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1 Introduction

Given a multi-dimensional datasetP and a pointq /∈ P , areversek nearest neighbor(RkNN) query retrieves

all the pointsp ∈ P which haveq as one of theirk nearest neighbors (NN) [10]. Formally,RkNN(q) =

{p ∈ P | dist(p, q) < dist(p, p′)}, wheredist is a distance metric (we assume Euclidean distance), and

p′ thek-th farthest NN ofp in P . Figure 1 shows a dataset with 4 pointsp1, p2, ..., p4, where each point is

associated with a circle covering its two NNs (e.g., the circle centered atp4 enclosesp2 andp3). The result

of a R2NN queryq includes the “owners” (i.e.,p3, p4) of the circles that containq. Let kNN(q) be the set

of k nearest neighbors ofq. Note thatp ∈ kNN(q) does not necessarily implyp ∈ RkNN(q), and vice

versa. For instance,2NN(q) = {p1, p3}, butp1 does not belong toR2NN(q). On the other hand, although

p4 ∈ R2NN(q), it is not in2NN(q).
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Figure 1: 2NN and R2NN examples

RkNN search is important both as a stand-alone query in SpatialDatabases, and a component in applications

involving profile-based marketing. For example, assume that the points in Figure 1 correspond to records of

houses on sale, and the two dimensions capture the size and price of each house. Given a new propertyq on

the market, the real estate company wants to notify the customers potentially interested inq. An effective

way is to retrieve the setRkNN(q), and then contact the customers that have previously expressed interest in

p ∈ RkNN(q). Note that a RNN query is more appropriate than NN search, sinceRkNN(q) is determined

by the neighborhood of each data pointp and not strictly by the distance betweenq andp. For instance, in

Figure 1, althoughp4 is farther fromq thanp1, customers interested inp4 may be more attracted toq (than

those ofp1) because they have fewer options matching their preferences. Clearly, the discussion applies to

space of higher (> 2) dimensionality, if more factors (e.g., security rating ofthe neighborhood, etc.) affect

customers’ decisions.

RkNN processing has received considerable attention [2, 10, 12, 13, 15, 16, 20] in recent years. As surveyed

in Section 2, however, all the existing methods have at leastone of the following deficiencies: they (i) do not

support arbitrary values ofk, (ii) cannot deal efficiently with database updates, (iii) are applicable only to 2D
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Figure 2: A continuous RNN query

data but not to higher dimensionality, and (iv) retrieve only approximate results (i.e., potentially incurring

false misses). In other words, these methods address restricted versions of the problem without providing a

general solution. Motivated by these shortcomings, we develop dynamicalgorithms (i.e., supporting updates)

for exactprocessing of RkNN queries witharbitrary values ofk onmulti-dimensionaldatasets. Our methods

are based on a data-partitioning index (e.g., R-trees [1], X-trees [3]), and do not require any pre-processing.

Similar to the existing algorithms, we follow a filter-refinement framework. Specifically, the filter step

retrieves a set of candidate results that is guaranteed to include all the actual reverse nearest neighbors; the

subsequent refinement step eliminates the false hits. The two steps are integrated in a seamless way that

avoids multiple accesses to the same index node (i.e., each node is visited at most once).

As a second step, we extend our methodology tocontinuous reversek nearest neighbor(C-RkNN) search,

which retrieves the RkNNs of every point on a query segmentqAqB. Interestingly, although there are infinite

points onqAqB, the number of distinct results is finite. Specifically, the output of a C-RkNN query contains

a set of<R, T> tuples, whereR is the set of RkNNs for (all the points in) the segmentT ⊆ qAqB. In

Figure 2, for instance, the C-RNN query returns{<{p1}, [qA, s1)>, <{p1, p4}, [s1, s2)>, <{p4}, [s2, s3)>,

<{p3, p4}, [s3, s4)>, <p3, [s4, qB ]>}, which means that pointp1 is the RNN for sub-segment[qA, s1), ats1

pointp4 also becomes a RNN, andp4 is the only RNN for[s2, s3), etc. The points (i.e.,s1, s2, s3, s4) where

there is a change of the RNN set are calledsplit points. Benetis at al. [2] solve the problem for single RNN

retrieval in 2D space. Our solution applies to any dimensionality and value ofk.

The rest of the paper is organized as follows. Section 2 surveys related work on NN and RNN search. Sec-

tion 3 presents a new algorithm for single RNN (k = 1) retrieval, and Section 4 generalizes the solution

to arbitrary values ofk. Section 5 discusses continuous RkNN processing. Section 6 contains an exten-

sive experimental evaluation that demonstrates the superiority of the proposed techniques over the previous

algorithms. Section 7 concludes the paper with directions for future work.
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(a) Points and node extents (b) The R-tree

Figure 3: Example of an R-tree and a NN query

2 Background

Although our solutions can be used with various indexes, in the sequel, we assume that the dataset is indexed

by an R-tree due to the popularity of this structure in the literature. Section 2.1 briefly overviews the R-tree

and algorithms for nearest neighbor search. Section 2.2 surveys the previous studies on RkNN queries.

2.1 Algorithms for NN Search Using R-Trees

The R-tree [8] and its variants (most notably the R*-tree [1]) can be thought of as extensions of B-trees in

multi-dimensional space. Figure 3a shows a set of points{p1, p2, ..., p12} indexed by an R-tree (Figure 3b)

assuming a capacity of three entries per node. Points close in space (e.g.,p1, p2, p3) are clustered in the

same leaf node (e.g.,N3). Nodes are then recursively grouped together with the sameprinciple until the top

level, which consists of a single root. An intermediate index entry contains theminimum bounding rectangle

(MBR) of its child node, together with a pointer to the page where the node is stored. A leaf entry stores the

coordinates of a data point and (optionally) a pointer to thecorresponding record.

A nearest neighbor query retrieves the data pointp that is closest toq. The NN algorithms on R-trees utilize

some bounds to prune the search space: (i)mindist(N, q), which corresponds to the minimum possible dis-

tance betweenq and any point in (the subtree of) nodeN , (ii) maxdist(N, q), which denotes the maximum

possible distance betweenq and any point inN , and (iii)minmaxdist(N, q), which gives an upper bound of

the distance betweenq and its closest point inN . In particular, the derivation ofminmaxdist(N, q) is based

on the fact that each edge of the MBR ofN contains at least one data point. Hence,minmaxdist(N, q)

equals the smallest of the maximum distances between all edges (ofN ) andq. Figure 3a shows these pruning

bounds between pointq and nodesN1, N2.
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Existing NN methods are based on either depth-first (DF) or best-first (BF) traversal. DF algorithms [14, 5]

start from the root and visit recursively the node with the smallestmindistfrom q. In Figure 3, for instance,

the first 3 nodes accessed are (in this order) the root,N1 andN4, where the first potential nearest neighborp5

is found. During backtracking to the upper levels, DF only descends entries whose minimum distances (toq)

are smaller than the distance of the NN already retrieved. For example, after discoveringp5, DF backtracks

to the root level (without visitingN3 becausemindist(N3, q) > dist(p5, q)), and then follows the pathN2,

N6 where the actual NNp11 is found.

The BF algorithm [9] maintains a heapH containing the entries visited so far, sorted in ascending order of

their mindist. In Figure 3, for instance, BF starts by inserting the root entries intoH = {N1, N2}. Then, at

each step, BF visits the node inH with the smallestmindist. Continuing the example, the algorithm retrieves

the content ofN1 and inserts its entries inH, after whichH = {N2, N4, N3}. Similarly, the next two nodes

accessed areN2 andN6 (inserted inH after visitingN2), in whichp11 is discovered as the current NN. At

this time, BF terminates (withp11 as the final result) since the next entry (N4) in H is farther (fromq) than

p11. Both DF and BF can be extended for the retrieval ofk > 1 nearest neighbors. Furthermore, BF is

“incremental”, i.e., it reports the nearest neighbors in ascending order of their distances to the query.

2.2 RNN Algorithms

We first illustrate the RNN algorithms using 2D data andk = 1, and then clarify their applicability to higher

dimensionality andk. We refer to each method using the authors’ initials. KM [10]pre-computes, for every

data pointp, its nearest neighborNN(p). Then,p is associated with avicinity circle centered at it with

radius equal to the distance betweenp andNN(p). The MBRs of all circles are indexed by an R-tree, called

the RNN-tree. Using this structure, the reverse nearest neighbors ofq can be efficiently retrieved by a point

location query, which returns all circles containingq. Figure 4a illustrates the concept using four data points;

sinceq falls in the circles ofp3 andp4, RNN(q) = {p3, p4}.

Because the RNN-tree is optimized for RNN, but not NN search,Korn and Muthukrishnan [10] use an ad-

ditional (conventional) R-tree on the data points for nearest neighbors and other spatial queries. In order to

avoid the maintenance of two separate structures, YL [20] combines the two indexes in the RdNN-tree. Sim-

ilar to the RNN-tree, a leaf entry of the RdNN-tree contains the vicinity circle of a data point. On the other

hand, an intermediate entry contains the MBR of the underlying points (not their vicinity circles), together

with the maximum distance from a point in the subtree to its nearest neighbor. As shown in the experiments

of [20], the RdNN-tree is efficient for both RNN and NN queriesbecause, intuitively, it incorporates all the

information of the RNN-tree, and has the same structure (fornode MBRs) as a conventional R-tree. MVZ

[13] is another pre-computation method that is applicable only to 2D space and focuses on asymptotical

worst case bounds (rather than experimental comparison with other approaches).
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(a) RNN processing with pre-computation (b) Problem with updates

Figure 4: Illustration of KM method

The problem of KM, YL, MVZ (and, in general, all techniques that rely on pre-processing) is that they

cannot deal efficiently with updates. This is because each insertion or deletion may affect the vicinity circles

of several points. Consider Figure 4b, where we want to insert a new pointp5 in the database. First, we

have to perform a RNN query to find all objects (in this casep3 andp4) that havep5 as their new nearest

neighbor. Then, we update the vicinity circles of these objects in the index. Finally, we compute the NN of

p5 (i.e., p4) and insert the corresponding circle. Similarly, each deletion must update the vicinity circles of

the affected objects. In order to alleviate the problem, Linet al. [12] propose a technique for bulk insertions

in the RdNN-tree.

Stanoi et al. [16] eliminate the need for pre-computing all NNs by utilizing some interesting properties of

RNN retrieval. Consider Figure 5, which divides the space around a queryq into 6 equal regionsS1 to S6.

Let p be the NN ofq in some regionSi (1 ≤ i ≤ 6); it can be proved that eitherp ∈ RNN(q) or there is

no RNN ofq in Si. For instance, in Figure 5, the NN ofq in S1 is pointp2. However, the NN ofp2 is p1;

consequently, there is no RNN ofq in S1 and we do not need to search further in this region. Similarly, no

result can exist inS2, S3 (p4, p5 are NNs of each other),S5 (the NN ofp3 is p7), andS6 (no data points).

The actualRNN(q) contains onlyp6 (in S4). Based on the above property, SAA [16] adopts a two-step

processing method. First, six‘constrained NN queries” [6]retrieve the nearest neighbors ofq in regionsS1

to S6. These points constitute the candidate result. Then, at a second step, a NN query is applied to find the

NN p′ of each candidatep. If dist(p, q) < dist(p, p′), p belongs to the actual result; otherwise, it is a false

hit and discarded.

Singh et al. [15] show that the number of regions to be searched for candidate results increases exponen-

tially with the dimensionality, rendering SAA inefficient even for three dimensions. Motivated by this, they

propose SFT, a multi-step algorithm that (i) finds (using an R-tree) a large numberK of NNs of the queryq,

which constitute the initial RNN candidates, (ii) eliminates the candidates that are closer to each other than

to q, and (iii) determines the final RNNs from the remaining ones.The value ofK should be larger than the

numberk of RNNs requested by every query. Consider, for instance, the (single) RNN query of Figure 6, as-
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Figure 5: Illustration of SAA method
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Figure 6: Illustration of SFT method

sumingK = 4. SFT first retrieves the 4 NNs ofq: p6, p4, p5 andp2. The second step discardsp4 andp5 since

they are closer to each other than toq. The third step verifies whetherp2 (p6) is a real RNN ofq by checking

if there is any point in the shaded circle centered atp2 (p6) crossingq. This involves a “boolean range query”,

which is similar to a range search except that it terminates as soon as (i) the first data point is found, or (ii) an

edge of a node MBR lies within the circle entirely. For instance, asminmaxdist(N1, p2) ≤ dist(p2, q), N1

contains at least a pointp with dist(p2, p) < dist(p2, q), indicating thatp2 is a false hit. Since the boolean

query ofp6 returns empty, SFT reportsp6 as the only RNN. The major shortcoming of the method is that it

may incur false misses. In Figure 6, althoughp3 is a RNN ofq, it does not belong to the 4 NNs of the query

and will not be retrieved.

