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Abstract—Since many graph data are often noisy and incomplete in real applications, it has become increasingly important to retrieve

graphs g in the graph databaseD that approximately match the query graph q, rather than exact graph matching. In this paper, we

study the problem of graph similarity search, which retrieves graphs that are similar to a given query graph under the constraint of graph

edit distance. We propose a systematic method for edit-distance based similarity search problem. Specifically, we derive two lower

bounds, i.e., partition-based and branch-based bounds, from different perspectives. More importantly, a hybrid lower bound

incorporating both ideas of the two lower bounds is proposed, which is theoretically proved to have higher (at least not lower) pruning

power than using the two lower bounds together. We also present a uniform index structure, namely u-tree, to facilitate effective

pruning and efficient query processing. Extensive experiments confirm that our proposed approach outperforms the existing

approaches significantly, in terms of both the pruning power and query response time.

Index Terms—Graph edit distance, lower bound, graph database, graph similarity search

Ç

1 INTRODUCTION

RECENTLY, graph data models have attracted increasing
research interest, because many data in various applica-

tions can be represented by graphs, such as chemical com-
pounds [1], social networks [2], road networks [3], and
Semantic Web [4]. The growing popularity of graph data
requires efficient graph data management techniques. Thus,
many queries have been investigated, such as shortest path
query [5], [6], reachability query [7], [8], [9], and (sub)graph
query [10], [11], [12]. Among these, (sub)graph query (i.e.,
given a query graph q, finding all graphs g in a graph data-
base D, such that q is (sub)graph isomorphic to g) has been
well studied.

However, some real-life graphs, such as protein-protein-
interaction networks [13], often contain noises. It is desirable
to find a robust solution to retrieve graphs that are of interest
to users even in the presence of noises and errors. An inter-
esting topic is to study graph similarity search, which
retrieves all graphs g from a database D that approximately
match with q under some similarity measure. A number of
graph similarity measures have been proposed [14], [15],
[16], [17], [18], [19], among which, two classical graph simi-
larity functions are maximum common subgraph (MCS) [14]
and minimum graph edit distance (MGED) [17]. Note that the
two measures are inter-related [20] and we focus on the
MGED in this paper. As a widely used structural similarity
measure, MGED is defined as the minimum operation cost

(addition, deletion, and substitution) of transforming from
one graph q to another graph g (Definition 2.2). MGED is a
flexible graph similarity measure and it has been used in
many applications, such as graph classification [21], graph
clustering [22], object recognition in computer vision [23],
andmolecule comparison in chemistry [24].

In this paper, based on MGED, we study the problem of
graph similarity search: Given a graph database D, a query
graph q, and a threshold t, the goal is to find some graphs g
in D, such that MGEDðq; gÞ � t. Before presenting our
method, we first demonstrate the usefulness of graph simi-
larity search by the following motivation example.

Motivation example. Fig. 1 shows a chemical compound
database D containing compounds in the graph representa-
tion whose properties have been well studied. When we
study the properties of a new compound q, we can issue a
graph similarity search query to retrieve the compounds (inD)
that have similar structures to q. We often call this step
“compound screening [25]” in the drug development.
According to “structure-activity relationship (SAR)”,1 a
molecule’s biological activity is often determined by its
chemical structure [26]. Therefore, it is reasonable to assume
that q may have similar biological activities to a graph g, if g
has similar structure to q. Although we still need to verify
these candidates by subsequent chemical and biological
experiments, the compound screening in the first step can
help save a lot of costs. In other words, the graph similarity
search can provide the starting point for understanding the
new compound, which plays a very important role in the
drug discovery.

Furthermore, graph similarity search can also find appli-
cations on structural pattern recognition, such as logo image
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1. The structure-activity relationship (SAR) is the relationship
between the chemical structure of a molecule and its biological activity.
The analysis of SAR enables the determination of the chemical groups
responsible for evoking a target biological effect in the organism [26].
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search [22]. Due to the invariability to rotation and transla-
tion of images, graphs are widely applied to represent
objects. Thus, pattern recognition becomes a problem of
graph matching. In order to be error-tolerant to noises,
MGED-based graph matching is often used in pattern rec-
ognition [23].

The motivation example above illustrates the importance
of the graph similarity search problem. However, it is not a
trivial task. Since computing MGED is an NP-hard problem
[17], most existing solutions adopt the filter-and-refine
framework to speed up the query processing, that is, first
using an effective and efficient pruning strategy to filter out
as many false positives (graphs that are impossible in the
results) as possible, and then validating the remaining can-
didates by computing graph edit distance. In general, the
existing pruning rules can be divided into two categories:
the global filter and the n-gram based filter. With these filters,
the data graphs whose lower bounds are larger than a user-
specified threshold t can be filtered out safely.

1) Global filter. There are two existing global filters. The
first one is to utilize the difference of the vertex/edge
number as the lower bound [17]. The second one considers
the difference of vertex/edge labels to further improve the
pruning power [27]. Since these methods do not employ the
graph structure, the lower bounds are not tight enough.

2) n-gram based filter. The other category of filters adopt
the n-gram method, which is used in string similarity search
problem [28], [29], [30]. The basic idea of these methods is to
select some subgraph structures as the n-grams, and then
derive the lower bound based on the common n-grams of
the two graphs. Wang et al. [31] propose k-Adjacent Tree (k-
AT) algorithm, which defines an n-gram as a tree consisting
of a vertex v and paths starting from vwith lengths no larger
than k. Apparently, a single edit operation may affect many
k-AT trees, especially when k is larger than 2. The c-star
structure used in [17] is exactly the same as k-AT when
k ¼ 1. Specifically, the c-star based lower bound in [17] is

Lmðg1; g2Þ ¼ mðg1;g2Þ
maxf4;½maxfdðg1Þ;dðg2Þg�þ1g, where mðg1; g2Þ is the

mapping distance between g1 and g2 according to the bipar-
tite graph, and dðg1Þ and dðg2Þ are the maximum degrees in
g1 and g2, respectively. According to the equation of the
lower bound, if g1 or g2 has a high-degree vertex, the lower
bound might be very small. Similar to k-AT, Zhao et al. [27]
compute the lower bound by employing the path-based
n-grams. However, these path-based n-grams still share
many overlapping structures, if there are some high-degree
vertices. Therefore, in such a case, the lower bound com-
puted by the path-based n-grams can be rather loose.

Generally speaking, there are two problems with the
existing n-gram based pruning methods: 1) the lower bound
is not tight, since the existing n-grams have many overlaps
and a single edit operation may affect many n-grams; and

2) it is very costly to compute the lower bound. For example,
the time complexity of computing the star-based lower
bound is cubic time [17].

Considering the limitations above, we study MGED-
based graph similarity search problem systematically in
this paper. Given a query graph q and a data graph g, we
first derive two novel lower bounds—disjoint-partition
lower bound distP ðq; gÞ and branch-based lower bound
�ðq; gÞ—that are independent of each other. In order to fur-
ther improve the pruning power, based on the two lower
bounds, we propose a new hybrid lower bound distHðq; gÞ.
More importantly, we theoretically prove that distHðq; gÞ �
MAXðdistP ðq; gÞ; �ðq; gÞÞ.

The basic idea of the disjoint-partition lower bound
distP ðq; gÞ is: given a query graph q, a data graph g, and a
threshold t, if we can find ðt þ 1Þ mismatching substructures2

in q and any two of them have no overlaps, the lower bound
is distP ðq; gÞ ¼ t þ 1 > t, meaning that g can be filtered out
safely. The basic intuition is that one edit operation can only
affect one mismatching substructure, since any two of mis-
matching substructures have no overlaps. Therefore, we can
conclude that it must require at least ðt þ 1Þ edit operations
to transform from graph q to graph g. It also implies that g is
impossible to be a similaritymatch of q (as the threshold is t),
and g can be pruned safely. The key challenge of this method
is how to determine whether there are ðt þ 1Þ disjoint mis-
matching substructures, once q and g are given. Unfortu-
nately, it is at least as hard as an NP-hard problem. A
heuristic on-demand solution is developed in this paper.

The branch-based lower bound �ðq; gÞ follows the n-gram
approach. However, we propose a different n-gram, namely
branch, which is defined as a structure consisting of one ver-
tex and its adjacent edges without including the other end-
points (the formal definition of branch will be presented in
Section 4). The superiority of branch lies in thata single edit
operation (addition, deletion, or substitution) can affect only two
branches at most. Although a branch is structural similar to c-
star [17] except for excluding the leaf nodes of a c-star, one
edit operation can affect MAXðdðqÞ; dðgÞÞ c-stars. If a query
graph or a data graph has some high-degree vertices, the
lower bound in c-star is very loose due to the large penalty
ratio in c-star lower bound equation. Furthermore, unlike
the cubic time complexity in the c-star method, we design
an efficient algorithm with the time complexity OðjV j � logjV jÞ to
compute the branch-based lower bound.

