
Reverse kNN Search in Arbitrary Dimensionality

Yufei Tao§ Dimitris Papadias† Xiang Lian†
§Department of Computer Science

City University of Hong Kong
Tat Chee Avenue, Hong Kong

taoyf@cs.cityu.edu.hk

†Department of Computer Science
Hong Kong University of Science and Technology

Clear Water Bay, Hong Kong
{dimitris, xlian}@cs.ust.hk

Abstract

Given a point q, a reverse k nearest neighbor (RkNN)
query retrieves all the data points that have q as one of
their k nearest neighbors. Existing methods for processing
such queries have at least one of the following
deficiencies: (i) they do not support arbitrary values of k
(ii) they cannot deal efficiently with database updates, (iii)
they are applicable only to 2D data (but not to higher
dimensionality), and (iv) they retrieve only approximate
results. Motivated by these shortcomings, we develop
algorithms for exact processing of RkNN with arbitrary
values of k on dynamic multidimensional datasets. Our
methods utilize a conventional data-partitioning index on
the dataset and do not require any pre-computation. In
addition to their flexibility, we experimentally verify that
the proposed algorithms outperform the existing ones
even in their restricted focus.

1. INTRODUCTION

Given a multi-dimensional dataset P and a point q, a
reverse nearest neighbor (RNN) query retrieves all the
points p∈ P that have q as their nearest neighbor.
Formally, RNN(q) = {p∈ P | ¬∃ p'∈ P such that dist(p,p') <
dist(p,q)}, where dist is a distance metric (in this paper we
assume Euclidean distance). Although the problem was
proposed recently [KM00], it has already received
considerable attention due to its importance in several
applications involving decision support, resource
allocation, profile-based marketing, etc. Other versions of
the problem include (i) continuous RNN [BJKS02], where
P contains linearly moving objects with fixed velocities,
and the goal is to retrieve all RNNs of q for a future
interval; (ii) bichromatic RNN [SRAA01] where, given a
set Q of queries, the goal is to find the objects p∈ P that
are closer to some q∈ Q than any other point of Q; (iii)
stream RNN [KMS02], where data arrive in the form of

streams, and the goal is to report aggregate results over
the RNNs of a set of query points.
 This paper focuses on conventional (i.e.,
monochromatic) reverse nearest neighbor queries. In
addition to single RNN search, we deal with reverse k
nearest neighbor (RkNN) queries, which retrieve all the
points p∈ P that have q as one of their k nearest neighbors.
Specifically, RkNN(q) = {p∈ P | dist(p,q) ≤ dist(p,pk),
where pk is the k-th farthest NN of p}. Figure 1.1 shows
four 2D points, where each point p is associated with a
circle covering its two nearest neighbors For example, the
two NNs of p4 (p2, p3) are in the circle centered at p4.
Accordingly, p4∈ R2NN(p2) and p4∈ R2NN(p3). Let
kNN(p) be the set of k nearest neighbors of point p. It is
important to note that p ∈ kNN(q) does not necessarily
imply p ∈ RkNN(q) and vice versa. For instance,
2NN(p4)={p2,p3}, while R2NN(p4)=∅ (i.e., p4 is not
contained in the circles of p1, p2, or p3).

Figure 1.1: 2NN and R2NN examples

As discussed in Section 2.2, all the previous methods for
RNN search have at least one of the following
deficiencies: (i) they do not support arbitrary values of k
(ii) they cannot deal efficiently with database updates, (iii)
they are applicable only to 2D data (but not to higher
dimensionality), and (iv) they retrieve only approximate
results (i.e., potentially incurring false misses). In other
words, these methods address restricted versions of the
problem without providing a general solution. Motivated
by this, we develop algorithms for exact processing of
RkNN queries with arbitrary values of k on dynamic
multidimensional datasets.

Our methods do not require any pre-processing
besides a data-partitioning index (e.g., R-tree [BKSS90],
X-tree [BKK96]). Similar to the existing algorithms for

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment
Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

dynamic data, we follow a filter-refinement framework.
Specifically, the filter step retrieves a set of candidate
results that is guaranteed to include all the actual reverse
nearest neighbors; the subsequent refinement step
eliminates the false hits. The two steps are integrated in a
seamless way that eliminates multiple accesses to the
same index node (i.e., each node is visited at most once).
Our experimental comparison verifies that the proposed
techniques outperform the previous ones, even in their
restricted focus.

The rest of the paper is organized as follows. Section 2
surveys related work on NN and RNN search. Section 3
presents some interesting problem characteristics, and
proposes a new algorithm for single RNN (k=1) retrieval.
Section 4 extends the solution to arbitrary values of k.
Section 5 experimentally evaluates the proposed methods,
and Section 6 concludes the paper with directions for
future work.

2. BACKGROUND

Although the proposed algorithms can be used with
various indexes, in the sequel, we assume that the dataset
P is indexed by an R-tree due to the popularity of this
structure in the literature. Section 2.1 briefly overviews
the R-tree and algorithms for nearest neighbor search.
Section 2.2 describes previous work on monochromatic
RNN queries.

2.1 Algorithms for NN search using R-trees

The R-tree [G84] and its variants (most notably the R*-
tree [BKSS90]) can be thought of as extensions of B-trees
in multi-dimensional spaces. Figure 2.1 shows a 2D point
set P={p1,p2,…,p12} indexed by an R-tree assuming a
capacity of three entries per node. Points that are close in
space (e.g., p1, p2, p3) are clustered in the same leaf node
(N3). Nodes are then recursively grouped together with the
same principle until the top level, which consists of a
single root. An intermediate index entry contains the
minimum bounding rectangle (MBR) of its child node,
together with a pointer to the page where the node is
stored. A leaf entry stores the coordinates of a data point
and (optionally) a pointer to the corresponding record.

N1N3

N4

N5

N2

N6

p1

p2

p3 p4

p5

p6

p7

p8 p9

p10
p11

p12

q
mindist(N

1
,q)

mindist(N
2
,q)

minmaxdist(N
1
,q)

minmaxdist(N
2
,q)

maxdist(N
1
,q)

maxdist(N
2
,q)

data R-tree

N3 N4

N6
N5

p1 p2 p3 p4 p5 p6

p7 p8 p9 p10 p11 p12

N3 N4 N5 N6

N1 N2

N1
N2

(a) Points and node extents (b) The R-tree
Figure 2.1: Example of an R-tree and a NN query

Given a d-dimensional set P and a point q, a nearest
neighbor query retrieves the point p∈ P that is closest to q.
The algorithms for NN queries on R-trees utilize some
bounds to prune the search space: (i) mindist(N,q), which
corresponds to the minimum possible distance between q
and any point in the subtree of node N, (ii) maxdist(N,q),
which denotes the maximum possible distance between q
and any point in the subtree of N, and (iii)
minmaxdist(N,q), which gives an upper bound of the
distance between q and its closest point in N. In particular,
the derivation of minmaxdist(N,q) is based on the fact that
each edge of the MBR of N contains at least one data
point. Hence, minmaxdist(N,q) equals the smallest of the
maximum distances between all edges (of N) and q.
Figure 2.1a shows these pruning bounds between point q
and nodes N1, N2.
 Existing NN methods follow either depth-first (DF),
or best-first (BF) traversal. DF algorithms [RKV95,
CF98] start from the root and visit recursively the node
with the smallest mindist from q. In Figure 2.1, for
instance, the first 3 nodes accessed are (in this order) root,
N1 and N4, where the first potential nearest neighbor is
found (p5). During backtracking to the upper levels, DF
only visits entries whose minimum distances are smaller
than the distance of the NN already retrieved. For
example, after discovering p5, DF backtracks to the root
level (without visiting N3 because mindist(N3,q) >
dist(p5,q)), and then follows the path N2, N6 where the
actual NN p11 is found.
 Best-first (BF) algorithms [H94, HS99] maintain a
heap H with the entries visited so far, sorted by their
mindist. As with DF, BF starts from the root, and inserts
all its entries into H (together with their mindist), e.g., in
Figure 2.1, H={<N1, mindist(N1,q)>, <N2, mindist(N2,q)
>}. Then, at each step, BF visits the node in H with the
smallest mindist. Continuing the example, the algorithm
retrieves the content of N1 and inserts all its entries in H,
after which H={<N2, mindist(N2,q)>, <N4, mindist(N4,q)>,
<N3, mindist(N3,q)>}. Similarly, the next two nodes
accessed are N2 and N6 (inserted in H after visiting N2), in
which p11 is discovered as the current NN. At this time,
the algorithm terminates (with p11 as the final result) since
the next entry (N4) in H is farther (from q) than p11. Both
DF and BF can be easily extended for the retrieval of k>1
nearest neighbors. Maxdist and minmaxdist can be applied
to speed up the search process. Furthermore, BF is
incremental, i.e., it reports the nearest neighbors in
ascending order of their distance to the query, so that k
does not have to be known in advance.