Table 1 summarizes the properties of each algorithm. As discussed before, pre-computation methods cannot

efficiently handle updates. MVZ focuses exclusively on 2D space, while SAA is practically inapplicable for

3 or more dimensions. SFT incurs false misses, the number of which depends on the parameterK: a large

value ofK decreases the chance of false misses but increases significantly the processing cost. Regarding

the applicability of the existing algorithms to arbitraryk, pre-computation methods only support a specific

value (typically 1), used to determine the vicinity circles. SFT can support the retrieval of RkNNs by setting

a large value ofK (� k) and adapting boolean queries for deciding whether there are at leastk objects in

a search region. The extension of SAA to arbitraryk has not been studied before, but we will discuss it in

Section 4.3.
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Support dynamic data Arbitrary dimensionality Exact result
KM, YL No Yes Yes

MVZ No No Yes
SAA Yes No Yes
SFT Yes Yes No

Table 1: Summary of the properties of RNN algorithms
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Figure 7: Illustration of BJKS method

The only existing method BJKS [2] for continuous RNN queriesis based on the SAA algorithm. We illustrate

the algorithm using Figure 7, where the dataset consists of points p1, ..., p4 and the C-RNN query is the

segmentqAqB . In the filter step, BJKS considers (conceptually) every point q on segmentqAqB. For each

such point, it divides the data space into 6 partitions (based onq) and retrieves the NN ofq in each partition.

Due to symmetry, let us focus on the partition bounded by the two upward rays (see Figure 7). Whenq

belongs to the segment[qA, a1), the NN ofq is p1. The NN isp2 for q belonging to segment[a1, a2), andp3

for q in [a2, qB) (positiona2 is equally distant top2 andp3). For each of the candidates (p1, p2, p3) returned

by the filter phase, the refinement step of BJKS obtains its NN (in the entire data space), and examines the

corresponding vicinity circle (e.g., the circle forp1 crosses its NNp2). The candidate is a final result if and

only if its circle intersects the query segment. In Figure 7,p2 andp3 are false hits because their circles are

disjoint with qAqB . On the other hand,p1 is the RNN for every point on segment[qA, s1), wheres1 is the

intersection between its circle and the query segment. There is no RNN for any point on[s1, qB ]. Since

BJKS is based on SAA, its applicability is restricted to 2D space.

It is worth mentioning that all the above algorithms (as wellas our solutions) aim atmonochromaticRNN

retrieval in [10]. Stanoi et al. [17] considerbichromaticRNN search: given two data setsP1, P2 and a query

point q ∈ P1, a bichromatic RNN query retrieves all the pointsp2 ∈ P2 that are closer toq than to any

other object inP1, i.e., dist(q, p2) < dist(p1, p2) for any p1 ∈ P1 andp1 6= q. If V C(q) is the Voronoi

cell coveringq in the Voronoi diagram [4] computed fromP1, the query result contains all the points inP2

that fall insideV C(q). Based on this observation, SRAA [17] first computesV C(q) using an R-tree onP1,

and then retrieves the query result using another R-tree onP2. This approach is not directly applicable to
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Figure 8: Illustration of half-space pruning

monochromatic search (which involves a single dataset), but the concept of Voronoi cells is related to our

solutions, as clarified in Section 3.3.

3 Single RNN Processing

In this section, we focus on single RNN retrieval (k = 1). Section 3.1 illustrates some problem characteristics

that motivate our algorithm, which is presented in Section 3.2. Section 3.3 analyzes the performance of the

proposed techniques with respect to existing methods.

3.1 Problem Characteristics

Consider the perpendicular bisector⊥(p, q) between the queryq and an arbitrary data pointp as shown in

Figure 8a. The bisector divides the data space into two half-spaces:HSq(p, q) that containsq, andHSp(p, q)

that containsp. Any point (e.g.,p′) in HSp(p, q) cannot be a RNN ofq because it is closer top than toq.

Similarly, a node MBR (e.g.,N1) that falls completely inHSp(p, q) cannot contain any results. In some

cases, the pruning of an MBR requires multiple half-spaces.For example, in Figure 8b, althoughN2 does

not fall completely inHSp1
(p1, q) or HSp2

(p2, q), it can still be pruned since it lies entirely in the union of

the two half-spaces.

In general, ifp1, p2, ..., pnc
arenc data points, then any nodeN whose MBR falls inside∪nc

i=1HSpi
(pi, q)

cannot contain any RNN ofq. Let theresidual polygonN resP be the area of MBRN outside∪nc

i=1HSpi
(pi, q),

i.e., the part of the MBR that may cover RNNs. Then,N can be pruned if and only ifN resP = ∅. A non-

emptyN resP is a convex polygon bounded by the edges ofN and the bisectors⊥(pi, q) (1 ≤ i ≤ nc).

We illustrate its computation using Figure 9a withnc = 3. Initially, N resP is set toN , and then we trim

it incrementally with each bisector in turn. In particular,the trimming with⊥(pi, q) results in a newN resP

corresponding to the part of the previousN resP inside the half-spaceHSq(pi, q). The shaded trapezoid in

Figure 9a is theN resP after being trimmed with⊥(p1, q). Figure 9b shows the finalN resP after processing

all bisectors.
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Figure 9: Computing the residual region
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Figure 10: Computing the residual MBR

The above computation ofN resP has two problems. First, in the worst case, each bisector mayintro-

duce an additional vertex toN resP . Consequently, processing thei-th (1 ≤ i ≤ nc) bisector takesO(i)

time because it may need to examine all edges in the previousN resP . Thus, the total computation cost is

O(n2
c), i.e., quadratic to the number of bisectors. Second, this method does not scale with the dimensional-

ity because computing the intersection of a half-space and ahyper-polyhedron is prohibitively expensive in

high-dimensional space [4].

Therefore, we propose a simpler trimming strategy that requires onlyO(nc) time. The idea is to bound

N resP by aresidual MBRN resM . Figure 10 illustrates the residual MBR computation using the example in

Figure 9. Figure 10a shows the trimming with⊥(p1, q) where, instead of keeping the exact shape ofN resP ,

we computeN resM (i.e., the shaded rectangle). In general, bisector⊥(pi, q) updatesN resM to the MBR of

the region in the previousN resM that is inHSq(pi, q). Figures 10b and 10c illustrate the residual MBRs

after processing⊥(p2, q) and⊥(p3, q), respectively. Note that the finalN resM is not necessarily the MBR

of the finalN resP (compare Figures 10c and 9b). Trimmed MBRs can be efficientlycomputed (for arbitrary

dimensionality) using theclipping algorithmof [7].

Figure 11 presents the pseudo-code for the above approximate trimming procedures. IfN resM exists,trim

returns the minimum distance betweenq andN resM ; otherwise, it returns∞. SinceN resM always encloses

N resP , N resM = ∅ necessarily leads toN resP = ∅. This property guarantees that pruning is “safe”,

10



Algorithm Trim (q, {p1, p2, ..., pnc
}, N )

/* q is the query point;p1, p2, ..., pnc
are arbitrary data points;N is a rectangle being trimmed */

1. N resM = N
2. for i = 1 tonc //consider each data point in turn
3. N resM = clipping(N resM , HSq(pi, q))

//algorithm of [7]: obtain the MBR for the part ofN resM in the half-spaceHSq(pi, q)
4. if N resM = ∅ then return∞
5. returnmindist(N resM , q)

Figure 11: The trim algorithm

meaning thattrim never eliminates a node that may contain query results. The algorithm also captures points

as MBRs with zero extents. In this case, it will return the actual distance between a point andq (if the point

is closer toq than to all other candidates), or∞ otherwise.

An interesting question is: ifN resM 6= ∅, canN resP be empty (i.e.,trim fails to prune an MBR that could

have been eliminated ifN resP was computed)? Interestingly, it turns out that the answer is negative in 2D

space as illustrated in the next lemma, which establishes aneven stronger result:

Lemma 1. Given a query pointq and an MBRN in 2D space, letN resP be the part (residual polygon) of

N satisfying a setS of half-spaces, andN resM the residual MBR computed (by the algorithm in Figure 11)

using the half-spaces inS. Then,mindist(N resM , q) = mindist(N resP , q) in all cases.

Proof. Presented in the appendix.

As an illustration of the lemma, note thatmindist(N resP , q) in Figure 9b is equivalent tomindist(N resM ,

q) in Figure 10c. Our RNN algorithm, discussed in the next section, aims at examining the nodesN of

an R-tree in ascending order of theirmindist(N resP , q). SinceN resP is expensive to compute in general,

we decide the access order based onmindist(N resM , q), which, as indicated by Lemma 1, has the same

effect as usingmindist(N resP , q) in 2D space. It is worth mentioning that the lemma does not hold for

dimensionalities higher than 2 (in this case,N resM may exist even ifN resP does not [7]). Nevertheless,

pruning based onmindist(N resM , q) is still safe because, as mentioned earlier,N resM is eliminated only

if N resP is empty.

3.2 The TPL Algorithm

Based on the above discussion, we adopt a two-step frameworkthat first retrieves a set of candidate RNNs

(filter step) and then removes the false hits (refinement step). As opposed to SAA and SFT that require

multiple queries for each step, the filtering and refinement processes are combined into a single traversal of

the R-tree. In particular, our algorithm (hereafter, called TPL) traverses the R-tree in a best-first manner,

retrieving potential candidates in ascending order of their distance to the query pointq because the RNNs

11
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Figure 12: Illustration of the TPL algorithm

are likely to be nearq. The concept of half-spaces is used to prune nodes (data points) that cannot contain

(be) candidates. Next we discuss TPL using the example of Figure 12, which shows a set of data points

(numbered in ascending order of their distance from the query) and the corresponding R-tree (the contents

of some nodes are omitted for clarity). The query result contains only pointp5.

Initially, TPL visits the root of the R-tree and inserts its entries N10, N11, N12 into a heapH sorted in

ascending order of theirmindistfrom q. Then, the algorithm de-heapsN10 (top of H), visits its child node,

and inserts intoH the entries there (H = {N3, N11, N2, N1, N12}). Similarly, the next node accessed is leaf

N3, andH becomes (after inserting the points inN3): {p1, N11, p3, N2, N1, N12}. Sincep1 is the top of

H, it is the first candidate added to the candidate setScnd. The next de-heaped entry isN11. As Scnd 6= ∅,

TPL usestrim (Figure 11) to check ifN11 can be pruned. Part ofN11 lies in HSq(p1, q) (i.e., trim returns

mindist(N resM
11 , q) 6= ∞), and thus it has to be visited.

Among the three MBRs in nodeN11, N4 andN6 fall completely inHSp1
(p1, q), indicating that they cannot

contain any candidates. Therefore,N4 andN6 are not inserted inH, but are added to therefinement set

Srfn. In general, all the points and nodes that are not pruned during the filter step are preserved inSrfn,

and will be used in the refinement step to verify candidates.On the other hand,N5 (an MBR in nodeN11)

falls partially in HSq(p1, q), and is inserted intoH using mindist(N resM
5 , q) as the sorting key (H =

{N5, p3, N2, N1, N12}). The rationale of this choice, instead ofmindist(N5, q), is that since our aim is to

discover candidates according to their proximity toq, the node visiting order should not take into account

the part of the MBR that cannot contain candidates.

