: Pruning with the Triangle Inequality

In metric spaces, one of the most important properties for

metric distance functions is the triangle inequality defined as

follows.

Definition 4.1: (Triangle Inequality) Given any three ob-

jects x, y, and z in the space, a distance function dist satisfies

the triangle inequality only if dist(x, z) ≤ dist(x, y) +
dist(y, z) or equivalently dist(x, z) ≥ |dist(x, y) −
dist(y, z)|.

The triangle inequality can be used to effectively prune

candidates during the similarity search and thus save the cost

of distance computations between candidates and the query ob-

ject. The basic idea is as follows. Assume we select a pivot piv
in a data set D. Now we want to issue a similarity query which

finds objects in the data set that ε-match with query object q.

Instead of directly computing the distance from query q to data

object o, we can alternatively apply the triangle inequality
to prune false positives. Obviously, the distance L2(piv, o)

between pivot piv and any data object o ∈ D can be pre-

computed, and the distance L2(q, piv) between query object

q and pivot piv can be efficiently calculated upon q’s arrival.

Thus, as long as it holds that |L2(q, piv) − L2(piv, o)| > ε,

we can safely prune object o, since by the triangle inequality
L2(q, o) ≥ |L2(q, piv) − L2(piv, o)|, we have L2(q, o) > ε,

indicating that o is not the query result.

Note that, Lp-norm distance functions follow the triangle
inequality, for 1 ≤ p ≤ ∞, not only in the full space but

also in the subspace. This motivates us to use the triangle
inequality to prune candidates in the subspace during the

subspace similarity search, as discussed below.

B. Similarity Search in Arbitrary Subspaces

In this subsection, we propose an effective approach to

solve Problem 3.1, which assumes that each query object

q(k) can specify an arbitrary subspace with arbitrary number

of dimensions, k, where k ∈ [kmin, kmax]. Due to space

limit, throughout this subsection, we only consider subspace
similarity search under Lp-norm for 1 ≤ p < ∞ in Eq. (2).

The case of L∞-norm (i.e. p = ∞) is similar and thus omitted.

To start with, we first consider the search problem in one

specific subspace DIM ′. Let q(k) be a k-dimensional query

object in DIM ′, and o(k) (piv(k)) a k-dimensional point

obtained from the projection of data object o ∈ D (pivot piv)

on DIM ′. Since the triangle inequality holds under Lp-norm

(1 ≤ p ≤ ∞) in DIM ′, according to Definition 4.1, we have:

Lp(q
(k)

, o
(k)

) ≥ |Lp(q
(k)

, piv
(k)

) − Lp(piv
(k)

, o
(k)

)|. (3)

Therefore, given a subspace similarity query in DIM ′ with

a query object q(k) and a similarity threshold ε, any data object

o ∈ D can be safely pruned, if it satisfies:

|Lp(q
(k)

, piv
(k)

) − Lp(piv
(k)

, o
(k)

)| > ε, (4)

which can be rewritten as:

Lp(piv
(k)

, o
(k)

) < Lp(q
(k)

, piv
(k)

) − ε, or (5)

Lp(piv
(k)

, o
(k)

) > Lp(q
(k)

, piv
(k)

) + ε. (6)

where 1 ≤ p ≤ ∞.

Inequalities (5) and (6) are the pruning conditions of the

subspace similarity search. In other words, if either Inequality

(5) or Inequality (6) holds, point o(k) is guaranteed not to

be the answer to the subspace similarity query in subspace

DIM ′. Based on this pruning heuristics, we can assign a 1-

dimensional score score(o(k)) to each data object o, which

is defined as the Lp-norm distance Lp(piv(k), o(k)) between

pivot piv(k) and point o(k). Thus, any data object o ∈ D
having score score(o(k)) within the interval [Lp(q(k), piv(k))
− ε, Lp(q(k), piv(k)) + ε] is a candidate of the query result.

Note, however, that, this pruning method is only applicable

to one specific subspace DIM ′ with k dimensions, but not

to arbitrary subspace with arbitrary number of dimensions

(within [kmin, kmax]).

Next, we propose an effective approach to enable han-

dling the similarity search in arbitrary subspaces. Specifi-

cally, instead of transforming each data object o to a sin-
gle score score(o(k)), we use two 1-dimensional scores,

minscore(o(k)) and maxscore(o(k)), to facilitate pruning

candidates in arbitrary subspaces. In the sequel, we formally

define the two scores of data object o ∈ D with respect to

pivot piv.

Definition 4.2: (Two Scores of Data Object Under Lp-

Norm, for p ∈ [1,∞)) Given a database D, a pivot piv, and

arbitrary k-dimensional subspace DIM ′ (k ∈ [kmin, kmax]),
for any data object o ∈ D, its two scores, minscore(o(k)) and

maxscore(o(k)), under Lp-norm (1 ≤ p < ∞), are defined

as:

minscore(o
(k)

) = k · min
kmax
j=kmin

{
p
√∑ j

i=1(Diff [i])p

j
}, (7)

maxscore(o
(k)

) = k · max
kmax
j=kmin

{
p
√∑ n

i=n−j+1(Diff [i])p

j
}, (8)

where the detailed steps to obtain Diff [i] (1 ≤ i ≤ n) are

described as follows.