2.2 RNN Algorithms

Algorithms for RNN processing can be classified in two
categories depending on whether they require pre-
processing, or not. For simplicity, we describe all methods
for single RNN retrieval in 2D space. At the end of the
section we discuss their applicability to arbitrary values of
k and dimensionality.

 The original RNN method [KM00] pre-computes for
each data point p its nearest neighbor NN(p). Then, it
represents p as a vicinity circle (p, dist(p,NN(p))) centered
at p with radius equal to the Euclidean distance between p
and its NN. The MBRs of all circles are indexed by an R-
tree, called the RNN-tree. Using the RNN-tree, the
reverse nearest neighbors of q can be efficiently retrieved
by a point location query, which returns all circles that
contain q. Figure 2.2a illustrates the concept using four
data points, each associated with a vicinity circle. Since q
falls in the circles of p3 and p4, the result of the query is
RNN(q) = {p3, p4}.

(a) RNN query (b) Insertion of p5

Figure 2.2: Illustration of KM1

Because the RNN-tree is optimized for RNN, but not NN
search, Korn and Muthukrishnan [KM00] use an
additional (conventional) R-tree on the data points for
nearest neighbors and other spatial queries. In order to
avoid the maintenance of two separate structures, Yang
and Lin [YL01] combine the two indexes in the RdNN-
tree. Similar to the RNN-tree, a leaf node of the RdNN-
tree contains vicinity circles of data points. On the other
hand, an intermediate node contains the MBR of the
underlying points (not their vicinity circles), together with
the maximum distance from every point in the sub-tree to
its nearest neighbor. As shown in the experiments of
[YL01], the RdNN-tree is efficient for both RNN and NN
queries because, intuitively, it contains the same
information as the RNN-tree and has the same structure
(for node MBRs) as a conventional R-tree. Another,
solution based on pre-computation is proposed in
[MVZ02]. The methodology, however, is applicable only
to 2D spaces and focuses on asymptotical worst case
bounds (rather than experimental comparison with other
approaches).
 The problem of KM, YL, MVZ, and all techniques
that rely on pre-processing, is that they cannot deal
efficiently with updates. This is because each insertion or
deletion may affect the vicinity circles of several points.
Consider Figure 2.2b, where we want to insert a new
point p5 in the database. First, we have to perform a RNN
query to find all objects (in this case p3 and p4) that have
p5 as their new nearest neighbors. Then, we update the
vicinity circles of these objects in the index. Finally, we
compute the NN of p5 (i.e., p4) and insert the
corresponding circle. Similarly, each deletion must update

1 We refer to the algorithms according to the author initials.

the vicinity circles of the affected objects. In order to
alleviate the problem, Lin et al. [LNY03] propose a
method for bulk insertions in the RdNN-tree.
 Stanoi et al. [SAA00] eliminate the need for pre-
computing all NNs by utilizing some interesting
properties of RNN retrieval. Consider Figure 2.3, which
divides the space around a query q into six equal regions
S1 to S6. Let p be the NN of q in some region Si; it can be
proven that (i) either p ∈ RNN(q) or (ii) there is no RNN
of q in Si. For instance, in Figure 2.3 the NN of q in S1 is
point p2. However, the NN of p2 is p1. Consequently, there
is no RNN of q in S1 and we do not need to search further
in this region. The same is true for S2 (no data points), S3,
S4 (p4, p5 are NNs of each other) and S6 (the NN of p3 is
p1). The actual result is RNN(q) = {p6}. Based on the
above property SAA adopts a two-step processing
method. First, six constrained NN queries [FSAA01]
retrieve the nearest neighbors of q in regions S1 to S6.
These points constitute the candidate result. Then, at a
second step, a NN query is applied to find the NN p' of
each candidate p. If dist(p,q)< dist(p,p'), p belongs to the
actual result; otherwise, it is a false hit and discarded.

Figure 2.3: Illustration of SAA

The number of regions to be searched for candidate
results increases exponentially with the dimensionality2,
rendering SAA inefficient even for three dimensions.
Motivated by this, Singh et al. [SFT03] propose a multi-
step algorithm that: (i) finds (using an R-tree) the K NNs
of the query q, which constitute the initial candidates; (ii)
it eliminates the points that are closer to some other
candidate than q; (iii) it applies boolean range queries on
the remaining candidates to determine the actual RNNs.
Consider, for instance, the query of Figure 2.4 assuming
that K (a system parameter) is 4. The algorithm first
retrieves the 4 NNs of q: p6, p5, p4 and p2. The second step
discards p4 and p5 since they are closer to each other than
q. The third step uses the circles (p2,dist(p2,q)) and
(p6,dist(p6,q)) to perform two boolean ranges on the data
R-tree. The difference with respect to conventional range
queries is that a boolean range terminates immediately
when (i) the first data point is found, or (ii) the entire side
of a node MBR lies within the circle. For instance,
minmaxdist(N1,p2) ≤ dist(p2,q), meaning that N1 contains
at least a point within the range (i.e.,). Thus, p2 is a false

2 Determining the number of space partitions in SAA is
analogous to the sphere packing and the kissing number
problems. For a discussion see [SFT03].

hit and SFT returns p6 as the only RNN of q. The major
shortcoming of the method is that it may incur false
misses. In Figure 2.4, although p3 is a RNN of q, it does
not belong to the 4 NNs of the query and will not be
retrieved.

p
1

p
2

p
3

p
4

q

p
5

p
6

p
7

boolean range for p
6

boolean range for p
2

node N
1

Figure 2.4: Illustration of SFT

Table 2.1 summarizes the properties of each algorithm.
As discussed before, pre-computation methods cannot
efficiently handle updates. MVZ is suitable only to 2D
spaces, while SAA is practically inapplicable for 3 or
more dimensions. SFT incurs false misses, the number of
which depends on the parameter K: a large value of K
decreases the false misses but increases significantly the
processing cost.

 dynamic
data

arbitrary
dimensionality

exact
result

KM,YL No Yes Yes
MVZ No No Yes
SAA Yes No Yes
SFT Yes Yes No

Table 2.1: Summary of algorithm properties

Regarding the applicability of the existing algorithms to
arbitrary values of k, pre-computation methods only
support a specific value (typically equal to 1), used to
determine the vicinity circles. SFT can be adapted for
retrieval of RkNN by setting a large value of K (>>k) and
replacing the boolean with count queries (that return the
number of objects in the query range instead of their
actual ids). The extension of SAA to arbitrary k has not
been studied before, but we will discuss it in Section 4.3.
In the rest of the paper, we propose algorithms that return
the exact results for dynamic datasets of any
dimensionality. We start with single (i.e., k=1) RNN
queries in Section 3, before proceeding to arbitrary values
of k in Section 4.