TPL proceeds to de-heap the topN5 of H, and retrieves its child node, where pointp2 is added toH =

{p2, p3, N2, N1, N12}, andp6 to Srfn = {N4, N6, p6} (p6 is in HSp1
(p1, q), and hence, cannot be a RNN

12



Algorithm TPL-filter (q) //q is the query point.
1. initialize a min-heapH accepting entries of the form (e, key)
2. initialize setsScnd = ∅, Srfn = ∅
3. insert (R-tree root, 0) toH
4. whileH is no longer empty
5. de-heap the top entry (e, key) of H
6. if (trim(q, Scnd, e) = ∞) thenSrfn = Srfn ∪ {e}
7. else //entry may be or contain a candidate
8. if e is data pointp
9. Scnd = Scnd ∪ {p}
10. else ife points to a leaf nodeN
11. for each pointp in N
12. if (trim(q, Scnd, p) = ∞) thenSrfn = Srfn ∪ {p}
13. else insert (p, dist(p, q)) in H
14. else //e points to an intermediate nodeN
15. for each entryNi in N
16. mindist(N resM

i , q) = trim(q, Scnd, Ni)
17. if (mindist(N resM

i , q) = ∞) thenSrfn = Srfn ∪ {Ni}
18. else insert (Ni, mindist(N resM

i , q)) in H

Figure 13: The TPL filter algorithm

of q). Then,p2 is removed fromH, and becomes the second candidate, i.e.,Scnd = {p1, p2}. Point p3

(now top ofH), however, is added toSrfn because it lies inHSp1
(p1, q). Similarly, the next processed

entry N2 is also inserted inSrfn (without visiting nodeN2). Part ofN1, on the other hand, appears in

HSq(p1, q) ∪ HSq(p2, q) and TPL accesses its child node, leading toScnd = {p1, p2, p5} and Srfn =

{N2, N4, N6, p6, p3, p7}. Finally, N12 is also inserted intoSrfn as it falls completely inHSp2
(p2, q). The

filter step terminates whenH = ∅.

Figure 13 illustrates the pseudo-code for the filter step. Note thattrim is applied twice for each nodeN : when

N is inserted into the heap and when it is de-heaped, respectively. The second test is necessary, becauseN

may be pruned by some candidate that was discovered after theinsertion ofN into H. Similarly, when a leaf

node is visited, its non-pruned points are inserted intoH (instead ofScnd) and processed in ascending order

of their distance toq. This heuristic maximizes the chance that some points will be subsequently pruned by

not-yet discovered candidates that are closer to the query,hence reducing the size ofScnd, and the cost of

the subsequent refinement step.

After the termination of the filter step, we have a setScnd of candidates and a setSrfn of node MBRs and data

points. LetPrfn (Nrfn) be the set of points (MBRs) inSrfn. The refinement step is performed inrounds.

Figure 14 shows the pseudo-code for each round, where we eliminate the maximum number of candidates

from Scnd without visiting additional nodes. Specifically, a pointp ∈ Scnd can be discarded as a false hit, if

(i) there is a pointp′ ∈ Prfn such thatdist(p, p′) < dist(p, q), or (ii) there is a node MBRN ∈ Nrfn such

thatminmaxdist(p,N) < dist(p, q) (i.e.,N is guaranteed to contain a point that is closer top thanq). For

13



Algorithm refinement-round(q, Scnd, Prfn, Nrfn)
/* q is the query point;Scnd is the set of candidates that have not been verified so far;Prfn (Nrfn) contains
the points (nodes) that will be used in this round for candidate verification */
1. for each pointp ∈ Scnd

2. for each pointp′ ∈ Prfn

3. if dist(p, p′) < dist(p, q)
4. Scnd = Scnd − {p} //false hit
5. goto 1 //test next candidate
6. for each MBRN in Nrfn

7. if minmaxdist(p, N) < dist(p, q)
8. Scnd = Scnd − {p} //false hit
9. goto 1 //test next candidate
10. for each node MBRN ∈ Nrfn

11. if mindist(p, N) < dist(p, q) then addN to p.toV isit
12. if p.toV isit = ∅ thenScnd = Scnd − {p} and reportp //actual result

Figure 14: The refinement-round algorithm

instance, in Figure 12, the first condition prunesp1 becausep3 ∈ Prfn anddist(p1, p3) < dist(p1, q). Lines

2-9 of Figure 14 prune false hits according to the above observations.

On the other hand, a pointp ∈ Scnd can be reported as an actual result without any extra node accesses, if

(i) there is no pointp′ ∈ Prfn such thatdist(p, p′) < dist(p, q) and (ii) for every nodeN ∈ Nrfn, it holds

thatmindist(p,N) > dist(p, q). In Figure 12, candidatep5 satisfies these conditions and is validated as

a final RNN (also removed fromScnd). Each remaining pointp in Scnd (e.g.,p2) must undergo additional

refinement rounds because there may exist points (p4) in some not-yet visited nodes (N4) that invalidate

it. In this case, the validation ofp requires accessing the setp.toV isit of nodesN ∈ Nrfn that satisfy

mindist(p,N) < dist(p, q). After computingtoV isit for all the candidates,Prfn andNrfn are reset to

empty.

Next, TPL accesses a node selected from thetoV isit of the candidates. Continuing the running example,

after the first roundp1 is eliminated,p5 is reported (as an actual result), andScnd = {p2}. The nodes that may

contain NNs ofp2 arep2.toV isit = {N4, N12}. We choose to access a lowest level node first (in this case

N4), because it can achieve better pruning since it either encloses data points or MBRs with small extents

(therefore, theminmaxdistpruning at line 7 of Figure 14 is more effective). In case of a tie (i.e., multiple

nodes of the same low level), we access the one that appears inthe toV isit lists of the largest number of

candidates.

If the nodeN visited is a leaf, thenPrfn contains the data points inN , andNrfn is set to∅. Otherwise (N

is an intermediate node),Nrfn includes the MBRs ofN , andPrfn is ∅. In our example, the parameters for

the second round areScnd = {p2}, Prfn = {p4, p8} (points ofN4), andNrfn = ∅. Pointp4 eliminatesp2,

and the algorithm terminates. Figure 15 shows the pseudo-code of the TPL refinement step. Lines 2-4 prune

candidates that are closer to each other than the query point(i.e., similar to the second step of SFT). This
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Algorithm TPL-refinement(q, Scnd, Srfn)
/* q is the query point;Scnd andSrfn are the candidate and refinement sets returned from the filterstep */
1. for each pointp ∈ Scnd

2. for each other pointp′ ∈ Scnd

3. if dist(p, p′) < dist(p, q)
4. Scnd = Scnd − {p}; goto 1
5. if p is not eliminated initializep.toV isit = ∅
6. Prfn = the set of points inSrfn; Nrfn = the set of MBRs inSrfn

7. repeat
8. refinement-round(q, Scnd, Prfn, Nrfn)
9. if Scnd = ∅ return //terminate
10. letN be the lowest level node that appears in the largest number ofp.toV isit for p ∈ Scnd

11. removeN from all p.toV isit and accessN
12. Prfn = Nrfn = ∅ //for the next round
13. if N is a leaf node
14. Prfn = {p | p ∈ N} //Prfn contains only the points inN
15. else
16. Nrfn = {N ′ | N ′ ∈ N} //Nrfn contains the MBRs inN

Figure 15: The TPL refinement algorithm

test is required only once and therefore, is not included inrefinement-roundin order to avoid repeating it for

every round.

To verify the correctness of TPL, observe that the filter stepalways retrieves a superset of the actual result

(i.e., it does not incur false misses), sincetrim only prunes node MBRs (data points) that cannot contain (be)

RNNs. Every false hitp is subsequently eliminated during the refinement step by comparing it with each

data point retrieved during the filter step and each MBR that may potentially contain NNs ofp. Hence, the

algorithm returns the exact set of RNNs.

3.3 Analytical Comparison with the Previous Solutions

TPL and the existing techniques that do not require pre-processing (SAA, SFT) are based on the filter-

refinement framework. Interestingly, the two steps are independent in the sense that the filtering algorithm of

one technique can be combined with the refinement mechanism of another. For instance, the boolean range

queries of SFT can replace the conventional NN queries in thesecond step of SAA, and vice versa. In this

section we show that, in addition to being more general, TPL is more effective than SAA and SFT in terms

of both filtering and refinement, i.e., it retrieves fewer candidates and eliminates false hits with lower cost.

In order to compare the efficiency of our filter step with respect to SAA, we first present an improvement

of that method. Consider the space partitioning of SAA in Figure 16a and the corresponding NNs in each

partition (points are numbered according to their distancefrom q). Since the angle betweenp1 andp2 is

smaller than 60 degrees andp2 is farther thanp1, point p2 cannot be a RNN ofq. In fact, the discovery of
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Figure 16: Superiority of TPL over SAA

p1 (i.e., the first NN of the query) can prune all the points lyingin the region∇(p1) extending 60 degrees

on both sides of line segmentp1q (upper shaded region in Figure 16a). Based on this observation, we only

need to search for other candidates outside∇(p1). Let p3 be the next NN ofq in the constrained region of

the data space (i.e., not including∇(p1)). Similar top1, p3 prunes all the points in∇(p3). The algorithm

terminates when the entire data space is pruned. Although the maximum number of candidates is still 6 (e.g.,

if all candidates lie on the boundaries of the 6 space partitions), in practice it is smaller (in this example, the

number is 3, i.e.,p1, p3, andp6).

Going one step further, the filter step of TPL is even more efficient than that of the improved SAA. Consider

Figure 16b wherep is the NN ofq. The improved SAA prunes the region∇(p) bounded by raysl1 andl2.

On the other hand, our algorithm prunes the entire half-space HSp(p, q), which includes∇(p) except for the

part below⊥(p, q). Consider the circle centered atq with radiusdist(p, q). It can be easily shown that the

circle crosses the intersection point of⊥(p, q) andl1 (l2). Note that all the nodes intersecting this circle have

already been visited in order to findp (a property of our filter step and all best-first NN algorithmsin general).

In other words, all the non-visited nodes that can be pruned by ∇(p) can also be pruned byHSp(p, q). As

a corollary, the maximum number of candidates retrieved by TPL is also bounded by a constant depending

only on the dimensionality (e.g., 6 in 2D space). Furthermore, TPL supports arbitrary dimensionality in a

natural way, since it does not make any assumption about the number or the shape of space partitions (as

opposed to SAA).

The comparison with the filter step of SFT depends on the valueof K, i.e., the number of NNs ofq that

constitute the candidate set. Assume that in Figure 12, we know in advance that the actual RNNs of the

query (in this casep5) are among theK = 5 NNs of q. SFT would perform a 5NN query and insert all

the retrieved pointsp1, ..., p5 to Scnd, whereas TPL inserts only the non-pruned pointsScnd = {p1, p2, p5}.

Furthermore, the number of candidates in TPL is bounded by the dimensionality, while the choice ofK in
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Figure 17: False hits and misses of SFT

SFT is arbitrary and does not provide any guarantees about the quality of the result. Consider, for instance,

the (skewed) dataset and query point of Figure 17. A high value ofK will lead to the retrieval of numerous

false hits (e.g., data points in partitionS1), but no actual reverse nearest neighbors ofq. The problem becomes

more serious in higher dimensional space.

One point worth mentioning is that although TPL is expected to retrieve fewer candidates than SAA and SFT,

this does not necessarily imply that it incurs fewer node accesses during the filter step. For instance, assume

that the query pointq lies within the boundary of a leaf nodeN , and all 6 candidates of SAA are inN . Then,

as suggested in [16] the NN queries can be combined in a singletree traversal, which can potentially find all

these candidates by following a single path from the root toN . A similar situation may occur with SFT if all

K NNs ofq are contained in the same leaf node. On the other hand, the node accesses of TPL depend on the

relative position of the candidates and the resulting half-spaces. Nevertheless, the small size of the candidate

set reduces the cost of the refinement step since each candidate must be verified.

Regarding the refinement step, it suffices to compare TPL withSFT, since boolean ranges are more efficient

than the conventional NN queries of SAA. Although Singh et al. [15] propose some optimization techniques

for minimizing the number of node accesses, a boolean range may still access a node that has already been

visited during the filter step or by a previous boolean query.On the other hand, the seamless integration of

the filter and refinement steps in TPL (i) re-uses informationabout the nodes visited during the filter step,

and (ii) eliminates multiple accesses to the same node. In other words, a node is visited at most once. This

integrated mechanism can also be applied to the methodologies of SAA and SFT. In particular, all the nodes

and points eliminated by the filter step (constrained NN queries in SAA, aKNN query in SFT) are inserted

in Srfn and our refinement algorithm is performed directly (insteadof NN or boolean queries).

