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Abstract—In real-world graphs such as social networks, Semantic Web and biological networks, each vertex usually contains rich

information, which can be modeled by a set of tokens or elements. In this paper, we study a subgraph matching with set similarity

(SMS2) query over a large graph database, which retrieves subgraphs that are structurally isomorphic to the query graph, and

meanwhile satisfy the condition of vertex pair matching with the (dynamic) weighted set similarity. To efficiently process the SMS2

query, this paper designs a novel lattice-based index for data graph, and lightweight signatures for both query vertices and data

vertices. Based on the index and signatures, we propose an efficient two-phase pruning strategy including set similarity pruning and

structure-based pruning, which exploits the unique features of both (dynamic) weighted set similarity and graph topology. We also

propose an efficient dominating-set-based subgraph matching algorithm guided by a dominating set selection algorithm to achieve

better query performance. Extensive experiments on both real and synthetic datasets demonstrate that our method outperforms

state-of-the-art methods by an order of magnitude.

Index Terms—Subgraph matching, set similarity, graph database, index

Ç

1 INTRODUCTION

WITH the emergence of many real applications such as
social networks, Semantic Web, biological networks,

and so on [1], [2], [3], [4], [5], [6], graph databases have been
widely used as important tools to model and query complex
graph data. Much prior work has extensively studied vari-
ous types of queries over graphs, in which subgraph matching
[7], [8], [9], [10] is a fundamental graph query type. Given a
query graph Q and a large graph G, a typical subgraph
matching query retrieves those subgraphs in G that exactly
match with Q in terms of both graph structure and vertex
labels [7]. However, in some real graph applications, each
vertex often contains a rich set of tokens or elements repre-
senting features of the vertex, and the exact matching of ver-
tex labels is sometimes not feasible or practical.

Motivated by the observation above, in this paper, we
focus on a variant of the subgraph matching query, called
subgraph matching with set similarity (SMS2) query, in which
each vertex is associated with a set of elements with dynamic
weights instead of a single label. The weights of elements
are specified by users in different queries according to dif-
ferent application requirements or evolving data. Specifi-
cally, given a query graph Qwith n vertices ui (i ¼ 1; . . . ; n),

the SMS2 query retrieves all the subgraphsX with n vertices
vj (j ¼ 1; . . . ; n) in a large graph G, such that (1) the
weighted set similarity between SðuiÞ and SðvjÞ is larger
than a user specified similarity threshold, where SðuiÞ and
SðvjÞ are sets associated with ui and vj, respectively; (2) X is
structurally isomorphic to Q with ui mapping to vj. We dis-
cuss the following two examples to demonstrate the useful-

ness of SMS2 queries.

Example 1 (Finding papers in DBLP). The DBLP1 com-
puter science bibliography provides a citation graph G
(Fig. 1b) in which vertices represent papers and edges
represent citation relations between papers. Each paper
contains a set of keywords, in which each keyword is
assigned a weight to measure the importance of a key-
word with regard to the paper. In reality, a researcher
searches for similar papers from DBLP based on both
citation relationships and the content similarity of
papers [11]. For example, a researcher wants to find
papers on subgraph matching that are cited by both
social network papers and papers on protein interac-
tion network search. Furthermore, she/he requires
papers on protein interaction network search being
cited by social network papers. Such query can be

modeled as an SMS2 query, which obtains subgraph
matches of the query graph Q (Fig. 1a) in G. Each
paper (vertex) in Q and its matching paper in G should
have similar set of keywords, and each citation relation
(edge) exactly follows the researcher’s requirements.

Example 2 (Querying DBpedia). DBPedia extracts entities
and facts from Wikipedia and stores them in an RDF
graph [12]. As shown in Fig. 2b, in a DBPedia RDF graph
G, each entity (i.e., vertex) has an attribute “dbpedia-owl:
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abstract” that provides a human-readable description
(i.e., a set of words) of the entity, and each edge is a fact
that indicates the relationship between entities. Typically,
users issue SPARQL queries to find subgraph matches of
the query graph (i.e., a graph of connected entities with
known attribute values) by specifying exact query criteria.
However, in reality, a user may not know (or remember)
the exact attribute values or the RDF schema (such as
property names). For example, a user wants to find two
physicists who both won Nobel prizes and are related to
Denmark from DBpedia, while he/she does not know the
schema of DBpedia data. In this case, the user can issue an

SMS2 queryQ, as shown in Fig. 2a, in which each vertex is

described by a short text. The answer to the SMS2 queryQ
is Niels Bohr and Aage Bohr, because the subgraphmatch
is structurally isomorphic to Q and the text similarity
(measured by theword set similarity) of thematching ver-
tex pairs is high. Interestingly, we find that Niels Bohr is
the father of Aage Bohr.

The motivation examples show that SMS2 queries are
very useful in many real-world applications. To the best of
our knowledge, no prior work studied the subgraph match-
ing problem under the semantic of structural isomorphism
and set similarity with dynamic element weights (called
dynamic weighted set similarity). Traditional weighted set
similarity [13] that focuses on fixed element weight is actu-
ally a special case of dynamic weighted set similarity. Due
to different matching semantic on vertices (i.e., dynamic
weighted set similarity rather than exact label matching),
previous techniques on exact or approximate subgraph
matching [7], [8], [9], [14], [15], [16] cannot be directly

applied to answering SMS2 queries.
It is challenging to utilize both dynamic weighted set

similarity and structural constraints to efficiently answer
SMS2 queries. There are two straightforward methods that

answer SMS2 queries by modifying existing algorithms. The
first method conducts the subgraph isomorphism using
existing subgraph isomorphism algorithms (e.g., [14], [17]).
Then, resulting candidate subgraphs are refined by check-
ing the weighted set similarity between each pair of match-
ing vertices. The second method is in a reverse order, that
is, first finding candidate vertices in the data graph that
have similar sets to vertices in the query graph by calculat-
ing weighted set similarity on-the-fly (as weights change
dynamically), which is computationally expensive, and
then obtaining matching subgraphs from the candidate ver-
tices. However, these two methods usually incur very high

query cost, especially for a large graph database. This is
because the first method ignores the weighted set similarity
constraints, whereas the second one ignores the structural
information when filtering candidate results.

Due to the inefficiency of existing methods, we propose
an efficient SMS2 query processing approach in this paper.
Our approach adopts a “filter-and-refine” framework,
which exploits unique features of both graph topology and
dynamic weighted set similarity. In the filtering phase, we
build a lattice-based index over frequent patterns of element
sets of vertices in data graph G. Then, data vertices are
encoded into signatures, and organized into signature buck-
ets. We design an efficient two-phase pruning strategy
based on the lattice-based index and signature buckets

to reduce the SMS2 search space. In the refinement phase,
we propose a dominating set2 (DS)-based subgraph matching
algorithm to find subgraph matches with set similarity (defined
in Definition 1). A dominating set selection method is pro-
posed to select a cost-efficient dominating set of the query
graph. In summary, we make the following contributions:

1) We design a novel strategy to efficiently process SMS2

queries. An inverted pattern lattice based indexing and a
structural signature-based locality sensitive hashing (LSH)
are first constructed offline. During the online phase, a set
of pruning techniques facilitated by the offline data struc-
tures are introduced and integrated together to greatly

reduce the search space of SMS2 queries.
2)We propose set similarity pruning techniques (Section 4)

that utilize a novel inverted pattern lattice over the element sets
of data vertices to evaluate dynamic weighted set similarity.
It introduces an upper bound on the dynamic weighted

Fig. 1. An example of finding groups of cited papers in DBLP that match
with the query citation graph.

Fig. 2. An example of querying subgraph matches from the RDF graph of
DBpedia.

2. In graph theory, a dominating set for a graph Q ¼ ðV;EÞ is a sub-
set DSðQÞ of V ðQÞ such that every vertex of Q is either in DSðQÞ, or
adjacent to some vertex inDSðQÞ.
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similarity measure to apply the anti-monotone principle to
achieve high pruning power.

3) We propose structure-based pruning techniques
(Section 5) that explore a novel structural-signature-based
data structure, where the signature is designed to capture
the set and neighborhood information. An aggregate domi-
nance principle is devised to guide the pruning.

4) Instead of directly querying and verifying the candi-
dates of all the vertices in the query graph, we design an
efficient algorithm (Section 6) to perform subgraph match-
ing based on the dominating set of query graph. When fill-
ing up the remaining (non-dominating) vertices of the
graph, a distance preservation principle is devised to prune
candidate vertices that do not preserve the distance to domi-
nating vertices.

5) Last but not least, we demonstrate through extensive
experiments that our approach can effectively and effi-
ciently answer the SMS2 queries in a large graph database.