3. SINGLE RNN PROCESSING

Section 3.1 illustrates some problem characteristics that
permit the development of efficient algorithms presented
in Section 3.2. Section 3.3 analyzes the performance of
the proposed techniques with respect to existing methods.

3.1 Problem Characteristics

Consider the perpendicular bisector ⊥ (p,q) between the

query q and an arbitrary data point p as shown in Figure
3.1a. The bisector divides the data space into two half-
planes: PLq(p,q) that contains q, and PLp(p,q) that
contains p. Any point (e.g., p') in PLp(p,q) cannot be a
RNN of q because it is closer to p than q. Similarly, a
node MBR (e.g., N1) that falls completely in PLp(p,q)
cannot contain any candidate. In some cases, the pruning
of an MBR requires multiple half-planes. For example, in
Figure 3.1b, although N2 does not fall completely in PLp1

(p1,q) or PLp2(p2,q), it can still be pruned since it lies
entirely in the union of the two half-planes.

q

p

p'

⊥ (p, q)

N 1

q

p1

p2

N 2

⊥ (q, p
1)

⊥ (q, p
2)

(a) Pruning with one point (b) Pruning with two points
Figure 3.1: Illustration of half-plane pruning

In general, if p1, p2, …, pnc are nc data points, then any
node whose MBR falls inside ∪ i=1~ncPLpi(pi,q) cannot
contain any RNN result. Let the residual region Nres be
the area of node N outside ∪ i=1~ncPLpi(pi,q) (i.e., the part
of the MBR that may contain candidate RNNs of q).
Then, N can be pruned if and only if Nres=∅ . Typically,
Nres is a convex polygon bounded by the edges of N and
the bisectors ⊥ (pi,q) (1≤i≤nc). Consider Figure 3.2a that
contains nc=3 data points p1, p2, p3. We can compute the
residual region Nres by trimming N with each bisector in
turn. Specifically, initially we set Nres=N and use ⊥ (p1,q),
after which Nres becomes the shaded trapezoid. In general,
trimming with ⊥ (pi,q) reduces the previous Nres to the
region inside the half-plane PLq(pi,q). Figure 3.2b shows
the final Nres after processing all bisectors. Given p1, p2
and p3, N

res is the only part of the node MBR N that may
contain RNNs of q.

q

p
1

p
3

N

p2

⊥ (q, p
1)

N res

q

p1

p3

p2

N res

⊥ (q, p
3) ⊥ (q, p

2)

mindist (),qN res

(a) After processing ⊥ (q,p1) (b) The final polygon

Figure 3.2: Computing the residual region

The above computation of Nres has two problems. First, in
the worst case, each bisector may introduce an additional
vertex to Nres. Consequently, the trimming of the i-th
(1≤i≤nc) bisector takes O(i) time because it may need to
examine all edges in the previous Nres. Thus, the total
processing cost is O(nc

2), i.e., quadratic to the number of
half-planes. Second, this method does not scale with the
dimensionality because computing the intersection of a

half-space and a hyper-polyhedron becomes increasingly
complex [BKOS97]. Motivated by this, we propose a
simpler alternative that requires only O(nc) time. The idea
is to bound Nres by a residual MBR NresM. Figure 3.3
illustrates the residual MBR computation using the
example in Figure 3.2. Initially NresM is set to N and then it
is trimmed incrementally by each bisector. Figure 3.3a
shows trimming with ⊥ (p1,q), where, instead of keeping
the exact shape of Nres, we compute NresM (i.e., the shaded
rectangle). In general, bisector ⊥ (pi,q) updates NresM to the
MBR of the region in the previous NresM that is in
PLq(pi,q). Figures 3.3b, 3.3c illustrate the residual MBRs
after trimming with ⊥ (p2,q), ⊥ (p3,q), respectively. Note
that the final NresM is not necessarily the MBR of the final
Nres (compare Figure 3.3c and Figure 3.2b). Trimmed
MBRs can be efficiently computed (in arbitrary
dimensionality) using the clipping algorithm of
[GRSY97].

q

N

q q

previous previousupdated

N resM

updated

p1

p3

p2

N resM N resM

N resM N resM
⊥ (q, p

1)

⊥ (q, p
2) ⊥ (q, p

3)

mindist (),qN resM

(a) After ⊥ (p1,q) (b) After ⊥ (p2,q) (c) After ⊥ (p3,q)

 Figure 3.3: Computing the residual MBR

Figure 3.4 presents the pseudo-code for the above
approximate trimming algorithm. If NresM exists, trim
returns the minimum distance between q and NresM;
otherwise, it returns ∞. Since NresM always encloses Nres,
NresM = ∅ necessarily implies that Nres = ∅ . This property
guarantees that pruning is “safe”, meaning that trim
never eliminates a node that may contain candidates. The
algorithm also captures points as MBRs with zero extents.
In this case it will return the actual distance between the
point and the query (if the point falls in the half-space of
the query), or ∞ otherwise.

Algorithm trim (q, { p1, p2, …, pnc}, N)
/* q is the query point, p1, p2, …, pnc are arbitrary data points,
and N is a rectangle being trimmed*/
1. NresM = N
2. for i=1 to nc // consider each data point in turn
3. NresM =clipping(NresM, PLq(pi,q)) //algorithm of [GRSY97]
4. if NresM = ∅ then return ∞
5. return mindist(NresM, q)
End trim

Figure 3.4: The trim algorithm

An interesting question is: if NresM ≠ ∅ , can Nres be ∅ ?
(i.e., trim fails to prune an MBR that can be discarded).
Interestingly, it turns out that the answer is negative in the
2D space, as illustrated in the next lemma (which proves
an even stronger result):
Lemma 1: Given a 2D query q, an arbitrary number of
half-planes and a node N, the residual MBR NresM of N

returned by trim exists if and only if Nres exists.
Furthermore, if NresM≠∅ , mindist(Nres,q) = mindist(NresM,
q), where Nres is the residual region of N.
 In other words, the residual MBR NresM preserves the
minimum distance between Nres and q (compare
mindist(Nres,q) and mindist(NresM,q) in Figures 3.2b and
3.3c, respectively). It is worth mentioning that the lemma
does not hold for arbitrary half-planes (the half-planes in
RNN are constrained to contain q). Further, the lemma
does not apply to arbitrary dimensionality. However, as
mentioned earlier, we can still use trim to safely eliminate
MBRs that do not contain candidates.

3.2 The TPL Algorithm

Based on the above discussion, we adopt a two-step
framework that retrieves a set of candidate RNNs
(filtering step) and then removes the false misses
(refinement step). As opposed to SAA and SFT that
require multiple queries for each step, the filtering and
refinement processes are combined into a single traversal
of the R-tree. In particular, our algorithm (hereafter,
called TPL) traverses the R-tree in a best-first manner (see
Section 2.1), retrieving potential candidates in ascending
order of their distance to the query point q because the
RNNs are likely to be near q. The concept of half-planes
(half-spaces in high dimensions) is used to prune node
MBRs (data points) that cannot contain (be) candidates.
Each pruned entry is inserted in a refinement set Srfn. In
the refinement step, the entries of Srfn are used to
eliminate false hits. Next we discuss TPL using the
example of Figure 3.5, which shows a set of data points
(numbered in ascending order of their distance from the
query) and the corresponding R-tree (the content of some
nodes is omitted for clarity). The query result contains
only point p5.