The concept of bisectors is closely related to Voronoi cells(VC) used in [17] for bichromatic queries. In fact,

a possible solution for finding RNNs in 2D space is to first obtain the setSV (q) of points from the datasetP ,
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Figure 18: The connection between TPL and Voronoi cells

whose bisectors with the query pointq contribute to an edge of the VC coveringq (in the Voronoi diagram

computed fromP ∪{q}). For example, in Figure 18,SV (q) equals{p1, p2, p3, p4}, andV C(q) is the shaded

region. Any point (e.g.,p5) that does not belong toSV (q) cannot be a RNN, because it lies outsideV C(q),

and must be closer to at least one point (i.e.,p2) in SV (q) than toq. Therefore, in the refinement step, it

suffices to verify whether the points inSV (q) are the true RNNs.

However, this approach is limited to 2D space because computing Voronoi cells in higher dimensional space

is very expensive [4]. Furthermore, its application tok > 1 requires calculating order-k Voronoi cells, which

is complex and costly even in 2D space [4]. TPL avoids these problems by retrieving candidates that are not

necessarily points inV C(q), but are sufficient for eliminating the remaining data. Furthermore, note that

some objects inV C(q) may not be discovered by TPL as candidates. For instance, in Figure 18, TPL will

processp2 beforep3 since the former is closer toq. After addingp2 to the candidate set,p3 will be pruned

because it falls in the half-spaceHSp2
(q, p2). In this case, the candidate set returned by the filter step of

TPL includes onlyp1, p2, andp4.

4 RkNN Processing

Section 4.1 presents properties that permit pruning of the search space for arbitrary values ofk. Section 4.2

extends TPL to RkNN queries. Section 4.3 discusses an alternative solution based on the previous work, and

clarifies the superiority of TPL.

4.1 Problem Characteristics

The half-space pruning strategy of Section 3.1 extends to arbitrary values ofk. Figure 19a shows an example

with k = 2, where the shaded region corresponds to the intersectionHSp1
(p1, q) ∩ HSp2

(p2, q). Pointp is

not a R2NN ofq, since bothp1 andp2 are closer to it thanq. Similarly, a node MBR (e.g.,N1) inside the

shaded area cannot contain any results. In some cases, several half-space intersections are needed to prune

a node. Assume the R2NN queryq and the three data points of Figure 19b. Each pair of points generates

an intersection of half-spaces: (i)HSp1
(p1, q) ∩ HSp2

(p2, q) (i.e., polygonIECB), (ii) HSp1
(p1, q) ∩
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Figure 19: Examples of R2NN queries

HSp3
(p3, q) (polygonADCB), and (iii)HSp2

(p1, q)∩HSp3
(p3, q) (polygonIFGHB). The shaded region

is the union of these 3 intersections (i.e.,IECB ∪ADCB ∪ IFGHB). A node MBR (e.g.,N2) inside this

region can be pruned, although it is not totally covered by any individual intersection area.

In general, assume a RkNN query andnc ≥ k data pointsp1, p2, ..., pnc
(e.g., in Figure 19bnc = 3 and

k = 2). Let {σ1, σ2, ..., σk} be any subset of{p1, p2, ..., pnc
}. The subset prunes the intersection area

∩k
i=1HSσi

(σi, q). The entire region that can be eliminated corresponds to theunion of the intersection areas

of all
(

nc

k

)

subsets. Examining
(

nc

k

)

subsets is expensive for largek andnc. In order to reduce the cost, we

restrict the number of inspected subsets using the following heuristic. First, all the points are sorted according

to their Hilbert values; let the sorted order bep1, p2, ..., pnc
. Then, we consider only the intersection areas

computed from thenc subsets{p1, ..., pk}, {p2, ..., pk+1}, ..., {pnc
, ..., pk−1}, based on the rationale that

points close to each other tend to produce a large pruning area. The tradeoff is that we may occasionally

mis-judge an MBRN to be un-prunable, whileN could be eliminated if all the
(

nc

k

)

subsets were considered.

Similar to trim in Figure 11,k-trim aims at returning the minimum distance from queryq to the partN resP

of N that cannot be pruned. SinceN resP is difficult to compute, we bound it with a residual MBRN resM ,

andk-trim reports themindistfrom q to N resM . If N resM does not exist,k-trim returns∞, andN is pruned.

The above discussion leads to thek-trim algorithm in Figure 20.Initially,N resM is set toN , and is updated

incrementally according to each of thenc subsets examined. Specifically, given a subset{σ1, σ2, ..., σk},

we first compute, for each pointσj (1 ≤ j ≤ k), the MBRNj for the part of the currentN resM that falls

in HSq(σj , q). Then, the newN resM becomes the union of thek MBRs N1, N2, ...,Nk. We illustrate the

computation using Figure 21 where the currentN resM is rectangleABCD, and the subset being examined

is {p1, p2} (i.e.,k = 2). For bisector⊥(p1, q), we use the algorithm in [7] to obtain the MBRN1 (polygon

ADJI) for the area ofN resM falling in HSq(p1, q). Similarly, for bisector⊥(p2, q), the algorithm of [7]

returnsN2 = ADFE (MBR for the part ofN resM in HSq(p2, q)). Hence, the newN resM is the union of

N1 andN2, i.e., rectangleADFE. Notice that every point that is in the originalN resM but not inADFE
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Algorithm k-trim (q, {p1, p2, ..., pnc
}, N )

/* q is the query point;p1, p2, ..., pnc
are arbitrary data points, andnc ≥ k; N is the MBR being trimmed; */

1. sort thenc data points in ascending order of their Hilbert values (assume the sorted orderp1, p2, ..., pnc
)

2. N resM = N
3. for i = 1 tonc //consider each subset containingk consecutive points{σ1, σ2, ..., σk} in the sorted order
4. for j = 1 tok
5. Nj = clipping(N resM , HSq(σj , q))

//algorithm of [7]: obtain the MBR for the part ofN resM in the half-spaceHSq(σj , q)
6. N resM = ∪k

j=1
Nj

7. if N resM = ∅ then return∞
8. returnmindist(N resM , q)

Figure 20: Thek-trim algorithm
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Figure 21: ComputingN resM for R2NN processing

cannot be a R2NN ofq, because it must lie in bothHSp1
(p1, q) andHSp2

(p2, q).

4.2 The TPL Algorithm for RkNN Search

To solve a RkNN query, we adopt the framework of Section 3. Specifically, the filter step of TPL initially

accesses the nodes of the R-tree in ascending order of theirmindist to the queryq, and finds an initial

candidate setScnd which contains thek points nearest toq. Then, the algorithm decides the node access

order (for the MBRs subsequently encountered) based on the distance computed byk-trim. MBRs and data

points pruned (i.e.,k-trim returns∞) are kept in the refinement setSrfn. The filter phase finishes when all

the nodes that may include candidates have been accessed.

The refinement step is also executed in rounds, which are formally described in Figure 22. The first round

is invoked withPrfn andNrfn that contain the points and MBRs inSrfn respectively, and we attempt to

eliminate (validate) as many false hits (final RkNNs) fromScnd as possible. The elimination and validation

rules, however, are different fromk = 1 because a pointp ∈ Scnd can be pruned (validated) only if there

are at least (fewer than)k points within distancedist(p, q) from p. Thus, we associatep with a counter

p.counter (initially set tok), and decrease it every time we find a pointp′ satisfyingdist(p, p′) < dist(p, q).

We eliminatep as a false hit when its counter becomes 0.
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Algorithm k-refinement-round(q, Scnd, Prfn, Nrfn)
/* q is the query point;Scnd is the set of candidates that have not been verified so far;Prfn (Nrfn) contains
the points (nodes) that will be used in this round for candidate verification */
1. for each pointp ∈ Scnd

2. for each pointp′ ∈ Prfn

3. if dist(p, p′) < dist(p, q)
4. p.counter = p.counter − 1
5. if p.counter = 0
6. Scnd = Scnd − {p} //false hit
7. goto 1 //test next candidate
8. for each node MBRN ∈ Nrfn

9. if maxdist(p, N) < dist(p, q) andf l
min ≥ p.counter //l is the level ofN

10. Scnd = Scnd − {p}
11. goto 1 //test next candidate
12. for each node MBRN ∈ Nrfn

13. if mindist(p, N) < dist(p, q) then addN in setp.toV isit
14. if p.toV isit = ∅
15. Scnd = Scnd − {p} and reportp //actual result

Figure 22: The refinement round of TPL fork > 1

Recall that, fork = 1, TPL claims a pointp to be a false hit as long asminmaxdist(p,N) < dist(p, q) for

a nodeN ∈ Nrfn. Fork > 1, this heuristic is replaced with an alternative that utilizes themaxdistbetween

p andN , and a lower bound for the number of points inN . If maxdist(p,N) < dist(p, q), then there are

at leastf l
min points (in the subtree ofN ) that are closer top thanq, wherefmin is the minimum node fanout

(for R-trees, 40% of the node capacity), andl the level ofN (counting from the leaf level as level 0). Hence,

p can be pruned iff l
min ≥ p.counter.

After a round, TPL accesses a nodeN selected from thetoV isit lists of the remaining candidates by the

same criteria as in the case ofk = 1. Then, depending on whetherN is a leaf or intermediate node,Prfn

or Nrfn is filled with the entries inN , and another round is performed. The refinement phase terminates

after all the points inScnd have been eliminated or verified. We omit the pseudo-codes ofthe filter and

main refinement algorithms fork > 1 because they are (almost) the same as those in Figures 13 and 15

respectively, except for the differences mentioned earlier.

4.3 Discussion

Although SAA was originally proposed for single RNN retrieval, it can be extended to arbitrary values ofk

based on the following lemma:

Lemma 2. Given a 2D RkNN queryq, divide the space aroundq into 6 equal partitions as in Figure 5.

Then, thek NNs ofq in each partition are the only possible results ofq. Furthermore, in the worst case, all

these points may be the actual RkNNs.
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Figure 23: Illustration of Lemma 2

Proof. Presented in the appendix.

As a corollary, for any query point in 2D space, the maximum number of RkNNs equals6k. Figure 23

illustrates the lemma using an example withk = 2. The candidates ofq include{p1, p2, p4, p5, p6} (e.g.,

p3 is not a candidate since it is the 3rd NN in partitionS1). Based on Lemma 2, the filter step of SAA may

execute 6 constrainedkNN queries [6] in each partition. Then, the refinement step verifies or eliminates each

candidate with akNN search. This approach, however, has the same problem as the original SAA, i.e. the

number of partitions to be searched increases exponentially with the dimensionality.

As mentioned in Section 2.2, SFT can support RkNN by setting a large value ofK (� k), and adapting a

boolean range query to verify whether there are at leastk points closer to a candidate than the query point

q. Similar to the case ofk = 1, various boolean queries may access the same node multiple times, which is

avoided in TPL.

5 Continuous RkNN Processing

Given a segmentqAqB, a CkNN query aims at reporting the RkNNs for every point on the segment. As

discussed in Section 1, the objective is to find a set of split points that partitionqAqB into disjoint sub-

segments, such that all points in the same sub-segment have identical RkNNs. Section 5.1 first explains the

pruning heuristics, and then Section 5.2 illustrates the concrete algorithms.

5.1 Problem Characteristics

We first provide the rationale behind our solutions assumingk = 1 and 2D space, before presenting the

formal results for arbitraryk and dimensionality. Consider Figure 24a, where we draw lines lA andlB that

are vertical to the query segment, and cross the two end points qA andqB, respectively. These two lines

divide the data space into 3 areas: to the left oflA, betweenlA and lB , and to the right oflB . Let p be a
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(a) Pointp lies to the left oflA (b) Pointp lies betweenlA andlB

Figure 24: Pruning regions for continuous RNN

data point to the left oflA. The bisector⊥(qA, p) intersects the left boundary of the data space atA, and

it intersects linelA at B. Then, the polygonABFE cannot contain any query result. To understand this,

consider an arbitrary pointp1 in ABFE, and any pointq on segmentqAqB . The distance betweenp1 andq

is at leastdist(p1, qA) (the minimum distance fromp1 to the query segment), which is larger thandist(p1, p)

(sincep1 is in HSp(qA, p)). Therefore,p is closer top1 thanq, i.e.,p1 is not a RNN ofq. Bisector⊥(qB, p),

on the other hand, intersects the bottom of the data space atD and linelB at C. By the same reasoning (of

eliminatingABFE), no point (e.g.,p3) in the triangleCGD can be a query result.

