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Abstract 

Given a point q, a reverse k nearest neighbor (RkNN) 
query retrieves all the data points that have q as one of 
their k nearest neighbors. Existing methods for processing 
such queries have at least one of the following 
deficiencies: (i) they do not support arbitrary values of k 
(ii) they cannot deal efficiently with database updates, (iii) 
they are applicable only to 2D data (but not to higher 
dimensionality), and (iv) they retrieve only approximate 
results. Motivated by these shortcomings, we develop 
algorithms for exact processing of RkNN with arbitrary 
values of k on dynamic multidimensional datasets. Our 
methods utilize a conventional data-partitioning index on 
the dataset and do not require any pre-computation. In 
addition to their flexibility, we experimentally verify that 
the proposed algorithms outperform the existing ones 
even in their restricted focus. 

1. INTRODUCTION 

Given a multi-dimensional dataset P and a point q, a 
reverse nearest neighbor (RNN) query retrieves all the 
points p∈ P that have q as their nearest neighbor. 
Formally, RNN(q) = {p∈ P | ¬∃ p'∈ P such that dist(p,p') < 
dist(p,q)}, where dist is a distance metric (in this paper we 
assume Euclidean distance). Although the problem was 
proposed recently [KM00], it has already received 
considerable attention due to its importance in several 
applications involving decision support, resource 
allocation, profile-based marketing, etc. Other versions of 
the problem include (i) continuous RNN [BJKS02], where 
P contains linearly moving objects with fixed velocities, 
and the goal is to retrieve all RNNs of q for a future 
interval; (ii) bichromatic RNN [SRAA01] where, given a 
set Q of queries, the goal is to find the objects p∈ P that 
are closer to some q∈ Q than any other point of Q; (iii) 
stream RNN [KMS02], where data arrive in the form of 

streams, and the goal is to report aggregate results over 
the RNNs of a set of query points.       
 This paper focuses on conventional (i.e., 
monochromatic) reverse nearest neighbor queries. In 
addition to single RNN search, we deal with reverse k 
nearest neighbor (RkNN) queries, which retrieve all the 
points p∈ P that have q as one of their k nearest neighbors. 
Specifically, RkNN(q) = {p∈ P | dist(p,q) ≤ dist(p,pk), 
where pk is the k-th farthest NN of p}. Figure 1.1 shows 
four 2D points, where each point p is associated with a 
circle covering its two nearest neighbors For example, the 
two NNs of p4 (p2, p3) are in the circle centered at p4. 
Accordingly, p4∈ R2NN(p2) and p4∈ R2NN(p3). Let 
kNN(p) be the set of k nearest neighbors of point p. It is 
important to note that p ∈  kNN(q) does not necessarily 
imply p ∈  RkNN(q) and vice versa. For instance, 
2NN(p4)={p2,p3}, while R2NN(p4)=∅  (i.e., p4 is not 
contained in the circles of p1, p2, or p3).  

 
Figure 1.1: 2NN and R2NN examples 

As discussed in Section 2.2, all the previous methods for 
RNN search have at least one of the following 
deficiencies: (i) they do not support arbitrary values of k 
(ii) they cannot deal efficiently with database updates, (iii) 
they are applicable only to 2D data (but not to higher 
dimensionality), and (iv) they retrieve only approximate 
results (i.e., potentially incurring false misses). In other 
words, these methods address restricted versions of the 
problem without providing a general solution. Motivated 
by this, we develop algorithms for exact processing of 
RkNN queries with arbitrary values of k on dynamic 
multidimensional datasets.  

Our methods do not require any pre-processing 
besides a data-partitioning index (e.g., R-tree [BKSS90], 
X-tree [BKK96]). Similar to the existing algorithms for 
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dynamic data, we follow a filter-refinement framework. 
Specifically, the filter step retrieves a set of candidate 
results that is guaranteed to include all the actual reverse 
nearest neighbors; the subsequent refinement step 
eliminates the false hits. The two steps are integrated in a 
seamless way that eliminates multiple accesses to the 
same index node (i.e., each node is visited at most once). 
Our experimental comparison verifies that the proposed 
techniques outperform the previous ones, even in their 
restricted focus.  

The rest of the paper is organized as follows. Section 2 
surveys related work on NN and RNN search. Section 3 
presents some interesting problem characteristics, and 
proposes a new algorithm for single RNN (k=1) retrieval. 
Section 4 extends the solution to arbitrary values of k. 
Section 5 experimentally evaluates the proposed methods, 
and Section 6 concludes the paper with directions for 
future work.  

2. BACKGROUND 

Although the proposed algorithms can be used with 
various indexes, in the sequel, we assume that the dataset 
P is indexed by an R-tree due to the popularity of this 
structure in the literature. Section 2.1 briefly overviews 
the R-tree and algorithms for nearest neighbor search. 
Section 2.2 describes previous work on monochromatic 
RNN queries.   

2.1 Algorithms for NN search using R-trees 

The R-tree [G84] and its variants (most notably the R*-
tree [BKSS90]) can be thought of as extensions of B-trees 
in multi-dimensional spaces. Figure 2.1 shows a 2D point 
set P={p1,p2,…,p12} indexed by an R-tree assuming a 
capacity of three entries per node. Points that are close in 
space (e.g., p1, p2, p3) are clustered in the same leaf node 
(N3). Nodes are then recursively grouped together with the 
same principle until the top level, which consists of a 
single root. An intermediate index entry contains the 
minimum bounding rectangle (MBR) of its child node, 
together with a pointer to the page where the node is 
stored. A leaf entry stores the coordinates of a data point 
and (optionally) a pointer to the corresponding record.  
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Figure 2.1: Example of an R-tree and a NN query 