First, we compute the (absolute) distance difference

Diff ′[i] between pivot piv and object o along each dimension

i, for all 1 ≤ i ≤ n. That is,

Diff
′
[i] = |piv[i] − o[i]|, for 1 ≤ i ≤ n. (9)

Then, we sort Diff ′[1], Diff ′[2], ..., and Diff ′[n], and

obtain a non-decreasing sequence Diff [1], Diff [2], ..., and

Diff [n] satisfying:

Diff [1] ≤ Diff [2] ≤ ... ≤ Diff [n], (10)

where Diff [i] ∈ {Diff ′[1], Diff ′[2], ..., Diff ′[n]}, for all

1 ≤ i ≤ n.

Finally, we are ready to use Diff [i] to define two scores,

minscore(o(k)) and maxscore(o(k)), for object o, as given

in Eq. (7) and Eq. (8) .

Intuitively, minscore(o(k)) and maxscore(o(k)) are the

minimum and maximum possible distances between data ob-

ject o and pivot piv, respectively, taking into account arbitrary
subspaces with dimension value k ∈ [kmin, kmax]. Therefore,

we have the following lemma:

Lemma 4.1: In any subspace DIM ′ ⊆ DIM with k
dimensions (k ∈ [kmin, kmax]), we have:

minscore(o
(k)

) ≤ Lp(piv
(k)

, o
(k)

), and (11)

maxscore(o
(k)

) ≥ Lp(piv
(k)

, o
(k)

). (12)

Proof. We first prove the correctness of Inequality (11).

Without loss of generality, as in Eq. (7), assume that when

j = k′ ∈ [kmin, kmax], operator min on RHS of Inequal-

ity (7) achieves the minimum. Therefore, we always have
p
√∑ k′

i=1(Diff [i])p

k′ ≤
p
√∑ k

i=1(Diff [i])p

k for arbitrary k values

within [kmin, kmax]. Furthermore, since Diff [1], Diff [2],
..., and Diff [k] are k smallest (absolute) distance differ-

ences between piv and o among all dimensions, it holds

that
p

√∑k
i=1(Diff [i])p ≤ Lp(piv(k), o(k)). Thus, we have

minscore(o(k)) = k ·
p
√∑ k′

i=1(Diff [i])p

k′ ≤ p

√∑k
i=1(Diff [i])p

≤ Lp(piv(k), o(k)), which completes our proof of Inequality

(11). The proof of Inequality (12) is similar. �
Based on Lemma 4.1, we illustrate pruning conditions in

the following theorem.

Theorem 4.1: Assume we have a database D containing

data objects in the n-dimensional full space DIM , and a

subspace similarity query under Lp-norm (1 ≤ p < ∞) with a

k-dimensional query object q(k) in arbitrary subspace DIM ′

of DIM and a similarity threshold ε, where k ∈ [kmin, kmax].
Any data object o ∈ D can be safely pruned, if either

maxscore(o
(k)

) < Lp(q
(k)

, piv
(k)

) − ε, or (13)

minscore(o
(k)

) > Lp(q
(k)

, piv
(k)

) + ε, (14)

holds, where 1 ≤ p < ∞.

Proof. By combining Inequality (13) with (12), it exactly

yields Inequality (5), which is the pruning condition for an

object o. Thus, when Inequality (13) holds, object o can be

safely pruned. Similarly, by combining Inequality (14) with

(11), we obtain Inequality (6), which is the second pruning

condition, and completes our proof. �
From Eq. (7) and Eq. (8), one interesting observation is

that, for each data object o, its two scores, minscore(o(k))
and maxscore(o(k)), are both proportional to k which is the

dimensionality of the subspace specified by query object q(k).

In other words, if query objects specify different k values,

scores of the same data object would be different. Since there

are totally (kmax − kmin + 1) possible k values, it is not

very space-efficient to store all of them for query processing.

Instead, in this paper, we keep only two average scores for

each data object o, minavg(o) and maxavg(o), which are

defined as minavg(o) = minscore(o(k))
k and maxavg(o) =

maxscore(o(k))
k , respectively. In particular, from Eq. (7) and

Eq. (8), minavg(o) = minkmax

j=kmin
{

p
√∑ j

i=1(Diff [i])p

j }, and

maxavg(o) = maxkmax

j=kmin
{ p
√∑ n

i=n−j+1(Diff [i])p

j }.

Note that, assuming we know the range [kmin, kmax] of

k that query objects may specify, we can pre-process each

data object offline by computing two average scores for each

data object with respect to a pivot. Given any query object

q(k) specifying a k-dimensional subspace, the two scores,

minscore(o(k)) and maxscore(o(k)), of any data object

o ∈ D can be calculated on the fly multiplying minavg(o)
and maxavg(o) by k, respectively, where the value of k is

specified by query object q(k).