2 RELATED WORK

Exact subgraph matching query requires that all the verti-
ces and edges are matched exactly. The Ullmann’s sub-
graph isomorphism method [17] and VF2 [14] algorithm
do not utilize any index structure, thus they are usually
costly for large graphs. GADDI [18] is a structure distance
based subgraph matching algorithm in a large graph.
Zhao and Han [8] investigated the SPath algorithm, which
utilizes shortest paths around the vertex as basic index
units. Cheng et al. [2] proposed a new two-step R-join
algorithm to efficiently find matching graph patterns from
a large graph. Zou et al. [9] proposed a distance-based
multi-way join algorithm for answering pattern match
queries over a large graph. Shang et al. [19] proposed
QuickSI algorithm for subgraph isomorphism optimized
by choosing an search order based on some features of
graphs. SING [20] is a novel indexing system for subgraph
isomorphism in a large scale graph. GraphQL [21] is a
query language for graph databases which supports
graphs as the basic unit of information. Sun et al. [10]
utilized graph exploration and parallel computing to pro-
cess subgraph matching query on a billion node graph.
Recently, an efficient and robust subgraph isomorphism
algorithm TurboISO [15] was proposed. RINQ [22] and
GRAAL [23] are graph alignment algorithms for biological
networks, which can be used to solve isomorphism prob-
lems. To solve subgraph isomorphism problems, graph
alignment algorithms introduce additional cost as they
should first find candidate subgraphs of similar size from
the large data graph. In addition, existing exact subgraph
matching and graph alignment algorithms do not consider
weighted set similarity on vertices, which will cause high
post-processing cost of set similarity computation.

Approximate subgraph matching query usually concerns
the structure information and allows some of the vertices or
edges not being matched exactly. Closure-tree [16] is the
first graph index that supports both subgraph queries
and graph similarity queries. SAGA [24] is an approximate
subgraph matching technique that finds subgraphs in
the database that are similar to the query, allowing for node
mismatches, node gaps, and graph structural differences.

Torque [4] is a topology-free querying tool of protein inter-
action network. Torque does not require precise information
on interaction pattern of the query. TALE [7] is an index-
based method for approximate subgraph matching which
allows node mismatches, and node/edge insertions and
deletions. Our work differs from the approximate subgraph
matching problems in that no node/edge mismatches are
allowed, and the matching vertices should have similar sets.

Recently, several novel subgraph similarity search
problems have been investigated. Ma et. al [25] studied
the problem of graph simulation by enforcing duality and
locality conditions on subgraph matches. NeMa [26]
focuses on the subgraph matching queries that satisfy the
following two conditions (1) many-to-one subgraph
matching with a cost function, and (2) label similarity of
matching vertices. S4 system [27] finds the subgraphs
with identical same structure and semantically similar

entities of query subgraph. SMS2 query differs from the
above problems in that it considers both one-to-one struc-
tural isomorphism and dynamic set similarity of match-
ing vertices. Zou et al. [28] proposed a top-k subgraph
matching problem that considers the similarity between
objects associated with two matching vertices. This work
assumes that all vertex similarities are given, and does
not exploit set similarity pruning techniques to optimize
subgraph matching performance.

As for the weighted set similarity query, Hadjieleftheriou
et al. [29] proposed various index structures and algorithms.
Recently, a Heaviest First strategy [13] has been proposed
for efficiently answering all-match weighted string similar-
ity query. However, dynamic element weights (i.e. query
dependent weights) in SMS2 queries make most of existing
index structures and query processing techniques for
weighted set similarity inefficient, or even infeasible. The
reason is that these methods rely on element canonicali-
zation according to fixed weights, while elements with
dynamic weights cannot be canonicalized in advance.

3 PRELIMINARIES

3.1 Problem Definition

In this subsection, we formally define our problem of sub-
graph matching with set similarity query. Specifically, we
consider a large graph G represented by hV ðGÞ; EðGÞi,
where V ðGÞ is a set of vertices, EðGÞ is a set of edges. Each
vertex v 2 V ðGÞ is associated with a set, SðvÞ, of elements.
Query graph Q is represented by hV ðQÞ; EðQÞi. The set of
element domain is denoted by U , in which each element a
has a weight WðaÞ to indicate the importance of a. Note
that, weights can change dynamically in different queries
due to varying requirements or evolving data in real appli-
cations (e.g., Examples 1 and 2).

Definition 1 (Subgraph Match with Set Similarity). For a
query graph Q with n vertices ðu1; . . . ; unÞ, a data graph G,
and a user-specified similarity threshold t, a subgraph match
of Q is a subgraph X of G containing n vertices ðv1; . . . ; vnÞ of
V ðGÞ, iff the following conditions hold:
1) There is a mapping function f , for each ui in V ðQÞ and

vj 2 V ðGÞ (1 � i � n, 1 � j � n), it holds that
fðuiÞ ¼ vj;
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2) simðSðuiÞ; SðvjÞÞ � t, where SðuiÞ and SðvjÞ are the
sets associated with ui and vj, respectively, and
simðSðuiÞ; SðvjÞÞ outputs a set similarity score bet-
ween SðuiÞ and SðvjÞ;

3) For any edge ðui; ukÞ 2 EðQÞ, there is ðfðuiÞ;
fðukÞÞ 2 EðGÞ (1 � k � n).

Since the subgraph match with set similarity is indepen-
dent of directed or undirected edges, the proposed techni-
ques can be applied to both directed and undirected graph.
We define the SMS2 query as follows:

Definition 2 (SMS2 Query). Given a query graph Q and a data
graph G, a subgraph matching with set similarity query
retrieves all subgraph matches of Q in graph G under the
semantic of the set similarity.

Note that, the choice of the similarity function simð:; :Þ
highly depends on the application domain. In this paper,
we choose weighted Jaccard similarity, which is one of the
most widely used similarity measures.

Definition 3 (Weighted Jaccard Similarity). Given element
sets SðuÞ and SðvÞ of vertices u and v, the weighted Jaccard
similarity between SðuÞ and SðvÞ is

simðSðuÞ; SðvÞÞ ¼
P

a2SðuÞ\SðvÞ WðaÞP
a2SðuÞ[SðvÞ WðaÞ ; (1)

whereWðaÞ is the weight of element a,WðaÞ � 0.

In Definition 3, when WðaÞ ¼ 1 for each element a, the
weighted Jaccard similarity is exactly the classical Jaccard
similarity [30]. As mentioned in [30], some other popular
similarity measures such as cosine similarity, Hamming dis-
tance and overlap similarity can be converted to Jaccard
similarity. Therefore, given another similarity measure
(e.g., cosine similarity, Hamming distance and overlap
similarity) and a threshold a, we can transform it into
Jaccard similarity with a corresponding threshold t.

Then, we process the SMS2 query using a constant lower
bound to t. Finally, we verify each candidate by the origi-
nal similarity measure (detailed in Appendix A, which
can be found on the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/
TKDE.2015.2391125).

In real applications, the weight of each element a can be
specified by the query issuer or weighting methods such as
TF/IDF [13]. For instance, in Example 1, the weight of each
keyword represents the correlation between the keyword
and the paper, which is specified by researchers. In Example
2, each token in DBpedia can be assigned with a TF/IDF
weight, which changes dynamically due to evolving data.

3.2 Framework

In this subsection, we present a filter-and-refine framework
for our proposed approaches, which includes offline proc-
essing and online processing, as shown in Fig. 3.

Offline processing. We construct a novel inverted pattern
lattice to facilitate efficient pruning based on the set similar-
ity. Since the dynamic weight of each element makes

existing indices inefficient for answering SMS2 queries, we

need to design a novel index for SMS2 query. Motivated by
the anti-monotone property of the lattice structure (see
details in Section 4), we mine frequent patterns (defined in
Definition 5) from element sets of vertices in the data graph
G, and organize them into a lattice. We store data vertices
in the inverted list for each frequent pattern P , if P is
contained in the element sets of these vertices. The lattice
together with the inverted lists is called inverted pattern lat-
tice, which can greatly reduce the cost of dynamic weighted
set similarity search. To support structure-based pruning,
we encode each query vertex and data vertex into a query
signature and a data signature respectively by considering
both the set and topology information, and hash all the data
signatures into signature buckets.

Online processing. We propose finding a cost-efficient
dominating set (defined in Section 6) of the query graph Q,
and only search candidates for vertices in the dominating
set. Note that, different dominating sets will lead to differ-
ent query performances. Thus, we propose a dominating set
selection algorithm to select a cost-efficient dominating set
DSðQÞ of query graph Q.