q

N
1

N
2

N
3

N
6

N
10

N
11

N
12

N
4

N
5

N5N2N1 N3 N4 N6

N10 N11N12

p
1

p
2

p
5

p
7)(q,p

5

pruned by
p
1

pruned

by p
2

p
5

p
7

p
1

p
3

p
2

p
6

contents omitted

contents omitted

)(q,p
1

p
6

p
8

p
4

)(q,p
2

....p
4

p
8

data R-tree

p
3

Figure 3.5: Filtering example

Initially, the algorithm visits the root of the R-tree and
inserts its entries N10, N11, N12 into a heap H sorted on
their mindist from q. Then it de-heaps N10, visits its child
node and inserts into H the corresponding entries: H =
{N3, N11, N2, N1, N12}. The next node accessed is N3,
where the first point p1 (i.e., the one closest to q) has
dist(p1,q)< dist(N11,q) (N11 is at the top of the heap) and is
added to the candidate set Scnd. The second point p3 in N3

lies in PLp1(p1,q) (i.e., it cannot be a RNN of q) and is
inserted into the refinement set Srfn. In general, any point
or node examined during the filter step is not discarded
because it may influence (i.e., be a NN of) some
candidate. In this example, p3 will invalidate p1 (during
the refinement step) because dist(p1,p3) < dist(p1,q).
 The next de-heaped entry is N11. Trim checks if N11
can be pruned. Since part of N11 lies in PLq(p1,q), it has to
be visited. Its child nodes N4 and N6 fall completely out of
PLq(p1,q). Therefore, they cannot contain any candidates
and are added to Srfn. On the other hand, N5 falls partially
in PLq(p1,q), i.e., trim will return a mindist(N5

resM,q) that is
different from ∞. Thus, N5 is inserted into H together with
its mindist(N5

resM,q). The rationale of this choice, instead
of mindist(N5,q), is that since our aim is to discover
candidates according to their proximity to q, the node
visiting order should not take into account the part of the
node that cannot contain candidates. Assuming that
mindist(N5

resM,q) < mindist(N2,q), N5 is at the top of H and
immediately de-heaped. Inside N5, point p2 is added to
Scnd={p1,p2} and p6 to Srfn={p3,N4,N6,p6}. The next heap
entry N2 lies in PLp1(p1,q) and is added to Srfn, without
being visited. On the other hand, part of N1 lies in
PLq(p1,q) and is accessed, leading to Scnd = {p1,p2,p5} and
Srfn = {p3,N4,N6,N2,p6,p7}. Finally, N1 is also inserted into
Srfn as it lies completely in PLp2(p2,q). The filtering step
terminates when H=∅ .
 The contents of the heap at each phase of the filtering
process are shown in Table 3.1. Although omitted in the
table, the heap entry for N also contains mindist(NresM,q),
if N has been trimmed, or mindist(N,q), otherwise. In
addition, the heap may include (non-pruned) data points
(for simplicity, in the example we assumed that such
points were processed immediately).

Action Heap Scnd Srfn
visit root {N10,N11,N12} ∅ ∅
visit N10 {N3,N11,N2,N1,N12} ∅ ∅
visit N3 {N11,N2,N1,N12} {p1} {p3}
visit N11 {N5,N2,N1,N12} {p1} {p3,N4,N6}
visit N5 {N2,N1,N12} {p1,p2} {p3,N4,N6,p6}

process N2 {N1,N12} {p1,p2} {p3,N4,N6,p6,N2}
visit N1 { N12} {p1,p2,p5} {p3,N4,N6,p6,N2,p7}
visit N12 ∅ {p1,p2,p5} {p3,N4,N6,p6,N2,p7,N12}

Table 3.1: Heap contents during filtering

Figure 3.6 illustrates the pseudo-code for the filtering
step. Note that trim is applied twice for each node N;
when N is inserted into the heap and when it is de-heaped.
The second test is necessary, because N may be pruned by
some candidate that was discovered after N's insertion
into H. Similarly, when a leaf node is visited, its non-
pruned points are inserted into H (instead of Scnd) and
processed in ascending order of their distance to q.
Although this may increase the heap size (and the CPU
cost of heap operations), it maximizes the chance that
some points will be subsequently pruned by not-yet
discovered candidates that are closer to the query, hence

reducing the size of Scnd (and the cost of the subsequent
refinement step).

Algorithm TPL-filter(q) /* q is the query point */
1. initialize a min-heap H accepting entries of the form (e, key)
2. initialize sets Scnd=∅ , Srfn=∅
3. insert (R-tree root, 0) to H
4. while H is not empty
5. (e, key)=de-heap H
6. if (trim(q, Scnd, e)=∞) then Srfn=Srfn∪ {e}
7. else // entry may be or contain a candidate
8. if e is data point p
9. Scnd=Scnd∪ {p}
10. else if e points to a leaf node N
11. for each point p in N (sorted on dist(p,q))
12. if (trim(q,Scand,p)≠∞) then insert (p,dist(p,q)) in H
13. else Srfn=Srfn∪ {p}
14. else // e points to an intermediate node N
15. for each entry Ni in N
16. mindist(Ni

resM, q)=trim(q, Scnd, Ni)
17. if (mindist(Ni

resM, q)=∞) then Srfn=Srfn∪ {Ni}
18. else insert (Ni, mindist(Ni

resM, q)) in H
End TPL-filter

Figure 3.6: TPL filtering algorithm

After the termination of the filter step we have a set Scnd
of candidates and a set Srfn of node MBRs or data points.
Let Prfn ⊆ Srfn be the set of points and Nrfn ⊆ Srfn be the set
of MBRs in Srfn. The refinement step is performed in
rounds. Figure 3.7 shows the pseudo-code for each round,
where we eliminate the maximum number of candidates
from Scnd without visiting additional nodes. Intuitively, a
point p ∈ Scnd can be discarded as a false hit, if (i) there is
a point p' ∈ Prfn such that dist(p,p') < dist(p,q), or (ii)
there is an node MBR N ∈ Nrfn such that minmaxdist(p,N)
< dist(p,q) (i.e., N is guaranteed to contain a point p' such
that dist(p,p') < dist(p,q)). For instance, in Figure 3.5, the
first condition prunes p1 because p3 ∈ Prfn and dist(p1,p3)
< dist(p1,q). Lines 2-9 prune false hits according to the
above observations.

Algorithm refinement_round(q, Scnd, Prfn, Nrfn)
1. for each point p in Scnd
2. for each point p' in Prfn
3. if dist(p,p')< dist(p,q)
4. Scnd= Scnd -{p} //false hit
5. goto 1 //test next candidate
6. for each node MBR N in Nrfn
7. if minmaxdist(p,N)< dist(p,q)
8. Scnd= Scnd -{p} //false hit
9. goto 1 //test next candidate
10. for each node MBR N in Nrfn
11. if mindist(p,N)< dist(p,q) add N in toVisit(p)
12. if (toVisit(p)= ∅)
13. Scnd= Scnd -{p} and report p // actual result
End refinement_round

Figure 3.7: The refinement_round algorithm

On the other hand, a point p ∈ Scnd can be reported as an
actual result without any extra node accesses, if (i) there is
no point p' ∈ Prfn such that dist(p,p') < dist(p,q) and (ii)

for every node N ∈ Nrfn: mindist(p,N) ≥ dist(p,q). In
Figure 3.5, candidate p5 satisfies these conditions and is
removed from Scnd. Each remaining point p in Scnd (e.g.,
p2) must undergo additional refinement rounds because
there may exist points (p4) in some not-yet visited nodes
(N4) that invalidate it. In this case, p requires accessing
some nodes N such that mindist(p,N) < dist(p,q), which
are inserted in toVisit(p), i.e., toVisit(p) is the set of nodes
that need to be visited before verifying p as a result.
 Our next goal is to access the nodes of toVisit(p) (for p
∈ Scnd) in an order that achieves quick elimination of the
remaining candidates. Continuing the running example,
after the first round Scnd = {p2} and the nodes that may
contain NNs of p2 are toVisit(p2)={N4,N12}. We choose to
access a lowest level node first (in this case N4), because
it can achieve better pruning since it either encloses data
points or MBRs with small extents (therefore the
minmaxdist pruning is more effective). In case of a tie
(i.e., multiple nodes of the same low level), we access the
one that may prune the largest number of candidates.
 If the node N to be visited is a leaf, then Prfn contains
only the data points in N, and Nrfn is set to ∅ . Otherwise
(N is an intermediate node), Nrfn contains only the child
nodes of N, and Prfn is ∅ . In our example, the parameters
for the second round are Scnd = {p2}, Prfn = {points of N4}
and Nrfn = ∅ . Inside N4, point p4 eliminates p2 and the
algorithm terminates. Figure 3.8 shows the pseudo-code
of the TPL refinement step. Lines 2-4 eliminate
candidates that are closer to each other than the query
point (i.e., similar to the second step of SFT). This test is
required only once and therefore, is not included in
refinement_round in order to avoid repeating it for every
round.