To further improve the pruning power, we propose a
hybrid lower bound. Given a query graph q and a data
graph g, we first find k mismatching substructures in q.
Obviously, if k � ðt þ 1Þ, data graph g can be filtered out
safely. We only consider the case that k � t. As we know,
each mismatching substructure requires at least one edit
operation. We enumerate all possible one-step edit opera-
tions over the mismatching substructures by introducing a
“wildcard” label to transform q to q�. We can prove that
distHðq; gÞ ¼ kþ �ðq�; gÞ is a lower bound for MGEDðq; gÞ
and distHðq; gÞ �MAXðdistP ðq; gÞ; �ðq; gÞÞ. In other words,
distHðq; gÞ provides stronger or at least not lower pruning
power than using distP ðq; gÞ and �ðq; gÞ together.

Fig. 1. A query graph and two sample data graphs.

2. If a substructure of q does not occur in graph g, the substructure is
called a mismatching substructure.
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In summary, we make the following contributions.

� We propose two lower bounds from different per-
spectives: one is based on the mismatching struc-
tures and the other one is based on the new n-grams.
The two lower bounds are independent of each
other.

� Based on the ideas of the two lower bounds, we
design a new hybrid lower bound rather than simply
checking the two lower bounds one by one. More
importantly, we theoretically prove that the hybrid
lower bound is no smaller than the two lower
bounds.

� In order to reduce the search space, we carefully
devise a uniform index structure, namely u-tree, to
speed up filtering process.

� Extensive experiments over both real and synthetic
graphs confirm the effectiveness and efficiency of
our proposed approaches.

Organization. The problem definition is introduced in
Section 2. Section 3 presents techniques of the partition-
based lower bound, followed by the strategies of branch-
based lower bound in Section 4. A tighter hybrid filter is
proposed in Section 5. Section 6 describes the u-tree
index and query processing. Experimental results are
reported in Section 7. Section 8 investigates the research
work related to this paper. Finally, Section 9 concludes
this paper.

2 BACKGROUND AND PROBLEM DEFINITION

In this section, we first formally define our problem. Table 1
lists the frequently-used notations in this paper.

For the ease of presentation, we consider a simple undi-
rected attributed graph in this paper. A simple graph means
that it does not contain self-loops or multi-edges. Formally,
a simple undirected attributed graph is defined as a six-
tuple g ¼ ðV;E; LV ; LE;SV ;SEÞ, where V is a set of vertices,
E � V 	 V is a set of edges, SV and SE are the label sets of
V and E, respectively, and LV and LE are label functions
that assign labels to vertices and edges, respectively. Note
that our solution can be easily extended to directed graphs
without loss of generality.

Definition 2.1 (Graph Isomorphism). Graph g1 is graph iso-
morphic to graph g2 if there exists a bijective function f :
V ðg1Þ ! V ðg2Þ s.t. 1) 8v 2 V ðg1Þ, fðvÞ 2 V ðg2Þ ^ LV ðvÞ ¼
LV ðfðvÞÞ, and 2) 8eðv1; v2Þ 2 Eðg1Þ, eðfðv1Þ; fðv2ÞÞ 2
Eðg2Þ ^ LEðeðv1 ; v2ÞÞ ¼ LEðeðfðv1Þ;fðv2ÞÞÞ.
Let g1 ¼ g2 denote that two graphs g1 and g2 are graph

isomorphic to each other.
There are six primitive edit operations on graphs [17]:

insert/delete an isolated vertex with label, substitute a/an
vertex/edge label, and insert/delete an edge between two
vertices. Given two graphs g1 and g2, there exists a sequence
of primitive edit operations to transform g1 to g2, such as,

g1 ¼ g01 ! g11 ! � � � ! gk1 ¼ g2. We may have different opera-
tion sequences to transform g1 to g2. The minimum graph
edit distance (dissimilarity) between two graphs is mea-
sured by the shortest operation sequence length, as defined
as follows.

Definition 2.2 (Minimum Graph Edit Distance). Given two
graphs g1 and g2, their minimum graph edit distance is defined
as the minimum number of primitive operations needed to
transform g1 to g

0
1, s.t., g

0
1 ¼ g2, denoted bymgedðg1; g2Þ:

Given the definition of minimum graph edit distance (or
called graph edit distance if there is no ambiguity in the
context), we formalize the problem of this paper as follows.

Problem Statement (Graph Similarity Search). Given a
database consisting of jDj graphs, D ¼ {g1; g2; . . . ; gjDj}, a
query graph q, and a distance threshold t, find all graphs
gi 2 D s.t. mgedðq; giÞ � t, where mgedðq; giÞ is defined in
Definition 2.2.

Example 1. Fig. 1 shows a query graph q and two data
graphs g1 and g2, where vertices represent atom sym-
bols and edges are chemical bonds. mgedðq; g1Þ ¼ 7,
mgedðq; g2Þ ¼ 8. Neither g1 nor g2 is an answer to the
graph similarity search with t ¼ 4, since graph edit
distances of both graphs to q are larger than t.

Most existing graph similarity search algorithms follow
the filter-and-verification framework. In the filtering phase,
we compute the lower bounds of graph edit distance
between query graph q and each data graph gi in graph
database D, i ¼ 1; . . . ; jDj. If the lower bound is larger than
threshold t, we can prune the data graph safely. Then, we
compute the graph edit distances over candidates to find
the true answers. Clearly, it is critical to efficiently estimate
the lower bound as tight as possible.

We first propose two lower bounds, i.e., distP ðq; gÞ and
�ðq; gÞ, from two different perspectives in Sections 3 and 4,
respectively. Then, in order to further improve the pruning
power, based on the two lower bounds, we propose a
hybrid lower bound distHðq; gÞ (in Section 5) rather than
checking the two bounds one by one. We also prove that the
hybrid lower bound can provide higher (at least not lower)
pruning ability than using distP ðq; gÞ and �ðq; gÞ together.

3 DISJOINT-PARTITION BASED FILTER

3.1 Pruning Strategy: A Basic Idea

Definition 3.1 (Mismatching Structure). Given a query graph
q and a data graph g, a mismatching structure in query

TABLE 1
Frequently-Used Notations

Notation Definition and Description

q (or g) the query graph (or data graph)
V ðgÞ the vertices of graph g
EðgÞ the edges of graph g
D the graph database consisting of g
b a branch structure of g
t the threshold of graph edit distance
mgedðq; gÞ the graph edit distance between q and g
bedðb1; b2Þ the branch distance between b1 and g2
BðgÞ the multiset of branches in graph g
�ðq; gÞ the mapping distance of BðqÞ and BðgÞ
distP ðq; gÞ the partition-based lower bound
MSðq; gÞ the mismatching structure multiset of q over g
distBðq; gÞ the branch-based lower bound
distCBðq; gÞ the compact branch lower bound
distHðq; gÞ the hybrid lower bound
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graph q with regard to data graph g is a subgraph (of q) that is
not subgraph isomorphic to g.

For example, the subgraph “N
S” of query q in Fig. 1 does
not exist in data graph g1 in the running example. So, “N-S”
is a mismatching structure with regard to g1.

Intuitively, for any mismatching structure (Definition 3.1)
in q, it requires at least one edit operation to transform the
mismatching structure to the corresponding structure in g.
Obviously, if we can find k disjoint (without any common
vertex or edge) mismatching structures in q, k is a lower
bound of the graph edit distance between q and g, as one
edit operation only affects one mismatching structure. If k is
larger than the threshold t, g can be pruned safely.

Definition 3.2 (Disjoint Partition). Given a query graph q, a
disjoint partition of q is denoted as P ðqÞ ¼ fqs1 ; . . . ; qsng,
where (1) each qsi is a subgraph of q, 1 � i � n; (2) for any
two different subgraphs qsi and qsj in P ðqÞ, 1 � i 6¼ j � n,

they do not share any vertex or edge; (3) the assembly of all
subgraphs in P ðqÞ forms the query graph q.

For example, Fig. 2a shows a disjoint-partition of q. Note
that a subgraph in P ðqÞ may have some edges without end-
points or with a single endpoint. For example, “–S–” in
Fig. 2a has two edges with a single endpoint S. Any two
subgraphs in Fig. 2a share no common vertices or edges.
Fig. 2b shows another disjoint-partition.

Definition 3.3 (Disjoint-Partition Lower Bound). Given a
disjoint-partition of query graph q (denoted as P ðqÞ), the dis-
joint-partition based lower bound is distP ðq; gÞ ¼ jMSðq; gÞj,
where MSðq; gÞ is a multiset of mismatching structures in
P ðqÞ with regard to g.

Theorem 3.1.mgedðq; gÞ � distP ðq; gÞ:
Proof. Considering each structure qs in MSðq; gÞ, it requires

at least one edit operation (addition, deletion, or substitu-
tion) to transform qs to qs

0 such that qs
0 is subgraph iso-

morphic to g. Since the structures in MSðq; gÞ are disjoint,
all the operations are non-interacting. Therefore,
mgedðq; gÞ � distP ðq; gÞ. tu

Example 2. Consider the two graphs q and g1 in Fig. 1 where
t ¼ 2. We partition q into four blocks as shown in Fig. 2a,
among which neither qs1 nor qs4 can match any subgraph

of g1, so distP ðq; g1Þ ¼ 2. Analogously, to obtain the lower
bound of mgedðq; g2Þ, we partition q as shown in Fig. 2b,
where qs1 , qs2 , and qs4 are all mismatching structures.