The dominating-set-based subgraph matching is moti-
vated by two observations: (1) finding candidates in SMS2

queries is much more expensive than that in typical sub-
graph search, because set similarity calculation is more
costly than vertex label matching. As a result, the filtering
cost can be reduced by searching dominating vertices of
V ðQÞ rather than all query vertices. (2) Some query vertices
may have a large amount of candidate vertices, which leads
to many unnecessary intermediate results during subgraph
matching. Therefore, the subgraph matching cost can also
be reduced by decreasing the size of intermediate results.

For each vertex u 2 DSðQÞ, we propose a two-phase
pruning strategy, including set similarity pruning and
structure-based pruning. The set similarity pruning in-
cludes anti-monotone pruning, vertical pruning, and hori-
zontal pruning, which are based on our proposed inverted
pattern lattice (Section 4). Based on the signature buckets,
we also propose the structure-based pruning technique by
utilizing novel vertex signatures (Section 5).

After the pruning, we propose an efficient DS-Match
subgraph matching algorithm to obtain subgraph matches
of Q based on candidates of dominating vertices in DSðQÞ
(Section 6). DS-match utilizes topological relations between

Fig. 3. Framework for SMS2 query processing.
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dominating vertices and non-dominating vertices to reduce
the scale of intermediate results during subgraph matching,
and therefore reduces the matching cost.

4 SET SIMILARITY PRUNING

For a vertex u in a dominating set of query graph Q, we
need to find its candidate vertices in graph G. Let us recall

the definition of SMS2 query in Definition 1. If a vertex v in
graph G match with u, simðSðuÞ; SðvÞÞ > t holds. This sec-
tion concentrates on finding candidate vertices v of u such
that simðSðuÞ; SðvÞÞ > t. How to select a cost-efficient domi-
nating set will be introduced in Section 6.2.

As discussed in Section 2, existing indices relying on ele-
ment canonicalization are not suitable for SMS2 queries due
to dynamic weights of elements. Nevertheless, we note that
the inclusion relation between two sets does not change even
if element weights vary dynamically. For two element sets
SðvÞ and Sðv0Þ of vertex v and v0 respectively, if SðvÞ � Sðv0Þ,
the relationship of SðvÞ being a subset of Sðv0Þ is called
inclusion relation. Based on inclusion relation, we derive
the following upper bound.

Definition 4 (AS Upper Bound). Given a query vertex u’s set
SðuÞ and a data vertex v’s set SðvÞ, an Anti-monotone Simi-
larity (AS) upper bound is

UBðSðuÞ; SðvÞÞ ¼
P

a2SðuÞ W ðaÞP
a2SðuÞ[SðvÞ W ðaÞ � simðSðuÞ; SðvÞÞ;

(2)

where W ðaÞ denotes the weight assigned to element a, and
simð; Þ is given by Equation (1).

Since
P

a2SðuÞ WðaÞ does not change once the query is
given, AS upper bound is anti-monotone with regard to
SðvÞ. That is, for any set SðvÞ � Sðv0Þ, if UBðSðuÞ; SðvÞÞ < t,
then UBðSðuÞ; Sðv0ÞÞ < t.

Apparently, the anti-monotone property of AS upper
bound enables us to prune vertices based on inclusion rela-
tions. However, inclusion relations between element sets of
data vertices are few. In contrast, since most of element sets
contain frequent patterns, inclusion relations between ele-
ment sets and frequent patterns are numerous. Motivated
by this observation, we mine frequent patterns from ele-
ment sets of all the data vertices, and design a novel index
structure named inverted pattern lattice to organize frequent
patterns. The lattice-based index enables efficient anti-

monotone pruning, and therefore is suitable for set similar-
ity search with dynamic weights.

Here, we recall the definition of the frequent pattern [31].

Definition 5 (Frequent Pattern). Let U be the set of distinct ele-
ments in V ðGÞ. A pattern P is a set of elements in U, i.e.,
P � U . If an element set SðvÞ contains all the elements of a
pattern P , then we say SðvÞ supports P and SðvÞ is a support-
ing element set of P . The support of P , denoted by suppðP Þ, is
the number of element sets that support P . If suppðP Þ is larger
than a user-specified threshold minsup, then P is called a fre-
quent pattern.

The computation of support of pattern P (i.e., suppðP Þ)
can be referred to [31].

4.1 Inverted Pattern Lattice Construction

To build an inverted pattern lattice, we first mine frequent
patterns from element sets of all vertices in data graph G.
Then, we organize these frequent patterns into a lattice.
In the lattice, each intermediate node P is a frequent pat-
tern, which is a subset of all its descendant nodes.
We denote the frequent pattern having k elements as a
k-frequent pattern. To ensure the completeness of the
indexing, the one-frequent patterns (i.e., all elements in
the universe U) are indexed in the first (top) level of the
lattice. For each k-frequent pattern (k > 1) P in the lattice,
we insert each vertex v’s element set SðvÞ into the inverted
list of P (denoted as LðP Þ), iff SðvÞ supports P . Note that,
an element set SðvÞ may support multiple frequent pat-
terns in the lattice. We insert SðvÞ to the inverted lists of
these frequent patterns, respectively.

Example 3. Fig. 4 is an example of inverted pattern lattice
built by data vertices in Fig. 1b. The elements a1, a2, a3
and a4 correspond to keywords “Subgraph Matching”,
“Protein Interaction Network”, “Social Network”, and
“Search”, respectively. Then, v1 ¼ fa1g, v2 ¼ fa3; a4g,
v3 ¼ fa2; a4g, v4 ¼ fa1; a3g, v5 ¼ fa3g, v6 ¼ fa1g.

4.2 Pruning Techniques

4.2.1 Anti-Monotone Pruning

Considering the anti-monotone property of AS upper
bound and the characteristics of inverted lattice pattern , we
have the following theorem.

Theorem 1. Given a query vertex u, for each accessed frequent
pattern P in the inverted pattern lattice, if UBðSðuÞ; P Þ < t,
all vertices in the inverted list LðP Þ and LðP 0Þ can be safely
pruned, where P 0 is a descendant node of P in the lattice.

Proof. For each element set SðvÞ in the inverted list of P ,
since P � SðvÞ, UBðSðuÞ; SðvÞÞ < t according to the anti-
monotone property of AS upper bound. Similarly, for
any descendant node P 0 of P , since P 0 � P , UBðSðuÞ; P 0Þ
will be also less than t. The theorem can be proved. tu
Based on the theorem above, we can efficiently prune fre-

quent patterns in the inverted pattern lattices regardless of
dynamic weights of elements.

Example 4. Considering the query vertex u3 in Fig. 1a, u3’s
element set Sðu3Þ¼fa2; a4g. AssumeWða1Þ ¼ 0:5,Wða2Þ ¼
0:4,Wða3Þ ¼ 0:5,Wða4Þ¼ 0:2, and the similarity threshold

Fig. 4. Example of inverted pattern lattice including a lattice of frequent
patterns and inverted lists.
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t ¼ 0:6. As shown in Fig. 5a, since UBðSðu3Þ; P6Þ ¼
0:55 < 0:6, P6 and all its descendant nodes in the lattice,
i.e., the gray nodes, can be safely pruned. In the same
way, we can prune P1, P3 and all their descendent nodes.
All vertices in the inverted lists of these patterns can be
pruned safely.

4.2.2 Vertical Pruning

Vertical pruning is based on the prefix filtering principle [32]:
if two canonicalized sets are similar, the prefixes of these
two sets should overlap with each other, as otherwise these
two sets will not have enough common elements.

We canonicalize all the elements in query set SðuÞ in a
descending order of their weights during online process-
ing. The first p elements in the canonicalized set SðuÞ is
denoted as the p-prefix of SðuÞ. We find the maximum
prefix length p such that if SðuÞ and SðvÞ have no over-
lap in p-prefix, SðvÞ can be safely pruned, because they
do not have enough overlap to meet the similarity
threshold [32].

To find p-prefix of SðuÞ, each time we remove the ele-
ment with the largest weight from SðuÞ, we check whether
the remaining set S0ðuÞ meets the similarity threshold
with SðuÞ. We denote L1-norm of SðuÞ as kSðuÞk1 ¼P

a2SðuÞ WðaÞ. If kS0ðuÞk1 < t � kSðuÞk1, the removal stops.

The value of p is equal to jS0ðuÞj � 1, where jS0ðuÞj is the
number of elements in S0ðuÞ. For any set SðvÞ that does
not contain the elements in SðuÞ’s p-prefix, we have

simðSðuÞ; SðvÞÞ � kS0ðuÞk1
kSðuÞk1 < t, so SðuÞ and SðvÞ will not

meet the set similarity threshold.

Theorem 2. Given a query set SðuÞ and a frequent pattern P in
the lattice, if P is not a one-frequent pattern (or its descendant)
in SðuÞ’s p-prefix, all vertices in the inverted list LðP Þ can be
safely pruned.