Figure 1 illustrates the detailed procedure of subspace
similarity search under Lp-norm (1 ≤ p < ∞) in arbitrary
subspace with arbitrary number of dimensions, k, within

[kmin, kmax]. The case of L∞-norm is similar. Specifically,

procedure SubspaceSearch Lp includes three steps, pre-
processing, query processing, and post-processing. In the pre-
processing step, we compute two average scores, minavg(o)
and maxavg(o), of each data object o with respect to a pivot

(lines 1-2). During the query processing step, given any query

object q(k) specifying a k-dimensional subspace, we obtain

the candidate set cand1 (cand2) that contains data objects

with scores violating the pruning condition in Inequality (13)

(Inequality (14)). Note that, in Inequalities (13) and (14), the

two scores of each data object can be computed on the fly, that

is, maxscore(o(k)) = k · maxavg(o) and minscore(o(k)) =
k · minavg(o). Then, we intersect cand1 with cand2, and

obtain the final candidate set cand (lines 3-5). Finally, in the

post-processing step, each candidate o in cand is refined by

checking whether or not the real Lp-norm distance between

o(k) and q(k) is within ε (lines 6-7).

Procedure SubspaceSearch Lp {
Input: a data set D, a query object q(k) (k ∈ [kmin, kmax]),

a pivot piv, and a similarity threshold ε

Output: data objects that ε-match with q(k)

// pre-processing step
(1) for each object o
(2) compute two average scores minavg(o) and maxavg(o)
// query processing step
(3) obtain a candidate set cand1 containing objects that violate

Inequality (13), where maxscore(o(k)) = k · maxavg(o)
(4) obtain a candidate set cand2 containing objects that violate

Inequality (14), where minscore(o(k)) = k · minavg(o)
(5) cand = cand1

⋂
cand2 // cand is a candidate set

// post-processing step
(6) for each candidate o in cand

(7) if Lp(q(k), o(k)) ≤ ε, then output data object o
}

Fig. 1. Similarity Search in Arbitrary Subspaces (Under Lp-Norm,
for p ∈ [1,∞))

V. MULTIPIVOT-BASED QUERY PROCESSING

Based on pruning conditions discussed in the previous

section under Lp-norm (p ∈ [1,∞]), we propose an effective

multipivot-based approach to efficiently answer the subspace
similarity query. Note that, the existing cost models [6] only

consider the cost of the full space search rather than subspace

search. Specifically, the multipivot-based method selects m
different pivots piv1, piv2, ..., and pivm from data set D. For

each data object o ∈ D, we calculate two scores with respect

to every pivot pivi, for all 1 ≤ i ≤ m. Therefore, each object

has totally 2m scores, which takes up O(2 · m · |D|) space

cost.

When a query centered at a query object q(k) in subspace

DIM ′ with a radius ε arrives, we first compute the Lp-norm

distance between q(k) and each of m pivots pivi in subspace

DIM ′, that is, Lp(q(k), piv
(k)
i), for k ∈ [kmin, kmax] and

1 ≤ i ≤ m. Then, we retrieve those candidates using the

pruning technique discussed in Section IV-B under Lp-norm.

For each of the m pivots, we can get a candidate set, and

the final candidate set is obtained by intersecting all the m
returned candidate sets. Note that, although we apply the

existing pivot-based technique via the triangle inequality, our

multipivot-based approach is novel in the sense that we use it

to effectively solve the subspace search problem.

Since our pruning techniques use pivots to filter candidates,

it is of great importance to select appropriate pivots in order

to achieve “good” performance of the subspace similarity
query. This motivates us to provide a formal cost model to

guide the pivot selection for our multipivot-based approach,

in light of which either the pruning power is maximized or

the computation cost minimized.

A. Cost Model
In this subsection, we model the performance of the

multipivot-based approach, in terms of the pruning power PP
and computation cost CC. Specifically, given m pivots piv1,

piv2, ..., and pivm, for each data object o ∈ D, the multipivot-
based approach calculates two scores minscorei(o(k)) and

maxscorei(o(k)) with respect to each pivot pivi (1 ≤ i ≤ m).

Therefore, given any subspace similarity query with query

object q(k) and similarity threshold ε(k) (k ∈ [kmin, kmax]), a

data object o can be safely pruned, if there exists at least one

pivot pivi, such that:

maxscorei(o
(k)

) < Lp(q
(k)

, piv
(k)
i) − ε

(k)
, or (15)

minscorei(o
(k)

) > Lp(q
(k)

, piv
(k)
i) + ε

(k)
, (16)

where 1 ≤ p ≤ ∞.

From the probabilistic point of view, for a given

subspace DIM ′ with k dimensions, the pruning power

PPmultipivot−based(k) can be obtained by summing up the

probability with which each data object can be pruned by

either Inequality (15) or (16). Specifically, we have:
PPmultipivot−based(k)

=

|D|−m∑
j=1

Pr{(
m⋃

i=1

data object o can be pruned by pivi)|o ∈ D}

= (|D| − m) · Pr{
m⋃

i=1

((maxscorei(o
(k)

) < Lp(q
(k)

, piv
(k)
i) − ε

(k)
)

⋃
(minscorei(o

(k)
) > Lp(q

(k)
, piv

(k)
i) + ε

(k)
))} (17)

Let Ai be the event that maxscorei(o(k)) <

Lp(q(k), piv
(k)
i) − ε(k) and Bi the event that

minscorei(o(k)) > Lp(q(k), piv
(k)
i) + ε(k). Eq. (17)

can be simplified as:
PPmultipivot−based(k)

= (|D| − m) · Pr{
m⋃

i=1

(Ai

⋃
Bi)}

= (|D| − m) · (1 − Pr{
m⋃

i=1

(Ai

⋃
Bi)})