Hence, distP ðq; g2Þ ¼ 3 > t ¼ 2, and g2 is pruned safely.
Whereas, g1 will pass this filter.

In Example 2, if we use the partitioning of q as shown in
Fig. 2a to process data graph g2, then distP ðq; g2Þ ¼ 1

(mismatching structures only include qs1 ), which indicates

that g2 cannot be filtered out when t ¼ 2. That is also to say
different partitions lead to different pruning powers.

Motivated by Example 2, given a query graph q, we have
to find different disjoint-partitions of q for different data
graphs to maximize the pruning power. This raises two
problems: First, give a query graph q and a data graph g,
how to find an optimal disjoint-partition to maximize the
disjoint-partition lower bound distP ðq; gÞ (Definition 3.3).
Second, it is very costly to partition query graph q for each
data graph in D. We need an effective strategy to avoid the
sequential scan.

Unfortunately, we prove that finding the optimal dis-
joint-partition to maximize distP ðq; gÞ is at least as hard as
an NP-complete problem in Section 3.2. Therefore, we
design a heuristic lightweight algorithm to partition query
graph q for different data graphs. In order to further reduce
the filtering cost, we design a tree-style index to avoid the
sequential scan over all data graphs inD in Section 6.

3.2 The Hardness of Finding the Optimal Partition

Given two graphs q and g, the goal is to find an optimal dis-
joint-partition P ðqÞ to maximize distP ðq; gÞ. However, it is at
least as hard as an NP-complete problem, which is the main
result of this section. It is also the reason why we need a
heuristic algorithm in Section 3.3 to partition q.

In order to enable the proof, we design a decision version
of this optimization problem. We call it k-Mismatching Parti-
tion Problem as follows.

(Decision Problem 1). Given a query graph q, a data graph g
and a threshold t, can we determine whether there exists (or
does not exist) a disjoint-partition of q so that the disjoint par-
tition-based lower bound is larger than t, i.e.,
distP ðq; gÞ � t þ 1 ?

Answering the Decision Problem 1 equals to answering
whether we can find a ðt þ 1Þ-mismatching partition of q
(i.e., k ¼ t þ 1) for g and the threshold t. We only consider
k ¼ t þ 1 because of the following reasons. First, if k � t,
the partition-based lower bound will not be larger than t

(see Theorem 3.1). Second, if we can find a k-mismatching
partition where k > ðt þ 1Þ, we can transform it into a
ðt þ 1Þ-mismatching partition by merging some blocks.

Theorem 3.2. Given a query graph q, a data graph g and a thresh-
old t, determining whether there exists (or does not exist) a
k-mismatching partition of q is at least as hard as an NP-
complete problem, where k ¼ ðt þ 1Þ.

Proof. Consider the case that k ¼ 1, i.e., there is only one
partition. The decision problem equals to determining
whether q is subgraph isomorphic to g, which is a well-
known NP-complete problem. Hence, determining
whether there exists (or does not exist) a k-mismatching
partition of q is at least as hard as an NP-complete
problem. tu

3.3 On-Demand Partition

Through the analysis in the previous sections, we have two
observations. First, we cannot find a good partition of q to
favor all data graphs, since different data graphs g require

Fig. 2. Partitioning of the query graph for g1 and g2.
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different partitions of q to maximize the pruning power.
Second, it is very difficult to find the optimal partition for
each data graph. Therefore, we propose a heuristic on-
demand partition of q, which is based on some statistics (of
each data graph g) collected during the offline processing.

The basic idea is that we want to find as many small-
size mismatching structures of q over data graph g as pos-
sible. If we find a mismatching structure, we remove it
from q; and iterate the steps above until that ðt þ 1Þ-mis-
matching structures are found or the remaining part of q is
empty. Note that this is not an exact algorithm. It means
that we may not find a ðt þ 1Þ-mismatching partition of q
over g even though there exists a ðt þ 1Þ-mismatching par-
tition. In this case, we cannot prune this data graph that is
not a true answer. Regarding these candidates, we need to
refine them further, so it does not lead to result dismissals.
Our proposed partitioning strategy considers the following
four kinds of structures.

1) Size-1 structures. A vertex or an edge in q.
2) Size-2 structures. A structure formed by a vertex and

one of its adjacent edges in query q, denoted as VE.
3) Size-3 structures. A structure formed by two vertices

and the edge between them in query q; or two edges
and the vertex they share in q, denoted as VEP .

4) Consider structures whose size are larger than three.

Algorithm 1.DyAdPartitionðq; g; t)
Input: Aquery graph q, a data graph g, and the threshold t.

Output: jMSðq; gÞj, the number ofmismatching structures.

1 for each size-1 structure qs in q do

2 if qs has no any match over g then

3 add qs intoMSðq; gÞ
4 remove qs from q

5 for each size-2 structure qs in q do

6 if qs has no any match over g then

7 add qs intoMSðq; gÞ
8 remove qs from q

9 for each size-3 structure qs in q do
10 if qs has no any match over g then
11 add qs intoMSðq; gÞ
12 remove qs from q
13 for each unused vi 2 V ðqÞ do
14 extend vi to obtain a structure qs
15 if qs has no any match over g then
16 add qs intoMSðq; gÞ
17 remove qs from q
18 if jMSðq; gÞj > t then
19 return jMSðq; gÞj
20 return jMSðq; gÞj

Algorithm 1 presents the partitioning framework.
Given a query graph q, finding ðt þ 1Þ-mismatching parti-
tion of q follows the four-step pipeline. We remove all
size-1 (i.e., vertex or edge),3 size-2 (i.e., VE) and size-3
(i.e., VEP ) mismatching structures from q in the first three
steps, respectively. Finally, we try to find the mismatch-
ing structures whose size is larger than three by invoking

the subgraph isomorphism verification algorithm. We
adopt the state-expansion subgraph isomorphism verifi-
cation algorithms (such as VF2 [11] and QuickSI [32]) to
find the mismatching structures. A state refers to a partial
match of q over g. In order to speed up the fourth step,
we restrict the state size no larger than T (a turning
parameter T with default value 8. It will be analyzed in
Section 7.2).

The first three steps can be implemented efficiently by
employing an inverted index that stores the corresponding
substructures in the data graph g. Specifically, all size-1,
size-2 and size-3 substructures (each substructure is
denoted as s) in data graphs are keys. For each substructure
s, it has a list of data graphs (in databaseD) that contains s.

Early stop strategy. In order to improve the partitioning
efficiency, we propose two early stop rules. First, we can
stop the partition process if we have found (t þ 1) mis-
matching structures. Second, assume that we have found x
mismatching structures of q over g in the first three steps.
We remove these mismatching structures from q and the
left part is denoted as q0. Since the size (the number of verti-
ces and edges) of the mismatching structures (if any)
obtained in the fourth phase must be larger than three.
Thus, if ðjV ðq0Þjþ jEðq0ÞjÞ < 3 � ðt þ 1
 xÞ, it indicates that
we cannot find ðt þ 1
 xÞ mismatching structures in the
final phase.

Complexity analysis. It is easy to know that the first three
steps have the linear time complexity OðjV ðqÞj þ jEðqÞjÞ.
The final step invokes a state-expansion based subgraph iso-
morphism verification algorithm (such as VF2 [11] and
QuickSI [32]) to find mismatching structures. Although sub-
graph isomorphism verification is an NP-complete problem
[33], we restrict the state size no larger than T (as discussed
earlier). Therefore, the final step is also very fast in practice.
The effect of the parameter T will be studied in Section 7.2.

4 BRANCH-BASED FILTER

In this section, we propose another lower bound that fol-
lows the n-gram filter strategy, which is different from the
partition-based filter distP ðq; gÞ. As mentioned earlier,
although there are some existing different n-grams, such as
c-stars and paths, the pruning abilities of existing n-gram fil-
ters are limited. The reason is that one edit operation may
affect many n-grams, if there are some high-degree vertices
in data graphs or query graphs. In order to address this
problem, we propose to use the “branch” as n-gram. The
most important benefit of “branch” n-gram is that one edit
operation only affects two n-grams at most. Thus, it can pro-
vide more stable pruning power regardless of the vertex
degrees. Furthermore, we design a lightweight algorithm
with OðjV jlogjV jÞ time complexity for computing the lower

bound instead of the cubic-time complexity OðjV j3Þ in c-star
method, where jV j ¼MAXðjV ðgÞj; jV ðqÞjÞ.

4.1 Branch Filter-A Basic Method

In this section, we present a basic branch-based method.
Although it is not optimized for computing the bound, it
illustrates the main idea of our branch-based filter.