Proof. For each vertex v in LðP Þ, P � SðvÞ. According to
prefix filtering principle and Theorem 1, all vertices in
LðP Þ can be pruned. tu
After we find the p-prefix of SðuÞ, we only need to access

all the descendent nodes of the corresponding 1-frequent
patterns in p-prefix in a vertical manner.

Example 5. For the query vertex u3 with Sðu3Þ ¼ fa2; a4g, we
can determine the p-prefix of Sðu3Þ is fa2g. As shown in
Fig. 5b, we only need to access P2 and its all descendent
nodes in the lattice. All vertices in the inverted lists of
other frequent patterns can be pruned.

4.2.3 Horizontal Pruning

Intuitively, a query element set SðuÞ cannot be similar to a
frequent pattern of a large size set or a frequent pattern of a
very small size. The size of a frequent pattern P (denoted by
jP j) is the number of elements in P . In the inverted pattern
lattice, each frequent pattern P is a subset of data vertices
(i.e., element sets) in P ’s inverted list. Suppose we can find
the length upper bound for SðuÞ (denoted by LUðuÞ). If the
size of P is larger than LUðuÞ, (i.e., the sizes of all data verti-
ces in P ’s inverted list are larger than LUðuÞ) then P and its
inverted list can be pruned.

Due to dynamic element weights, we need to find SðuÞ’s
length interval on the fly. We find LUðuÞ by adding ele-
ments in ðU � SðuÞÞ to SðuÞ in an increasing order of their
weights. Each time an element is added, a new set S0ðuÞ is
formed. We calculate the similarity value between SðuÞ and
S0ðuÞ. If simðSðuÞ; S0ðuÞÞ � t holds, we continue to add ele-
ments to S0ðuÞ. Otherwise, the upper bound LUðuÞ equals to
jS0ðuÞj � 1.

Note that, frequent patterns at the same level of the
inverted pattern lattice have the same size, and the size of
frequent patterns at Level k equals to k. Thus, after obtain-
ing the length upper bound LUðuÞ of SðuÞ, we can deter-
mine that the horizontal upper bound equals to LUðuÞ. All
frequent patterns under Level LUðuÞwill be pruned.

Example 6. Considering the query vertex u3 with Sðu3Þ ¼
fa2; a4g, and U ¼ �

a1; a2; a3; a4
�
. To find Sðu3Þ’s length

upper bound LUðuÞ, we add a1 (or a3) to Sðu3Þ to form
S0ðu3Þ. It is clear that simðSðu3Þ; S0ðu3ÞÞ < 0:6. Therefore,
LUðu3Þ is 2. As shown in Fig. 5c, all frequent patterns
below Level 2 can be pruned.

4.2.4 Putting All Pruning Techniques Together

In this subsection, we apply all the set similarity pruning
techniques and obtain candidates for a query vertex.

For each query vertex u, we first use vertical pruning and
horizontal pruning to filter out false positive patterns and
jointly determine the nodes (i.e., frequent patterns) that
should be accessed in the inverted pattern lattice. Then, we
traverse them in a breadth-first manner. For each accessed
node P in the lattice, we check whether UBðSðuÞ; P Þ is less
than t. If yes, P and its descendant nodes are pruned safely.
As shown in Fig. 5d, the grey nodes can be pruned after all
pruning techniques above have been applied. Assume that
P1, P2; . . . ; and Pk are the remaining nodes (i.e., white
nodes) that cannot be pruned, the candidate set of u is a

Fig. 5. An example of set similarity pruning on inverted pattern lattice.
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subset of
S k

i¼1LðPiÞ. Note that, all the child nodes of Pi

(1 � i � k), denoted by PN , have been pruned based on AS
upper bound. The candidate set CðuÞ of u can be obtained
by Equation (3)

CðuÞ ¼
[k
i¼1

LðPiÞ �
[

P2PN
LðP Þ: (3)

To increase the query performance, the lattice of frequent
patterns resides in the main memory, and the inverted lists
of frequent patterns are on the disk.

4.3 Optimization for Inverted Pattern Lattice

In this section, we propose two techniques to optimize the
query time and space cost of the inverted pattern lattice.

4.3.1 Vertex Insertion Criterion

For the element set, SðvÞ, of a data vertex v, suppose SðvÞ
supports frequent patterns P1; . . . ; and Pn, as mentioned
above, we insert v into inverted lists LðP1Þ; . . . ; and LðPnÞ.
However, it is not necessary to insert v to all the inverted
lists based on our proposed anti-monotone pruning.

Suppose frequent patterns P 0 and P are both supported
by SðvÞ, and P 0 � P . Then, for any query set SðuÞ, we have
UBðSðuÞ; P 0Þ > UBðSðuÞ; P Þ. Therefore, if SðvÞ in P ’s
inverted list cannot be pruned by UBðSðuÞ; P Þ (i.e.,
UBðSðuÞ; P Þ > t), it will definitely not be pruned by
UBðSðuÞ; P 0Þ, as UBðSðuÞ; P 0Þ will also be larger than t. In
this case, we only need to insert vertex v into P ’s inverted
list, instead of P 0’s inverted list.

In summary, let fP1; . . . ; Png be the set of frequent pat-
terns supported by SðvÞ, and suppose there are k (k � n)
paths formed by fP1; . . . ; Png. A path is a sequence of con-
nected nodes (i.e., frequent patterns) from higher level to
lower level without cycle in the inverted pattern lattice. We
only insert v into the inverted lists of the frequent patterns
that are supported by SðvÞ at the lowest level of each path.
In this way, the space cost of inverted lists can be reduced.

4.3.2 Frequent Pattern Selection

Since the number of frequent patterns is large, if we index
all the frequent patterns in the inverted pattern lattice, the
lattice cannot be fitted to memory. As mentioned in Sec-
tion 4.2.1, frequent patterns with more elements output
tighter AS upper bound. Therefore, we should select fre-
quent patterns with numerous elements, so that the query-
ing time can be reduces by pruning more patterns. In
addition, we should also guarantee the representativeness
of each frequent pattern. Motivated by the observations, we
mine closed frequent patterns [31] from the sets of vertices.

Definition 6 (Closed Frequent Pattern). A frequent pattern P
is closed if there is no pattern P 0 such that P � P 0 and
suppðP Þ ¼ suppðP 0Þ.
Note that, the size of lattice is controlled by the support

threshold minsup. Given a memory size M, we need to
determine the value of minsup to ensure that the lattice fits
into the main memory. Suppose the average memory occu-

pation of each pattern is Z, there are at most M
Z patterns are

allowed to be resident in the main memory. In most of real

applications, M
Z is no less than the size of the set of one-fre-

quent patterns (i.e., patterns containing only one element)
F1 (denoted by jF1j). We sort all the closed k-frequent pat-
terns P (k � 2) in a descending order of suppðP Þ, and select

the top-ðMZ � jF1jÞ closed k-frequent patterns. We build the

lattice by all the one-frequent patterns and the selected
closed k-frequent patterns (k � 2).

5 STRUCTURE-BASED PRUNING

A matching subgraph should not only have its vertices (ele-
ment sets) similar to corresponding query verices, but also
preserve the same structure as Q. Thus, in this section, we
design lightweight signatures for both query vertices and
data vertices to further filter the candidates after set similar-
ity pruning by structural constraints.

5.1 Structural Signatures

We define two distinct types of structural signature, namely
query signature SigðuÞ and data signature SigðvÞ for each
query vertex u and data vertex v, respectively. To encode
structural information, SigðuÞ=SigðvÞ should contain the ele-
ment information of both u=v and its surrounding vertices.
Since the query graph is usually small, we generate accurate
query signatures by encoding each neighbor vertex sepa-
rately. On the contrary, the data graph is much larger than
the query graph, so the aggregation of neighbor vertices can
save a lot of space. The pruning cost can be also reduced
due to limited number of data signatures.

Specifically, we first sort elements in element sets SðuÞ
and SðvÞ according to a predefined order (e.g., alphabetic
order). Based on the sorted sets, we encode the element
set SðuÞ by a bit vector, denoted by BV ðuÞ, for the former
part of SigðuÞ. In particular, each position BV ðuÞ½i	 in the
vector corresponds to one element ai, where 1 � i � jUj
and jUj is the total number of elements in the universe U.
If an element aj belongs to set SðuÞ, then in bit vector
BV ðuÞ, we have BV ðuÞ½j	 ¼ 1; otherwise (if aj =2 SðuÞ),
BV ðuÞ½j	 ¼ 0 holds. Similarly, SðvÞ is also encoded using
the above technique. For the latter part of SigðuÞ and
SigðvÞ (i.e., encoding surrounding vertices), we propose
two different encoding techniques for SigðuÞ and SigðvÞ,
respectively. The difference is that, we encode every
neighbor vertex separately in SigðuÞ, but aggregate all
neighbor vertices in SigðvÞ. We formally define the query
signature and the data signature as follows:

Definition 7 (Query Signature). Given a vertex u withm adja-
cent neighbor vertices ui ( i ¼ 1; . . . ; m) in a query graph Q,
the query signature SigðuÞ of vertex u is given by a set of bit
vectors, that is, SigðuÞ ¼ fBV ðuÞ; BV ðu1Þ; . . . ; BV ðumÞg,
where BV ðuÞ and BV ðuiÞ are the bit vectors that encode ele-
ments in set SðuÞ and SðuiÞ, respectively.