Algorithm TPL-refinement (q, Scnd, Prfn, Nrfn)
1. for each point p in Scnd
2. for each other point p' ≠ p in Scnd
3. if dist(p,p')< dist(p,q)
4. Scnd= Scnd -{p}; goto 1
5. if p is not eliminated initialize toVisit(p)=∅
6. repeat
7. refinement_round(q, Scnd, Prfn, Nrfn)
8. if (Scnd=∅) return // terminate
9. Prfn=Nrfn=∅ //initialization of next round
10. Let N be the lowest level node that appears in the largest

number of sets toVisit(p), where p ∈ Scnd
11. remove N from all toVisit(p) and access N
12. if N is a leaf node
13. Prfn={p/p∈ N} //Prfn contains only the points of N
14. if N is an intermediate node
15. Nrfn={N'/ N'∈ N}//Nrfn contains the child nodes of N
End TPL-refinement

Figure 3.8: TPL refinement algorithm

In order to verify the correctness of TPL, observe that the
filter step always retrieves a superset of the actual result
(i.e., it does not incur false misses), since trim only prunes
node MBRs (data points) that cannot contain (be) RNNs.

Every false hit p is subsequently eliminated during the
refinement step by comparing it with each data point
retrieved during the filter step and each MBR that may
potentially contain NNs of p. Hence, the algorithm returns
the exact set of RNNs.

3.3 Discussion

TPL and the existing techniques that do not require pre-
processing (SAA, SFT) are based on the filter-refinement
framework. Interestingly, the two steps are independent in
the sense that the filtering algorithms of one technique can
be combined with the refinement mechanisms of another.
For instance, the concept of boolean ranges of SFT can
replace the conventional NN queries in the second step of
SAA and vice versa. In this section we show that, in
addition to being more general, TPL is more effective
than SAA and SFT in terms of both filtering and
refinement, i.e., it retrieves fewer candidates and
eliminates false hits with lower cost.
 In order to compare the efficiency of our filtering step
with respect to SAA, we first present an improvement of
that method. Consider the space partitioning of SAA in
Figure 3.9a and the corresponding NNs in each partition
(points are numbered according to their distance from q).
Since the angle between p1 and p2 is smaller than 60
degrees and p2 is farther than p1, point p2 cannot be a
RNN of q. In fact, the discovery of p1 (i.e., the first NN of
the query) can prune all the points lying in the region
∇ (p1) extending 60 degrees on both sides of line segment
qp1 (upper shaded region in Figure 3.9a). Based on this
observation, we only need to search for other candidates
outside ∇ (p1). Let p3 be the next NN of q in the
constrained region of the data space (i.e., not including
∇ (p1)). Similar to p1, p3 prunes all the points in ∇ (p3). The
algorithm terminates when the entire data space is pruned.
Although the maximum number of candidates is still six
(e.g., if all candidates lie on the boundaries of the 6 space
partitions), in practice it is smaller (in this example, the
number is 3, i.e., p1, p3 and p6).

p1 p2

p3
p4

p6

p
5

q

region that can be pruned
after finding p1

region that can be pruned
after finding p3

q

p

⊥ (p, q)

l1 l2

area pruned by TPL but not by improved SAA00

60o 60o

(a) Improved SAA (b) Pruning comparison

 Figure 3.9: Superiority of TPL over SAA

Going one step further, the filter step of TPL is even more
efficient than that of the improved SAA. Consider Figure
3.9b where p is the NN of q. The improved SAA prunes
the region ∇ (p) bounded by rays l1 and l2. On the other
hand, our algorithm prunes the entire half-plane PLp(p,q),
which includes ∇ (p1) except for the part below ⊥ (p,q).

Consider the circle centered at q with radius dist(p,q). It
can be easily shown that the circle crosses the intersection
point of ⊥ (p,q) and l1 (l2). Note that all the nodes
intersecting this circle have already been visited in order
to find p (a property of our filter step and all BF NN
algorithms in general). In other words, all the non-visited
nodes that can be pruned by ∇ (p) can also be pruned by
PLp(p,q). As a corollary, the maximum number of
candidates retrieved by TPL is also bounded by the
dimensionality (i.e., |Scnd|≤6 is 2D space). Further, TPL
supports arbitrary dimensionality in a natural way, since it
does not make any assumption about the number or the
shape of space partitions (as opposed to SAA).
 The comparison with the filtering step of SFT depends
on the value of K, i.e., the number of NNs of q that
constitute the candidate set. Assume that in Figure 3.5 we
know in advance that the actual RNNs of the query (in
this case p5) are among the K=5 NNs of q. SFT would
perform a 5NN query and insert all the retrieved points p1
, .., p5 to Scnd, whereas TPL inserts only the non-pruned
points Scnd = {p1,p2,p5}. Furthermore, the number of
candidates in TPL is bounded by the dimensionality,
while the choice of K in SFT is arbitrary and does not
provide any guarantees about the quality of the result.
Consider, for instance, the (skewed) dataset and query
point of Figure 3.10. A high value of K will lead to the
retrieval of numerous false hits (e.g., data points in
partition S1), but no actual reverse nearest neighbors of q.
The problem becomes more serious in higher
dimensionality.

Figure 3.10: False hits and misses of SFT

One point worth mentioning is that although TPL is
expected to retrieve fewer candidates than SAA and SFT,
this does not necessarily imply that it incurs fewer node
accesses during the filter step. For instance, assume that
the query point q lies within the boundary of a leaf node N
(in fact, q can be a data point) and all six candidates of
SAA are in N. Then, as suggested in [SAA00] the NN
queries can be combined in a single tree traversal, which
can potentially find all these candidates by following a
single path from the root to N. A similar situation may
occur with SFT if all K NNs of q are contained in the
same leaf node. On the other hand, the node accesses of
TPL depend on the relative position of the candidates and
the resulting half-planes. Nevertheless, the small size of
the candidate set reduces the cost of the refinement step
since each candidate must be verified.

 Regarding the refinement step, it suffices to compare
TPL with SFT, since boolean ranges are more efficient
than the conventional NN queries of SAA. Although
Singh et al. [SFT03] propose some optimization
techniques for minimizing the number of node accesses, a
boolean range may still access a node that has already
been visited during the filter step or by a previous boolean
query. On the other hand, the seamless integration of the
filtering and refinement steps in TPL (i) re-uses
information about the nodes visited during the filter step,
and (ii) eliminates multiple accesses to the same node. In
other words, a node is visited at most once. This
integrated mechanism can also be applied to the
methodologies of SAA and SFT. In particular, all the
nodes and points eliminated by the filter step (constrained
NN queries in SAA, a KNN query in SFT) are inserted in
Srfn and our refinement algorithm is performed directly
(instead of NN queries or boolean ranges).