Pointp also prunes a region between lineslA andlB . To formulate this region, we need the locus of points

(betweenlA and lB) that are equi-distant top andqAqB . The locus is a parabola, i.e., the dashed curve in

Figure 24a. All points (e.g.,p2) bounded bylA, lB , and the parabola can be safely discarded. In fact, for any

point q on qAqB, dist(p2, q) is at leastdist(p2,H), whereH is the projection ofp2 on qAqB. Segmentp2H

intersects the parabola at pointI and, by the parabola definition,dist(p, I) = dist(I,H). Sincedist(p2,H)

is the sum ofdist(p2, I) anddist(I,H), dist(p2,H) = dist(p2, I) + dist(p, I) > dist(p, p2) (triangle

inequality). Therefore,p is closer top2 thanq, or equivalently,p2 is not a RNN ofq.

Therefore,p prunes a region that is bounded by two line segmentsAB, CD, and curveBC, i.e., any node

N that falls completely in this region does not need to be accessed. Unfortunately, checking whetherN

lies in this region is inefficient due to the existence of a non-linear boundaryBC. We avoid this problem by

examining ifN is contained in the intersection of half-spaces, which has been solved in the previous sections.

Specifically, we decrease the pruning region by replacing the boundary curveBC with a line segmentBC,

resulting in a new region corresponding to the shaded area inFigure 24a. All points/MBRs falling in the area

can be safely eliminated because it is entirely contained inthe exact pruning region.

By symmetry, a pointp lying to the right oflB produces a pruning area that can be derived in the same way as

in Figure 24a. Next, we elaborate the case wherep is betweenlA andlB (see Figure 24b). Bisectors⊥(qA, p)
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and⊥(qB , p) define polygonsABFE andGCDH that cannot contain query results (the reasoning is the

same as eliminatingABFE andCDG in Figure 24a). The curveBC in Figure 24b is a parabola including

points that are equally distant fromqAqB andp. Similar to Figure 24a, all the points betweenlA andlB that

are below the parabola can be pruned. To facilitate processing, we again approximate curveBC with a line

segmentBC, and as a result, the pruning region introduced byp is also a polygon (the shaded area) bounded

by⊥(qA, p), ⊥(qB, p) and segmentBC.

As a heuristic, the parabolas in Figures 24a and 24b can be more accurately approximated using multiple

segments in order to reduce the difference between the approximate and exact pruning regions. For example,

in Figure 24b, instead of segmentBC, we can bound the approximate pruning region with segmentsBI and

IC, whereI is an arbitrary point on the parabola. For simplicity, in thesequel, we always approximate a

parabola using a single segment, but extending our discussion to using multiple segments is straightforward.

In general, for any dimensionalityd, the pruning region defined by a pointp is decided by threed-dimensional

planes, two of which are the bisector planes⊥(qA, p) and⊥(qB, p), respectively. To identify the third one,

we first obtain twod-dimensional planesLA, LB that are perpendicular to segmentqAqB, and crossqA,

qB respectively (in Figure 24 whered = 2, LA and LB are lineslA and lB , respectively). PlanesLA

and⊥(qA, p) intersect into a(d − 1)-dimensional planeL′
A, and similarly,LB and⊥(qB, p) produce a

(d − 1)-dimensional planeL′
B (in Figure 24,L′

A andL′
B are pointsB andC, respectively). As shown in

the following lemma, there exists ad-dimensional plane passing bothL′
A andL′

B , and this is the 3rd plane

bounding the pruning region.

Lemma 3. BothL′
A andL′

B belong to ad-dimensional plane satisfying the following equation:

d
∑

i=1

(2p[i] − qA[i] − qB[i]) · x[i] +
d
∑

i=1

(

qA[i] · qB[i] −
p[i]2

2

)

= 0 (1)

wherex[i] denotes thei-th (1 ≤ i ≤ d) coordinate of a point in the plane, and similarly,p[i], qA[i], qB [i]

describe the coordinates ofp, qA, andqB, respectively.

Proof. Presented in the appendix.

The next lemma establishes the correctness of the pruning region formulated earlier.

Lemma 4. Given a query segmentqAqB and a data pointp, consider half-spacesHSp(qA, p), HSp(qB , p)

(decided by the bisectors⊥(qA, p) and⊥(qB , p)), and the half-spaceHSp(L) that is bounded by the plane

L of Equation 1 and containsp. Then, no point inHSp(qA, p) ∩ HSp(qB , p) ∩ HSp(L) can be a RNN of

any pointq on qAqB.

Proof. Presented in the appendix.
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We are ready to clarify the details of pruning an MBRN , given a setS of nc points{p1, ..., pnc
}. At the

beginning, we setN resM (the residual MBR) toN . For eachpi (1 ≤ i ≤ nc), we incrementally update

N resM using 3 half-spacesH1, H2, H3 that are “complement” to those in Lemma 4. Specifically,H1 and

H2 correspond toHSqA
(qA, pi) andHSqB

(qB, pi) respectively, andH3 is the half-space that is decided by

thed-dimensional plane of Equation 1 (replacingp with pi), and containsqA (H3 can be represented with an

inequality that replaces the “=” in Equation 1 with “≤”). For everyHj (1 ≤ j ≤ 3), we apply the clipping

algorithm of [7] to obtain the MBRNj for the part of the previousN resM lying in Hj, after whichN resM

is updated to∪3
i=1Nj . To understand the correctness of the resultingN resM , notice that any pointp, which

belongs to the originalN resM but not∪3
j=1Nj, does not fall in any ofH1, H2, andH3, indicating thatp lies

in the pruning region formulated in Lemma 4. IfN resM becomes empty, no query result can exist in the

subtree ofN , andN can be eliminated.

The extension to general values ofk is straightforward. Following the methodology of Section 4.1, we sort

the points inS according to their Hilbert values. Given the sorted list{p1, ..., pnc
}, we examine thenc

subsets{p1, ..., pk}, {p2, ..., pk+1}, ..., {pnc
, ..., pk−1} in turn, and updateN resM incrementally after each

examination. Specifically, given a subset{σ1, σ2, ..., σk}, we obtain, for each pointσi (1 ≤ i ≤ k), three

half-spacesHi1, Hi2, Hi3 as described earlier for the case ofk = 1. For each of the3k half-spacesHij

(1 ≤ i ≤ k, 1 ≤ j ≤ 3), we compute the MBRNij for the part of (the previous)N resM in Hij . Then,

the newN resM (after examining{σ1, σ2, ..., σk}) equals the union of the3k MBRs Nij (1 ≤ i ≤ k and

1 ≤ j ≤ 3). Figure 25 presents the trimming algorithm for any value ofk. This algorithm returns∞ if

the finalN resM after considering all thenc subsets ofS is empty. Otherwise (N resM 6= ∅), it returns the

minimum distance betweenN resM and the query segmentqAqB (see [2] for computing the distance between

a segment and a rectangle for arbitrary dimensionality).

5.2 The C-TPL algorithm

We proceed to elaborate the proposed algorithm, C-TPL, for C-RkNN queries. As with TPL, C-TPL also

has a filter and a refinement step for retrieving and verifyingcandidates, respectively. However, unlike

conventional RkNN search where the actual NNs of the verified candidates do not need to be retrieved, as

illustrated shortly, this is necessary for C-RkNN retrieval in order to obtain the split points. Therefore,C-

TPL includes a third phase, thesplitting step, for computing the split points. In the sequel, we explain C-TPL

using a 2D example withk = 1. Since C-TPL is similar to TPL, our discussion focuses on clarifying the

differences between the two algorithms.

Consider Figure 26a, which shows part of a dataset and the MBRs of the corresponding R-tree in Figure 26c.

The filter step of C-TPL visits the entries in ascending orderof their mindist to qAqB , and maintains the

encountered entries in a heapH. The first few nodes accessed are the root,N1, andN4, leading toH =
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Algorithm c-k-trim (qAqB, {p1, p2, ..., pnc
}, N )

/* qAqB is the query segment;p1, p2, ..., pnc
are arbitrary data points, andnc ≥ k; N is the MBR being

trimmed; */
1. sort thenc data points in ascending order of their Hilbert values (assume the sorted orderp1, p2, ..., pnc

)
2. N resM = N
3. for i = 1 tonc //consider each subset containingk consecutive points{σ1, σ2, ..., σk} in the sorted order
4. for j = 1 tok
5. Nj1 = clipping(N resM , HSqA

(σj , qA))
//algorithm of [7]: obtain the MBR for the part ofN resM in the half-spaceHSqA

(σj , qA)
6. Nj2 = clipping(N resM , HSqB

(σj , qB))
7. Nj3 = clipping(N resM , H)

//H is the half-space that is bounded by the plane of Equation 1 (replacingp with σj ), and containsqA

8. N resM = ∪k
j=1

(Nj1 ∪ Nj2 ∪ Nj3)
9. if N resM = ∅ then return∞
10. returnmindist(N resM , qAqB)

//algorithm of [2]: obtain the minimum distance between a rectangleN resM and a segmentqAqB

Figure 25: The trimming algorithm for C-RkNN search

{p1, N2, N5, p3, N3, N6}. Then,p1 is removed fromH, and becomes the first candidate inScnd. By the

reasoning of Figure 24a,p1 prunes polygonCLRFD, where segmentsCL andRF lie on ⊥(p1, qA) and

⊥(p1, qB) respectively, and pointL (R) is on the line perpendicular toqAqB passingqA (qB).

SinceScnd is not empty, for every MBR/point de-heaped subsequently, C-TPL attempts to prune it using the

algorithmc-k-trim of Figure 25. Continuing the example, C-TPL visits nodeN2, whereN9 cannot contain

any query result (it falls in polygonCLRFD, i.e., c-k-trim returnsmindist(qAqB , N resM
9 ) = ∞), and is

added to the refinement setSrfn. On the other hand,N7 andN8 (MBRs in nodeN2) are inserted toH

(= {N7, N5, p3, N3, N6, N8}), usingmindist(qAqB , N resM
7 ) andmindist(qAqB, N resM

8 ) as the sorting

keys. The algorithm proceeds by accessingN7, taking p2 (found in N7) as the second candidate (which

eliminates polygonHMQEG), and insertingN5, p3, p5 toSrfn (they fall in the union of polygonsCLRFD

andHMQEG). Then, C-TPL visits nodesN3, N10, includesp4 as a candidate (which prunes polygon

ABJKI), and adds all the remaining entries inH to Srfn = {N9, N5, N6, N8, N11, p3, p5, p7}, terminating

the filter step.

We illustrate the refinement step using Figure 26b (which shows some data points hidden from Figure 26a).

A candidatep is a final result if and only if no other data point exists in thecircle centered atp with a radius

mindist(qAqB , p) (the shaded areas represent the circles of the 3 candidatesp1, p2, p4). C-TPL invalidates

a candidate immediately if its circle contains another candidate. In Figure 26b, since no candidate can be

pruned this way, C-TPL associates each candidate with a valueNNdist, initialized as its distance to another

nearest candidate. In particular,p1.NNdist = p2.NNdist = dist(p1, p2) (they are closer to each other

than top4), andp4.NNdist = dist(p4, p1).

The remaining refinement is performed in rounds. The first round is invoked withPrfn = {p3, p5, p7}

26



q�
q�

N�

p�

N�

N�

N�

p�

p�N�	p�
N
N��

p
 N�

N�

N�
N�

A
B

C

D E F G

H

I

J K

L
M

Q
R

data space 
boundary

p�

q�
q

p�

p�N��p�N�

N��

p�p�
p��

p�
p� N� p�

N�
N�

N� N�

N�

N�

p�

p� p��
N�

s� s�

(a) The filter step (b) The refinement and splitting steps

������ �� �� ��

� � �  � !

"# "$% "& " $$

contents omitted 

"' "("$ "# ") "*

� �+ � ��

", "-

(c) The data R-tree

Figure 26: Illustration of the C-TPL algorithm

andNrfn = {N9, N5, N6, N8, N11} including the points and MBRs inSrfn, respectively. For every point

p ∈ Prfn, C-TPL checks (i) if it falls in the circle of any candidate (i.e., eliminating the candidate), and (ii)

if it can update theNNdist of any candidate. In our example, no point inPrfn satisfies (i), butp1.NNdist

is modified todist(p1, p3) (i.e., p3 is the NN ofp1 among all the data points seen in the refinement step).

Similarly, p2.NNdist andp4.NNdist becomedist(p2, p5) anddist(p4, p7), respectively.