Definition 8 (Data Signature). Given a vertex v with n adja-
cent neighbor vertices vi (i ¼ 1; . . . ; n) in a data graph G, the
data signature, SigðvÞ, of vertex v is given by: SigðvÞ ¼
½BV ðvÞ;_n

i¼1BV ðviÞ	, where _ is a bitwise OR operator,
BV ðvÞ is the bit vector associated with v, and _n

i¼1BV ðviÞ
(denoted as BV[ðvÞ) is called a union bit vector, which equals
to bitwise-OR over all bit vectors of v’s one-hop neighbors.
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5.2 Signature-Based LSH

To enable efficient pruning based on structural information,
we use a set of Locality Sensitive Hashing [33] hash functions
to hash each data signature SigðvÞ into a signature bucket,
which is defined as follows.

Definition 9. A signature bucket is a slot of hash table that stores
a set of data signatures with the same hash value.

Since the probability of collision (i.e., the same hash
value) is much higher for signatures that are similar to each
other than for those that are dissimilar, the maximum ham-
ming distance of data signatures in each bucket can be mini-
mized. The choice of LSH hash functions can be referred to
[33]. In addition, we store the bucket signature SigðBÞ, which
is formed by ORing all data signatures in each bucket B.
That is SigðBÞ ¼ ½_BV ðvtÞ;_BV[ðvtÞ	, where t ¼ 1; . . . ; n,
and n is the number of signatures in B.

5.3 Structural Pruning

Based on the SMS2 query definition (Definition 1), a data
vertex v can be pruned if the similarity between BV ðuÞ and
BV ðvÞ is smaller than t, or there does not exist BV ðvjÞ that
satisfies the similarity constraint with BV ðuiÞ, where vj
(j ¼ 1; . . . ; n) and ui (i ¼ 1; . . . ;m) are one-hop neighbors of
v and u, respectively. We define the similarity between
BV ðuÞ and BV ðvÞ as follows, which is analogous to the
weighted Jaccard similarity (Definition 3).

Definition 10. Given bit vectors BV ðuÞ and BV ðvÞ, the similar-
ity between BV ðuÞ and BV ðvÞ is:

simðBV ðuÞ; BV ðvÞÞ ¼
P

a2BV ðuÞ^BV ðvÞ WðaÞP
a2BV ðuÞ_BV ðvÞ WðaÞ ; (4)

where ^ is a bitwise AND operator and _ is a bitwise OR oper-
ator, a 2 ðBV ðuÞ ^BV ðvÞÞ means the bit corresponding to
element a is 1,WðaÞ is the assigned weight of a.
For each BV ðuiÞ, we need to determine whether there

exists a BV ðvjÞ so that simðBV ðuiÞ; BV ðvjÞÞ � t holds. To
this end, we estimate the union similarity upper bound
between BV ðuiÞ and BV[ðvÞ, which is defined as follows.

Definition 11. Union similarity upper bound between a bit
vector BV ðuiÞ and a union bit vector BV[ðvÞ is:

UB0ðBV ðuiÞ; BV[ðvÞÞ ¼
P

a2BV ðuiÞ^BV[ðvÞ W ðaÞP
a2BV ðuiÞ WðaÞ : (5)

Based on Definitions 10 and 11, we have the following
aggregation dominance principle.

Theorem 3 (Aggregate Dominance Principle). Given a query
signature SigðuÞ and a data signature SigðvÞ, if UB0ðBV ðuiÞ,
BV[ðvÞÞ < t, then for each one-hop neighbor vj of v,
simðBV ðuiÞ, BV ðvjÞÞ < t.

Proof. simðBV ðuiÞ; BV ðvjÞÞ

¼
P

a2BV ðuiÞ^BV ðvjÞ WðaÞP
a2BV ðuiÞ_BV ðvjÞ WðaÞ �

P
a2BV ðuiÞ^BV ðvjÞ W ðaÞP

a2BV ðuiÞ WðaÞ

�
P

a2BV ðuiÞ^BV[ðvÞ WðaÞP
a2BV ðuiÞ WðaÞ ¼ UB0ðBV ðuiÞ; BV[ðvÞÞ < t:

tu

Example 7. Considering a one-hop neighbor u3 of the query
vertex u1 in Fig. 1a, where BV ðu3Þ ¼ 0101, and one-hop
neighbors v2 and v4 of the data vertex v5, where
BV ðv2Þ ¼ 0011 and BV ðv4Þ ¼ 1010. Since BV[ðvÞ ¼
BV ðv2Þ _BV ðv4Þ ¼ 1011, UB0ðBV ðu3Þ; BV[ðvÞÞ < 0:6 ¼ t.
Based on Theorem 3, simðBV ðu3Þ, BV ðvjÞÞ < t, where
j ¼ 2; 4. Therefore, v5 is not a candidate vertex of u1 even
though Sðu1Þ ¼ Sðv5Þ.
Based on aggregate dominance principle, we have the

following Lemmas of Theorem 3.

Lemma 1. Given a query signature SigðuÞ and a bucket signature
SigðBÞ, assume bucket B contains n data signatures SigðvtÞ
ðt ¼ 1; . . . ; nÞ, if UB0ðBV ðuÞ;_BV ðvtÞÞ < t or there exists at
least one neighboring vertex ui ði ¼ 1; . . . ;mÞ of u such
that UB0ðBV ðuiÞ;_BV[ðvtÞÞ < t, then all data signatures in
bucket B can be pruned.

Lemma 2. Given a query signature SigðuÞ and a data signature
SigðvÞ, if simðBV ðuÞ; BV ðvÞÞ < t or there is at least
one neighboring vertex ui ði ¼ 1; . . . ;mÞ of u such that
UB0ðBV ðuiÞ; BV[ðvÞÞ < t, SigðvÞ can be pruned.

Proofs of Lemmas 1 and 2 are provided in Appendix B,
available in the online supplemental material.

In summary, structural pruning works as follows. We
first prune the signature buckets that do not contains candi-
dates of query vertices Then, we further prune buckets as a
whole based on Lemma 1. For the each candidate v in a
bucket B that cannot be pruned, we sequentially check the
similarity constraints between SigðuÞ and SigðvÞ, and prune
SigðvÞ based on Lemma 2. The aggregate dominance princi-
ple guarantees that structural pruning will not prune legiti-
mate candidates. Therefore, the results are exact.

6 DOMINATING-SET-BASED SUBGRAPH MATCHING

In this section, we propose an efficient dominating-set-
based subgraph matching algorithm (denoted by DS-Match)
facilitated by a dominating set selection method.

6.1 DS-Match Algorithm

DS-Match algorithm first finds matches of a dominating
query graph (DQG) QD (defined in Definition 14) formed by
the vertices in dominating set DSðQÞ, then verifies whether

each match of QD can be extended as a match of Q. DS-
Match is motivated by two observations: First, compared
with typical subgraph matching over vertex-labeled graph,

the overhead of finding candidates in SMS2 queries is rela-
tively higher, as the computation cost of set similarity is
much higher than that of label matching. We can save filter-
ing cost by only finding candidate vertices for dominating
vertices rather than all vertices in Q. Second, we can speed
up subgraph matching by only finding matches of dominat-
ing query vertices. The candidates of remaining (non-domi-
nating) query vertices can be filled up by the structural
constraints between dominating vertices and non-dominat-
ing vertices. In this way, the size of intermediate results dur-
ing subgraph matching can be greatly reduced.

In the following, we formally define the dominating set.

Definition 12 (Dominating Set). Let Q ¼ ðV;EÞ be a undi-
rected, simple graph without loops, where V is the set of
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vertices and E is the set of edges. A set DSðQÞ � V is called a
dominating set for Q if every vertex of Q is either in DSðQÞ,
or adjacent to some vertex inDSðQÞ.
Based on Definition 12, we have the following Theorem.