= (|D| − m) · (1 − Pr{
m⋂

i=1

(Ai

⋂
Bi)}). (18)

Now we denote (Ai

⋂
Bi) as event Ci, which indicates

that object o cannot be pruned, using either minscorei(o(k))
or maxscorei(o(k)), by a pivot pivi. Since pivots pivi for

1 ≤ i ≤ m are randomly selected in the data set, events

Ci and Cj are independent for i �= j. Thus, we have

Pr{⋂m
i=1 Ci} =

∏m
i=1 Pr{Ci}. Next, we illustrate the key

step to derive Pr{Ci}. In particular, it holds that:

Pr{Ci} = Pr{Ai} − Pr{Ai

⋂
Bi}, (19)

which can be shown using Venn Diagram. Furthermore, since

event Bi can always infer event Ai (note that, minscore(k)

is always not greater than maxscore(k)), we have:

Pr{Ai

⋂
Bi} = Pr{Bi}. (20)

Therefore, we can rewrite Eq. (18) as follows:

PPmultipivot−based(k)

= (|D| − m) · (1 −
m∏

i=1

Pr{Ai

⋂
Bi})

= (|D| − m) · (1 −
m∏

i=1

(Pr{Ai} + Pr{Bi} − 1)). (21)

Let P (k) be the probability that query objects specify a sub-

space DIM ′ having k dimensions, where k ∈ [kmin, kmax].
The expected pruning power E(PP) of multipivot-based
approach is given by:

E(PP) =

kmax∑
i=kmin

P (k) · PPmultipivot−based(k). (22)

As a second step, for a subspace DIM ′ with k
dimensions (k ∈ [kmin, kmax]), the computation cost
CCmultipivot−based(k) is defined by:

CCmultipivot−based(k) = k · (m + |D| − PPmultipivot−based(k)) (23)

with which the expected computation cost E(CC) given a

workload of queries is denoted as:

E(CC) =

kmax∑
i=kmin

P (k) · CCmultipivot−based(k). (24)

Finally, we address the remaining issue of obtaining

Pr{Ai} and Pr{Bi} for 1 ≤ i ≤ m in Eq. (21). In

particular, we first consider Pr{Ai}, where Ai is the event

that maxscorei(o(k)) ≥ Lp(q(k), piv
(k)
i) − ε(k) holds.

Without loss of generality, we assume that query object

q can locate anywhere in the data space with any query

radius ε(k), which is independent of objects o (pivi) in

the data set. Therefore, score maxscorei(o(k)) and distance

Lp(q(k), piv
(k)
i) are distance-independent, in the sense that the

score with respect to pivot pivi and object o cannot infer

any information about distance Lp(q(k), piv
(k)
i) from pivot

to query object (since query point is independent of pivot).

Furthermore, the query radius ε(k) is also independent of both

score and distance. Therefore, we can apply the Central Limit
Theorem (CLT) [28] to compute Pr{Ai}. Specifically, assume

that maxscorei(o(k)) is a random number generated from

a random variable Y
(k)
max,i with mean µmax,i and variance

(σ(k)
max,i)

2. Let mean and variance of Lp(q(k), piv
(k)
i) from

random variable Y
(k)
piv,i be µ

(k)
piv,i and (σ(k)

piv,i)
2, respectively.

Similarly, let mean and variance of ε(k) from random variable

Y
(k)
R be µ

(k)
R and (σ(k)

R)2, respectively.

According to CLT, for a number z (e.g. z = Lp(q(k), piv
(k)
i)

−maxscorei(o(k)) − ε(k)) generated from Z = Y
(k)
piv,i −

Y
(k)
max,i−Y

(k)
R , we have

z−(µ
(k)
piv,i−µ

(k)
max,i−µ

(k)
R)√

((σ
(k)
piv,i)

2+σ
(k)
max,i)

2+(σ
(k)
R)2

following

a normal distribution with cumulative distribution function
(CDF) φ(x). That is,

Pr{Ai} = Pr{maxscorei(o) ≥ Lp(q
(k)

, piv
(k)
i) − ε

(k)}

= Pr{
z − (µ

(k)
piv,i − µ

(k)
max,i − µ

(k)
R)√

((σ
(k)
piv,i)

2 + (σ
(k)
max,i)

2 + (σ
(k)
R)2

≤
−(µ

(k)
piv,i − µ

(k)
max,i − µ

(k)
R)√

((σ
(k)
piv,i)

2 + (σ
(k)
max,i)

2 + (σ
(k)
R)2

}

= φ(
−(µ

(k)
piv,i − µ

(k)
max,i − µ

(k)
R)√

((σ
(k)
piv,i)

2 + (σ
(k)
max,i)

2 + (σ
(k)
R)2

) (25)

Note that, although CLT assumes a summation of large

number of random variables, there are some work [11], [16]

indicating that 3 variables can achieve a good approximation,

which will later be confirmed by our cost model verification

in the experiments. Similarly, we can obtain the probability

Pr{Bi} of event Bi (1 ≤ i ≤ m). Without loss of generality,

let minscorei(o(k)) be a random number generated from

a random variable Y
(k)
min,i with mean µ

(k)
min,i and variance

(σ(k)
min,i)

2. According to CLT [28], we have:

Pr{Bi} = Pr{minscorei(o) ≤ Lp(q
(k)

, piv
(k)
i) + ε

(k)}

= φ(
−(µ

(k)
min,j − µ

(k)
piv,j − µ

(k)
R)√

(σ
(k)
min,j)

2 + (σ
(k)
piv,j)

2 + (σ
(k)
R)2

) (26)

B. Data Pre-Processing and Query Processing

Recall that, in the multipivot-based method, each data object

can be pruned by any of m chosen pivots in the data set. We

summarize the goal of pivot selection as follows.