Given a d-dimensional set P and a point q, a nearest 
neighbor query retrieves the point p∈ P that is closest to q. 
The algorithms for NN queries on R-trees utilize some 
bounds to prune the search space: (i) mindist(N,q), which 
corresponds to the minimum possible distance between q 
and any point in the subtree of node N, (ii) maxdist(N,q), 
which denotes the maximum possible distance between q 
and any point in the subtree of N, and (iii) 
minmaxdist(N,q), which gives an upper bound of the 
distance between q and its closest point in N. In particular, 
the derivation of minmaxdist(N,q) is based on the fact that 
each edge of the MBR of N contains at least one data 
point. Hence, minmaxdist(N,q) equals the smallest of the 
maximum distances between all edges (of N) and q. 
Figure 2.1a shows these pruning bounds between point q 
and nodes N1, N2.  
 Existing NN methods follow either depth-first (DF), 
or best-first (BF) traversal. DF algorithms [RKV95, 
CF98] start from the root and visit recursively the node 
with the smallest mindist from q. In Figure 2.1, for 
instance, the first 3 nodes accessed are (in this order) root, 
N1 and N4, where the first potential nearest neighbor is 
found (p5). During backtracking to the upper levels, DF 
only visits entries whose minimum distances are smaller 
than the distance of the NN already retrieved. For 
example, after discovering p5, DF backtracks to the root 
level (without visiting N3 because mindist(N3,q) > 
dist(p5,q)), and then follows the path N2, N6 where the 
actual NN p11 is found.  
 Best-first (BF) algorithms [H94, HS99] maintain a 
heap H with the entries visited so far, sorted by their 
mindist. As with DF, BF starts from the root, and inserts 
all its entries into H (together with their mindist), e.g., in 
Figure 2.1, H={<N1, mindist(N1,q)>, <N2, mindist(N2,q) 
>}. Then, at each step, BF visits the node in H with the 
smallest mindist. Continuing the example, the algorithm 
retrieves the content of N1 and inserts all its entries in H, 
after which H={<N2, mindist(N2,q)>, <N4, mindist(N4,q)>, 
<N3, mindist(N3,q)>}. Similarly, the next two nodes 
accessed are N2 and N6 (inserted in H after visiting N2), in 
which p11 is discovered as the current NN. At this time, 
the algorithm terminates (with p11 as the final result) since 
the next entry (N4) in H is farther (from q) than p11. Both 
DF and BF can be easily extended for the retrieval of k>1 
nearest neighbors. Maxdist and minmaxdist can be applied 
to speed up the search process. Furthermore, BF is 
incremental, i.e., it reports the nearest neighbors in 
ascending order of their distance to the query, so that k 
does not have to be known in advance. 

2.2 RNN Algorithms 

Algorithms for RNN processing can be classified in two 
categories depending on whether they require pre-
processing, or not. For simplicity, we describe all methods 
for single RNN retrieval in 2D space. At the end of the 
section we discuss their applicability to arbitrary values of 
k and dimensionality.  



 The original RNN method [KM00] pre-computes for 
each data point p its nearest neighbor NN(p). Then, it 
represents p as a vicinity circle (p, dist(p,NN(p))) centered 
at p with radius equal to the Euclidean distance between p 
and its NN. The MBRs of all circles are indexed by an R-
tree, called the RNN-tree. Using the RNN-tree, the 
reverse nearest neighbors of q can be efficiently retrieved 
by a point location query, which returns all circles that 
contain q. Figure 2.2a illustrates the concept using four 
data points, each associated with a vicinity circle. Since q 
falls in the circles of p3 and p4, the result of the query is 
RNN(q) = {p3, p4}.      

 
(a) RNN query (b) Insertion of p5 

Figure 2.2: Illustration of KM1 

Because the RNN-tree is optimized for RNN, but not NN 
search, Korn and Muthukrishnan [KM00] use an 
additional (conventional) R-tree on the data points for 
nearest neighbors and other spatial queries. In order to 
avoid the maintenance of two separate structures, Yang 
and Lin [YL01] combine the two indexes in the RdNN-
tree. Similar to the RNN-tree, a leaf node of the RdNN-
tree contains vicinity circles of data points. On the other 
hand, an intermediate node contains the MBR of the 
underlying points (not their vicinity circles), together with 
the maximum distance from every point in the sub-tree to 
its nearest neighbor. As shown in the experiments of 
[YL01], the RdNN-tree is efficient for both RNN and NN 
queries because, intuitively, it contains the same 
information as the RNN-tree and has the same structure 
(for node MBRs) as a conventional R-tree. Another, 
solution based on pre-computation is proposed in 
[MVZ02]. The methodology, however, is applicable only 
to 2D spaces and focuses on asymptotical worst case 
bounds (rather than experimental comparison with other 
approaches).  
 The problem of KM, YL, MVZ, and all techniques 
that rely on pre-processing, is that they cannot deal 
efficiently with updates. This is because each insertion or 
deletion may affect the vicinity circles of several points. 
Consider Figure 2.2b, where we want to insert a new 
point p5 in the database. First, we have to perform a RNN 
query to find all objects (in this case p3 and p4) that have 
p5 as their new nearest neighbors. Then, we update the 
vicinity circles of these objects in the index. Finally, we 
compute the NN of p5 (i.e., p4) and insert the 
corresponding circle. Similarly, each deletion must update 

                                                           
1 We refer to the algorithms according to the author initials.  

the vicinity circles of the affected objects. In order to 
alleviate the problem, Lin et al. [LNY03] propose a 
method for bulk insertions in the RdNN-tree.   
 Stanoi et al. [SAA00] eliminate the need for pre-
computing all NNs by utilizing some interesting 
properties of RNN retrieval. Consider Figure 2.3, which 
divides the space around a query q into six equal regions 
S1 to S6. Let p be the NN of q in some region Si; it can be 
proven that (i) either p ∈  RNN(q) or (ii) there is no RNN 
of q in Si. For instance, in Figure 2.3 the NN of q in S1 is 
point p2. However, the NN of p2 is p1. Consequently, there 
is no RNN of q in S1 and we do not need to search further 
in this region. The same is true for S2 (no data points), S3, 
S4 (p4, p5 are NNs of each other) and S6 (the NN of p3 is 
p1). The actual result is RNN(q) = {p6}. Based on the 
above property SAA adopts a two-step processing 
method. First, six constrained NN queries [FSAA01] 
retrieve the nearest neighbors of q in regions S1 to S6. 
These points constitute the candidate result. Then, at a 
second step, a NN query is applied to find the NN p' of 
each candidate p. If dist(p,q)< dist(p,p'), p belongs to the 
actual result; otherwise, it is a false hit and discarded.    