Theorem 4. Assume that u is a dominating vertex in Q’s domi-
nating set DSðQÞ. If jDSðQÞj � 2. Then, there exists at least
one vertex u0 2 DSðQÞ such that Hopðu; u0Þ � 3, where
Hopð
; 
Þ is the minimal number of hops between two vertices.
The dominating vertex u0 is called a neighboring dominating
vertex of u.

Proof. Assume there does not exist any vertex u0 2 DSðQÞ
such that Hopðu; u0Þ � 3, then there can be at least three
non-dominating vertex on the path between u and any
other vertex u0 2 DSðQÞ. In this case, at least one non-
dominating vertex is not adjacent to u or u0, which con-
tradicts with Definition 12. Hence, the theorem holds. tu

Definition 13. Given a vertex u in a graph Q, u’s one-hop neigh-
bor set (N1ðuÞ) and two-hop neighbor set (N2ðuÞ) are defined
as follows: N1ðuÞ ¼ fu0j there exists a length-1 path connect-
ing u and u0g; and N2ðuÞ ¼ fu0j there exists a length-2 path
connecting u and u0g.

As shown in Fig. 6, there are four possible topologies of
the shortest path between two neighboring dominating ver-
tices ui and uj. Based on Theorem 4, we define the dominat-
ing query graph as follows:

Definition 14 (Dominating Query Graph). Given a dominat-
ing set DSðQÞ, the dominating query graph QD is defined as

hV ðQDÞ; EðQDÞi, and there is an edge ðui; ujÞ in EðQDÞ iff at
least one of the following conditions holds:

1) ui is adjacent to uj in query graph Q (Fig. 6a);
2) jN1ðuiÞ \N1ðujÞj > 0 (Fig. 6b);
3) jN1ðuiÞ \N2ðujÞj > 0 (Fig. 6c);
4) jN2ðuiÞ \N1ðujÞj > 0 (Fig. 6d).
where the conditions correspond to the four possible topolo-

gies in Fig. 6, respectively. In Condition 1), the edge weight
(i.e., the path length between ui and uj) is 1. In Condition 2),
the edge weight is 2. In Conditions 3) and 4), the edge weights
are both 3.

To transform a query graph Q to a dominating query

graph QD, we first find a dominating set DSðQÞ of Q. Then
for each pair of vertices ui; uj in DSðQÞ, we determine
whether there is an edge ðui; ujÞ between them and the
weight of ðui; ujÞ according to Definition 14.

Example 8. Fig. 7 shows an example of a dominating query
graph QD of the query graph Q in Fig. 1a. The dominat-
ing set of Q contains u1 and u3. Note that, edge ðu1; u3Þ in

QD has two weights “1, 2”. The reason is that u1 is adja-
cent to u3 and jN1ðu1Þ \N1ðu3Þj > 0 in Q.

To find matches of dominating query graph, we propose
the distance preservation principle.

Theorem 5 (Distance Preservation Principle). Given a sub-
graph match XD of QD in data graph G, QD and XD have
n vertices u1; . . . ; un and v1; . . . :; vn, respectively, where

vi 2 CðuiÞ. Considering an edge ðui; ujÞ in QD, then all the
following distance preservation principles hold:

1) if the edge weight is 1, then vi is adjacent to vj;
2) if the edge weight is 2, then jN1ðviÞ \N1ðvjÞj > 0;
3) if the edge weight is 3, then jN1ðviÞ \N2ðvjÞj > 0 or

jN2ðviÞ \N1ðvjÞj > 0.

Proof. Since XD should preserve the same structural infor-

mation of QD, based on Definition 13, the above distance
preservation principles can be proved. tu

Now, we propose a dominating query graph match algo-
rithm based on distance preservation principle to find
matches of the dominating query graph. A subgraph match
is a mapping function M from V ðQDÞ to V ðXÞ, where X is a

matching subgraph of QD in data graph G. The process of
finding the mapping function can be described by means of
State Space Representation (SSR) [14]. Each state s is associ-
ated with a partial mapping solution MðsÞ, which contains
only a subset ofM.

Algorithm 1. DQG-Match

Input: a dominating query graph QD, an intermediate state s;
the initial state s0 hasMðs0Þ ¼ f

Output: the mappingMðQDÞ between QD and G’s subgraph
1 ifMðsÞ covers all the vertices of QD then
2 MðQDÞ=MðsÞ;
3 OutputMðQDÞ;
4 else
5 Compute the set PAðsÞ of all the pairs (u, v), where

u 2 V ðQDÞ and v 2 V ðGÞ;
6 for each pair (u, v) in PAðsÞ do
7 if (u, v) satisfies the distance preservation principle then
8 Add (u, v) toMðsÞ and compute current state s0;
9 Call DQG-Match(s0);

As shown in Algorithm 1, the current state s is initially
set to f. We build a candidate pair set PAðsÞ containing all
the possible candidate pairs ðu; vÞ and add it to the current
state s (Line 5). When a candidate pair ðu; vÞ is added to the
current mapping MðsÞ, we verify if the partial match MðsÞ
satisfies the distance preservation principle (Lines 6-7). If
yes, we continue to explore the state until a subgraph match

Fig. 6. Possible topologies of neighboring dominating vertices.

Fig. 7. Example of a dominating query graph.
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of QD is found (Lines 8-9). Otherwise, the corresponding
search branch is terminated. For example, given the domi-

nating query graph QD in Fig. 7, fv2g and fv3g are matching

vertices of u1 and u3 in QD, respectively. Thus, the mapping
functionM is fðu1; v2Þ; ðu3; v3Þg.

In the following, we propose DS-match algorithm (Algo-
rithm 2). First, Algorithm 1 is called to find the mapping
function MðQDÞ (Line 2). The mapping function MðsÞ of

current state s is initialized to MðQDÞ (Line 3). Second, DS-
match extends each match of the dominating query graph

QD to a subgraph match of the query graph Q. If MðsÞ
covers all the vertices of Q, then we output the mapping
function MðQÞ (i.e. a subgraph match of Q) (Lines 4-6). Oth-

erwise, for each non-dominating vertex u0 2 V ðQÞ � V ðQDÞ,
we considering one-hop and two-hop neighboring dominat-
ing vertices of u0 (i.e. N1ðu0Þ and N2ðu0Þ) (Lines 7-9).
Note that, for each dominating vertex ui 2 N1ðu0Þ and
uj 2 N2ðu0Þ, candidate vertex sets CðuiÞ and CðujÞ have
been found by Algorithm 1. Based on distance preservation
principle, each candidate vertex v0 of u0 must be one-hop
neighbor and two-hop neighbor of the vertices in CðuiÞ and
CðujÞ, respectively (Line 10). Then, we check whether the
candidate pair ðu0; v0Þ satisfies conditions of subgraph match
with set similarity (Definition 1) (Line 11). If yes, ðu0; v0Þ is
added to the current state (Line 12). We continue to explore
the state until all non-dominating vertices are considered
(Line 13).

Algorithm 2. DS-Match

Input: a query graph Q, a dominating query graph QD, and an
intermediate state s; the initial state s0 hasMðs0Þ ¼ f

Output: the mapping MðQÞ between query graph Q and G’s
subgraph

1 ifMðs0Þ ¼ f then
2 Call Algorithm 1 to findMðQDÞ;
3 InitializeMðsÞwithMðQDÞ;
4 ifMðsÞ covers all the vertices of Q then
5 MðQÞ ¼ MðsÞ;
6 OutputMðQÞ;
7 else
8 for each u0 2 V ðQÞ � V ðQDÞ do
9 for each dominating vertex ui 2 N1ðu0Þ and dominating ver-

tex uj 2 N2ðu0Þ do
10 for v0 2 S

v2CðuiÞN1ðvÞ
T S

v2CðujÞ N2ðvÞ do
11 if pair (u0, v0) satisfies conditions of subgraph match with

set similarity then
12 Add (u0, v0) toMðsÞ and compute current state s0;
13 Call DS-Match(s0);

Example 9. As discussed in Example 8, the non-dominating
vertex of the query graph Q in Fig. 1a is u2. Thus, the
neighboring dominating vertices of u2 are u1 and u3.
Since the matching vertices of u1 and u3 are v2 and v3
respectively, the candidate vertex of u2 is N1ðv2Þ

T
N1ðv3Þ ¼ v1.

6.2 Dominating Set Selection

A query graph may have multiple dominating sets, leading
to different performance of SMS2 query processing. Moti-
vated by such observation, in this subsection, we propose a

dominating set selection algorithm to select a cost-efficient
dominating set of query graph Q, so that the cost of answer-

ing SMS2 query can be reduced.
Intuitively, a cost-efficient dominating set should contain

minimum number of dominating vertices, so that the filter-
ing cost can be minimized. In addition, we should also guar-
antee the number of candidates for each dominating vertex
is minimized to reduce the size of intermediate results dur-
ing subgraph isomorphism.