(Pivot Selection) Given a data set D, we want to obtain
m pivots from D such that either the expected pruning power
E(PP) (in Eq. (22)) is maximized or the expected compu-
tation cost E(CC) (in Eq. (24)) is reduced during subspace
queries.

In the sequel, we focus on maximizing E(PP). Note,

however, that this assumption does not conflict with our goal

of minimizing E(CC). Maximizing the pruning power can

reduce the computation cost, as indicated in Eq. (23).

The basic idea of our multipivot-based approach is as

follows. Initially, we randomly obtain m pivots pivi (1 ≤ i ≤
m), and evaluate the expected pruning power E(PP) based

on the cost model (Eq. (22)). Then, we iteratively invoke a

procedure, which takes D, pivi, and E(PP) as input, until the

stopping condition discussed later is satisfied. Each time we

randomly select a data object piv that is not one of the current

pivots and replace one random pivot pivi with the new one

piv. Next, we re-evaluate the expected pruning power E(PP ′)
using Eq. (22). If new pivot list results in greater pruning

power, that is, E(PP ′) > E(PP), we update and return new

pivot list and expected pruning power; otherwise, do nothing.

Note that, here we apply the same stopping condition as that

in CLARANS [25], that is, either the number of trials that

procedure fails to swap a pivot exceeds a threshold or the

number of successful swaps exceeds a threshold. In order to

avoid obtaining the local optimum result, we pre-process data

for several passes by randomly selecting different initial pivots

and use the best set of pivots that is expected to have high

pruning power.

One interesting issue is how to choose the number of

pivots, m. In our work, since data pre-processing is performed

offline, we can choose different values of m within the range

[1, N/2] (since when m > N/2, E(PP) is always smaller

than that when m = N/2), and pick up the best one that

maximizes the expected pruning power E(PP) given in Eq.

(22). Heuristically, we can choose m value with respect to

intrinsic dimensionality of the data set [9].

Up to now, we have pre-processed data by selecting pivots

in the data set and computing scores for each data object with

respect to pivots. Then, we organize the score vector of each

object (containing 2m scores) in a list, list, sequentially sorted

on one of scores with respect to a pivot. When a subspace
similarity query is issued, we access the sorted list in either

ascending or descending order, prune data objects using 2m
scores (in Inequalities (15) and (16)), and output candidate

pairs. Moreover, query processing can abort early during the

scanning of list, when the remaining data objects with the

sorting score satisfy the pruning condition.

VI. EXPERIMENTAL EVALUATION

In this section, we demonstrate through extensive ex-

periments the efficiency and effectiveness of our proposed

multipivot-based approach to process the subspace similarity
search under Lp-norm, where 1 ≤ p ≤ ∞. Specifically,

we conduct our experiments over two real data sets, layout
and sstock. The first data set, layout, contains 68K 32-

dimensional feature vectors representing the density of colors

from sub-images of Corel Image data collections (available at:

[http://kdd.ics.uci.edu/]). Since the dimensionality of this data

set is small, in order to test the scalability of our proposed

approach with respect to the dimensionality, we randomly

concatenate any two 32-dimensional vectors, and obtain a 64-

dimensional vector, resulting in a data set of size 34K. The

second data set, sstock, is obtained from 193 company stocks’

daily closing price from late 1993 to early 1996, including

50K stock price series of length 128. For both data sets, we

normalize each dimension of the vector to interval [0, 1].
In our experiments, we select 2000 random points from

each data set as query objects, and synthetically produce the

query workload by randomly picking up k (∈ [kmin, kmax])
out of totally n dimensions as subspace in which the similarity
search is performed. Moreover, query radii are generated from

a distribution with mean µR and variance σ2
R.

In the sequel, Section VI-A first verifies the correctness

of our proposed cost model which would be used for the

multipivot-based approach in answering the subspace similar-
ity query. Section VI-B illustrates the experimental result of

the query performance with our proposed approach, in terms

of the wall clock time, compared with the B+-tree method

(mentioned in Section I) and the linear scan. We run the

ME
MA

[2, 20]
[5, 20]

[10, 20]
[15, 20]

[20, 20]

0

5K

10K

[k
min

,k
max

]

E(PP)

(a) layout

ME
MA

[2, 20]
[5, 20]

[10, 20]
[15, 20]

[20, 20]

0

5K

10K

[k
min

,k
max

]

E(PP)

(b) sstock

Fig. 2. Cost Model Verification (PP vs. [kmin, kmax])

ME
MA

0.005
0.008

0.01
0.02

0.05

0

5K

10K

µ
R

E(PP)

(a) layout

ME
MA

0.005
0.008

0.01
0.02

0.05

0

5K

10K

µ
R

E(PP)

(b) sstock

Fig. 3. Cost Model Verification (PP vs. µR)

experiments on Pentium 4 3.4GHz PC with 1G memory. All

experimental results are averaged over 50 runs.