 
Figure 2.3: Illustration of SAA 

The number of regions to be searched for candidate 
results increases exponentially with the dimensionality2, 
rendering SAA inefficient even for three dimensions. 
Motivated by this, Singh et al. [SFT03] propose a multi-
step algorithm that: (i) finds (using an R-tree) the K NNs 
of the query q, which constitute the initial candidates; (ii) 
it eliminates the points that are closer to some other 
candidate than q; (iii) it applies boolean range queries on 
the remaining candidates to determine the actual RNNs. 
Consider, for instance, the query of Figure 2.4 assuming 
that K (a system parameter) is 4. The algorithm first 
retrieves the 4 NNs of q: p6, p5, p4 and p2. The second step 
discards p4 and p5 since they are closer to each other than 
q. The third step uses the circles (p2,dist(p2,q)) and 
(p6,dist(p6,q)) to perform two boolean ranges on the data 
R-tree. The difference with respect to conventional range 
queries is that a boolean range terminates immediately 
when (i) the first data point is found, or (ii) the entire side 
of a node MBR lies within the circle. For instance, 
minmaxdist(N1,p2) ≤ dist(p2,q), meaning that N1 contains 
at least a point within the range (i.e.,). Thus, p2 is a false 

                                                           
2  Determining the number of space partitions in SAA is 
analogous to the sphere packing and the kissing number 
problems. For a discussion see [SFT03]. 



hit and SFT returns p6 as the only RNN of q. The major 
shortcoming of the method is that it may incur false 
misses. In Figure 2.4, although p3 is a RNN of q, it does 
not belong to the 4 NNs of the query and will not be 
retrieved.              
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Figure 2.4: Illustration of SFT 

Table 2.1 summarizes the properties of each algorithm. 
As discussed before, pre-computation methods cannot 
efficiently handle updates. MVZ is suitable only to 2D 
spaces, while SAA is practically inapplicable for 3 or 
more dimensions. SFT incurs false misses, the number of 
which depends on the parameter K: a large value of K 
decreases the false misses but increases significantly the 
processing cost. 

 dynamic 
data 

arbitrary 
dimensionality 

exact 
result 

KM,YL No Yes Yes 
MVZ No No Yes 
SAA Yes No Yes 
SFT Yes Yes No 

Table 2.1: Summary of algorithm properties 

Regarding the applicability of the existing algorithms to 
arbitrary values of k, pre-computation methods only 
support a specific value (typically equal to 1), used to 
determine the vicinity circles. SFT can be adapted for 
retrieval of RkNN by setting a large value of K (>>k) and 
replacing the boolean with count queries (that return the 
number of objects in the query range instead of their 
actual ids). The extension of SAA to arbitrary k has not 
been studied before, but we will discuss it in Section 4.3. 
In the rest of the paper, we propose algorithms that return 
the exact results for dynamic datasets of any 
dimensionality. We start with single (i.e., k=1) RNN 
queries in Section 3, before proceeding to arbitrary values 
of k in Section 4. 

3. SINGLE RNN PROCESSING 

Section 3.1 illustrates some problem characteristics that 
permit the development of efficient algorithms presented 
in Section 3.2. Section 3.3 analyzes the performance of 
the proposed techniques with respect to existing methods.  

3.1 Problem Characteristics 

Consider the perpendicular bisector ⊥ (p,q) between the 

query q and an arbitrary data point p as shown in Figure 
3.1a. The bisector divides the data space into two half-
planes: PLq(p,q) that contains q, and PLp(p,q) that 
contains p. Any point (e.g., p') in PLp(p,q) cannot be a 
RNN of q because it is closer to p than q. Similarly, a 
node MBR (e.g., N1) that falls completely in PLp(p,q) 
cannot contain any candidate. In some cases, the pruning 
of an MBR requires multiple half-planes. For example, in 
Figure 3.1b, although N2 does not fall completely in PLp1

(p1,q) or PLp2(p2,q), it can still be pruned since it lies 
entirely in the union of the two half-planes.  
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Figure 3.1: Illustration of half-plane pruning 

In general, if p1, p2, …, pnc are nc data points, then any 
node whose MBR falls inside ∪ i=1~ncPLpi(pi,q) cannot 
contain any RNN result. Let the residual region Nres be 
the area of node N outside ∪ i=1~ncPLpi(pi,q) (i.e., the part 
of the MBR that may contain candidate RNNs of q). 
Then, N can be pruned if and only if Nres=∅ . Typically, 
Nres is a convex polygon bounded by the edges of N and 
the bisectors ⊥ (pi,q) (1≤i≤nc). Consider Figure 3.2a that 
contains nc=3 data points p1, p2, p3. We can compute the 
residual region Nres by trimming N with each bisector in 
turn. Specifically, initially we set Nres=N and use ⊥ (p1,q), 
after which Nres becomes the shaded trapezoid. In general, 
trimming with ⊥ (pi,q) reduces the previous Nres to the 
region inside the half-plane PLq(pi,q). Figure 3.2b shows 
the final Nres after processing all bisectors. Given p1, p2 
and p3, N

res is the only part of the node MBR N that may 
contain RNNs of q. 
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Figure 3.2: Computing the residual region 

The above computation of Nres has two problems. First, in 
the worst case, each bisector may introduce an additional 
vertex to Nres. Consequently, the trimming of the i-th 
(1≤i≤nc) bisector takes O(i) time because it may need to 
examine all edges in the previous Nres. Thus, the total 
processing cost is O(nc

2), i.e., quadratic to the number of 
half-planes. Second, this method does not scale with the 
dimensionality because computing the intersection of a 



half-space and a hyper-polyhedron becomes increasingly 
complex [BKOS97]. Motivated by this, we propose a 
simpler alternative that requires only O(nc) time. The idea 
is to bound Nres by a residual MBR NresM. Figure 3.3 
illustrates the residual MBR computation using the 
example in Figure 3.2. Initially NresM is set to N and then it 
is trimmed incrementally by each bisector. Figure 3.3a 
shows trimming with ⊥ (p1,q), where, instead of keeping 
the exact shape of Nres, we compute NresM (i.e., the shaded 
rectangle). In general, bisector ⊥ (pi,q) updates NresM to the 
MBR of the region in the previous NresM that is in 
PLq(pi,q). Figures 3.3b, 3.3c illustrate the residual MBRs 
after trimming with ⊥ (p2,q), ⊥ (p3,q), respectively. Note 
that the final NresM is not necessarily the MBR of the final 
Nres (compare Figure 3.3c and Figure 3.2b). Trimmed 
MBRs can be efficiently computed (in arbitrary 
dimensionality) using the clipping algorithm of 
[GRSY97].  
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 Figure 3.3: Computing the residual MBR 

Figure 3.4 presents the pseudo-code for the above 
approximate trimming algorithm. If NresM exists, trim 
returns the minimum distance between q and NresM; 
otherwise, it returns ∞. Since NresM always encloses Nres, 
NresM = ∅  necessarily implies that Nres = ∅ . This property 
guarantees that pruning is “safe”, meaning that trim 
never eliminates a node that may contain candidates. The 
algorithm also captures points as MBRs with zero extents. 
In this case it will return the actual distance between the 
point and the query (if the point falls in the half-space of 
the query), or ∞ otherwise. 