To problem of finding a cost-efficient dominating set is
actually a Minimum Dominating Set (MDS) problem. MDS
problem is equivalent to Minimum Edge Cover problem [34],
which is NP-hard. As a result, we use a best effort Branch
and Reduce algorithm [34]. The algorithm recursively select a
vertex u with minimum number of candidate vertices from
query vertices that have not been selected, and add to the
edge cover an arbitrary edge incident to u. The overhead of
finding the dominating set is low, because the query graph
is usually small.

Since we do not know a query vertex u’s number of can-

didate vertices before the SMS2 query is processed, We use
a Hash Sampling method [35] to make quick estimates of
the number. The hash sampling method can construct the

sample union eP[ ¼ eP1 [ . . . [ ePn, where eP1; . . . ; and ePn are
precomputed samples of inverted lists LðP1Þ; . . . ; and
LðPnÞ. The estimate of the number of u’s candidate vertices
from the sample can be calculated as

AðuÞ ¼ jAðuÞeP[ j
jLðP Þ[jd
j eP[jd

; (6)

where jAðuÞeP[ j is the number of similarity search answers of
SðuÞ on the uniform random sample, jLðP Þ[jd is the distinct
number of vertex ids contained in the multi-set union

LðP Þ[, and j eP[jd is the distinct number of vertex ids in the

sample union.

Example 10. In Fig. 1, we find u3 has the minimum number
of candidates, i.e., v3. Thus, fu1; u3g is selected as the
cost-efficient dominating set according to the branch and
reduce algorithm.

7 EXPERIMENTAL EVALUATION

7.1 Datasets and Setup

All experiments are implemented in C++, and conducted on
a 2.5 GHZ Core class machine with 4 GB RAM. The operat-
ing system is Windows 7 Ultimate edition. We use two real
datasets Freebase and the DBpedia, and synthetic graphs
that follow scale-free graph model. The datasets used in our
experiment are described as follows.

1) Freebase (http://www.freebase.com) is a large col-
laborative knowledge base of structured data. We
use the entity relation graph of Freebase (denoted by
FB), in which each vertex represents an entity, such
as an actor, a movie, etc., and each edge represents
the relationship between two entities. Each vertex is
associated with a set of elements, which describes
features of the corresponding entity. The weight
of each feature specifies its importance, which is
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normalized to the range of ½0; 1	. This graph contains
1,047,829 nodes and 18,245,370 edges. The number of
distinct elements is 243, and the average number of
elements of each vertex is 6.

2) DBpedia (http://dbpedia.org) extracts structured
information fromWikipedia (http://www.wikipedia.
org). In our DBpedia dataset (denoted by DBP), each
vertex corresponds to an entity (i.e., article) extracted
from Wikipedia, which contains a set of words
(tokens). The weight of each word is specified by TF/
IDF. We use the classical feature selection method [36]
to select 2,000 words with the highest TF/IDF value in
the DBPedia as the elements. This graph contains
1,010,205 nodes and 1,588,181 edges. The average
number of elements of each vertex is 20.6.

3) We generate synthetic scale-free data graphs
(denoted by SF) using the graph generator of [37], in
which node degree follows power law distribution.
Three SF datasets are used in our experiment: SF1M,
SF5M and SF10M which contain 1 million, 5 million
and 10 million vertices, 1,260,704, 6,369,405 and
24,750,113 edges, respectively. The number of dis-
tinct elements is 100, and the average number of ele-
ments of each vertex is 5.5. Each element is
randomly assigned a weight in the range of ½0; 1	.
The weight distribution among all the elements fol-
lows Uniform distribution by default. SF1M is the
default SF dataset.

According to a recent experimental track paper [38], the
graph with 10 million vertices and 24 million edges used in
our experiment is the largest data graph reported in a single
machine in the literatures on subgraph search. Although
there is a recent work STW on subgraph search over a bil-
lion node graph, it works on a cloud of eight machines with
32 GB RAM and two four-core CPUs [10].

We extract 100 query graphs Q from data graph G by
starting from a random vertex in G and then traversing
the graph through connecting random edges, where the
maximum number, nmax, of vertices in query graph Q is
set to {3, 5, 8, 10, 12}. The similarity threshold t is set to
{0.5, 0.6, 0.7, 0.8, 0.9}, and the support threshold minsup
is set to 30,000. The numbers in bold font are default val-
ues. In subsequent experiments, each time we vary one
parameter, other parameters are set to default values.

The performance of SMS2 queries is measured in terms of
the query response time per query graph, and the aver-
age number of candidates of each query vertex. The sizes
of FB, DBP, SF1M, SF5M and SF10M are 118, 51, 38, 206
and 415 MB, respectively.

7.2 Competing Methods

We compare our method (denoted by SMS2) with the base-
line method (denoted by BL). BL method builds an inverted
index for all the element sets of data vertices, based on
which it searches each query vertex u’s candidates. After
candidate search, BL finds matching subgraphs of the query
graph using QuickSI algorithm [19].

We also compare SMS2 with existing exact subgraph
matching methods including TurboISO[15], GADDI [18],
SPath [8], GraphQL [21], STW [10], D-Join[9] and R-join [2].
Since STW is a distributed graph matching algorithm, for

fair comparison, we implement STW using the same
method as [15] in onemachine. These methods first find can-
didate subgraphs that are isomorphic to the query graph Q,
and then find the subgraph matches by checking set similar-
ity of each pair of matching vertices.

To evaluate the performance of set similarity pruning,
structural pruning and DS-match algorithms, we compare
our method with SMS2-S, SMS2-Q and SMS2-R, respectively.

SMS2-S method only uses set similarity pruning to find can-
didate vertices of each dominating query vertex. Then, it
employs DS-match algorithm to find matching subgraphs.

SMS2-Q method finds candidate vertices of all query verti-
ces instead of dominating query vertices using the proposed
pruning techniques including set similarity pruning
and structure-based pruning. Then, it employs the QuickSI
algorithm [19] to find matching subgraphs based on candi-

dates. The only difference between SMS2-R and SMS2 is that

SMS2-R randomly chooses a dominating set of the query

graph, while SMS2 uses dominating set selection algorithm
to select a cost-efficient dominating set.

7.3 Offline Performance

Index Construction Time. Fig. 8a reports the time cost of index
construction on real/synthetic datasets. For the inverted
pattern lattice (denoted by Lattice), the construction time
ranges from 109.6 seconds to 1,212.3 seconds. For signature
buckets (denoted by Buckets), the construction time ranges
from 115 seconds to 2,154.2 seconds.

Space cost. The space cost of inverted pattern lattice
includes the space of the lattice in the main memory and the
inverted lists in the disk. The space cost of signature buckets
is the size of signature buckets of all the data vertices. As
analyzed in Appendix D, available in the online supplemen-
tal material, the space complexity of the inverted pattern lat-
tice and signature buckets are Oð2jUjÞ and OðjV ðGÞjÞ
respectively, where jUj is the number of distinct elements in
element universe U. As shown in Fig. 8b, the space cost of
inverted pattern lattice ranges from 45.9 to 523 MB, and the
space cost of signature buckets ranges from 192 to 1,926.4
MB. We can find that the space cost is proportional to the
size of each dataset.

7.4 Online Performance

7.4.1 Performance vs. Datasets

In this subsection, we first compare SMS2 with the compet-
ing methods on an unlabeled and single-labeled data graph,

respectively. Then, we compare SMS2 with the BL method.

Fig. 8. Offline performance vs. datasets,minsup ¼ 30;000.
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Since set similarity becomes invalid for an unlabeled or sin-
gle-labeled graph, we turn off the set similarity pruning

process in SMS2. In addition, we use hashing mechanism
rather than union similarity upper bound (in structural
pruning) to directly locate candidate signature buckets.

To enable the comparison on an unlabeled graph, we
ignore all sets associated with each vertex and apply com-
peting methods to find subgraph matches. Unfortunately,
all competitors except TurboISO fail to finish their query
processing in a reasonable time. The reason is that unla-
beled vertices generate a large number of intermediate
results. Although TurboISO is the only competitor survived
in DBP and SF1M, the expensive verification process leads
to long query response time. As shown in Table 1, our
method outperforms TurobISO by up to 175.6 times.

For a single-labeled graph, we assign a single label to
each vertex and use multiple distinct labels on all vertices.
The distinct number of labels is set to 10 percent of the total
number of vertices. The similarity threshold t is set to 1. As

a result, the SMS2 query is degraded to exact subgraph

search. We compare the query response time of SMS2

with the state-of-the-art subgraph isomorphism algorithm
TurboISO [15]. TurboISO also fails to finish its query process-
ing in SF5M and SF10M datasets, respectively. Thus, we use
SF1.5M and SF2M datasets instead. As shown in Table 2,

SMS2 results in shorter query response time than TurboISO,
which proves that the proposed structural pruning and DS-
match algorithms can be efficiently applied to exact sub-
graph search. Note that, the inverted pattern lattice for a sin-
gle-labeled graph is actually an inverted index consists of a
list of all the distinct labels, and for each label, a list of verti-
ces in which it belongs to.