4. RKNN PROCESSING

Section 4.1 presents properties that permit pruning of the
search space for arbitrary values of k and Section 4.2
extends our methods for this problem. Finally, 4.3
discusses the application of previous techniques.

4.1 Problem Characteristics

The half-plane pruning strategy of Section 3.1 extends to
arbitrary values of k. Figure 4.1a shows an example with
k=2, where the shaded region corresponds to the
intersection PL p1 (p1,q)∩PL p2 (p2,q). Point p is not a
R2NN of q, since both p1 and p2 are closer to it than q.
Similarly, a node MBR inside the shaded area cannot
contain any candidate (i.e., N1 can be pruned at the filter
step). In some cases, several half-plane intersections are
needed to prune a node. Assume the R2NN query q and
the three data points of Figure 4.1b. Each pair of points
generates an intersection of half-planes: (i) PLp1(p1,q) ∩
PLp2(p2,q) (i.e., polygon IECB), (ii) PLp1(p1,q) ∩ PLp3

(p3,q) (ADCB) and (iii) PLp2(p1,q) ∩ PLp3(p3,q) (IFGHB).
The shaded region is the union of these 3 intersections
(i.e., IECB ∪ ADCB ∪ IFGHB). A node MBR (e.g., N2)
inside this region can be pruned, although it is not totally
covered by any individual intersection area.

q

p1

p2

p

N 1

⊥ (q, p
1)

⊥ (q, p
2)

q

p1

p
3

p2

⊥ (q, p
1)

⊥ (q, p
3)⊥ (q, p

2)

N 2

A B

C

D
E

F

G H

I

(a) PLp1(p1,q)∩PLp2(p2,q) (b) All intersection pairs

Figure 4.1: Examples of R2NN queries

In the general case, assume a RkNN query and nc≥k data
points p1, p2, …, pnc (e.g., in Figure 4.1b nc=3 and k=2).
Let {σ1, σ2, …, σk} be a subset of {p1, p2, …, pnc}. Each
subset prunes the intersection area ∩i=1~kPLσi(σi,q). The
entire region that can be eliminated corresponds to the

union of all (nck) intersections. Given a node N under
consideration, the k-trim algorithm (Figure 4.2) computes,
for each subset (in turn), the residual MBR NresM of N. If
at some point NresM becomes ∅ , it prunes N and
terminates. Otherwise (NresM≠∅), it continues with the
next subset, by setting N=NresM. Similar to trim, for
qualifying nodes k-trim returns the minimum distance
between q and NresM; for the eliminated ones it returns ∞.
The only complication concerns the computation of
∩i=1~kPLσi(σi,q) in line 3. For this, we use a variant of
[GRSY97], which returns a conservative approximation
of the intersection region for each subset.

Algorithm k-trim (q, k, {p1, p2, …, pnc}, N)
/* p1, p2, …, pnc are candidate data points, nc ≥ k */
1. NresM=N
2. for i=1 to (nc

k) //consider each subset in turn

 //assume the subset is {σ1, σ2, …, σk}
3. NresM= clipping(NresM, ∩i=1~kPLσi(σi,q))
4. if NresM = ∅ then return ∞
5. return mindist(NresM, q)
End k-trim

Figure 4.2: The k-trim algorithm

Examining all (nck) subsets is prohibitive for large k and
Scnd. In order to reduce the cost, we can restrict the
number of inspected subsets using the following heuristic.
We sort all the candidates in Scnd according to their
Hilbert values. Let the sorted order be {p1, p2, …, pnc

}.
Then, k-trim examines only the nc subsets {p1, …, pk},
{p2, …, pk+1}, …, {pnc

, …, pk−1}. The rationale of this
choice is that points close to each other tend to produce
intersections with large areas. The trade-off is that this
method may increase the number of candidates, since it
fails to prune nodes that can be pruned by some non-
inspected subset. In any case, as with trim, pruning with
k-trim is always safe, meaning that it will never eliminate
nodes that potentially contain candidates.

4.2 The k-TPL Algorithm

The filtering step of k-TPL follows exactly that of the
TPL algorithm in Figure 3.6. Specifically, at the
beginning, k-TPL uses BF traversal to locate a set of
candidates close to the query q. After the size of Scnd
reaches k, k-trim prunes nodes (data points) that cannot
contain (be) candidates. The pruned nodes and points are
kept in Srfn. The refinement step is more complex because
a candidate p can only be pruned if we find k points
within distance dist(p,q) from p. Thus, we associate p
with a counter (initially set to k), and decrease it every

time we find such a point. We can eliminate p as a false
hit, when its counter becomes 0. The minmaxdist pruning
cannot be applied in this case, because even if
minmaxdist(p,N) < dist(p,q), we do not know how many
points in N are within distance dist(p,q) from N, unless we
visit the node. Instead, we use the maxdist and the
minimum cardinality of N, i.e., the smallest possible
number of points in N, given the minimum node
utilization (typically, 40% for R-trees) and the level of N.
In particular, a candidate p can be pruned if maxdist(p,N)
< dist(p,q) and min_card(N) ≥ counter(p). Figure 4.3
shows the pseudo-code for refinement_round in the case
of RkNN. The main refinement algorithm is similar to the
one shown in Figure 3.7 and omitted.

Algorithm k-refinement_round(q, Scnd, Prfn, Nrfn)
1. for each point p in Scnd
2. for each point p' in Prfn
3. if dist(p,p')< dist(p,q)
4. counter(p)--
5. if counter(p)=0
6. Scnd= Scnd -{p} //false hit
7. goto 1 //test next candidate
8. for each node MBR N in Nrfn
9. if maxdist(p,N)<dist(p,q) and min_card(N)≥ counter(p)
10. Scnd= Scnd -{p}; goto 1 //test next candidate
11. for each node MBR N in Nrfn
12. if mindist(p,N)< dist(p,q) add N in set toVisit(p)
13. if (toVisit(p)=∅)
14. Scnd= Scnd -{p} and report p // actual result
End k-refinement_round

Figure 4.3: The k-refinement_round algorithm

4.3 Discussion

Although SAA was originally proposed for single RNN
retrieval, it can be extended to arbitrary values of k based
on the following lemma:
Lemma 2: Given a 2D RkNN query q, divide the space
around q into 6 equal partitions using 6 rays emanating
from q, such that each partition is bounded by two rays.
Then, the k NNs of q in each partition are the only
possible results of q. Further, in the worst case, all these
points may be the actual results.
 As a corollary, the maximum number of reverse k
NNs of q in 2D space equals 6k. Figure 4.4 illustrates the
lemma using an example with k=2. The candidates of q
include {p1, p2, p4, p5, p6}; p3 (i.e., the 3rd NN in S2)
cannot be a candidate, since p1 and p2 are both closer to it
than q. Based on Lemma 2, the filtering step of SAA
executes 6 constrained kNN queries in each partition.
Then, the refinement step verifies or eliminates each of
the 6k candidates by performing a kNN query. This
approach, however, has the same problem as the original
SAA, i.e. the number of partitions to be searched
increases exponentially with the dimensionality.
 As mentioned in Section 2, SFT can be adapted for
RkNN by setting a large value of K (>>k). Nevertheless,
the concept of boolean ranges cannot be applied for

arbitrary values of k for the same reason that minmaxdist
pruning cannot be applied in our k-refinement_round
algorithm. Thus, Singh et al. [SFT03] suggest performing
the count query, which decides if there are at least k
points inside the query range. Similar to boolean range
queries, count queries may also access the same node
multiple times, which is avoided in k-TPL.

p1p2
p3

p4

p5

p6

q

S1

S2

S3

S4

S5

S6

Figure 4.4: Example of Lemma 2

5. EXPERIMENTS

Our evaluation is performed using both real and synthetic
data. In particular, we deploy the five real datasets
summarized in Table 5.1. LB, NA and LA contain spatial
data3 corresponding to geometric locations in the Long
Beach county, North America, and Los Angeles,
respectively. Wave4 is obtained from the measurements of
wave directions at the National Buoy Center. Color
includes data from the color histograms of 65k images.
The synthetic data follow uniform and Zipf distributions.
Their cardinalities range from 128k to 2048k (i.e., over 2
million points), and their dimensionalities vary from 2 to
5.