Algorithm trim (q, { p1, p2, …, pnc}, N) 
/* q is the query point, p1, p2, …, pnc are arbitrary data points, 
and N is a rectangle being trimmed*/   
1.  NresM = N  
2. for i=1 to nc // consider each data point in turn 
3.  NresM =clipping(NresM, PLq(pi,q)) //algorithm of [GRSY97] 
4.  if NresM = ∅  then return ∞ 
5.  return mindist(NresM, q) 
End trim 

Figure 3.4: The trim algorithm 

An interesting question is: if NresM ≠ ∅ , can Nres be ∅ ? 
(i.e., trim fails to prune an MBR that can be discarded). 
Interestingly, it turns out that the answer is negative in the 
2D space, as illustrated in the next lemma (which proves 
an even stronger result): 
Lemma 1: Given a 2D query q, an arbitrary number of 
half-planes and a node N, the residual MBR NresM of N 

returned by trim exists if and only if Nres exists. 
Furthermore, if NresM≠∅ , mindist(Nres,q) = mindist(NresM, 
q), where Nres is the residual region of N.  
 In other words, the residual MBR NresM preserves the 
minimum distance between Nres and q (compare 
mindist(Nres,q) and mindist(NresM,q) in Figures 3.2b and 
3.3c, respectively). It is worth mentioning that the lemma 
does not hold for arbitrary half-planes (the half-planes in 
RNN are constrained to contain q). Further, the lemma 
does not apply to arbitrary dimensionality. However, as 
mentioned earlier, we can still use trim to safely eliminate 
MBRs that do not contain candidates.  

3.2 The TPL Algorithm 

Based on the above discussion, we adopt a two-step 
framework that retrieves a set of candidate RNNs 
(filtering step) and then removes the false misses 
(refinement step). As opposed to SAA and SFT that 
require multiple queries for each step, the filtering and 
refinement processes are combined into a single traversal 
of the R-tree. In particular, our algorithm (hereafter, 
called TPL) traverses the R-tree in a best-first manner (see 
Section 2.1), retrieving potential candidates in ascending 
order of their distance to the query point q because the 
RNNs are likely to be near q. The concept of half-planes 
(half-spaces in high dimensions) is used to prune node 
MBRs (data points) that cannot contain (be) candidates. 
Each pruned entry is inserted in a refinement set Srfn. In 
the refinement step, the entries of Srfn are used to 
eliminate false hits. Next we discuss TPL using the 
example of Figure 3.5, which shows a set of data points 
(numbered in ascending order of their distance from the 
query) and the corresponding R-tree (the content of some 
nodes is omitted for clarity). The query result contains 
only point p5.  
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Figure 3.5: Filtering example 

Initially, the algorithm visits the root of the R-tree and 
inserts its entries N10, N11, N12 into a heap H sorted on 
their mindist from q. Then it de-heaps N10, visits its child 
node and inserts into H the corresponding entries: H = 
{N3, N11, N2, N1, N12}. The next node accessed is N3, 
where the first point p1 (i.e., the one closest to q) has 
dist(p1,q)< dist(N11,q) (N11 is at the top of the heap) and is 
added to the candidate set Scnd. The second point p3 in N3 



lies in PLp1(p1,q) (i.e., it cannot be a RNN of q) and is 
inserted into the refinement set Srfn. In general, any point 
or node examined during the filter step is not discarded 
because it may influence (i.e., be a NN of) some 
candidate. In this example, p3 will invalidate p1 (during 
the refinement step) because dist(p1,p3) < dist(p1,q).  
 The next de-heaped entry is N11. Trim checks if N11 
can be pruned. Since part of N11 lies in PLq(p1,q), it has to 
be visited. Its child nodes N4 and N6 fall completely out of 
PLq(p1,q). Therefore, they cannot contain any candidates 
and are added to Srfn. On the other hand, N5 falls partially 
in PLq(p1,q), i.e., trim will return a mindist(N5

resM,q) that is 
different from ∞. Thus, N5 is inserted into H together with 
its mindist(N5

resM,q). The rationale of this choice, instead 
of mindist(N5,q), is that since our aim is to discover 
candidates according to their proximity to q, the node 
visiting order should not take into account the part of the 
node that cannot contain candidates. Assuming that 
mindist(N5

resM,q) < mindist(N2,q), N5 is at the top of H and 
immediately de-heaped. Inside N5, point p2 is added to 
Scnd={p1,p2} and p6 to Srfn={p3,N4,N6,p6}. The next heap 
entry N2 lies in PLp1(p1,q) and is added to Srfn, without 
being visited. On the other hand, part of N1 lies in 
PLq(p1,q) and is accessed, leading to Scnd = {p1,p2,p5} and 
Srfn = {p3,N4,N6,N2,p6,p7}. Finally, N1 is also inserted into 
Srfn as it lies completely in PLp2(p2,q). The filtering step 
terminates when H=∅ .  
 The contents of the heap at each phase of the filtering 
process are shown in Table 3.1. Although omitted in the 
table, the heap entry for N also contains mindist(NresM,q), 
if N has been trimmed, or mindist(N,q), otherwise. In 
addition, the heap may include (non-pruned) data points 
(for simplicity, in the example we assumed that such 
points were processed immediately).      

Action Heap Scnd Srfn 
visit root {N10,N11,N12} ∅  ∅  
visit N10 {N3,N11,N2,N1,N12} ∅  ∅  
visit N3 {N11,N2,N1,N12} {p1} {p3} 
visit N11 {N5,N2,N1,N12} {p1} {p3,N4,N6} 
visit N5 {N2,N1,N12} {p1,p2} {p3,N4,N6,p6} 

process N2 {N1,N12} {p1,p2} {p3,N4,N6,p6,N2} 
visit N1  { N12} {p1,p2,p5} {p3,N4,N6,p6,N2,p7} 
visit N12  ∅  {p1,p2,p5} {p3,N4,N6,p6,N2,p7,N12}

Table 3.1: Heap contents during filtering 

Figure 3.6 illustrates the pseudo-code for the filtering 
step. Note that trim is applied twice for each node N; 
when N is inserted into the heap and when it is de-heaped. 
The second test is necessary, because N may be pruned by 
some candidate that was discovered after N's insertion 
into H. Similarly, when a leaf node is visited, its non-
pruned points are inserted into H (instead of Scnd) and 
processed in ascending order of their distance to q. 
Although this may increase the heap size (and the CPU 
cost of heap operations), it maximizes the chance that 
some points will be subsequently pruned by not-yet 
discovered candidates that are closer to the query, hence 

reducing the size of Scnd (and the cost of the subsequent 
refinement step).    