A. Cost Model Verification

Before we show the efficiency of our proposed multipivot-
based approach, we first verify the correctness of our cost

model, which is the basis of this approach. In particular, due

to space limit, we only report the results of the cost model

verification over layout and sstock, under L2-norm and with

respect to three parameters [kmin, kmax], µR, and σR. In fact,

similar results have been obtained by varying other parameters

(e.g. m, n, N , and Lp-norms).

Specifically, we compare the expected pruning power
E(PP) of queries, which is estimated from the cost model,

with the actual one, by varying parameters [kmin, kmax], µR,

and σR. We use half of the query objects (i.e. 1000 query

points) to extract statistics for the cost model estimation, and

ME
MA

0.001
0.002

0.005
0.008

0.01

0

5K

10K

σ
R

E(PP)

(a) layout

ME
MA

0.001
0.002

0.005
0.008

0.01

0

5K

10K

σ
R

E(PP)

(b) sstock

Fig. 4. Cost Model Verification (PP vs. σR)

the other half to test the real query performance. Note that,

the estimated E(PP) in this set of experiments is only used

for verifying the correctness of cost model, and it is thus not

the final pruning power after applying the multipivot-based
approach.

Figure 2 illustrates the estimated and actual E(PP)
of the multipivot-based approach, over layout and sstock
data sets, by setting the range [kmin, kmax] of k to

[2, 20], [5, 20], [10, 20], [15, 20], [20, 20], where m = 5, N =
10K, µR = 0.01, σR = 0.005, and n = 64. As illustrated in

Figure 2, when the range length (kmax − kmin) is large (e.g.

20-2=18), the pruning power becomes low. This is due to the

relaxation of two scores in Eq. (7) and Eq. (8). With different

(kmax−kmin), for both data sets, the estimated E(PP) using

our approach can closely mimic actual values, which confirms

the correctness of our cost model.

Next, we study the effect of the query radius on

the cost model estimation. Specifically, Figure 3 illus-

trates the estimated and actual pruning power over data

sets layout and sstock, with different radius mean µR =
0.005, 0.008, 0.01, 0.02, 0.05, where [kmin, kmax] = [10, 20],
N = 10K, σR = 0.0005, and n = 48 for layout (n = 64
for sstock). Furthermore, Figure 4 varies the variance σR of

query radii from 0.005 to 0.01. For all figures, the estimated

E(PP) is very close to the actual value, which confirms the

correctness of our cost model under different query radii.

By verifying cost model under a variety of parameter

settings, we infer that, our cost model can well estimate the

real pruning power of subspace similarity queries. Therefore,

given a set of selected pivots, we can accurately evaluate the

query performance of the multipivot-based method using the

cost model, in light of which we select pivots to maximize the

pruning power, as shown in next subsection.

B. Performance of Query Processing

In this set of experiments, we study the query performance

of subspace similarity queries using our method over both

real data sets, layout and sstock, in terms of the wall clock
time. Specifically, we incorporate the I/O cost into the wall
clock time by penalizing 10ms for each page access, where

the page size is set to 10K. As mentioned in Section I, in order

to answer subspace similarity queries, it is infeasible to build

indexes over all possible subspaces, and moreover directly

indexing the full space would result in query performance even

worse than a linear scan (due to the dimensionality curse).

In this set of experiments, we compare our approach with

the B+-tree method. In particular, this method constructs one

B+-tree for each dimension of the n-dimensional full space.

For a subspace similarity query specifying a subspace with k
dimensions and a search radius ε, we issue k range queries
with radius ε, over k B+-trees, corresponding to k specified

dimensions in the subspace, respectively. Then, we combine

all candidates returned from range queries and obtain the final

result. Furthermore, we also give the query performance of the

linear scan in terms of the wall clock time. Due to space limit,

in the sequel, we only present the experimental result under

M
B

L

2
3

5
8

10

0

1

2

3

m

wall clock time (s)

(a) layout

M
B

L

2
3

5
8

10

0

1

2

3

m

wall clock time (s)

(b) sstock

Fig. 5. Query Efficiency vs. m

M
B

L

32
40

48
56

64

0

1

2

3
wall clock time (s)

n

(a) layout

M
B

L

48
56

64
96

128

0

2

4

6
wall clock time (s)

n

(b) sstock

Fig. 6. Query Efficiency vs. n

L2-norm. Similar experimental results have been obtained

under other Lp-norms (p �= 2) and with other parameters (e.g.

[kmin, kmax], µR, and σR).

Figure 5 studies the effect of the number of pivots, m, on the

performance of subspace similarity search, comparing three

methods, multipivot-based, B+-tree, and the linear scan, over

both real data sets layout and sstock. In particular, we vary

parameter m from 2 to 10, where [kmin, kmax] = [10, 20],
N = 10K, n = 64, µR = 0.01 and σR = 0.005. As

indicated by figures, the wall clock time of the multipivot-
based method is much smaller than that of B+-tree and linear
scan, which confirms the efficiency and effectiveness of our

proposed approach. When m increases, the wall clock time of

the multipivot-based method becomes higher, which is a bit

counter-intuitive, however, reasonable. Although large m can

provide high pruning power, more spaces are needed to store

scores for data objects which thus incurs more page accesses.