For each MBRN ∈ Nrfn, C-TPL first examines whether itsminmaxdistto a candidate is smaller than the

radius of the candidate’s shaded circle. In Figure 26b, the right edge ofN11 lies inside the circle ofp4,

which discardsp4 as a false hit (N11 is guaranteed to contain a point that is closer top4 thanq). Then,

C-TPL populates thetoV isit list of each remaining candidate with those MBRs intersecting its circle, i.e.,

toV isit(p1) = N5 andtoV isit(p2) = ∅ (indicating thatp2 is a final result). In TPL, nodes ofNrfn that

do not appear in anytoV isit list can be discarded, while C-TPL collects (among such nodes) into a set

Ssplt those that may contain the NN of a candidate. In our example,Ssplt containsN6 andN8 because

mindist(N6, p1) andmindist(N8, p1) are smaller than the currentp1.NNdist andp2.NNdist, respec-

tively. Note thatN5 is not collected (even thoughmindist(p1, N5) < p1.NNdist) because it belongs to
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Algorithm C-k-refinement-round(qAqB, Srslt, Scnd, Prfn, Nrfn, Ssplt)
/* qAqB is the query segment;Srslt is the set of points confirmed to be the query results;Scnd is the set of candidates
that have not been verified;Prfn (Nrfn) contains the points (nodes) that will be used for candidateverification in this
round;Ssplt is the set of nodes to be processed in the splitting step*/
1. for each pointp ∈ Scnd ∪ Srslt

2. for each pointp′ ∈ Prfn

3. if dist(p, p′) < p.NNdist then
4. updatep.SNN , which contains thek NNs ofp among the points seen in the refinement step so far
5. if p.SNN has less thank points thenp.NNdist = ∞
6. elsep.NNdist = the distance betweenp and the farthest point inp.SNN

7. if p ∈ Scnd

8-18. these lines are identical to Lines 3-13 in Figure 22
19. if p.toV isit = ∅ thenScnd = Scnd − {p} andSrslt = Srslt ∪ {p}
20. for each nodeN that is inNrfn but not in anytoV isit list
21. for each pointp in Scnd andSrslt

22. if mindist(N, p) < p.NNdist thenSsplt = Ssplt ∪ {N} and go to 19

Algorithm C-TPL-refinement(qAqB, Scnd, Srfn)
/* qAqB is the query segment;Scnd andScnd are the candidate and refinement sets returned by the filter step; */
1. Srslt = Ssplt = ∅ //the semantics ofSrslt andSsplt are explained at the beginning ofc-k-refinement-round
2. for each pointp ∈ Scnd

3. p.SNN = thek other points inScnd closest top
4. setp.NNdist as in Lines 5-6 inc-k-refinement-round.
5. p.counter = k
6. for each other pointp′ in Scnd

7. if dist(p, p′) < mindist(p, qAqB)
8. p.counter = p.counter − 1
9. if p.counter = 0 thenScnd = Scnd − {p}, Ssplt = Ssplt ∪ {p}, and goto 6
10.Prfn = the set of points inSrfn; Nrfn = the set of MBRs inSrfn

11. repeat
12. C-k-TPL-refinement-round(q, Srslt, Scnd, Prfn, Nrfn, Ssplt)
Lines 13-20 are identical to Lines 9-16 in Figure 15

Figure 27: The refinement algorithm of C-TPL

p1.toV isit.

The refinement round finishes by selecting a node (i.e.,N5) from thetoV isit lists to be visited next, using

the same criteria as in TPL. The next round is carried out in the same way with an emptyNrfn and aPrfn

containing the pointsp8, p9 in N5. Both of them fall out of the circle ofp1 (i.e., they cannot invalidatep1).

Furthermore, they do not affect theNNdist of the current candidates. Since alltoV isit lists are empty, the

refinement step is completed, and confirmsp1 andp2 as the final results.

C-TPL now enters the splitting step which obtains the trueNNdist for every candidate with respect to the

entire dataset. Towards this, it performs a best-first NN search for every confirmed candidate in turn, using

the nodes preserved inSsplt = {N6, N1}. For every data point encountered during the NN search of one

candidate, C-TPL also attempts to update theNNdist for the other candidates. Assume that in Figure 26,

the algorithm performs the NN search forp1 first, and processes the MBRs ofSsplt in ascending order (i.e.,
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Algorithm C-TPL-splitting (qAqB, Srslt, Ssplt)
/* qAqB is the query segment;Srslt contains all the query results;Ssplt are the nodes that have not be accessed in the
previous steps */
1. for each pointp ∈ Srslt

2. organize the MBRs inSsplt into a heapH using theirmindistto p as the sorting keys
3. repeat
4. de-heap the top entry (N , key) from H //N is an MBR, andkey is its mindistto p
5. if p.NNdist < key //the end of the NN search forp
6. Ssplt = {N}∪ {the remaining nodes inH}
7. go to line 1
8. if N is a leaf node
9. for each pointp′ in N
10. update theSNN andNNdist of every point inSrslt as in Lines 4-6 ofc-k-refinement-roundin Figure 27
11. else //N is an intermediate node
12. for each MBRN ′ in N
13. insert(N ′, mindist(N ′, p)) in H
14.obtain the circle that is centered at each pointp ∈ Srslt, and its radius equalsp.NNdist
15.obtain all the split points as the intersection betweenqAqB and the circles
16. for each sub-segments of qAqB separated by the split points
17. report<{owners of circles coverings}, s>

Figure 28: The splitting step algorithm of C-TPL

{N6, N1}) of their mindistto p1. Sincemindist(p1, N6) < p1.NNdist, nodeN6 is visited. Although the

pointsp3 andp10 in N6 do not affectp1.NNdist, p2.NNdist (originally equal todist(p2, p5)) is decreased

to dist(p2, p3). Sincep1.NNdist = dist(p1, p3) is smaller than themindistbetweenp1 and the next entry

N1 in Ssplt, the NN search ofp1 finishes. Next, a similar search is performed forp2 (using the remaining

MBRs inSsplt), accessingN8 and finalizingp2.NNdist to dist(p2, p6).

To decide the split points, C-TPL draws 2 circles centering at p1 andp2 with radii equal top1.NNdist and

p2.NNdist, respectively. As shown in Figure 26, these circles intersect qAqB at s1 ands2. Hence, the final

result of the C-RNN query is:{<{p1}, [qA, s1)>, <∅, [s1, s2)>, <{p2}, [s2, qB ]>} (points in [s1, s2) do

not have any RNN).

Extending C-TPL fork = 1 to other values ofk requires modifications similar to those discussed in Sec-

tion 4.2 (for extending TPL tok > 1). First, in the filter step,c-k-trim can be applied for pruning only after

Scnd has included at leastk points. Second, in the refinement step, theNNdist corresponds to the distance

between the candidate and itsk-th NN among all the points that have been examined in refinement1. Further-

more, a candidatep can be invalidated (verified) if there are at least (less than) k points in the circle centered

at p with radiusmindist(qAqB, p). Third, in the splitting step, akNN search is needed for each verified

candidate. The detailed implementations of the above modifications are illustrated in Figures 13 (replacing

q with qAqB, andtrim with c-k-trim), 27 and 28, which present the pseudo-codes for the filter, refinement,

1Since points are not encountered in ascending order of theirdistances to a candidate, in order to maintainNNdist, C-TPL also

keeps the coordinates of thek NNs for each candidate, as illustrated in Figure 27.
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LB NA LA Wave Color
dimensionality 2 2 2 3 4

cardinality 123k 569k 1314k 60k 65k

Table 2: Statistics of the real datasets used

and splitting steps respectively, covering arbitraryk and dimensionality.

We close this section by explaining how BJKS (originally designed fork = 1) can be extended to the case

of k > 1, based on the adapted SAA in Section 4.3. Conceptually, for every pointq on the query segment

qAqB, the filter step of BJKS retrieves as candidates thek NNs of q in each of the 6 partitions aroundq. All

the NN searches can be performed in a single traversal of the R-tree using the technique of [2]. For each

candidatep, the refinement step obtains itsk-th NN (in the entire data space)p′, and confirmsp as a result

only if the circle centered atp with radiusdist(p, p′) intersectsqAqB. Finally, the split points onqAqB can

be computed in the same way as C-TPL, i.e., taking the intersection between the circle ofp andqAqB . The

extended BJKS, however, is also restricted to 2D space, due to the limitation of SAA.

6 Experiments

In this section, we experimentally evaluate the efficiency of the proposed algorithms, using a Pentium IV

3.4GHz CPU. We deploy 5 real datasets2, whose statistics are summarized in Table 2. Specifically,LB, NA,

andLA contain 2D points representing geometric locations in LongBeach County, North America, and Los

Angeles, respectively.Waveincludes the measurements of wave directions at the National Buoy Center, and

Color consists of the color histograms of 65k images. For all datasets, each dimension of the data space is

normalized to range [0, 10000]. We also create synthetic data following the uniform and Zipf distributions.

The coordinates of each point in a uniform dataset are generated randomly in [0, 10000], whereas, for a Zipf

dataset, the coordinates follow a Zipf distribution skewedtowards 0 (with a skew coefficient3 0.8). In both

cases, a point’s coordinates on various dimensions are mutually independent.

Every dataset is indexed by an R*-tree [1] where the node sizeis fixed to 1k bytes4. Accordingly, the node

capacity (i.e., the maximum number of entries in a node) equals 50, 36, 28, and 23 entries for dimensionalities

2, 3, 4, and 5, respectively. The query cost is measured as thesum of the I/O and CPU time, where the I/O

time is computed by charging 10ms for each page access. We present our results in two parts, focusing on

conventional RkNN search in Section 6.1 and continuous retrieval in Section6.2, respectively.

2LB, NA, andLA can be downloaded fromhttp://www.census.gov/geo/www/tiger, Wavefrom http://www.ndbc.noaa.gov, and

Color from http://www.cs.cityu.edu.hk/∼taoyf/ds.html.
3When the skew coefficient equals 1, all numbers generated by the Zipf distribution are equivalent. When the coefficient equals

0, the Zipf distribution degenerates to uniformity.
4We choose a smaller page size to simulate practical scenarios where the dataset cardinality is much larger.
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6.1 Results on Conventional RkNN Queries

We compare TPL against SAA (for 2D data) and SFT because, as discussed in Section 2.2, these are the only

methods applicable to dynamic datasets. Our implementation of SAA incorporates the optimization of [16]

that performs the6k constrained NN queries5 (in the filter step) with a single traversal of the R-tree. Recall

that the filter phase of SFT performs aKNN search whereK should be significantly larger thank. In the

following experiments, we setK to 10d · k, whered is the dimensionality of the underlying dataset6, e.g.,

K = 20 for a RNN query on a 2D dataset. We remind that SFT is approximate, i.e., false misses cannot be

avoided unlessK is as large as the dataset size.

The experiments in this section aim at investigating the influence of these factors: data distribution, dataset

cardinality, dimensionality, value ofk, and buffer size. In particular, the first three factors are properties of

a dataset, the next one a query parameter, and the last factoris system-dependent. A “workload” consists of

200 queries with the samek whose locations follow the distribution of the underlying dataset. Each reported

value in the following diagrams is averaged over all the queries in a workload. Unless specifically stated, the

buffer size is 0, i.e., the I/O cost is determined by the number of nodes accessed.

Figure 29 evaluates the query cost (in seconds) of alternative methods as a function ofk using the real

datasets. The cost of each method is divided in two components, corresponding to the overhead of the filter

and refinement steps, respectively. The number on top of eachcolumn indicates the percentage of I/O time in

the total query cost. For TPL, we also demonstrate (in brackets) the average number of candidates retrieved

by the filter step. These numbers are omitted for SAA (SFT) because they are fixed to6k (10d · k). SAA is

not tested onWaveandColor because the datasets have 3 and 4 dimensions, respectively.

Clearly7, TPL is the best algorithm for all datasets, especially for largek. In particular, the maximum

speedup of TPL over SAA (SFT) is 37 (10), which occurs forLB (NA) andk = 16. Notice that TPL is

especially efficient in the refinement step. Recall that TPL performs candidate verification using directly the

refinement set (containing the points and nodes pruned) fromthe filter step, avoiding duplicate accesses to

the same node. Furthermore, most candidates are invalidated directly by other candidates or points in the

refinement set. The remaining candidates can be verified by accessing a limited number of additional nodes.