Algorithm TPL-filter(q) /* q is the query point */ 
1. initialize a min-heap H accepting entries of the form (e, key) 
2. initialize sets Scnd=∅ , Srfn=∅  
3. insert (R-tree root, 0) to H  
4. while H is not empty 
5.  (e, key)=de-heap H 
6.  if (trim(q, Scnd, e)=∞) then Srfn=Srfn∪ {e}  
7.  else // entry may be or contain a candidate 
8.   if e is data point p 
9.     Scnd=Scnd∪ {p} 
10.   else if e points to a leaf node N 
11.    for each point p in N (sorted on dist(p,q)) 
12.     if (trim(q,Scand,p)≠∞) then insert (p,dist(p,q)) in H  
13.     else Srfn=Srfn∪ {p} 
14.   else // e points to an intermediate node N  
15.    for each entry Ni in N  
16.     mindist(Ni

resM, q)=trim(q, Scnd, Ni) 
17.     if (mindist(Ni

resM, q)=∞) then Srfn=Srfn∪ {Ni} 
18.     else insert (Ni, mindist(Ni

resM, q)) in H 
End TPL-filter 

Figure 3.6: TPL filtering algorithm 

After the termination of the filter step we have a set Scnd 
of candidates and a set Srfn of node MBRs or data points. 
Let Prfn ⊆  Srfn be the set of points and Nrfn ⊆  Srfn be the set 
of MBRs in Srfn. The refinement step is performed in 
rounds. Figure 3.7 shows the pseudo-code for each round, 
where we eliminate the maximum number of candidates 
from Scnd without visiting additional nodes. Intuitively, a 
point p ∈  Scnd can be discarded as a false hit, if (i) there is 
a point p' ∈  Prfn such that dist(p,p') < dist(p,q), or (ii) 
there is an node MBR N ∈  Nrfn such that minmaxdist(p,N) 
< dist(p,q) (i.e., N is guaranteed to contain a point p' such 
that dist(p,p') < dist(p,q)). For instance, in Figure 3.5, the 
first condition prunes p1 because p3 ∈  Prfn and dist(p1,p3) 
< dist(p1,q). Lines 2-9 prune false hits according to the 
above observations.  

Algorithm refinement_round(q, Scnd, Prfn, Nrfn) 
1. for each point p in Scnd 
2.   for each point p' in Prfn 
3.     if dist(p,p')< dist(p,q) 
4.      Scnd= Scnd -{p} //false hit 
5.      goto 1 //test next candidate 
6.   for each node MBR N in Nrfn 
7.     if minmaxdist(p,N)< dist(p,q) 
8.      Scnd= Scnd -{p} //false hit 
9.      goto 1 //test next candidate 
10.  for each node MBR N in Nrfn 
11.    if mindist(p,N)< dist(p,q) add N in toVisit(p) 
12.  if (toVisit(p)= ∅ )  
13.    Scnd= Scnd -{p} and report p // actual result 
End refinement_round 

Figure 3.7: The refinement_round algorithm 

On the other hand, a point p ∈  Scnd can be reported as an 
actual result without any extra node accesses, if (i) there is 
no point p' ∈  Prfn such that dist(p,p') < dist(p,q) and (ii) 



for every node N ∈  Nrfn: mindist(p,N) ≥ dist(p,q). In 
Figure 3.5, candidate p5 satisfies these conditions and is 
removed from Scnd. Each remaining point p in Scnd (e.g., 
p2) must undergo additional refinement rounds because 
there may exist points (p4) in some not-yet visited nodes 
(N4) that invalidate it. In this case, p requires accessing 
some nodes N such that mindist(p,N) < dist(p,q), which 
are inserted in toVisit(p), i.e., toVisit(p) is the set of nodes 
that need to be visited before verifying p as a result.  
 Our next goal is to access the nodes of toVisit(p) (for p 
∈  Scnd) in an order that achieves quick elimination of the 
remaining candidates. Continuing the running example, 
after the first round Scnd = {p2} and the nodes that may 
contain NNs of p2 are toVisit(p2)={N4,N12}. We choose to 
access a lowest level node first (in this case N4), because 
it can achieve better pruning since it either encloses data 
points or MBRs with small extents (therefore the 
minmaxdist pruning is more effective). In case of a tie 
(i.e., multiple nodes of the same low level), we access the 
one that may prune the largest number of candidates.  
 If the node N to be visited is a leaf, then Prfn contains 
only the data points in N, and Nrfn is set to ∅ . Otherwise 
(N is an intermediate node), Nrfn contains only the child 
nodes of N, and Prfn is ∅ . In our example, the parameters 
for the second round are Scnd = {p2}, Prfn = {points of N4} 
and Nrfn = ∅ . Inside N4, point p4 eliminates p2 and the 
algorithm terminates. Figure 3.8 shows the pseudo-code 
of the TPL refinement step. Lines 2-4 eliminate 
candidates that are closer to each other than the query 
point (i.e., similar to the second step of SFT). This test is 
required only once and therefore, is not included in 
refinement_round in order to avoid repeating it for every 
round.   

Algorithm TPL-refinement (q, Scnd, Prfn, Nrfn) 
1. for each point p in Scnd 
2.   for each other point p' ≠ p in Scnd 
3.     if dist(p,p')< dist(p,q) 
4.     Scnd= Scnd -{p}; goto 1  
5.   if p is not eliminated initialize toVisit(p)=∅  
6. repeat  
7.   refinement_round(q, Scnd, Prfn, Nrfn) 
8.   if (Scnd=∅ ) return // terminate 
9.   Prfn=Nrfn=∅  //initialization of next round 
10.  Let N be the lowest level node that appears in the largest 

number of sets toVisit(p), where p ∈  Scnd 
11.  remove N from all toVisit(p) and access N 
12. if N is a leaf node 
13.   Prfn={p/p∈ N} //Prfn contains only the points of N 
14. if N is an intermediate node 
15.   Nrfn={N'/ N'∈ N}//Nrfn contains the child nodes of N 
End TPL-refinement 

Figure 3.8: TPL refinement algorithm 

In order to verify the correctness of TPL, observe that the 
filter step always retrieves a superset of the actual result 
(i.e., it does not incur false misses), since trim only prunes 
node MBRs (data points) that cannot contain (be) RNNs. 

Every false hit p is subsequently eliminated during the 
refinement step by comparing it with each data point 
retrieved during the filter step and each MBR that may 
potentially contain NNs of p. Hence, the algorithm returns 
the exact set of RNNs.    