Next, Figure 6 illustrates the query performance of the

three approaches over two real data sets, by varying the

dimensionality n of the full space, where [kmin, kmax] =
[10, 20], N = 10K, m = 5, µR = 0.01 and σR = 0.005.

Specifically, according to the total available dimensions of

each data set, we set n = 32, 40, 48, 56, 64 for data set layout,
and n = 48, 56, 64, 96, 128 for sstock. Due to the increased

dimensionality, the linear scan has to access more disk pages,

which leads to the increasing wall time clock with respect to n.

From the experimental results, our proposed multipivot-based
approach outperforms both B+-tree and linear scan methods

in terms of the wall clock time.

M
B

L
NN

5K
8K

10K
12K

15K
34K

10
−2

10
0

10
2

10
4

wall clock time (s)

N

(a) layout

M
B

L
NN

5K
8K

10K
12K

15K
50K

10
−2

10
0

10
2

10
4

N

wall clock time (s)

(b) sstock

Fig. 7. Scalability Test (wall clock time vs. N)

C. Scalability Test

Figure 7 evaluates the scalability of our proposed approach

to answer the subspace similarity query, by varying the data

size N . Apart from B+-tree and linear scan, we also compare

our approach with a range query method, modified from NN
[31], over subspaces. Specifically, we maintain n sorted lists

for n dimensions of data objects, respectively, for sequential

scan, and every time we encounter an object, we will calculate

its minimum possible distance to query point by underesti-

mating other unseen dimensions (update minimum distance of

other objects as well). If any object has the minimum distance

higher than query radius, it can be pruned; otherwise, it is the

answer in case all dimensions have been seen. Specifically,

we test the wall clock time over two real data sets, layout and

sstock, by varying N from 5K to 34K in layout data set and

from 5K to 50K in sstock, where [kmin, kmax] = [10, 20],
m = 5, n = 64 µR = 0.01 and σR = 0.005. Since NN
method needs to update minimum distances of data objects,

it incurs high computation cost and thus has the highest

wall clock time. Moreover, similar to previous results, the

multipivot-based method outperforms both B+-tree and linear
scan.

Finally, we did experiments with the same settings un-

der Lp-norms (p �= 2), whose results are similar. Due to

space limit, however, we only demonstrate one set of exper-

iments in Figure 8, under L1-, L2-, and L∞-norms, where

[kmin, kmax] = [10, 20], N = 10K, m = 5, n = 64
µR = 0.01 and σR = 0.005. The experimental results show

that our multipivot-based method can outperform the other

three under Lp-norm (1 ≤ p ≤ ∞), due to the effective

pruning via scores.

In summary, we have demonstrated through extensive exper-

iments the efficiency and effectiveness of our multipivot-based
method for subspace similarity queries.

VII. CONCLUSIONS

Similarity search plays an important role in many appli-

cations such as information retrieval, image data analysis,

and time-series matching. Previous work usually consider the

search problem in the full space. In contrast, we propose a

novel problem, subspace similarity search, that is, given an

arbitrary subspace with arbitrary dimensions, retrieve data

M
B

L
NN

10
−2

10
0

10
2

wall clock time (s)

L
∞

L
2

L
1

(a) layout

M
B

L
NN

10
−2

10
0

10
2

L
∞

L
2

L
1

wall clock time (s)

(b) sstock

Fig. 8. Query Efficiency vs. Lp-norms

objects that are similar to a query object in the subspace

which is specified by query objects on demand. This problem

has many practical usages such as in multimedia databases.

However, traditional methods to solve the similarity search
problem in the full space cannot be applied in this case.

Motivated by this, in this paper, we propose an efficient

and effective approach to answer subspace similarity queries
under Lp-norm for 1 ≤ p ≤ ∞. In particular, we assign

1-dimensional scores to each object, which are computed

with respect to pivots and used for pruning false positives
during the subspace similarity search. The entire procedure

is formalized with a cost model, in light of which data are

pre-processed such that the pruning power during query pro-

cessing is maximized. Extensive experiments have verified the

correctness of our cost model under various parameters, and

demonstrated the efficiency and effectiveness of our method

under Lp-norm. As our future work, it would be interesting

to adapt the multipivot-based method to other variations of

subspace search (e.g. nearest neighbor). Moreover, from our

experiments, when (kmax − kmin) is small, high pruning

power can be achieved. Thus, another interesting direction is to

pre-process data using several small intervals in [kmin, kmax]
separately, and answer subspace queries (with k) with respect

to the interval containing k. The resulting solution can handle

the case where the full space has very high dimensionality,

which may require a cost model to make a trade-off between

space and computation cost.

ACKNOWLEDGMENT

Funding for this work was provided by Hong Kong RGC

Grant No. 611907 and National Grand Fundamental Research

973 Program of China under Grant No. 2006CB303000.

REFERENCES

[1] Data warehousing and OLAP: a research-oriented bibliography.
http://www.ondelette.com/OLAP/dwbib.html.

[2] R. Agrawal, C. Faloutsos, and A. N. Swami. Efficient similarity search
in sequence databases. In Proc. 4th Int. Conf. of Foundations of Data
Organization and Algorithms, pages 69–84, 1993.