Definition 4.1 (Branch Structure). A branch structure b con-
sists of a vertex v and a multiset of edge labels incident to v,

3. Removing a single vertex (or an edge) will not lead to removing
all the edges adjacent to this vertex (or the endpoints of the edge).
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represented by bðvÞ ¼ ðlv; ESÞ, where lv ¼ LV ðvÞ is the label of
the root vertex, and ES ¼ flEðeÞj edge e is adjacent to v g is
the multiset of edge labels adjacent to v.

Fig. 3 shows the branch structures of graphs q and g1 in
Fig. 1. Although “branch” is similar to “c-star” [17] except
for excluding the leaf nodes of a c-star, one edit operation
can only affects two branches at most regardless of the
degrees of the vertices. However, one edit operation can
affect MAXðdðqÞ; dðgÞÞ c-stars, where dðgÞ denotes the maxi-
mal vertex degree of g. Therefore, the pruning power of
branch-based lower bound is much more stable than other
existing n-gram bounds. According to the definition of
branches, we define the distance of two branches, based on
which, we derive the branch-based lower bound.

Definition 4.2 (Branch Edit Distance). Given two vertices v1
and v2, their branch structures are denoted as b1 ¼ ðl1; ES1Þ
and b2 ¼ ðl2; ES2Þ, respectively. The branch edit distance
between b1 and b2 is defined as follows:

bedðb1; b2Þ ¼ T ðl1; l2Þ þ GðES1; ES2Þ
2

; (1)

where

T ðl1; l2Þ ¼ 0; if l1 ¼ l2;
1; otherwise:

�
(2)

GðES1; ES2Þ ¼ maxfjES1j; jES2jg 
 jES1 \ ES2j: (3)

Given two graphs q and g, we can enumerate all branch
structures of q and g to obtain two sets, BðqÞ and BðgÞ,
respectively. Thus, we can construct a bipartite graph like
that in Fig. 3, where vertices represent branches and edges
represent transformations between any two branches (from
BðqÞ and BðgÞ, respectively) weighted by their pairwise
branch edit distance (defined in Definition 4.2).

Notice that if the number of branches in BðqÞ is less
than that in BðgÞ, we introduce ðjBðgÞj 
 jBðqÞjÞ blank
branches in BðqÞ, and vice versa. In the following discus-
sion, we assume that BðqÞ and BðgÞ have the same num-
ber of branches.

Definition 4.3. Given two multisets of branch structures BðqÞ
and BðgÞ with the same cardinality, the mapping distance
between BðqÞ and BðgÞ is

�ðq; gÞ ¼ min
P

X
bi2BðqÞ

bedðbi; P ðbiÞÞ: (4)

Clearly, the bijection P in Equation (4) is the minimum
weighted match in the bipartite graph. Based on the dis-
tance between BðqÞ and BðgÞ (i.e., �ðq; gÞ), we can obtain a
lower bound of the minimum graph edit distance between q
and g (i.e.,mgedðq; gÞ), as shown in the following theorem.

Theorem 4.1. Given two graphs q and g, their graph edit distance
and the mapping distance between BðqÞ and BðgÞ satisfy the
following inequality:

mgedðq; gÞ � distBðq; gÞ ¼ �ðq; gÞ;
where BðqÞ and BðgÞ are the branch structure multisets of q
and g, respectively, and the branch structure-based lower
bound is denoted as distBðq; gÞ.

Proof. Let P ¼ ðp1; p2; . . . ; pkÞ be an optimal alignment trans-
forming from q to g, i.e., k ¼ mgedðq; gÞ. Accordingly, there

is sequence of graph q ¼ q0 ! q1 ! � � � ! qk ¼ g, where

qi ! qiþ1 indicates transforming qi to qiþ1 by operation pi.
Assume that there are k1 edge insertion/deletion/relabel-
ing operations, k2 vertex insertion/deletion/relabeling
operations in P , thenwe have k1 þ k2 ¼ k ¼ mgedðq; gÞ.

Edge operations (insertion/deletion/relabeling). If an edge
is inserted or deleted or relabeled over the graph qi, only
two branches are affected. Thus, we can know that

�ðqi; qiþ1Þ � 2
2 ¼ 1 in the case of performing one edge oper-

ation (inserting/deleting/relabeling an edge) over qi.
Vertex operations (insertion/deletion/relabeling). As dis-

cussed in [17], a vertex can be deleted or inserted only on
the condition that it is isolated. Therefore, inserting or
deleting a vertex over qi results in �ðqi; qiþ1Þ ¼ 1. If a vertex
v is relabeled, only the branch rooted at v will be affected.

Hence, �ðqi; qiþ1Þ ¼ 1. In summary, �ðqi; qiþ1Þ ¼ 1 when
we perform one vertex operation (inserting/deleting/

relabeling a vertex) over qi.
Above all, we have the following inequality:

�ðq; gÞ � 1 � k1 þ 1 � k2
� 1 � ðk1 þ k2Þ
� 1 �mgedðq; gÞ:

Thus, mgedðq; gÞ � �ðq; gÞ. tu
Thanks to the crucial nature that a single edit operation

can affect only two branches, Theorem 4.1 guarantees that
the mapping distance between BðqÞ and BðgÞ is a lower
bound for the minimum graph edit distance.

Example 3. Consider the query graph q and two data graphs
g1 and g2 in Fig. 1, where t ¼ 3, �ðq; g1Þ ¼ 3:5, and
�ðq; g2Þ ¼ 3:5. According to Theorem 4.1, we have
distBðq; g1Þ ¼ 3:5 and distBðq; g2Þ ¼ 3:5, both of which are
larger than t. Therefore, g1 and g2 can be pruned safely.

A classical algorithm to compute the minimum weighted
match is the Hungarian algorithm [34] with time complexity

Fig. 3. Branch structures of q and g1.
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OðjV j3Þ, where jV j ¼ maxðjV ðqÞj; jV ðgÞjÞ. Hence, we propose
the compact branch filter that can be computed in the time
complexity of OðjV jlogjV jÞ in the next section.

4.2 Compact Branch Filter

The main cost of computing branch filter lies in finding the
minimum weighted match between BðqÞ and BðgÞ. How-
ever, we can reduce the complexity by introducing some
constraints on the edge weights in the bipartite graph.

4.2.1 Definition of Compact Branch Filter

We define the compact branch distance of b1 and b2 in three
cases. (1) if b1 and b2 are identical, their distance is 0. (2) if b1
and b2 have the same root label, but different sets of edge

labels, their distance is 1
2. The intuition is that one edge opera-

tion affects two branches. To avoid over-counting the num-

ber of edit operations, the compact distance is 1
2 only if they

are distinct just owing to having different edge label sets but
the same root label. (3) if b1 and b2 have different root labels,
their edit distance is 1, because it needs at least one operation
over the root vertex tomake the two branches identical.

Definition 4.4 (Compact Branch Distance). Given two verti-
ces v1 and v2, their branch structures are denoted as b1 ¼
ðl1; ES1Þ and b2 ¼ ðl2; ES2Þ. The compact distance between b1
and b2 is defined as

bedCðb1; b2Þ ¼
0; l1 ¼ l2 ^ES1 ¼ ES2;
1=2; l1 ¼ l2 ^ES1 6¼ ES2;
1; l1 6¼ l2:

8<
:

Given two graphs q and g, we can also get two branch
sets BðqÞ and BðgÞ (like the discussion in Section 4.1). Based
on the minimum weighted match in the bipartite graph
formed by BðqÞ and BðgÞ (an example is shown in Fig. 3),
we can compute the compact distance between BðqÞ and
BðgÞ. Note that as opposed to Section 4.1, we use the com-
pact branch distance (Definition 4.4) instead of branch dis-
tance (Definition 4.2). Definition 4.5 and Theorem 4.2 show
the details of the new lower bound.

Definition 4.5. Given two multisets of branch structures BðqÞ
and BðgÞ with the same cardinality , and assume P : BðqÞ !
BðgÞ is a bijection. The compact mapping distance between
BðqÞ and BðgÞ is

�Cðq; gÞ ¼ min
P

X
bi2BðqÞ

bedCðbi; P ðbiÞÞ:

According to the compact mapping distance between
BðqÞ and BðgÞ, we can obtain a lower bound of edit distance,
denoted as distCBðq; gÞ.
Theorem 4.2. Given two graphs q and g, the minimum graph edit

distance mgedðq; gÞ is no less than the compact mapping dis-
tance of their branch structures, i.e.,

mgedðq; gÞ � distCBðq; gÞ ¼ �Cðq; gÞ
.