3.3 Discussion 

TPL and the existing techniques that do not require pre-
processing (SAA, SFT) are based on the filter-refinement 
framework. Interestingly, the two steps are independent in 
the sense that the filtering algorithms of one technique can 
be combined with the refinement mechanisms of another. 
For instance, the concept of boolean ranges of SFT can 
replace the conventional NN queries in the second step of 
SAA and vice versa. In this section we show that, in 
addition to being more general, TPL is more effective 
than SAA and SFT in terms of both filtering and 
refinement, i.e., it retrieves fewer candidates and 
eliminates false hits with lower cost. 
 In order to compare the efficiency of our filtering step 
with respect to SAA, we first present an improvement of 
that method. Consider the space partitioning of SAA in 
Figure 3.9a and the corresponding NNs in each partition 
(points are numbered according to their distance from q). 
Since the angle between p1 and p2 is smaller than 60 
degrees and p2 is farther than p1, point p2 cannot be a 
RNN of q. In fact, the discovery of p1 (i.e., the first NN of 
the query) can prune all the points lying in the region 
∇ (p1) extending 60 degrees on both sides of line segment 
qp1 (upper shaded region in Figure 3.9a). Based on this 
observation, we only need to search for other candidates 
outside ∇ (p1). Let p3 be the next NN of q in the 
constrained region of the data space (i.e., not including 
∇ (p1)). Similar to p1, p3 prunes all the points in ∇ (p3). The 
algorithm terminates when the entire data space is pruned. 
Although the maximum number of candidates is still six 
(e.g., if all candidates lie on the boundaries of the 6 space 
partitions), in practice it is smaller (in this example, the 
number is 3, i.e., p1, p3 and p6).       
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 Figure 3.9: Superiority of TPL over SAA  

Going one step further, the filter step of TPL is even more 
efficient than that of the improved SAA. Consider Figure 
3.9b where p is the NN of q. The improved SAA prunes 
the region ∇ (p) bounded by rays l1 and l2. On the other 
hand, our algorithm prunes the entire half-plane PLp(p,q), 
which includes ∇ (p1) except for the part below ⊥ (p,q). 



Consider the circle centered at q with radius dist(p,q). It 
can be easily shown that the circle crosses the intersection 
point of ⊥ (p,q) and l1 (l2). Note that all the nodes 
intersecting this circle have already been visited in order 
to find p (a property of our filter step and all BF NN 
algorithms in general). In other words, all the non-visited 
nodes that can be pruned by ∇ (p) can also be pruned by 
PLp(p,q). As a corollary, the maximum number of 
candidates retrieved by TPL is also bounded by the 
dimensionality (i.e., |Scnd|≤6 is 2D space). Further, TPL 
supports arbitrary dimensionality in a natural way, since it 
does not make any assumption about the number or the 
shape of space partitions (as opposed to SAA). 
 The comparison with the filtering step of SFT depends 
on the value of K, i.e., the number of NNs of q that 
constitute the candidate set. Assume that in Figure 3.5 we 
know in advance that the actual RNNs of the query (in 
this case p5) are among the K=5 NNs of q. SFT would 
perform a 5NN query and insert all the retrieved points p1 
, .., p5 to Scnd, whereas TPL inserts only the non-pruned 
points Scnd = {p1,p2,p5}. Furthermore, the number of 
candidates in TPL is bounded by the dimensionality, 
while the choice of K in SFT is arbitrary and does not 
provide any guarantees about the quality of the result. 
Consider, for instance, the (skewed) dataset and query 
point of Figure 3.10. A high value of K will lead to the 
retrieval of numerous false hits (e.g., data points in 
partition S1), but no actual reverse nearest neighbors of q. 
The problem becomes more serious in higher 
dimensionality.    

 
Figure 3.10: False hits and misses of SFT 

One point worth mentioning is that although TPL is 
expected to retrieve fewer candidates than SAA and SFT, 
this does not necessarily imply that it incurs fewer node 
accesses during the filter step. For instance, assume that 
the query point q lies within the boundary of a leaf node N 
(in fact, q can be a data point) and all six candidates of 
SAA are in N. Then, as suggested in [SAA00] the NN 
queries can be combined in a single tree traversal, which 
can potentially find all these candidates by following a 
single path from the root to N. A similar situation may 
occur with SFT if all K NNs of q are contained in the 
same leaf node. On the other hand, the node accesses of 
TPL depend on the relative position of the candidates and 
the resulting half-planes. Nevertheless, the small size of 
the candidate set reduces the cost of the refinement step 
since each candidate must be verified.     

 Regarding the refinement step, it suffices to compare 
TPL with SFT, since boolean ranges are more efficient 
than the conventional NN queries of SAA. Although 
Singh et al. [SFT03] propose some optimization 
techniques for minimizing the number of node accesses, a 
boolean range may still access a node that has already 
been visited during the filter step or by a previous boolean 
query. On the other hand, the seamless integration of the 
filtering and refinement steps in TPL (i) re-uses 
information about the nodes visited during the filter step, 
and (ii) eliminates multiple accesses to the same node. In 
other words, a node is visited at most once. This 
integrated mechanism can also be applied to the 
methodologies of SAA and SFT. In particular, all the 
nodes and points eliminated by the filter step (constrained 
NN queries in SAA, a KNN query in SFT) are inserted in 
Srfn and our refinement algorithm is performed directly 
(instead of NN queries or boolean ranges).   

4. RKNN PROCESSING 

Section 4.1 presents properties that permit pruning of the 
search space for arbitrary values of k and Section 4.2 
extends our methods for this problem. Finally, 4.3 
discusses the application of previous techniques.  

4.1 Problem Characteristics 

The half-plane pruning strategy of Section 3.1 extends to 
arbitrary values of k. Figure 4.1a shows an example with 
k=2, where the shaded region corresponds to the 
intersection PL p1 (p1,q)∩PL p2 (p2,q). Point p is not a 
R2NN of q, since both p1 and p2 are closer to it than q. 
Similarly, a node MBR inside the shaded area cannot 
contain any candidate (i.e., N1 can be pruned at the filter 
step). In some cases, several half-plane intersections are 
needed to prune a node. Assume the R2NN query q and 
the three data points of Figure 4.1b. Each pair of points 
generates an intersection of half-planes: (i) PLp1(p1,q) ∩ 
PLp2(p2,q) (i.e., polygon IECB), (ii) PLp1(p1,q) ∩ PLp3

(p3,q) (ADCB) and (iii) PLp2(p1,q) ∩ PLp3(p3,q) (IFGHB). 
The shaded region is the union of these 3 intersections 
(i.e., IECB ∪  ADCB ∪  IFGHB). A node MBR (e.g., N2) 
inside this region can be pruned, although it is not totally 
covered by any individual intersection area.  
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Figure 4.1: Examples of R2NN queries    



In the general case, assume a RkNN query and nc≥k data 
points p1, p2, …, pnc (e.g., in Figure 4.1b nc=3 and k=2). 
Let {σ1, σ2, …, σk} be a subset of {p1, p2, …, pnc}. Each 
subset prunes the intersection area ∩i=1~kPLσi(σi,q). The 
entire region that can be eliminated corresponds to the 

union of all (nck ) intersections. Given a node N under 
consideration, the k-trim algorithm (Figure 4.2) computes, 
for each subset (in turn), the residual MBR NresM of N. If 
at some point NresM becomes ∅ , it prunes N and 
terminates. Otherwise (NresM≠∅ ), it continues with the 
next subset, by setting N=NresM. Similar to trim, for 
qualifying nodes k-trim returns the minimum distance 
between q and NresM; for the eliminated ones it returns ∞. 
The only complication concerns the computation of 
∩i=1~kPLσi(σi,q) in line 3. For this, we use a variant of 
[GRSY97], which returns a conservative approximation 
of the intersection region for each subset.   