[3] C. Böhm, S. Berchtold, and D. A. Keim. Searching in high-dimensional
spaces: Index structures for improving the performance of multimedia
databases. ACM Comput. Surv., 33(3):322–373, 2001.

[4] T. Bozkaya and M. Ozsoyoglu. Distance-based indexing for high-
dimensional metric spaces. In SIGMOD, pages 357–368, 1997.

[5] T. Bozkaya and M. Ozsoyoglu. Indexing large metric spaces for
similarity search queries. ACM Trans. Database Sys., 24(3):361–404,
1999.

[6] E. Chav́ez, G. Navarro, R. Baeza-Yates, and J. L. Marroquń. Searching
in metric spaces. ACM Comput. Surv., 33(3):273–321, 2001.

[7] L. Chen, M. T. Özsu, and V. Oria. Robust and fast similarity search
for moving object trajectories. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, pages 491–502, 2005.

[8] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast subsequence
matching in time-series databases. In Proc. ACM SIGMOD Int. Conf.
on Management of Data, pages 419–429, 1994.

[9] R. F. S. Filho, A. J. M. Traina, C. Traina Jr., and C. Faloutsos. Similarity
search without tears: The OMNI family of all-purpose access methods.
In Proc. 17th Int. Conf. on Data Engineering, pages 623–630, 2001.

[10] K-S. Goh, B. T. Li, and Ed. Chang. Dyndex: a dynamic and non-metric
space indexer. In Proc. 10th ACM Int. Conf. on Multimedia, pages
466–475, 2002.

[11] C. M. Grinstead and J. L. Snell. Introduction to probability. pages
333–337. AMS, 1997.

[12] A. Guttman. R-trees: a dynamic index structure for spatial searching. In
Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 47–57,
1984.

[13] I. Guyon and A. Elisseeff. An introduction to variable and feature
selection. J. Mach. Learn. Res., 3:1157–1182, 2003.

[14] X. He. Incremental semi-supervised subspace learning for image
retrieval. In ACMMM, 2005.

[15] X. He, D. Cai, and P. Niyogi. Tensor subspace analysis. In NIPS, 2005.
[16] G. Jovanovic-Dolecek. Demo program for central limit theorem. In

Circuits and Systems, 1997.
[17] Y. Ke, R. Sukthankar, and L. Huston. An efficient parts-based near-

duplicate and sub-image retrieval system. In ACMMM, pages 869–876,
2004.

[18] R. Kohavi and D. Sommerfield. Feature subset selection using the
wrapper model: Overfitting and dynamic search space topology. In
The First International Conference on Knowledge Discovery and Data
Mining, pages 192–197, 1995.

[19] F. Korn, H. Jagadish, and C. Faloutsos. Efficiently supporting ad hoc
queries in large datasets of time sequences. In Proc. ACM SIGMOD Int.
Conf. on Management of Data, pages 289–300, 1997.

[20] M. Koskela, J. Laaksonen, and E. Oja. Use of image subset features
in image retrieval with self-organizing maps. In CIVR, pages 508–516,
2004.

[21] N. Koudas, B. Ooi, H. Shen, and A. Tung. Ldc: Enabling search by
partial distance in a hyper-dimensional space. In ICDE, pages 6–17,
2004.

[22] K.P.Chan and A.W-C Fu. Efficient time series matching by wavelets.
In Proc. 15th Int. Conf. on Data Engineering, pages 126–133, 1999.

[23] H. Lejsek, F. H. Ásmundsson, B T. Jónsson, and L. Amsaleg. Scalability
of local image descriptors: A comparative study. 2004.

[24] D. G. Lowe. Distinctive image features from scale-invariant keypoints.
Int. J. Comput. Vision, 60(2):91–110, 2004.

[25] R. T. Ng and J. Han. Efficient and effective clustering methods for
spatial data mining. In Jorgeesh Bocca, Matthias Jarke, and Carlo
Zaniolo, editors, 20th International Conference on Very Large Data
Bases, September 12–15, 1994, Santiago, Chile proceedings, pages 144–
155, Los Altos, CA 94022, USA, 1994. Morgan Kaufmann Publishers.

[26] W. Niblack, R. Barber, W. Equitz, M. Flickner, E. Glasman, D. Petkovic,
P. Yanker, C. Faloutsos, and G. Taubin. The QBIC project: querying
images by content using color, texture and shape. In Proc. 5th Int.
Symp. on Storage and Retrieval for Image and Video Databases, pages
173–185, 1993.

[27] A. K. H. Tung, R. Zhang, N. Koudas, and B. C. Ooi. Similarity search:
A matching based approach. In VLDB, pages 631–642, 2006.

[28] E. W. Weisstein. Central Limit Theorem.
http://mathworld.wolfram.com/CentralLimitTheorem.html.

[29] B-K Yi and C. Faloutsos. Fast time sequence indexing for arbitrary
Lp norms. In Proc. 26th Int. Conf. on Very Large Data Bases, pages
385–394, 2000.

[30] P. N. Yianilos. Data structures and algorithms for nearest neighbor
search in general metric spaces. In SODA, pages 311–321, 1993.

[31] M. L. Yiu and N. Mamoulis. Reverse nearest neighbors search in ad-hoc
subspaces. In ICDE, page 76, 2006.