Proof. Let P ¼ ðp1; p2; . . . ; pkÞ be an alignment transforming

from q to g. Accordingly, there is sequence of graph

q ¼ q0 ! q1 ! � � � ! qk ¼ g, where qi ! qiþ1 indicates

transforming qi to qiþ1 by operation pi. Assume that there

are k1 edge insertion/deletion/relabeling operations, k2
vertex insertion/deletion/relabeling operations in P ,

then k1 þk2 ¼ mgedðq; gÞ.
1) Edge insertion/deletion/relabeling. If an edge is

inserted or deleted or relabeled over graph qi, only two
branches are affected. Thus, we can know that

�Cðqi; qiþ1Þ � 2 � 0:5 ¼ 1 in the case of performing one
edit operation of inserting or deleting or relabeling an

edge over qi.
2) Vertex insertion/deletion/relabeling. As discussed in

[17], a vertex can be deleted only on the condition that it
is an isolated vertex, and we can only insert an isolated
vertex. If a vertex is inserted or deleted over qi,

�Cðqi; qiþ1Þ ¼ 1. When the label of a vertex v is relabeled,

only the branch rooted at v is affected. Hence, �Cðqi; qiþ1Þ
is 1. In summary, �Cðqi; qiþ1Þ ¼ 1 in the case of perform-
ing one edit operation of inserting or deleting or relabel-

ing a vertex in qi.
Thus, we have the following inequality: �Cðq; gÞ �

k1 þ k2 � mgedðq; gÞ, that is,mgedðq; gÞ � �Cðq; gÞ. tu

Example 4. Considering the query graph q and two data
graphs g1 and g2 in Fig. 1, we have distCBðq; g1Þ ¼ 2,
because the solid lines in Fig. 3 form a mapping. Simi-
larly, distCBðq; g2Þ ¼ 2:5.

More importantly, we propose a more efficient algorithm
to compute the compact branch lower bound.

4.2.2 Computing the Bound of Compact Branch Filter

The computation of the compact branch lower bound con-
sists of three major steps.

1) Remove the identical branch pairs ðbi; bjÞ from BðqÞ
and BðgÞ, respectively, where bi 2 BðqÞ, bj 2 BðgÞ,
and bi ¼ bj. Each removal does not lead to increasing
distCBðq; gÞ.

2) Remove the branch pairs ðbi; bjÞ from BðqÞ and BðgÞ,
respectively, where bi 2 BðqÞ, bj 2 BðgÞ, the root ver-
tices of bi and bj have the identical label. Assume
that we remove Y branch pairs in this step. It
increases the lower bound by 0:5	 Y , i.e.,
distCBðq; gÞ ¼ distCBðq; gÞ þ 0:5	 Y .

3) Assume that there are Z branches left in BðqÞ
(including the blank branches, if any). We update
the lower bound as distCBðq; gÞ ¼ distCBðq; gÞ þ Z.

In order to implement the steps above efficiently, we
introduce lexical branch order for two branches. For ease of
the presentation, let li < lj denote that (vertex or edge) label
li is smaller than (vertex or edge) label lj in the lexicographic
order. (li � lj denotes that li is not larger than lj in the lexi-
cographic order).

Definition 4.6 (Lexical Branch Order). Given two branches

b1 ¼ ðl1; ES1Þ and b2 ¼ ðl2; ES2Þ, ES1 ¼ fl1; l2; . . . ; lmg
ðl1 � l2 � � � � � lmÞ and ES2 ¼ fl10; l20; . . . ; ln0g ðl10 � l2

0

� � � � � ln
0Þ, we define that b1 � b2 if 1) l1 < l2; or 2) l1 ¼ l2

and li � li
0 holds for the first different label pair < li; li

0 >
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from ES1 and ES2, where li 2 ES1 and li
0 2 ES2, i.e., lj ¼ lj

0

for 1 � j < i and li 6¼ li
0.

First step. According to this lexical branch order over
branches, we can sort the two multisets BðqÞ and BðgÞ, i.e.,
BðqÞ ¼ fb1; b2; . . . ; bmg (b1 � b2 � � � � � bm), and BðgÞ ¼ fb10;
b2
0; . . . ; bn0g (b10 � b2

0 � � � � � bn
0). Thus, the identical branch

pairs in BðqÞ and BðgÞ can be removed in a merge-sort way
(lines 2-10 in Algorithm 2).

Second step. In this step, it is guaranteed that BðqÞ and
BðgÞ have no identical branch pairs. Otherwise, they have
been removed in the first step. According to Definition 4.4, a
pair of branches ðbi; bj 0Þ where bi 6¼ bj

0 but with the same
root vertex label, leads to 0.5 compact distance. Lines 2-20 in
Algorithm 2 describe this process.

Third step. In this step, it is guaranteed that BðqÞ and BðgÞ
have no branch pairs with the same root vertex label. Other-
wise, they have been removed in the two previous steps.
Assume that the number of branches left in BðqÞ is Z. These
Z left branches in q will lead to Z compact distance (line 21
in Algorithm 2).

Algorithm 2. CompactDistance(BðqÞ, BðgÞ)
Input: Two sorted multisets of branch structuresBðqÞ and

BðgÞ, whereBðqÞ ¼ fb1; b2; . . . ; bmg ðb1 � b2 � � � � bmÞ,
BðgÞ ¼ fb10; b20; . . . ; bn 0g ðb10 � b2

0 � � � � � bn
0Þ

Output: distCBðq; gÞ
1 distCBðq; gÞ  0

2 i 1, j 1

3 while i �m && j � n do

4 if bi ¼¼ bj
0 then

5 remove bi and bj
0 fromBðqÞ andBðgÞ,

respectively

6 i iþ 1, j jþ 1

7 else if bi � bj
0 then

8 i iþ 1

9 else
10 j jþ 1
11 i 1, j 1
12 while i �m && j � n do
13 if li ¼¼ lj then
14 remove bi and bj

0 from BðqÞ and BðgÞ,
respectively

15 distCBðq; gÞ  distCBðq; gÞ þ 0:5
16 i iþ 1, j jþ 1
17 else if bi � bj

0 then
18 i iþ 1
19 else
20 j jþ 1
21 Z the number of branches left in BðqÞ
22 distCBðq; gÞ  distCBðq; gÞ þ Z
23 return distCBðq; gÞ

Theorem 4.3. Given two graphs q and g, Algorithm 2 gives their
compact branch distance, i.e., distCBðq; gÞ.

Proof. Assume that any other mapping generatesX0 identical
branch pairs, Y 0 branch pairs satisfying the second step,
and Z0 branch pairs in the third step, the compact distance
is (0:5 � Y 0 þ Z0). According to Algorithm 2, it is obvious
that X � X0 and Z � Z0. (1) When Y � Y 0, (0:5 � Y þ Z)
� ð0:5 � Y 0 þ Z0Þ. (2) When Y > Y 0, H ¼ ð0:5 � Y 0þZ0Þ 


ð0:5 � YþZÞ ¼ 0:5 � ðY 0 
 Y Þ þ ðZ0 
 ZÞ � 0:5 � ½ðY 0P þ
Z0Þ
 ðY þ ZÞ�. Since X þ Yþ Z ¼ X0 þ Y 0 þ Z0 and
X � X0, Y 0 þ Z0 � Y þ Z. Hence,H � 0. That is also to say
(0:5 � Y þ Z)� ð0:5 � Y 0 þ Z0Þ. tu
Complexity analysis. The time complexity of computing

compact branch distance (Algorithm 2) isOðjV jlogjV jÞ, where
jV j ¼MAXfjV ðqÞj; jV ðgÞjg. As the first two steps (lines 2-10
and lines 2-20) adopt the merge-sort style algorithm, it is easy
to know the complexity is OðmaxfjV ðqÞj;jV ðgÞjgÞ. The final
step (lines 21-22) is a simple counting process, which also has
the linear complexity. However, the complexity of sorting
BðqÞ andBðgÞ isOðjV jlogjV jÞ.

As discussed above, the computation of compact dis-
tance is more efficient. However, when t � 3, neither g1 nor
g2 can be pruned by the filter. Thus, we design another
more powerful filter, called hybrid filter that incorporates
both partitioning and branch strategies.

5 A HYBRID FILTER

The previous sections present two different lower bounds
distP ðq; gÞ and �ðq; gÞ that are independent of each other. In
this section, based on the ideas of the two lower bounds, we
propose a new hybrid lower bound distHðq; gÞ and prove that
distHðq; gÞ �MAXðdistP ðq; gÞ; �ðq; gÞÞ (see Theorem 5.2). In
other words, distHðq; gÞ provides better (at least not lower)
pruning power.

5.1 Pruning Strategy

We incorporate the partition-based and branch-based strate-
gies together to enhance the pruning power. For a mis-
matching structure qsi , it requires at least one edit operation
over qsi to match some substructure in g. We enumerate all

possible one-step edits over qsi by replacing a vertex or an

edge qsi with a wildcard.

Example 5. Consider query graph q anddata graph g1 in Fig. 1.
Regarding the mismatching structure qs1 (N
S) in Fig. 2a,

there are three possible replacements q� ¼ fq01, q02, q03g, as
shown in Fig. 4, where asterisk “�” represents awildcard.

Let us consider q01. Similar to computing the
branch-based lower bound in Section 4, we enumerate
all branches in q01 and g1, and then build a bipartite
graph between Bðq01Þ and Bðg1Þ, as shown in Fig. 5.
Different from branch edit distance in Definition 4.2,
we re-define the distance between branches with wild-
cards in Definition 5.1. Obviously, we can obtain
�ðq01; g1Þ by finding the minimum weighted match in
the bipartite graph.