The performance of SAA is comparable to that of TPL in the filter step, because SAA retrieves a small

number (compared to the node capacity) of NNs of the query point q, which requires visiting only the few

nodes aroundq. However, SAA is expensive in the refinement phase since it invokes one NN search for every

5Stanoi et al. [16] discuss only RNN search (k = 1). Fork > 1, we use the extension of SAA presented in Section 4.3.
6In the experiments of [15], SFT usedK = 50 even fork = 1. We use a relatively lowerK to reduce the cost of this method.
7The cost is different from the results reported in the short version [18] of this paper, where query points uniformly distributed

in the data space, instead of following the underlying data distribution. Furthermore, all methods consume less CPU time because

we used a more powerful machine.
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Figure 29: RkNN cost vs.k (real data)

candidate. SFT is most costly in filtering because it retrieves numerous (10d · k) candidates; its refinement

is more efficient than SAA (due to the superiority of boolean range queries over NN search), but is still

less effective than TPL. All the algorithms are I/O bounded.However, ask increases, the CPU cost of TPL

occupies a larger fraction of the total time (indicated by its decreasing I/O percentage ask grows) due to the

higher cost ofk-trim which needs to process more half-spaces.

The next set of experiments inspects the impact of the dimensionality. Towards this, we deploy synthetic

datasets (Uniform andZipf) containing 512k points of dimensionalities 2-5. Figure 30compares the cost

of TPL and SFT (SAA is not included because it is restricted to2D only) in answering R4NN queries (the

parameterk = 4 is the median value used in Figure 29). The performance of both algorithms degrades
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Figure 30: RkNN cost vs. dimensionality (k = 4, cardinality = 512k)
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Figure 31: RkNN cost vs. cardinality (k = 4, dimensionality = 3)

because, in general, R-trees become less efficient as the dimensionality grows [19] (due to the larger overlap

among the MBRs at the same level). Furthermore, the number ofTPL candidates increases, leading to higher

cost for both the filter and refinement phases. Nevertheless,TPL is still significantly faster than SFT.

To study the effect of the dataset cardinality, we use 3DUniform andZipf datasets whose cardinalities range

from 128k to over 2 million. Figure 31 measures the performance of TPL and SFT (in processing R4NN

queries) as a function of the dataset cardinality. TPL incurs around a quarter of the overhead of SFT in all

cases. The step-wise cost growth corresponds to an increaseof the tree height (from 4 to 5). Specifically, for

Uniform (Zipf) data, the increase occurs at cardinality 1024k (2048k).

The last set of experiments in this section examines the performance of alternative methods in the presence

of a LRU buffer. We process R4NN queries on the 2D synthetic datasets with cardinality 512k, varying the

buffer size from 0% to 10% of the R-tree size. Given a workload, we measure the average cost of the last

100 queries (i.e., after “warming up” the buffer with the first 100 queries). Figures 32a and 32b demonstrate

the results forUniform andZipf data, respectively. The refinement step of SAA and SFT requires multiple

NN/boolean searches that repetitively access several nodes (e.g., the root of the R-tree), and a (small) buffer
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Figure 32: RkNN cost vs. buffer size (k = 4, dimensionality = 2)

ensures loading such nodes from the disk only once, leading to dramatic reduction in the overall cost. Similar

phenomena are not observed for TPL because it never accessesthe same node twice in a single query. For

buffer sizes larger than 2%, the cost of all algorithms is decided by their filter phase, and SAA becomes more

efficient than SFT. TPL again outperforms its competitors inall cases.

6.2 Results on Continuous RkNN Queries

Having demonstrated the efficiency of TPL for conventional RNN search, we proceed to evaluate C-TPL for

continuous retrieval. The only existing solution BJKS [2] assumesk = 1. Fork > 1, we compare C-TPL

against the extended version of BJKS explained at the end of Section 5.2. In addition to the parameterk,

the query performance is also affected by the lengthl of the query segment. We generate a segment by first

deciding its starting pointqA following the underlying data distribution, and then selecting the ending point

qB randomly on the circle centered atqA with radiusl. A workload contains 200 queries with the samek

andl.

The first set of experiments fixesl to 100 (recall that each axis of the data space has length 10000), and

measures the cost of BJKS and C-TPL as a function ofk, using the real datasets. Figure 33 illustrates the

results (BJKS is not applicable toWaveandColor). Similar to the previous diagrams, the percentage of

the I/O time in the total cost is shown on top of each column. Wealso demonstrate the average number of

candidates returned by the filter step of C-TPL and BJKS in brackets. C-TPL is the better method in all the

experiments, and its comparison with BJKS is similar to thatbetween TPL and SAA in Figure 29. Compared

to conventional RkNN search, the number of candidates retrieved by C-TPL is much higher, which increases

the overhead of trimming, and explains why the CPU cost of C-TPL accounts for a larger fraction of the

total query time than TPL. Settingk to the median value 4, Figure 34 examines the performance of BJKS

and C-TPL by varyingl from 10 to 200. Asl increases, both algorithms retrieve more candidates and incur
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Figure 33: C-RkNN cost vs.k (real data,l = 100)

higher overhead. C-TPL still outperforms BJKS significantly.

Next we study the effects of dimensionality and cardinalityon the performance of C-TPL. Figure 35 plots

the results as a function of the dimensionality using synthetic datasets containing 512k points and workloads

with k = 4 andl = 100. C-TPL is more expensive in high dimensional space because of the degradation of

R-trees, and the larger number of query results. In Figure 36, we focus on 3D space, and evaluate the per-

formance for various dataset sizes. Similar to Figure 30, the cost growth demonstrates a step-wise behavior

due to the increase of the R-tree height at 1024k and 2048k forUniform andZipf, respectively.

Finally, we demonstrate the influence of LRU buffers on BJKS and C-TPL. As with the settings of Figure 32,

the two algorithms are used to process R4NN queries on a 2D dataset with cardinality 512k, as the buffer size
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Figure 34: C-RkNN cost vs.l (real data,k = 4)

changes from 0% to 10% of the size of the corresponding R-tree. For each workload, only the cost of the last

100 queries is measured. Figures 37 illustrates the overhead as a function of the buffer size, demonstrating

phenomena similar to those in Figure 32. Specifically, BJKS improves significantly given a small buffer, but

C-TPL is consistently faster regardless of the buffer size.

7 Conclusions

Existing methods for reverse nearest neighbor search focuson specific aspects of the problem, namely static

datasets, retrieval of single (k=1) RNNs or 2D space. This paper proposes TPL, the first general algorithm for

exact RkNN search on dynamic, multidimensional datasets. TPL follows a filter-refinement methodology:
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Figure 35: C-TPL cost vs. dimensionality (k = 4, l = 100, cardinality = 512k)
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Figure 36: C-TPL cost vs. cardinality (k = 4, l = 100, dimensionality = 3)

a filter step retrieves a set of candidate results that is guaranteed to include all the actual reverse nearest

neighbors; the subsequent refinement step eliminates the false hits. The two steps are integrated in a seamless

way that eliminates multiple accesses to the same index node. An extensive experimental comparison verifies

that, in addition to applicability, TPL outperforms the previous techniques, even in their restricted focus.

Furthermore, it leads to a fast algorithm for answering continuous RkNN queries (again, for arbitraryk and

dimensionality).

A promising direction for future work concerns the extension of the general framework of TPL to alternative

versions of the problem. One such example refers to metric space where the triangular inequality has to be

used (instead of bisectors) for pruning the search space. Wealso plan to investigate the application of the

proposed methodology to other forms of RNN retrieval, particularly, bichromatic [10, 17] and aggregate [11]

RNN queries. Finally, it would be interesting to develop analytical models for estimating (i) the expected

number of RNNs depending on the data properties (e.g., dimensionality, distribution, etc.) and (ii) the

execution cost of RNN algorithms. Such models will not only facilitate query optimization, but may also

reveal new problem characteristics that could lead to even better solutions.
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Figure 37: C-RkNN cost vs. buffer size (k = 4, dimensionality = 2)
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Appendix: Proofs for Lemmas

Lemma 1. Given a query pointq and an MBRN in 2D space, letN resP be the part (residual polygon) of

N satisfying a setS of half-spaces, andN resM the residual MBR computed (by the algorithm in Figure 11)

using the half-spaces inS. Then,mindist(N resM , q) = mindist(N resP , q) in all cases.

Proof. Since N resM always containsN resP , if N resM is empty, N resP is also empty, in which case

mindist(N resP , q) = mindist(N resM , q) = ∞. Hence, it suffices to discuss the possibility whereN resM

exists. We use the name “contact” for the point inN resM (N resP ) nearest toq. The following analysis

shows that the contacts ofN resM andN resP are the same point, which, therefore, validates the lemma.

We achieve this by induction. First, ifS is empty, bothN resP andN resM are equal to the original MBR

N , and obviously, their contacts are identical. Assuming that N resP andN resM have the same contact for

all setsS whose cardinalities are no more thanm (≥ 0), next we prove that they have the same contact for

any setS with a cardinalitym + 1. Let RP (RM ) be the residual polygon (MBR) with respect to the firstm

half-spaces inS, andcP (cM ) be the contact ofRP (RM ). By the inductive assumption,cP = cM . Since

RM is a rectangle,cM appears either at a corner or on an edge ofRM . We discuss these two cases separately.

Case 1:(cM is a corner ofRM ): Without loss of generality, assume that the coordinates of cM are larger than

or equal to those ofq on both dimensions. Denoteh as the (m + 1)-st half-space inS (recall thath contains
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Figure 38: Illustration of the proof of Lemma 1

q). If cM satisfiesh, thencM andcP remain the contacts ofN resM andN resP respectively, i.e., the final

residual MBR and polygon (after applying all the half-spaces inS) still have the same contact.

Now let us consider the scenario thatcM violatesh. Hence, the boundary ofh (a line) must intersect segment

cMq, and cross either the left or bottom edge ofRM (if not, RresM becomes empty). Due to symmetry, it

suffices to consider that lineh intersects the left edge, as in Figure 38a. The intersectionpoint is exactly the

contactcresM of N resM (note that the part ofRM lower thancresM will not appear inN resM ). Thus, it

remains to prove that this intersection is also the contactcresP of N resP .

Observe thatcresP must lie inside the shaded area, due to the fact thatRP (which containscresP ) is entirely

bounded byRM . Actually, cresP definitely falls on the part of lineh insideRM . To prove this, assume,

on the contrary, thatcresP is at some position (e.g.,c1) above lineh. Then, the segment connectingc1 and

cP intersects lineh at a pointc2. Since bothc1 andcP belong toRP , andRP is convex,c2 also lies in

RP , indicating thatc2 belongs toN resP , too (N resP is the part ofRP qualifying half-spaceh). Pointc2,

however, is closer toq thanc1, contradicting the assumption thatc1 is the contactcresP of N resP .

It follows that if cresP 6= cresM (e.g.,cresP = c2 in Figure 38a), then the x-coordinate ofcresP must be larger

than that ofcresM , which, in turn, is larger than that ofq. As cresM is closer toq thanc2, the hypothesis that

cresM is not the contact ofN resP also implies thatcresM does not belong toN resP , meaning thatcresM does

not fall in a half-spaceh′ (one of the firstm planes) inS. However, since bothcM (the contact of the residue

MBR RM after applying with the firstm planes) andc2 qualify h′, the boundary ofh′ must cross segment

cresMc2 andcMcresM , but notcMq. This is impossible (see Figure 38a), thus verifyingcresP = cresM .

Case 2:(cM is on an edge ofRM ): Assume thatcM (= cP ) lies on the left edge ofRM as illustrated in

Figure 38b (the scenarios wherecM is on other edges can be proved in the same manner). As in Case 1, if

cM satisfies the (m + 1)-st half-spaceh in S, both cM andcP remain the contacts ofN resM andN resP ,

respectively. Otherwise, lineh intersects segmentcMq, and may cross the left edge ofRM above or below

cM . Due to symmetry, let us focus on the scenario whereh intersects the left edge at a point abovecM

(Figure 38b), which is the contactcresM of N resM . The goal is to show thatcresM is also the contact
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Figure 39: The worst case of SAA

cresP of N resP . SinceRM completely enclosesRP , cresP falls in the shaded triangle of Figure 38b. Then,

cresP = cresM can be established in exactly the same way as in Case 1 (noticethat the relative positions of

q, cM , cresM , h, and the shaded area are identical in Figures 38a and 38b).