Algorithm k-trim (q, k, {p1, p2, …, pnc}, N) 
/* p1, p2, …, pnc are candidate data points, nc ≥ k */   
1.  NresM=N  
2. for i=1 to (nc

k ) //consider each subset in turn 

 //assume the subset is {σ1, σ2, …, σk} 
3.  NresM= clipping(NresM, ∩i=1~kPLσi(σi,q)) 
4.  if NresM = ∅  then return ∞ 
5.  return mindist(NresM, q) 
End k-trim 

Figure 4.2: The k-trim algorithm 

Examining all (nck ) subsets is prohibitive for large k and 
Scnd. In order to reduce the cost, we can restrict the 
number of inspected subsets using the following heuristic. 
We sort all the candidates in Scnd according to their 
Hilbert values. Let the sorted order be {p1, p2, …, pnc

}. 
Then, k-trim examines only the nc subsets {p1, …, pk}, 
{p2, …, pk+1}, …, {pnc

, …, pk−1}. The rationale of this 
choice is that points close to each other tend to produce 
intersections with large areas. The trade-off is that this 
method may increase the number of candidates, since it 
fails to prune nodes that can be pruned by some non-
inspected subset. In any case, as with trim, pruning with 
k-trim is always safe, meaning that it will never eliminate 
nodes that potentially contain candidates.   

4.2 The k-TPL Algorithm 

The filtering step of k-TPL follows exactly that of the 
TPL algorithm in Figure 3.6. Specifically, at the 
beginning, k-TPL uses BF traversal to locate a set of 
candidates close to the query q. After the size of Scnd 
reaches k, k-trim prunes nodes (data points) that cannot 
contain (be) candidates. The pruned nodes and points are 
kept in Srfn. The refinement step is more complex because 
a candidate p can only be pruned if we find k points 
within distance dist(p,q) from p. Thus, we associate p 
with a counter (initially set to k), and decrease it every 

time we find such a point. We can eliminate p as a false 
hit, when its counter becomes 0. The minmaxdist pruning 
cannot be applied in this case, because even if 
minmaxdist(p,N) < dist(p,q), we do not know how many 
points in N are within distance dist(p,q) from N, unless we 
visit the node. Instead, we use the maxdist and the 
minimum cardinality of N, i.e., the smallest possible 
number of points in N, given the minimum node 
utilization (typically, 40% for R-trees) and the level of N. 
In particular, a candidate p can be pruned if maxdist(p,N) 
< dist(p,q) and min_card(N) ≥ counter(p). Figure 4.3 
shows the pseudo-code for refinement_round in the case 
of RkNN. The main refinement algorithm is similar to the 
one shown in Figure 3.7 and omitted.   

Algorithm k-refinement_round(q, Scnd, Prfn, Nrfn) 
1. for each point p in Scnd 
2.   for each point p' in Prfn 
3.     if dist(p,p')< dist(p,q) 
4.      counter(p)-- 
5.      if counter(p)=0    
6.     Scnd= Scnd -{p} //false hit 
7.     goto 1 //test next candidate 
8.   for each node MBR N in Nrfn 
9.     if maxdist(p,N)<dist(p,q) and min_card(N)≥ counter(p) 
10.    Scnd= Scnd -{p}; goto 1 //test next candidate 
11.  for each node MBR N in Nrfn 
12.    if mindist(p,N)< dist(p,q) add N in set toVisit(p) 
13.  if (toVisit(p)=∅ )  
14.  Scnd= Scnd -{p} and report p // actual result 
End k-refinement_round 

Figure 4.3: The k-refinement_round algorithm 

4.3 Discussion  

Although SAA was originally proposed for single RNN 
retrieval, it can be extended to arbitrary values of k based 
on the following lemma:  
Lemma 2: Given a 2D RkNN query q, divide the space 
around q into 6 equal partitions using 6 rays emanating 
from q, such that each partition is bounded by two rays. 
Then, the k NNs of q in each partition are the only 
possible results of q. Further, in the worst case, all these 
points may be the actual results.   
 As a corollary, the maximum number of reverse k 
NNs of q in 2D space equals 6k. Figure 4.4 illustrates the 
lemma using an example with k=2. The candidates of q 
include {p1, p2, p4, p5, p6}; p3 (i.e., the 3rd NN in S2) 
cannot be a candidate, since p1 and p2 are both closer to it 
than q. Based on Lemma 2, the filtering step of SAA 
executes 6 constrained kNN queries in each partition. 
Then, the refinement step verifies or eliminates each of 
the 6k candidates by performing a kNN query. This 
approach, however, has the same problem as the original 
SAA, i.e. the number of partitions to be searched 
increases exponentially with the dimensionality.  
 As mentioned in Section 2, SFT can be adapted for 
RkNN by setting a large value of K (>>k). Nevertheless, 
the concept of boolean ranges cannot be applied for 



arbitrary values of k for the same reason that minmaxdist 
pruning cannot be applied in our k-refinement_round 
algorithm. Thus, Singh et al. [SFT03] suggest performing 
the count query, which decides if there are at least k 
points inside the query range. Similar to boolean range 
queries, count queries may also access the same node 
multiple times, which is avoided in k-TPL.  
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Figure 4.4: Example of Lemma 2     

5. EXPERIMENTS 

Our evaluation is performed using both real and synthetic 
data. In particular, we deploy the five real datasets 
summarized in Table 5.1. LB, NA and LA contain spatial 
data3 corresponding to geometric locations in the Long 
Beach county, North America, and Los Angeles, 
respectively. Wave4 is obtained from the measurements of 
wave directions at the National Buoy Center. Color 
includes data from the color histograms of 65k images. 
The synthetic data follow uniform and Zipf distributions. 
Their cardinalities range from 128k to 2048k (i.e., over 2 
million points), and their dimensionalities vary from 2 to 
5.  