Definition 5.1 (Wildcard-Branch Edit Distance). Assume
that we have two branches b1 ¼ ðl1; ES1Þ and b2 ¼ ðl2; ES2Þ,
where b1 contains one wildcard on li or ES1. The wildcard-
branch edit distance between b1 and b2 is defined as follows:

Fig. 4. A graph set of replacing results.

ZHENG ET AL.: EFFICIENT GRAPH SIMILARITY SEARCH OVER LARGE GRAPH DATABASES 971



bedðb1; b2Þ ¼ T ðl1; l2Þ þ GðES1; ES2Þ
2

(5)

GðES1; ES2Þ ¼ argminf

X
l2ES1

T ðl; fðlÞÞ (6)

T ðl1; l2Þ ¼ 0; if l1 ¼ l2 or l1 ¼ �;
1; otherwise;

�
(7)

where fð�Þ is a bijective function from ES1 to ES2.

Given a query graph q and a data graph g, let MSðq; gÞ
denote all non-overlapping mismatching structures of q
with regard to g. For each mismatching structure, we gener-
ate 1-step replacement using wildcards. Let q� denote all
possible replacements. Considering all possible replace-
ments, we use �ðq�; g1Þ ¼MINð�q02q� ðq0; g1ÞÞ.
Definition 5.2 (Hybrid Lower Bound). Given a query graph q

and a data graph g, the hybrid lower bound distHðq; gÞ is
defined as follows:

distHðq; gÞ ¼ jMSðq; gÞj þ �ðq�; gÞ;

where q� denotes all possible replacements and jMSðq; gÞj is the
number of non-overlapping mismatching structures of q with
regard to g.

Theorem 5.1. distHðq; gÞ � mgedðq; gÞ.
Proof. 1) For simplicity, we first assume that jMSðq; gÞj ¼ 1.

Suppose that the optimal transforming sequence of

graph is q ¼ q0 ! q1 ! � � � ! qk ¼ g. Since qs is a mis-
matching substructure, there must be at least one edit
operation over qs. We assume that the edit operation hap-

pens at the state from qi to qiþ1 in the transforming
sequence. Since qs has no overlaps with ðq 
 qsÞ, we can

move the edit operation (i.e., from qi to qiþ1) to the begin-
ning of the transforming sequence. Thus, we get another

optimal transforming sequence q ¼ q00 ! q10 ! � � � !
qk0 ¼ g, where the edit operation from q00 ! q10 is over qs.
There are three possible edits over qs, i.e., deleting an iso-
lated vertex with label, substituting a/an vertex/edge

label and deleting an edge. Thus, q10 is the graph after
one-step edit over qs. According to the edit distance defi-

nition, we know thatmgedðq; gÞ ¼ 1þmgedðq10; gÞ.

Let q� denote all possible one-step replacements over qs.
According to the distance between branches with wild-

cards (see Definition 5.1), it holds that �ðq10; gÞ � �ðq�; gÞ.
As we know that mgedðq10; gÞ � �ðq10; gÞ and mgedðq; gÞ ¼
1þmgedðq10; gÞ, we conclude thatmgedðq; gÞ � 1þ �ðq�; gÞ.

2) If jMSðq; gÞj > 1, it means that there are jMSðq; gÞj
non-overlapping mismatching substructures in q with
regard to g. Since these mismatching substructures
have no overlaps, we assume that the first jMSðq; gÞj
edit operations in transforming sequence happen at
the jMSðq; gÞj mismatching substructures, respectively;
and each mismatching substructure has one-step edit.

Suppose that qjMSðq;gÞj0 is the graph after one-step edit
over these jMSðq; gÞj mismatching substructures. Simi-
lar to 1), we can prove that mgedðq; gÞ � jMSðq; gÞjþ
�ðq�; gÞ. tu

5.2 Tightness and Computation

The theoretical result of our hybrid lower bound is that it
can provide higher (at least not lower) pruning power.

Theorem 5.2. Given a query graph q and a data graph g, the fol-
lowing inequality holds.

distHðq; gÞ �MAXðdistP ðq; gÞ; �ðq; gÞÞ;

where distHðq; gÞ, distP ðq; gÞ, and �ðq; gÞ denote the hybrid,
partition-based and branch-based lower bounds, respectively.

Proof. The proof contains two parts, i.e., distHðq; gÞ � �ðq; gÞ
and distHðq; gÞ � distP ðq; gÞ.
1) Consider the optimal mapping P between q0

(q0 2 q�) and g with mapping distance �ðq0; gÞ. If
we conduct jMSðq; gÞj operations over q0 to get q
and compute a new distance �0ðq; gÞ using map-
ping P , we have �0ðq; gÞ 
 �ðq0; gÞ � jMSðq; gÞj
(because jMSðq; gÞj edits will produce jMSðq; gÞj
distance at most). Since �ðq; gÞ is the minimum
mapping distance between q and g, we can obtain
that �ðq; gÞ � �0ðq; gÞ. Thus, �ðq; gÞ � �ðq0; gÞþ
jMSðq; gÞj.

2) Since the mapping distance �ðq�; gÞ is non-
negative and distHðq; gÞ ¼ jMSðq; gÞj þ �ðq�; gÞ ¼
distP ðq; gÞ þ �ðq�; gÞ, distP ðq; gÞ � distHðq; gÞ.

tu
Example 6. Consider graphs q, g1, and g2 in Fig. 1. The

hybrid lower bounds are distHðq; g1Þ ¼ 4:5 and
distHðq; g2Þ ¼ 5:5, respectively. Recalling that the parti-
tion-based lower bounds are distP ðq; g1Þ ¼ 2 and
distP ðq; g2Þ ¼ 3, respectively, and the branch-based lower
bounds are distBðq; g1Þ ¼ 3:5 and distBðq; g2Þ ¼ 3:5,
respectively. It is clear that the hybrid lower bounds are
much tighter.

Given a set of disjoint mismatching structures (denoted
as MSðq; gÞ) of query graph q with regard to g, we enumer-
ate all possible replacements (denoted as q�), and compute
the mapping distance �ðq�; gÞ ¼ MINð�q02q�ðq0; gÞÞ. Finally,
we derive the hybrid lower bound distHðq; gÞ ¼
jMSðq; gÞj þ �ðq�; gÞ. Algorithm 3 presents the detail.

Fig. 5. Branch structures of q01 and g1.
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Algorithm 3.HybridLB(BðqÞ, BðgÞ,MSðq; gÞ)
Input: Two multisets of branch structures BðqÞ and BðgÞ,

and a set of mismatching structuresMSðq; gÞ
Output: distHðq; gÞ
1 q�  the set of replacing results
2 �ðq�; gÞ  jV ðqÞj þ jEðqÞj þ jV ðgÞj þ jEðgÞj
3 for q0 2 q� do
4 compute �ðq0; gÞ
5 if �ðq�; gÞ < �ðq0; gÞ then
6 �ðq�; gÞ ¼ �ðq0; gÞ
7 distHðq; gÞ  distHðq; gÞ þ jMSðq; gÞj
8 return distHðq; gÞ

Complexity analysis. Consider a mismatching structure
qsi 2MSðq; gÞ. There are jqsi j possible replacing results,

where jqsi j is the sum of vertex and edge numbers in qsi .

Therefore, the cardinality of q� is jq�j ¼ Pqsi2MSðq;gÞjqsi j. The
overall complexity is Oðjq�j � jV j3Þ.

The hybrid lower bound improves the pruning power.
However, its pruning phase is not efficient. Therefore, we
need to design an efficient pruning framework to guarantee
both the effectiveness and efficiency of the pruning process.

Although the branch-based lower bound is not tighter than
the hybrid lower bound, it is very efficient regarding the filter-
ing phase, which is confirmed in our experiments (see Fig. 9).
Thereupon, we can perform the branch-based filter first to
obtain some candidates, and then conduct the hybrid filter
over these candidates further. The pruning framework is
denoted asmixed filter. Themajor benefit of mixed filter is that
we can perform the hybrid pruning over a small set of data
graphs rather than the whole dataset without influencing the
pruning power.More discussions can be found in Section 7.3.

6 INDEX AND QUERY PROCESSING

6.1 U-Tree Index

Given a query q and a database D, we need to exhaustively
compute the lower bounds of mgedðq; gÞ for all graphs g
(g 2 D) one by one. Obviously, this is a long and tedious
process, especially when jDj is very large. In order to avoid
the sequential scan, we propose an index u-tree as follows.

Definition 6.1. The statistics of one data graph g is denoted as

BNIðgÞ ¼ fBðgÞ;SV ðgÞ;SEðgÞ; VEðgÞ; VEP ðgÞg, where

BðgÞ denotes all branches in g, SV ðgÞ and SEðgÞ denote all ver-
tex and edge labels in g, respectively, VEðgÞ and VEP ðgÞ
denote all size-2 and size-3 structures in g, respectively.