Note that Lemma 1 is also useful to “constrainedk nearest neighbor search” [6], which finds thek data

points in a polygonal constraint region that are closest to aquery pointq (recall that such queries are the

building-block for SAA and its extended version discussed in Section 4.3). As shown in [6], the best-first

algorithm can process a constrainedkNN search optimally (i.e., accessing only the nodes of an R-tree that

need to be visited by any algorithm), provided that it is possible to compute the minimum distance fromq

to the part of an MBRN inside the polygon. Lemma 1 provides an efficient way for obtaining this distance

in 2D space, which is equal to themindist from q to the residue MBR ofN , after trimmingN using the

half-spaces bounding the constraint region.

Lemma 2. Given a 2D RkNN queryq, divide the space aroundq into 6 equal partitions as in Figure 39.

Then, thek NNs ofq in each partition are the only possible results ofq. Furthermore, in the worst case, all

these points may be the actual RkNNs.

Proof. We first prove the first part of the lemma: if a pointp is not among thek NNs of q in a partition,

p cannot be a query result. Its correctness fork = 1 has been established in [16], which also shows an

interesting corollary: ifp′ is the closest NN ofq in the same partitionS that containsp, thendist(p, p′) <

dist(p, q). Utilizing these properties, in the sequel, we will prove that, if the first part of the lemma is true

for k = m (wherem is an arbitrary integer), it also holds fork = m + 1. In fact, if p′ is removed from the

dataset, we know thatp is not among them NNs of q in S. By our inductive assumption, there exist at least

m points (different fromp′) that are closer top thanq. Since we already havedist(p, p′) < dist(p, q), there

are at leastm + 1 points in the original dataset closer top thanq, i.e.,p is not a R(m + 1)NN of q.

In order to prove the second part of the lemma (i.e., the number of RkNNs in 2D space can be6k), it suffices

to construct such an example. Consider the 6 rays that partition the data space aroundq. On each ray, we
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placek points in ascending order of their distances toq as follows: the first point has distance 1 toq, and

every subsequent point has distance 1 to the previous one. Figure 39 shows such an example fork = 2.

These6k points constitute a dataset where all the points haveq as one of theirk NNs.

Lemma 3. BothL′
A andL′

B belong to ad-dimensional plane satisfying the following equation:

d
∑

i=1

(2p[i] − qA[i] − qB[i]) · x[i] +
d
∑

i=1

(

qA[i] · qB[i] −
p[i]2

2

)

= 0 (2)

wherex[i] denotes thei-th (1 ≤ i ≤ d) coordinate of a point in the plane, and similarly,p[i], qA[i], qB [i]

describe the coordinates ofp, qA, andqB, respectively.

Proof. We prove the lemma only forL′
A because the case ofL′

B is similar. We achieve this by representing

L′
A using the coordinates ofp, qA, andqB. For this purpose, we obtain the equation ofLA:

d
∑

i=1

((qB [i] − qA[i]) · x[i]) −
d
∑

i=1

((qB [i] − qA[i]) · qA[i]) = 0 (3)

and the equation of⊥(qA, p):

d
∑

i=1

((qA[i] − p[i]) · x[i]) −
d
∑

i=1

qA[i]2 − p[i]2

2
= 0 (4)

Therefore,L′
A includes the pointsx that satisfy Equations 3 and 4 simultaneously. Hence, all the d-

dimensional planes8 that crossL′
A are captured by:

d
∑

i=1

((qB [i] − qA[i]) · x[i]) −
d
∑

i=1

((qB [i] − qA[i]) · qA[i])+ (5)

λ ·

(

d
∑

i=1

((qA[i] − p[i]) · x[i]) −
d
∑

i=1

qA[i]2 − p[i]2

2

)

= 0

where various planes are distinguished with differentλ (an arbitrary real number). The plane of Equation 2

corresponds to settingλ = 2.

Lemma 4. Given a query segmentqAqB and a data pointp, consider half-spacesHSp(qA, p), HSp(qB , p)

(decided by the bisectors⊥(qA, p) and⊥(qB , p)), and the half-spaceHSp(L) that is bounded by the plane

L of Equation 1 and containsp. Then, no point inHSp(qA, p) ∩ HSp(qB , p) ∩ HSp(L) can be a RNN of

any pointq on qAqB.

8Strictly speaking, Equation 5 does not include⊥(qA, p). We ignore this special case because it does not affect the subsequent

discussion.
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Proof. Let LA (LB) be ad-dimensional plane that is perpendicular toqAqB and crossesqA (qB). PlaneLA

defines two half-spaces:HSqB
(LA) that containsqB, andHS¬qB

(LA) that does not (e.g., in Figure 24a,

HSqB
(LA)/HS¬qB

(LA) is the area on the right/left of linelA). Similarly, LB also introduces two half-

spacesHSqA
(LB) andHS¬qA

(LB), respectively. Note thatHS¬qB
(LA), HS¬qA

(LB), andHSqB
(LA) ∩

HSqA
(LB) are 3 disjoint regions whose union constitutes the entire data space. For a pointp′ that falls in

HS¬qB
(LA) or HS¬qA

(LB), its minimum distance to segmentqAqB equalsdist(qA, p′) or dist(qB , p′),

respectively. For a pointp′ that lies inHSqB
(LA) ∩ HSqA

(LB), however, the distance fromp′ to qAqB

equals the distance fromp′ to its projection onqAqB.

As shown in the proof of Lemma 3,LA, ⊥(qA, p), andL intersect at the same (d−1)-dimensional plane, and

similarly, LB, ⊥(qB, p), andL intersect at another (d− 1)-dimensional plane. SinceLA andLB are parallel

to each other, they divideHSp(qA, p) ∩ HSp(qB , p) ∩ HSp(L) into 3 disjoint regions: (i)HSp(qA, p) ∩

HS¬qB
(LA), (ii) HSp(qB, p) ∩ HS¬qA

(LB), and (iii) HSqB
(LA) ∩ HSqA

(LA) ∩ HSp(L). For example,

in Figure 24a, the 3 regions are polygonsABFE, CDG, andBCGF , respectively. Letp′ be a point in

region (i), which satisfiesdist(p, p′) < dist(qA, p′) (becausep′ is in HSp(qA, p)). Sincedist(qA, p′) is the

minimum distance fromp′ to qAqB (recall thatp′ is in HS¬qB
(LA)), for any pointq on qAqB, it holds that

dist(p, p′) < dist(q, p′), meaning thatp′ cannot be a RNN ofq. By symmetry, no pointp′ in region (ii) can

be the RNN of any point onqAqB.

The remaining part of the proof will show that no pointp′ in region (iii) can be a query result either. We first

prove this in 2D space, where region (iii) is the area boundedby lineslA, lB, and segmentBC in Figure 24a.

Our analysis distinguishes two cases, depending on whetherp′ lies on or below segmentBC, respectively.

Figure 40a demonstrates the first case (p′ is onBC), whereA is the projection ofp′ on qAqB . Our goal is

to establish, for any pointq on qAqB , the inequalitydist(p, p′) ≤ d(p′, q) (which indicatesp′ is not a RNN

of q). Next, we derive an ever stronger result:dist(p, p′) is actually no more thand(p′, A), which is a lower

bound ford(p′, q).

Denoter as the ratio between the lengths of segmentsBp′ andp′C, i.e.,r = dist(B, p′)/dist(p′, C). Then:

dist(p′, A) = r · dist(qB, C) + (1 − r) · dist(qA, B) (6)

Let D be the intersection between segmentpC and a line that passesp′ and is parallel toBp. Since
dist(p,D)
dist(p,C) = dist(B,p′)

dist(B,C) = r and dist(p′,D)
dist(p,B) = dist(p′,C)

dist(B,C) = 1 − r, we have:

dist(p,D) = r · dist(p,C) (7)

dist(p′,D) = (1 − r) · dist(p,B) (8)

SinceB andC are on the bisectors⊥(qA, p) and⊥(qB, p) respectively, it holds thatdist(p,B) = dist(qA, B)
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(a) Pointp is on segmentBC (b) Pointp is below segmentBC

Figure 40: Illustration of the proof in 2D space

anddist(p,C) = dist(qB , C), leading to:

dist(p′, A) = r · dist(p,C) + (1 − r) · dist(p,B) (by Equation 6)

= dist(p,D) + dist(p′,D) (by Equations 7 and 8)

≥ dist(p, p′) (by triangle inequality)

The equality in the above formula holds only ifp′ is atB or C.

Next, we discuss the second case, namely, pointp′ appears below segmentBC (meanwhile, between lines

lA and lB), shown in Figure 40b whereA is again the projection ofp′ on qAqB . Similar to the first case,

we aim at provingdist(p, p′) < dist(p′, A) (which results indist(p, p′) ≤ dist(p′, q) for any pointq on

segmentqAqB). Let D be the intersection between segmentsBC andp′A. As proved earlier,dist(p,D) ≤

dist(D,A), and hence:

dist(p,D) + dist(p′,D) ≤ dist(D,A) + dist(p′,D) = dist(p′, A) (9)

By triangle inequality, the left part of the above inequality is larger thandist(p, p′), thus verifyingdist(p, p′) <

dist(p′, A). Although the position ofp in Figures 40a and 40b is to the left oflA, it is not hard to observe

that the above analysis holds for any position ofp.

So far we have proved that, in 2D space, no point in region (iii), i.e.,HSqB
(LA) ∩ HSqA

(LA) ∩ HSp(L)

can be a query result. Now we proceed to show that this is also true for arbitrary dimensionalityd, through

a careful reduction to the 2D scenario. Specifically, let us construct a coordinate system as follows. The

origin of the system is pointqA, and the first axis coincides with segmentqAqB. This axis and pointp

decide a 2D sub-space, and in this sub-space, the line perpendicular toqAqB is taken as the second axis.

Then, the remainingd− 2 dimensions are decided arbitrarily with the only requirement that all the resulting

d dimensions are mutually orthogonal. The rationale for introducing such a coordinate system is that the
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coordinates ofp, qA, andqB are 0 on all the dimensions except the first two, i.e., they lieon thed-dimensional

planeLc: x[3] + x[4] + ... + x[d] = 0. As a result, Equation 2, the representation of planeL, is simplified

to (note the upper limits of the two summations):

2
∑

i=1

(2p[i] − qA[i] − qB[i]) · x[i] +

2
∑

i=1

(

qA[i] · qB[i] −
p[i]2

2

)

= 0 (10)

The above formula implies that (i)L is perpendicular toLc, and (ii) every pointx in the half-spaceHSp(L)

(i.e., the half-space bounded byL containingp) satisfies the inequality that results from changing the equality

sign in Equation 10 to “≥”. Another benefit from the constructed coordinate system isthat planesLA and

LB are described concisely by equationsx1[1] = 0 andx1[1] = qB[1], respectively (qB[1] is the coordinate

of qB on the first axis).

Consider any pointp′ that is inHSqB
(LA) ∩ HSqA

(LA) ∩ HSp(L); let A be its projection onqAqB . As

mentioned earlier,qA andqB belong to planeLc, and hence,A also lies on this plane, implyingA[i] = 0 for

3 ≤ i ≤ d. To prove thatp′ is not a RNN of any point onqAqB, (following the reasoning in the 2D case) we

will show thatdist(p, p′) ≤ dist(p′, A). Since

dist(p, p′) =

d
∑

i=1

(p[i] − p′[i])2 =

2
∑

i=1

(p[i] − p′[i])2 +

d
∑

i=3

p′[i]2 (p[i] = 0 for 3 ≤ i ≤ d) (11)

and

dist(p′, A) =

d
∑

i=1

(p′[i] − A[i])2 =

2
∑

i=1

(p′[i] − A[i])2 +

d
∑

i=3

p′[i]2 (12)

it suffices to show that
∑2

i=1(p[i] − p′[i])2 ≤
∑2

i=1(p[i] − A[i])2. Proving this inequality can be reduced

to the 2D case we solved earlier, by projectingLA, LB, L, andp′ into a 2D sub-space that involves only

the first 2 dimensions. Specifically, the projection ofLA (LB) is a linelA (lB) that crossesqA (qB), and is

perpendicular to segmentqAqB. The projection ofL is a linel that intersectslA (lB) at a point equi-distant

to p andqA (qB). Finally, p′ is projected into a point betweenlA andlB that falls either onl, or on the same

side ofl asp. This leads to the situation in Figure 40a or 40b, wherel is the line passing segmentBC. Thus,

we complete the proof.
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