As shown in Fig. 9a, SMS2 results in much shorter query

response time than BL, SMS2-S, SMS2-Q, and SMS2-R on
both real and synthetic datasets. The query response time of

SMS2 changes from 35.17 seconds to 370.49 seconds. SMS2

outperforms SMS2-S because SMS2 uses both set similarity

pruning and structure-based pruning while SMS2-S only

uses set similarity pruning. SMS2 outperforms SMS2-Q by
at least 58 percent query response time. This is because

SMS2 saves pruning cost by only finding candidates of dom-
inating query vertices. In addition, DS-match algorithm has
better performance than QuickSI because it saves the sub-
graph matching cost by reducing the number of intermedi-

ate results. Since SMS2 employs dominating set selection
algorithm to select a cost-efficient dominating query graph,

SMS2 has better performance than SMS2-R which randomly

selects the dominating set. SMS2 outperforms BL because
set similarity pruning and structure-based pruning techni-
ques result in less candidates and pruning cost compared
with the inverted-index-based similarity search, and DS-
match algorithm has better performance than QuickSI
algorithm. As analyzed in Appendix C, available in the
online supplemental material, the time complexities of set
similarity pruning and structure-based pruning techniques
are OðjIjÞ and Oðj S u2DSðQÞCðuÞjÞ respectively. We can also

observe from Fig. 9a that the query response time of SMS2

grows linearly with the size of data graph from 1 million to
10 million, which indicates the scalability of our method.

As shown in Fig. 9b, SMS2-Q, SMS2-R and SMS2 generate
similar number of candidates, because these method use the

same pruning techniques. SMS2-S and BL also generate sim-
ilar number of candidates, because they both consider
weighted set similarity between each query vertex and data

vertex. SMS2 generates smaller number of candidates than
BL by at least 8.5 percent, and at most 60 percent on differ-
ent datasets. These results indicate that structure-based
pruning technique can prune at least 8.5 percent candidates,
and set similarity pruning technique can prune at least
40 percent candidates. It is worth noting that the number of
candidates shows a similar growth trend to the size of data
graph. For example, there are 43.4, 170 and 370.5 candidates
for datasets SF1M, SF5M and SF10M.

7.4.2 Performance vs. Query Graph Size

In this subsection, we compare SMS2 with BL by varying
query graph size (i.e., number of query vertices in query
graph) from 3 to 12. To represent different datasets, BL and

SMS2 are further divided into BL-SF, SMS2-SF, BL-FB,

SMS2-FB, BL-DBP, SMS2-DBP.
As shown in Figs. 10a and 10b, the query response time

of SMS2 increases much slower than that of BL as the query
graph size changes from 3 to 12. This is because BL incurs

much more overhead than SMS2 in both pruning phase and
subgraph matching phase. The above results also confirm

that SMS2 are more scalable than BL against different query
graph sizes. From Fig. 10b, the number of candidates of

SMS2 and BL decreases as query graph size increases, and

TABLE 1
Query Response Time (sec) on Unlabeled Graph

Dataset SMS2 TurboISO

FB 35.7 Fail
DBP 33.2 5829.5
SF1M 43.8 6237.1
SF5M 170.2 Fail
SF10M 370.5 Fail

TABLE 2
Query Response Time (sec) on Exact Subgraph Search

Dataset SMS2 TurboISO

FB 1.55 6.43
DBP 0.67 0.75
SF1M 1.14 1.41
SF1.5M 1.54 3.01
SF2M 2.03 6.68

Fig. 9. Performance vs. datasets, nmax ¼ 5, t ¼ 0:9.
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SMS2 results in smaller number of candidates than BL. This
is because a small query graph probably has more subgraph
matches than a large query graph, and the pruning techni-

ques of SMS2 have greater pruning power than that of BL.

Note that, although SMS2-FB generates more candidates
than BL-SF and BL-DBP, it results in shorter query response
time. The reason is that both set similarity pruning and
structure-based pruning save much query processing cost
compare to existing methods.

7.4.3 Performance vs. Properties of Element Sets

The performance of the set similarity pruning techniques
highly depends on the element sets of query vertices. In this
subsection, we evaluate how the query response time and
the average number of candidates of each vertex are
affected by the following types of sets. These sets contain:
high term frequency elements (the term frequency of all ele-
ments is larger than 0.98, denoted by HighTF), and low
term frequency elements (the term frequency of all elements
is lower than 0.01, denoted by LowTF), large number of ele-
ments (the number of elements is larger than 80, denoted by
LargeN), small number of elements (the number of elements
is smaller than 5, denoted by SmallN), respectively. We gen-
erate query graphs that only contain the vertices that have
one of the four element set types.

From Table 3, we observe that the query performance
degrades as the term frequency of elements become higher.
This is because there are more candidates of a query vertex
with HighTF set than that of a query vertex with LowTF set.
Moreover, the sizes of inverted lists of high term frequency

elements are larger than that of low term frequency ele-
ments, which also contributes to higher query response
time of query vertices with HighTF sets.

Table 3 demonstrates that queries containing LargeN
sets usually have better performance than queries with
SmallN sets. The reason is that LargeN leads to smaller
number of candidates than SmallN. For LargeN, the prun-
ing power of vertical pruning decreases as longer prefix
(larger p) will be found, while the pruning power of hori-
zontal pruning increases as more small size frequent pat-
terns will be pruned. For SmallN, the pruning power of
both vertical pruning and horizontal pruning increases as
shorter prefix will be left and larger size frequent patterns
will be pruned.

7.4.4 Performance vs. Similarity Threshold

We compare BL with SMS2 by varying the similarity thresh-
old t from 0.5 to 1 in different datasets. As shown in

Figs. 11a and 11b, SMS2 has much shorter query response
time and smaller number of candidates than BL, especially
when the threshold is small. For example, when t ¼ 0:5, the

gap between the average number of candidates of SMS2-FB

and BL-FB is less than 37, while SMS2-FB reduces more than
1,130 seconds query response time compared to BL-FB. This
is because larger similarity threshold will result in fewer
candidate vertices, thus reducing the query response time.
Note that, when t is set to 1, the problem is degraded to an
exact subgraph search problem. In such case, the set similar-
ity pruning is still valid.

7.4.5 Performance vs. Weight Distribution

Finally, we compare SMS2 with BLwith different weight dis-
tributions of the elements: Uniform distribution, Gaussian
distribution, and Zipf distribution. We observe from Fig. 12
that the performance does not change much as the weight

Fig. 10. Performance vs. query graph size, t ¼ 0:9.

TABLE 3
Impact of Properties of Element Sets, nmax ¼ 5, t ¼ 0:9

HighTF LowTF LargeN SmallN

BL-FB Time (sec) 205.7 120.99 132.60 175.09
Candidates 60.56 23.54 16.30 42.51

SMS2-FB Time (sec) 24.62 4.52 7.98 19.78
Candidates 51.82 1.78 0.65 25.09

BL-DBP Time (sec) 196.84 145.53 70.27 188.56
Candidates 52.51 37.27 12.20 78.56

SMS2-DBP Time (sec) 28.88 7.51 20.13 42.06
Candidates 8.27 5.35 0.88 60.67

BL-SF Time (sec) 230.65 180.41 107.52 259.23
Candidates 56.52 51.21 8.70 64.20

SMS2-SF Time (sec) 35.01 34.11 9.22 44.34
Candidates 4.53 4.42 0.76 56.70

Fig. 11. Performance vs. Similarity Threshold, nmax ¼ 5.

Fig. 12. Performance vs. Wt. distribution, nmax ¼ 5, t ¼ 0:9.
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distribution varies. This is expected, because the similarity
function and upper bounds cannot be strongly affected by
the weight distribution. The results in Fig. 12 confirm that
our approach greatly outperforms BL.

8 CONCLUSIONS

In this paper, we study the problem of subgraph match-
ing with set similarity, which exists in a wide range of
applications. To tackle this problem, we propose efficient
pruning techniques by considering both vertex set simi-
larity and graph topology. A novel inverted pattern lat-
tice and structural signature buckets are designed to
facilitate the online pruning. Finally, we propose an effi-
cient dominating-set-based subgraph match algorithm to
find subgraph matches. Extensive experiments have been
conducted to demonstrate the efficiency and effectiveness
of our approaches.
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