The union of BNIðg1Þ and BNIðg2Þ is the set union of five
parts in BNIðg1Þ and BNIðg2Þ.
Definition 6.2 (Union Operation “t”). BNIðg1Þt

BNIðg2Þ ¼ fBðg1Þ [Bðg2Þ; SV ðg1Þ [ SV ðg2Þ; SEðg1Þ[
SV ðg2Þ; VEðg1Þ [ VEðg2Þ; VEP ðg1Þ [ VEP ðg2Þg
According to the above definition, we can also recur-

sively define the union of multiple BNIðgiÞ, i ¼ 1; . . . ; n.

Definition 6.3. A u-tree is a height-balanced tree, where

1) Each leaf node stores BNIðgÞ of a data graph g.
2) Each intermediate node N is the union of all its child

nodes, i.e., BNIðNÞ ¼ BNIðg1Þ tBNIðg2Þ t � � � t
BNIðgmÞ, where g1; � � � ; gm are the child nodes ofN .

Fig. 6 shows an example of u-tree index structure. The
construction of u-tree is similar to B-tree and R-tree. We will
discuss u-tree construction in Section 6.2. In this section, we
assume that the u-tree has been built. We focus on how to
utilize u-tree to improve the efficiency.

Considering an intermediate nodeNi (in u-tree), we define
the directed compact distance (denoted as distDCBðq;NiÞ)
and partition-based distance (denoted as distPLðq;NiÞ)
between q and Ni in Definitions 6.4 and 6.5, respectively. If
one of the two distances is larger than t, all its descendants of
Ni can be pruned safely.

Definition 6.4. The directed compact distance from query
graph q to an intermediate node Ni, denoted as distDCBðq;NiÞ,
is the minimum compact edit distance of transforming BðqÞ to
BðqÞ0, such that BðqÞ0 � BðNiÞ.
To compute the directed compact distance from q to Ni,

we just need to modify Algorithm 2 slightly. We should
subtract the common branches from BðqÞ rather than the
branch set with the maximum size.

Since the last step of our partition-based method may
invoke expensive subgraph isomorphism verification, we
only consider the first three steps for the intermediate nodes.

Definition 6.5. The number of mismatching structures generated
by the first three steps is defined as the partition distance
between q andNi, denoted as distPLðq;NiÞ.
With u-tree index, we have the following two theorems

for the pruning.

Theorem 6.1. If the compact distance distDCBðq;NiÞ � ðt þ 1Þ,
all the child nodes of Ni can be pruned.

Proof. Since Ni is the union of its child nodes, the com-
mon branches between q and Ni must be more than
that between q and Nj, where Nj is one child node of
Ni. Hence, we have distDCBðq; NjÞ � distDCBðq; NiÞ. If
distDCBðq;NiÞ � ðt þ 1Þ, distDCBðq;NjÞ � ðt þ 1Þ. tu

Theorem 6.2. If distPLðq;NiÞ � ðt þ 1Þ, all the child nodes ofNi

can be pruned.

Proof. Since Ni is the union of its child nodes, the statistical
information stored in node Ni is more than that in any
of its child node Nj. The more statistical information are
stored in Ni, the less mismatching structures will be
obtained. Hence, distPLðq;NjÞ � distPLðq;NiÞ. If distPLðq;
NiÞ � ðt þ 1Þ, distPLðq;NjÞ � ðt þ 1Þ. tu

6.2 U-Tree Construction

Given a graph database D, we can build many different u-
trees which may lead to different query performance. In

Fig. 6. u-tree Index.
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general, a good u-tree should provide high pruning ability
for various queries. Considering a non-leaf node Ni, it is
constructed by the union of its child nodes. Extremely, if all
the child nodes are identical, distDCBðq;NiÞ is smallest,
which favors a tight lower bound. It is intuitive that the
smaller the difference of Ni’s child nodes is, the tighter
the lower bound distDCBðq;NiÞ will be. Hence, we present
the following cost model, where gj and gk are two child
nodes ofNi, and jNij is the number of its child nodes.

argmin
X
Ni

P
distDCBðgj; gkÞ
jNijðjNij 
 1Þ :

Since u-tree is analogue to R-tree, we can build u-tree by
inserting the graphs sequentially. An insertion operation
begins at the root and iteratively chooses a child node until
it reaches a leaf node. We omit more details about the u-tree
construction, since it is similar to R-tree.

6.3 Query Processing

Given a query graph q, we traverse the index u-tree start-
ing from the root. Assume the current intermediate node
is Ni, we first compute the directed compact distance
distDCBðq; NiÞ. If distDCBðq;NiÞ � ðt þ 1Þ, we can safely
prune the subtree rooted at node Ni. Otherwise, we com-
pute distPLðq; NiÞ. Analogously, if distPLðq; NiÞ � ðt þ 1Þ,
the subtree rooted at node Ni can be pruned. If neither
distDCBðq; NiÞ nor distPLðq; NiÞ is larger than t, the sub-
tree will be accessed. Furthermore, if the current node is
a leaf node g, we need to compute the compact branch
lower bound distCBðq; gÞ and the hybrid lower bound
distHðq; gÞ.

Regarding those data graphs passing all the filters, we
need to compute the minimum graph edit distances. Any
existing methods [27], [35] can be employed.

7 EXPERIMENTAL STUDY

We evaluate the performance of our proposed method, and
compare it with c-star [17], k-AT [31], path-gram [27], and
pars [36] over both real and synthetic datasets.

7.1 Datasets and Settings

Real datasets. 1) AIDS is an antivirus screen compound data-
set from the Developmental Theroapeutics Program in
NCI/NIH.4

2) PROTEIN is a protein database from the Protein Data
Bank,5 where vertices represent secondary structure

elements and are labeled with the corresponding enzyme
class labels, edges indicate that two elements are neighbors.

Synthetic datasets. Two different synthetic graph models
are used in our experiments, namely, Erdos Renyi (ER) and
Scale Free (SF). In ER model, N vertices are connected byM
randomly chosen edges. The vertex degrees of SF graphs
satisfy the power law distribution. We use the graph gener-
ator gengraph win6 to generate SF graphs.

The statistics of the datasets are listed in Table 2, where
the numerics from the third column to sixth column are
average statistics, and d is the maximum vertex degree. We
randomly select 100 graphs from each dataset as its query
graphs, and average the query response time.

In this paper, all experiments are conducted on a P4
3.0 GHz machine with 4 G RAM running Linux. All pro-
grams are implemented in C++. The length of grams in k-
AT and path-gram are set to be 1 and 3, which are the sug-
gested parameter values in [27].

7.2 Effect of TT

As discussed in Section 3.3, the fourth step in the partition
process needs to invoke a state-expansion based subgraph
isomorphism verification algorithm (such as VF2 [11] and
QuickSI [32]). To avoid consuming much time in this step,
we restrict the state size no larger than T . So we first evalu-
ate the effect of T by only performing the partition-based fil-
ter. We fix the dataset to be AIDS, Protein, ER(100 k), and SF
(100 k), respectively, and set the threshold to be 3. We vary
the parameter T from 4 to 12. Figs. 7a and 7b show the can-
didate ratio and filtering time vs: T. The candidate ratio
(denoted as canRatio) is defined as Equation (8).

canRatio ¼ candidate size

jDj ; (8)

where jDj is the number of graphs in the database.
Fig. 7a shows that candRatio decreases as T increases. It

indicates that the pruning ability increases with the growth
of T . However, larger T leads to more filtering time, as pre-
sented in Fig. 7b, because the larger T will lead to larger
search space. Fig. 7a shows that canRatio is stable when
T > 8. Thus, we set T ¼ 8 in our experiments.

7.3 Evaluating Our Methods

We propose four filters, i.e., the disjoint-partition filter (or
simply denoted by “D”), branch filter (or simply denoted

TABLE 2
Dataset Statistics

Dataset jDj jV j jEj jLV j jLE j max d

AIDS 42,687 45.7 47.71 4.37 2.06 4
PROTEIN 600 32.63 62.14 2.04 4.39 8

ER 100,000 64.86 157.07 9.39 43.53 17
SF 100,000 63.35 88.61 13.52 41.87 16

Fig. 7. Effect of T for the disjoint-partition method.

4. http://dtp.nci.nih.govdocsaidsaids_data.html
5. http://www.iam.unibe.chfkidatabasesiam-graph-databasedown-

load-the-iam-graph-database 6. http://fabien.viger.free.fr/liafa/generation/
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by “B”), hybrid filter (or simply denoted by “H”), and
mixed filter (or simply denoted by “M”).

Fig. 8 shows the pruning power of these methods by
varying the MGED threshold t from 1 to 10. The candidate
ratios returned by all methods increase with the growth of
t. Notice that the hybrid and mixed filters have the same
pruning power, which has been stated in Section 5.2. It is
obvious that the hybrid/mixed filter is more powerful than
using either disjoint-partition or branch only. Hence, the
verification time will be reduced significantly employing
the hybrid filter or the mixed filter.