 LB NA LA Wave Color
dimensionality 2 2 2 3 4

cardinality 123k 569k 1314k 60k 65k
Table 5.1: Statistics of the real datasets used

Each dataset is indexed by an R*-tree [BKSS00] with
node (disk page) size of 1k bytes. The capacity (i.e., the
maximum number of entries in a node) equals 50, 36, 28
and 23 entries, for 2, 3, 4, and 5 dimensions, respectively.
TPL is compared with SAA (for 2D data) and SFT, since
as discussed in Section 2.2, these are the only methods
applicable to dynamic data. For SAA, we implemented
the optimization of [SAA00] that performs the six
constraint NN queries (i.e., the filter step) with a single
traversal of the R-tree. The filter step of SFT requires a
KNN query, where K should be significantly larger than
the number k of requested RNNs to avoid false misses5. In
our experiments, we set K to 10⋅d⋅k, where d is the
dimensionality of the dataset being examined, e.g., for
single RNN in 2D space K=20.

The experiments investigate the effect of the following

3 http://www.census.gov/geo/www/tiger/
4 http://www.ndbc.noaa.gov/historical_data.shtml
5 Singh et al. [SFT03], in their evaluation, used K=50 for single
RNN retrieval.

parameters: (i) data distribution, (ii) dataset cardinality,
(iii) dimensionality d, and (iv) k (for RkNN). The reported
results represent the average cost per query for a workload
of 200 queries with the same parameters. The locations of
the queries are uniformly generated in the data space. The
cost includes both the I/O overhead (by charging 10ms for
each node access) and CPU time. All the experiments are
executed on a Pentium IV CPU at 2.4GHz with 512
Mbytes memory. Section 5.1 presents the results for
single RNN retrieval, and Section 5.2 discusses RkNN.

5.1 Results of Single RNN Search

Figure 5.1 compares the performance of TPL, SAA and
SFT using real datasets. The cost of each method is
divided in two parts, corresponding to the filter and
refinement steps. The number above each column
indicates the average percentage of I/O time in the total
query cost. For TPL, we also demonstrate (in brackets)
the average number of candidates retrieved by the filter
step. These numbers are fixed for SAA (6) and SFT (10⋅d)
and omitted. SAA is not performed on Wave and Color,
because the datasets have 3 and 4 dimensions,
respectively.
 Clearly, TPL is the best algorithm for all datasets. The
similar performance of the filter steps is due to the fact
that SAA and SFT perform a 6NN or 10dNN query,
which, in general, visits a limited number of R-tree nodes
around the query point. Similarly, the pruning of TPL is
very effective in low dimensional spaces. On the other
hand, the refinement step of TPL is much faster than that
of the other algorithms. Recall that TPL integrates the
filter and refinement steps to avoid accessing the same
node twice. Further, due to the small number (at most 6.2)
of candidates retrieved (by the filter step), the refinement
is usually accomplished with only 1 or 2 node accesses.
The refinement step of SAA performs 6 NN queries,
which traverse the tree multiple times, thus incurring high
overhead. The boolean ranges of SFT achieve better
performance (than SAA) but are less effective than the
refinement step of TPL. All the algorithms are I/O
bounded.

SAA SFT TPL
0

0.2

0.1

0.5

0.4

0.6

0.3

0.7

0.8

0.9

LB NA LA

97%

98%
94%97% 97%

SAA SFT TPL

97%

97%
97%

SAA SFT TPL

97%
99%

98%

SFT TPL

Wave

query cost (sec)

99%

97%

SFT TPL

Color

filter refinement

the percentage of the I/O cost

(3.8) (3.6) (3.9)
(4.4)

(6.2)number of candidates for TPL

Figure 5.1: Costs for real datasets

Figure 5.2 shows the total cost of TPL and SFT as a
function of the dimensionality for synthetic datasets with

cardinality 512k. The performance of both algorithms
degrades because, in general, R-trees become less
efficient as the dimensionality grows [TS96] (due to the
large overlap among the node MBRs). In addition, the
number of potential candidates for TPL increases (see
parenthesis on top of the TPL column), leading to higher
cost, especially for the filter step. The data distribution
does not have a significant effect on the performance; this
observation is confirmed by all experiments (including the
real data) despite the different settings.

0

0.5

1

1.5

2

2.5

SFT TPL SFT TPL SFT TPL
2D 3D 4D 5D

SFT

99%
99%

99%

99%

97%

98%

98%

query cost (sec)

dimensionality

filter refinement

TPL

97%
(3.2) (4.5)

(6.0)

(7.2)

SAA

99%

0

0.5

1

1.5

2

2.5

3

SFT TPL SFT TPL SFT TPL
2D 3D 4D 5D
SFT

99%
99%

99%

99%

98%

98%

98%
query cost (sec)

dimensionality

filter refinement

TPL

97%
(3.3) (4.7)

(6.1)

(7.5)

SAA

99%

(a) Uniform (b) Zipf
Figure 5.2: Cost vs. dimensionality (512k)

Figure 5.3 fixes the dimensionality to 3, and shows the
query cost as a function of the dataset cardinality. TPL
incurs around half the cost of SFT in all cases. The step-
wise growth corresponds to an increase of the tree height.
Specifically, for uniform data, the step occurs at 1024k,
whereas for Zipf data at cardinality 2048k. The height
increase has a similar effect on both algorithms.

0

0.1

0.2

0.3

0.4

0.5

0.6

SFT TPL SFT TPL SFT TPL SFT TPL SFTTPL
128k 256k 512k 1024k 2048k

99% 99%
99%

99% 99%

97% 97% 97%

97%97%

query cost (sec)

cardinality

filter refinement

(4.5)
(4.6) (4.3)

(4.6) (4.5)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

SFTTPL SFT TPL SFT TPL SFT TPL SFT TPL
128k 256k 512k 1024k 2048k

99%
99% 99% 99%

99%

97% 97% 97%

97%

97%

query cost (sec)

filter refinement

cardinality

(4.7)(4.6)(4.3) (4.4)

(4.9)

(a) Uniform (b) Zipf

Figure 5.3: Cost vs. cardinality (3D)

5.2 Results of RkNN Search

Having confirmed the superiority of TPL for single RNN
retrieval, we proceed to evaluate its performance for
RkNN queries. Our implementation of TPL applies the
Hilbert heuristic discussed in Section 4.1 to reduce the
number of inspected subsets. Figure 5.4 illustrates the
performance of alternative algorithms as a function of k
(in the range [1,16]) for real datasets. SAA here refers to
the RkNN extension discussed in Section 4.3. Similar to
the diagrams in the previous section, we also demonstrate
the percentage of I/O costs, and the number of candidates
for TPL. As expected, the overhead of each algorithm
grows with k, due to the significant increase in CPU time
(observe that the I/O percentage decreases with k). TPL
again outperforms its competitors, and the difference

increases with k. Note that for the 2D datasets, the
average number of candidates retrieved by TPL is smaller
than 4 for k=1 and increases almost linearly with k.

