CSCI / CMPE 4334 Operating Systems

Programming Project One
Due on April 20, 2012
You are to complete the "Lab Exercise 2.1: A Simple Shell" on page 76 of the text. Note that this version of the shell will not be able to manipulate environment variables (so you will not be able to change directories). We may extend this shell later to add this capability, and to provide pipes, redirection, and background execution.

For Project 1, please submit all the source files, a detailed readme file, and screen captures to Blackboard.
Before you do that, you need to get familiar with the Linux programming environment. The following gives you an exercise using the Linux programming environment and will get you ready for the lab exercise in the book.

NOTE: You don't need to turn in this part of the exercise.

This warm‑up exercise lets you work with processes and their related system calls. A process in Unix/Linux is created using the fork() system call. The following example from the textbook illustrates the idea. For details of how fork() works, consult the man pages on Linux by typing man fork at the command prompt.

The program is divided into two parts, the parent and the child. The parent process executes a fork() system call that activates the child process. The child process then runs a different program using the execve() system call (again, check the man pages). Both parent and child processes print some information on the screen. You may copy these programs from my Linux account directory available on the lab computers at ~egle/CSCI4334/fork (NOTE: this is NOT a URL!)

First the parent code:

/* this is a simple example of how fork works */

/* D. Egle Jan-14-2003 */

#include <stdio.h>

#include <sys/wait.h>

#define NULL 0

int main(void)

{

 if (fork () == 0) /* This is the child process */

 {

 execve("child", NULL, NULL); /* "child" is the name of the program called */

 exit(0); /* should never reach here */

 }

 /* parent code starts here */

 printf("Process[%d]: Parent in execution ...\n", getpid());

 sleep(2); /* wait a couple of seconds */

 if (wait(NULL) > 0) /* child is terminating */

 printf("Process[%d]: Parent detects terminating child\n", getpid());

 printf("Process[%d]: Parent terminating ...\n",getpid());

 return 0;

}

Now the child code:

/* child process */

/* this is a simple example of how fork works */

/* D. Egle Jan-14-2003 */

#include <stdio.h>

int main(void)

{

 /* The child process' new program.

 This program replaces the parent's

 program when 'fork()' is called */

 printf("Process[%d]: child in execution ... \n",getpid());

 sleep(1);

 printf("Process[%d]: child terminating ... \n", getpid());

}

These programs must be compiled separately, for example,

[xlian@nulla fork]$ gcc ‑o parent parent.c

[xlian@nulla fork]$ gcc ‑o child child.c

or you can use the make utility to compile the programs automatically.

[xlian@nulla fork]$ make

gcc ‑c parent.c

gcc ‑o parent parent.o

gcc ‑c child.c

gcc ‑o child child.o

[xlian@nulla fork]$

To use the make utility, you need to have a makefile created in the current directory. The following is an example of the makefile for the above program.

G = # debug option here

CC = gcc # compiler

EXEC = parent child

target

all: $(EXEC)

parent : parent.o

 $(CC) ‑o parent parent.o

parent.o : parent.c

 $(CC) ‑c parent.c

child : child.o

 $(CC) ‑o child child.o

child.o : child.c

 $(CC) ‑c child.c

clean:

 /bin/rm ‑f *.o core $(EXEC)

3