Fig. 9 shows the response time (i.e., the filtering time plus
the verification time) consumed by all these filters. The
branch filter is the most efficient in terms of the filtering
time. In comparison, the disjoint-partition filter may invoke
the expensive subgraph isomorphism verification. Thus, it
is slower than the branch filter. Incorporating both partition
and branch strategies together, the hybrid filter consumes
the most filtering time. As discussed in Section 5.2, the
mixed filter utilizes the branch filter first (the most efficient
regarding the filtering time) to obtain some candidates, and
then conducts the hybrid filter (the most powerful pruning
power) over the candidates. Therefore, the mixed filter is
the most efficient regarding the overall response time.

7.4 Comparing with Existing Methods

In this section, we compare our method, i.e., the mixed fil-
ter, with existing methods k-AT [31] , c-star [17], SEGOS
[37], path-gram [27], and pars [36].

7.4.1 Evaluating Offline Performance

We vary the size of database to evaluate the time of building
index and the storage cost as shown in Figs. 10a and 10b,
respectively. Regarding the indexing time, pars partitions
data graphs into subgraphs one by one. Hence, it consumes
more time than others. Since the depth of tree is 1 for k-AT,

it is just the star structure defined in c-star. However, c-star
only needs to enumerate all the star structures in data
graphs without any complex index. Thus, it is superior to
all the other methods. Because the size of branch is smaller
than that of star, and we assign each branch a unique id to
reduce index space, the space cost ofmixed filter is compet-
itive as shown in Fig. 10b.

7.4.2 Evaluating Online Performance

We fix the datasets and vary the threshold t from 1 to 10.
Fig. 11 presents canRatios of different methods over AIDS,
Protein. The less the candidate ratio is, the stronger the
pruning ability will be. As shown in Fig. 11, canRatios gen-
erated by all these methods increase with the growth of t.
Fig. 11 shows that the candidate ratio of our proposed
method (mixed filter) is the lowest, i.e., it has the strongest
pruning power. What is more, the gap between the mixed fil-
ter and other methods gets larger with the growth of MGED
threshold t, which reveals that the pruning power of other
methods is weaker compared with the mixed filter.

We also compare the efficiency of the mixed filter with
other methods as shown in Fig. 12. Note that pars [36] out-
performs c-star [17], SEGOS [37], and path-gram [27]. We
just need to compare the mixed filter (denoted by “M”)
with k-AT (denoted by “T”) and pars (denoted by “P”).
Since the MGED computation is invoked during the verifi-
cation phase, the verification time dominates the response
time as shown in Figs. 12a and 12b. Although the filtering
time of the mixed filter is not always the least, its overall
response time is far less than that of its competitors. The
main reason is that much less candidates are required to be
verified benefitting from its powerful pruning ability.

7.4.3 Evaluating Scalability

Effect of jDj. To study the effect of jDj, we vary the size of
datasets, and set theMGED threshold to be 3. Fig. 13 presents
the time efficiency of all these methods. As depicted in this

Fig. 8. canRatio vs:MGED threshold t.

Fig. 9. Response time vs:MGED threshold t.

Fig. 10. Offline performance on AIDS.

Fig. 11. canRatio vs:MGED threshold t.
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figure, the mixed filter outperforms k-AT by two orders and
outperforms pars by one order of magnitude in terms of the
overall response time, respectively. Comparatively, the k-At
is rather inefficient since it suffers from the effect of large ver-
tex degrees. Note that the time consumed by all these
approaches is almost linear of the size of datasets, because
the pruning abilities are stable for datasets of different size.

Effect of jEðqÞj. In order to study the effect of the query
graph size on the pruning ability, we fix the datasets (ER
and SF) and randomly select groups of graphs of sizes from
10 to 100 from each dataset as query graphs. Since the real
results get fewer with the growth of the size of query
graphs, the numbers of candidates for all methods decrease
with the increasing of jEðqÞj as shown in Fig. 14.

Effect of jLV j. We also study the effect of the number of
labels jLV j over ER and SF datasets. The results are pre-
sented in Fig. 15, where jLV j is increased from 5 to 50. It
shows that if there are more labels in data graphs, the prun-
ing abilities of all these approaches will be higher. This is
because more information can be used in the computation
of these lower bounds.

Effect of d. Fig. 16 shows the effect of maximum vertex
degree on the pruning ability. It is obvious that the pruning
abilities of k-AT, c-star, and path-gram decrease dramati-
cally with the growth of the maximum vertex degree. It is
because these methods are all based on the idea of n-gram,
and one edit operation over the basic structure (tree, star,
path) can affect (dþ 1) structures at least. In contrast, the
mixed filter utilizes branches, and one edit operation just
affects two branches at most. Hence, the maximum vertex
degree has little impact on the mixed filter.

8 RELATED WORK

Lots of lower bounds are proposed to perform the pruning.
Number count filter [17]. The mgedðq; gÞ is not smaller than

distNðq; gÞ ¼ jjV ðgÞj 
 jV ðqÞjj þ jjEðgÞj 
 jEðqÞjj.

Label multiset filter [27]. Let MV ðgÞ/MEðgÞ be the multiset
of vertex/edge labels. distMðq; gÞ ¼ GðMV ðqÞ;MV ðgÞÞ þ
GðMEðqÞ;MEðgÞÞ, where GðX; Y Þ ¼ maxðjXj; jY jÞ 
 jX \ Y j.

C-star [17]. A bipartite graph can be constructed with two
sets of stars SðqÞ and SðgÞ. Assume that the minimum
weight matching in the bipartite graph is mðq; gÞ. The lower
bound is computed according to Equation (9), where dðqÞ
and dðgÞ are the maximum degrees in q and g, respectively.

distSðq; gÞ ¼ mðq; gÞ
maxf4; ½maxfdðqÞ; dðgÞg� þ 1g : (9)

These star structures may have lots of overlapping struc-
tures, which results in a huge penalty by maxf4; ½max
fdðqÞ;dðgÞg þ 1�g. Hence, the lower bound may be very small
caused by the large denominator. Using star structures,
SEGOS [37] introduces a two-level index and designs a
novel search strategy. However, it follows the principle
used in [17]. Thus, they have the same pruning power.

Tree-based n-grams (k-AT [31]). It defines an n-gram as a
tree. Ifmgedðq; gÞ � t, graphs q and gmust share at least

distT ðq; gÞ ¼ maxðjV ðqÞj 
 t �DtreeðqÞ; jV ðgÞj 
 t �DtreeðgÞÞ
common n-grams, where Dtree is the maximum number of
tree-based n-grams that can be affected by an edit operation.

Path-based n-grams [27]. It defines an n-gram as a path. If
mgedðq; gÞ � t, graphs q and gmust share at least

distAðq; gÞ ¼ maxðjMGðqÞj 
 t �DpathðqÞ; jMGðgÞj 
 t �DpathðgÞÞ

common n-grams, where MGðqÞ and MGðgÞ denote the
multisets of n-grams in graphs q and g, Dpath is the maxi-
mum number of path-based n-grams that can be affected by
one edit operation. Clearly, if there is a high-degree vertex,
the lower bound may be very small.

Recently, another partition-based method [36] is pro-
posed. It divides data graphs into partitions offline and
modifies the partitions according to the query graph online.

Fig. 12. Filtering time vs:MGED threshold t.

Fig. 13. Filtering time vs: jDj.

Fig. 14. CandRatio vs: jEðqÞj:

Fig. 15. CandRatio vs: jLV j.
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Although its partitioning strategy is distinct from ours, we
can also incorporate it into our hybrid filter to obtain a
tighter (at least not looser) lower bound.

In the verification phase, the most widely used method
to compute exact graph edit distance is based on A� algo-
rithm incorporating heuristics [35]. It explores the space
of all possible vertex mappings between two graphs to
find the optimal mapping. Zhao et al. [27] improve A�

with two heuristics. Note that our work focuses on the
filtering phase, i.e., the lower bound and the pruning
strategy. They are independent of the verification
algorithms.

To speed up the subgraph query processing, many fea-
ture-based indexing techniques, such as gIndex [12],
Tree þ d [38], and SING [39], have been proposed. The
basic idea is that we can filter out data graph g if g does
not contain the feature selected from query graph q. They
focus on how to select features so as to enhance the prun-
ing power. Distinct from the indexing techniques above,
our partition-based pruning principle is counting the
number of mismatching structures. Hence, we aim at
finding as many mismatching structures as possible with-
out caring about what the structures are.

9 CONCLUSIONS

In this paper, we study the graph similarity search under
the graph edit distance constraint. Considering the limita-
tions of existing approaches, we propose a systematic
method for edit-distance based graph similarity search
problem. Two lower bounds used to reduce the search
space are proposed: one is based on the mismatching struc-
tures and the other one is based on branches. Importantly,
we design a hybrid lower bound incorporating the both,
and theoretically prove the hybrid lower bound is tighter
(at least not looser) than the two lower bounds. In order to
speed up the pruning process, an efficient pruning frame-
work (mixed filter) is introduced. In addition, we carefully
devise a uniform index, namely u-tree, to avoid explore the
data graphs one by one. Extensive experiments over both
real and synthetic datasets confirm that our proposed
method outperforms the existing approaches significantly.
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