0

1

2

3

4

5

6

98% 99%

99%

99%

99%

97% 95%
91%

82%

68%

96% 95% 91% 84% 69%

SFT TPL

1 2 4 8 16
SAA SFT TPLSAA SFT TPLSAA SFT TPLSAA SFT TPLSAA

k

query cost (sec)

filter refinement

(3.8) (5.5) (10)
(19) (33)

(a) LB

0
0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

98%
99%

99%

99%

99%

97%
94% 88%

82%

63%

96% 95% 92% 85% 69%

SFT TPLSAA SFT TPLSAA SFT TPLSAA SFT TPLSAA SFT TPLSAA

1 2 4 8 16
k

query cost (sec)

filter refinement

(3.6) (5.5) (13) (25) (47)

(b) NA

0

1

2

3

4

5

6

98% 98%

99%

99%

99%

97% 94%
88%

78%

63%

96% 94% 91% 84% 67%

SFT TPLSAA SFT TPLSAA SFT TPLSAA SFT TPLSAA SFT TPLSAA
1 2 4 8 16

k

query cost (sec)
filter refinement

(3.9) (6) (10) (21) (39)

(c) LA

0

1

2

3

4

5

6

97%
97% 94% 87%

SFT TPL TPL
1

95%

SFT TPL
2

81%

74%

SFT TPL
8

67%

50%

SFT TPL
16

90%

SFT
4
k

query cost (sec)

filter refinement

(4.4)
(42)(18)

(95)

(153)

0
1
2
3
4
5
6
7
8
9
10

98%
97%97%

SFT TPL TPL
1

95%

SFT

2

87%

95%

SFT TPL

4

72%

90%

SFT TPL

8

51%

77%

SFT TPL

16
k

query cost (sec)

filter refinement

(69)
(113)

(269)

(32)(6.2)

(d) Wave (e) Color

Figure 5.4: Cost vs. k (real data)

Next we explore the effects of dimensionality and
cardinality using synthetic data. In the following
experiments, k is fixed to its median value 4. Figure 5.5
shows the performance as a function of dimensionality for
uniform (Figure 5.5a) and Zipf (Figure 5.5b) distributions,
respectively (the cardinality is set to 512k). The diagrams
and their explanations are similar to those in Figure 5.2.

The last set of experiments (Figure 5.6) illustrates the
query overhead as a function of cardinality (the
dimensionality equals 3), confirming the observations of
Figure 5.3.

0

1

2

3

4

5

6

7

8

9

SFT TPL SFT TPL SFT TPL
2D 3D 4D 5D

SFT

92%
90%

92%

92%

85%

80%

86%

query cost (sec)

dimensionality

filter refinement

TPL

90%
(18)

(33)

(54)

(158)

SAA

99%

0

2

4

6

8

10

12

SFT TPL SFT TPL SFT TPL
2D 3D 4D 5D
SFT

91%
90%

92%

94%

86%

81%

87%

query cost (sec)

dimensionality

filter refinement
(280)

(52)

(32)

TPL

90%
(17)

SAA

99%

(a) Uniform (b) Zipf

Figure 5.5: Cost vs. dimensionality (k=4, 512k)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

SFT TPL SFT TPL SFT TPL SFT TPL SFT TPL
128k 256k 512k 1024k 2048k

89% 89%
90%

91% 91%

86% 85% 85%
85% 85%

query cost (sec)

filter refinement

cardinality

(33)
(27) (30)

(34) (32)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

SFT TPL SFT TPL SFT TPL SFT TPL SFT TPL
128k 256k 512k 1024k 2048k

89%
90% 90% 90%

92%

86% 85% 86% 85%

85%

query cost (sec)

filter refinement

cardinality

(32)(32)
(34) (35)

(35)

(a) Uniform (b) Zipf
Figure 5.6: Cost vs. cardinality (k=4, 3D)

6. CONCLUSIONS

The existing algorithms for RNN search are applicable
only in restricted scenarios. This paper develops the first
general methodology for retrieval of an arbitrary number
of reverse nearest neighbors in multiple dimensions. In
addition to its applicability and flexibility, our solution is
better than the previous approaches also in terms of
efficiency and scalability. An interesting direction for
future work is to adapt the proposed methodology to other
variations of RNN problems. Further, currently there does
not exist any cost model for estimating the execution time
of RNN techniques. The development of such a model
will not only facilitate query optimization, but may also
reveal new problem characteristics that could lead to even
faster algorithms.

ACKNOWLEDGMENTS

This work was supported by grant HKUST 6180/03E
from Hong Kong RGC. We would like to thank Kyriakos
Mouratidis for proof-reading the paper.

REFERENCES

[BJKS02] Benetis, R., Jensen, C., Karciauskas, G.,
Saltenis, S. Nearest Neighbor and Reverse
Nearest Neighbor Queries for Moving
Objects. IDEAS, 2002.

[BKK96] Berchtold, S., Keim, D., Kriegel, H. The X-
tree: An Index Structure for High-

Dimensional Data. VLDB, 1996.
[BKOS97] Berg, M., Kreveld, M., Overmars, M.,

Schwarzkopf, O. Computational Geometry:
Algorithms and Applications. ISBN 3-540-
65620-0. Springer, 1997

[BKSS90] Beckmann, N., Kriegel, H.P., Schneider, R.,
Seeger, B. The R*-tree: An Efficient and
Robust Access Method for Points and
Rectangles. SIGMOD, 1990.

[CF98] Cheung, K., Fu, A. Enhanced Nearest
Neighbour Search on the R-tree. SIGMOD
Record 27(3): 16-21, 1998.

[FSAA01] Ferhatosmanoglu, H., Stanoi, I., Agrawal, D.,
Abbadi, A. Constrained Nearest Neighbor
Queries. SSTD, 2001.

[G84] Guttman, A. R-trees: A Dynamic Index
Structure for Spatial Searching. SIGMOD,
1984.

[GRSY97] Goldstein, J., Ramakrishnan, R., Shaft, U.,
Yu, J. Processing Queries By Linear
Constraints. PODS, 1997.

[H94] Henrich, A. A Distance Scan Algorithm for
Spatial Access Structures. ACM GIS, 1994.

[HS99] Hjaltason, G., Samet, H. Distance Browsing
in Spatial Databases. TODS, 24(2), 265-318,
1999.

[KM00] Korn, F., Muthukrishnan, S. Influence Sets
Based on Reverse Nearest Neighbor Queries.
SIGMOD, 2000.

[KMS02] Korn, F., Muthukrishnan, S. Srivastava, D.
Reverse Nearest Neighbor Aggregates Over
Data Streams. VLDB, 2002.

[LNY03] Lin, K., Nolen, M., Yang, C. Applying Bulk
Insertion Techniques for Dynamic Reverse
Nearest Neighbor Problems. IDEAS, 2003.

[MVZ02] Maheshwari, A., Vahrenhold, J., Zeh, N. On
Reverse Nearest Neighbor Queries. CCCG,
2002.

[RKV95] Roussopoulos, N., Kelly, S., Vincent, F.
Nearest Neighbor Queries. SIGMOD, 1995.

[SAA00] Stanoi, I., Agrawal, D., Abbadi, A., Reverse
Nearest Neighbor Queries for Dynamic
Databases. SIGMOD Workshop on Research
Issues in Data Mining and Knowledge
Discovery, 2000.

[SFT03] Singh, A., Ferhatosmanoglu, H., Tosun, A.
High Dimensional Reverse Nearest Neighbor
Queries. CIKM, 2003.

[SRAA01] Stanoi, I., Riedewald, M., Agrawal, D.,
Abbadi, A. Discovery of Influence Sets in
Frequently Updated Databases. VLDB, 2001.

[TS96] Theodoridis, Y., Sellis, T. A Model for the
Prediction of R-tree Performance. PODS,
1996.

[YL01] Yang, C., Lin, K. An Index Structure for
Efficient Reverse Nearest Neighbor Queries.
ICDE, 2001.