 LB NA LA Wave Color 
dimensionality 2 2 2 3 4 

cardinality 123k 569k 1314k 60k 65k 
Table 5.1: Statistics of the real datasets used 

Each dataset is indexed by an R*-tree [BKSS00] with 
node (disk page) size of 1k bytes. The capacity (i.e., the 
maximum number of entries in a node) equals 50, 36, 28 
and 23 entries, for 2, 3, 4, and 5 dimensions, respectively. 
TPL is compared with SAA (for 2D data) and SFT, since 
as discussed in Section 2.2, these are the only methods 
applicable to dynamic data. For SAA, we implemented 
the optimization of [SAA00] that performs the six 
constraint NN queries (i.e., the filter step) with a single 
traversal of the R-tree. The filter step of SFT requires a 
KNN query, where K should be significantly larger than 
the number k of requested RNNs to avoid false misses5. In 
our experiments, we set K to 10⋅d⋅k, where d is the 
dimensionality of the dataset being examined, e.g., for 
single RNN in 2D space K=20.    

The experiments investigate the effect of the following 
                                                           
3 http://www.census.gov/geo/www/tiger/ 
4 http://www.ndbc.noaa.gov/historical_data.shtml 
5 Singh et al. [SFT03], in their evaluation, used K=50 for single 
RNN retrieval. 

parameters: (i) data distribution, (ii) dataset cardinality, 
(iii) dimensionality d, and (iv) k (for RkNN). The reported 
results represent the average cost per query for a workload 
of 200 queries with the same parameters. The locations of 
the queries are uniformly generated in the data space. The 
cost includes both the I/O overhead (by charging 10ms for 
each node access) and CPU time. All the experiments are 
executed on a Pentium IV CPU at 2.4GHz with 512 
Mbytes memory. Section 5.1 presents the results for 
single RNN retrieval, and Section 5.2 discusses RkNN.  

5.1 Results of Single RNN Search 

Figure 5.1 compares the performance of TPL, SAA and 
SFT using real datasets. The cost of each method is 
divided in two parts, corresponding to the filter and 
refinement steps. The number above each column 
indicates the average percentage of I/O time in the total 
query cost. For TPL, we also demonstrate (in brackets) 
the average number of candidates retrieved by the filter 
step. These numbers are fixed for SAA (6) and SFT (10⋅d) 
and omitted. SAA is not performed on Wave and Color, 
because the datasets have 3 and 4 dimensions, 
respectively.  
 Clearly, TPL is the best algorithm for all datasets. The 
similar performance of the filter steps is due to the fact 
that SAA and SFT perform a 6NN or 10dNN query, 
which, in general, visits a limited number of R-tree nodes 
around the query point. Similarly, the pruning of TPL is 
very effective in low dimensional spaces. On the other 
hand, the refinement step of TPL is much faster than that 
of the other algorithms. Recall that TPL integrates the 
filter and refinement steps to avoid accessing the same 
node twice. Further, due to the small number (at most 6.2) 
of candidates retrieved (by the filter step), the refinement 
is usually accomplished with only 1 or 2 node accesses. 
The refinement step of SAA performs 6 NN queries, 
which traverse the tree multiple times, thus incurring high 
overhead. The boolean ranges of SFT achieve better 
performance (than SAA) but are less effective than the 
refinement step of TPL. All the algorithms are I/O 
bounded. 
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Figure 5.1: Costs for real datasets 

Figure 5.2 shows the total cost of TPL and SFT as a 
function of the dimensionality for synthetic datasets with 



cardinality 512k. The performance of both algorithms 
degrades because, in general, R-trees become less 
efficient as the dimensionality grows [TS96] (due to the 
large overlap among the node MBRs). In addition, the 
number of potential candidates for TPL increases (see 
parenthesis on top of the TPL column), leading to higher 
cost, especially for the filter step. The data distribution 
does not have a significant effect on the performance; this 
observation is confirmed by all experiments (including the 
real data) despite the different settings.  
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Figure 5.2: Cost vs. dimensionality (512k) 

Figure 5.3 fixes the dimensionality to 3, and shows the 
query cost as a function of the dataset cardinality. TPL 
incurs around half the cost of SFT in all cases. The step-
wise growth corresponds to an increase of the tree height. 
Specifically, for uniform data, the step occurs at 1024k, 
whereas for Zipf data at cardinality 2048k. The height 
increase has a similar effect on both algorithms.  
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Figure 5.3: Cost vs. cardinality (3D) 

5.2 Results of RkNN Search 

Having confirmed the superiority of TPL for single RNN 
retrieval, we proceed to evaluate its performance for 
RkNN queries. Our implementation of TPL applies the 
Hilbert heuristic discussed in Section 4.1 to reduce the 
number of inspected subsets. Figure 5.4 illustrates the 
performance of alternative algorithms as a function of k 
(in the range [1,16]) for real datasets. SAA here refers to 
the RkNN extension discussed in Section 4.3. Similar to 
the diagrams in the previous section, we also demonstrate 
the percentage of I/O costs, and the number of candidates 
for TPL. As expected, the overhead of each algorithm 
grows with k, due to the significant increase in CPU time 
(observe that the I/O percentage decreases with k). TPL 
again outperforms its competitors, and the difference 

increases with k. Note that for the 2D datasets, the 
average number of candidates retrieved by TPL is smaller 
than 4 for k=1 and increases almost linearly with k.    
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Figure 5.4: Cost vs. k (real data) 

Next we explore the effects of dimensionality and 
cardinality using synthetic data. In the following 
experiments, k is fixed to its median value 4. Figure 5.5 
shows the performance as a function of dimensionality for 
uniform (Figure 5.5a) and Zipf (Figure 5.5b) distributions, 
respectively (the cardinality is set to 512k). The diagrams 
and their explanations are similar to those in Figure 5.2. 



The last set of experiments (Figure 5.6) illustrates the 
query overhead as a function of cardinality (the 
dimensionality equals 3), confirming the observations of 
Figure 5.3.  
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Figure 5.5: Cost vs. dimensionality (k=4, 512k) 
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Figure 5.6: Cost vs. cardinality (k=4, 3D) 

6. CONCLUSIONS 

The existing algorithms for RNN search are applicable 
only in restricted scenarios. This paper develops the first 
general methodology for retrieval of an arbitrary number 
of reverse nearest neighbors in multiple dimensions. In 
addition to its applicability and flexibility, our solution is 
better than the previous approaches also in terms of 
efficiency and scalability. An interesting direction for 
future work is to adapt the proposed methodology to other 
variations of RNN problems. Further, currently there does 
not exist any cost model for estimating the execution time 
of RNN techniques. The development of such a model 
will not only facilitate query optimization, but may also 
reveal new problem characteristics that could lead to even 
faster algorithms.  
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