

Chapter 7

Introduction to PyTorch

So far we have studied the fundamentals of neural networks. We implemented and trained the

neural network models in Python from scratch. To make a solid understand of the fundamentals, it

is essential for us to be able to implement an algorithm from scratch (without relying on package

tools). In practice, however, it is very time consuming and error-prone to build everything from

scratch when the project (e.g. deep learning) is typically sophisticated in the real world. Fortunately,

there are some frameworks or package tools available to accelerate the development of machine

learning products, such as Scikit-learn, Tensorflow, and PyTorch. These packages include

functions/classes to abstract commonly used modules or functions from designer’s codes. We just

need to call those functions/classes instead of writing the codes ourselves, so that we can

concentrate on the overall project.

Before we proceed to the topic of deep learning, we introduce PyTorch which you will use to

develop deep learning project in subsequent chapters. Appendix A gives a tutorial of Jupyter

Notebook and PyTorch installation. In this chapter, you will learn:

o The framework of PyTorch

o Basics of tensors in PyTorch

o Data representation in tenors

o Autograd and optimizers in PyTorch

o Example of linear regression using PyTorch

o Example of neural network for image classification using Pytorch

7.1 Why PyTorch?

Deep learning allows us to carry out a very wide range of complicated tasks, like speech

recognition, playing strategy games (e.g. Alpha Go), or identifying objects in cluttered scenes. In

practice, we need tools that are flexible, so that they can be adapted to such a wide range of

problems, and efficient to allow training to occur over large amounts of data in reasonable times;

and we need the trained model to perform correctly in the presence of variability in the inputs.

PyTorch is a framework for Python programs that facilitates building deep learning projects.

PyTorch’s clear syntax, streamlined API, and easy debugging make it an excellent choice

for implementing deep learning projects. PyTorch has been proven to be fully qualified for use

in professional contexts for real-world, high-profile work. PyTorch provides a core data structure,

the tensor, which is a multidimensional array that shares many similarities with NumPy arrays.

Compared to NumPy arrays, PyTorch tensors have a few superpowers, such as the ability to

perform very fast operations on graphical processing units (GPUs), distribute operations on

multiple devices or machines, and keep track of the graph of computations. These are all important

features when implementing a modern deep learning framework.

PyTorch offers two things that make it particularly relevant for deep learning. First, it provides

accelerated computation using graphical processing units (GPUs), often yielding speedups in the

range of 50x over doing the same calculation on a CPU. Second, PyTorch provides facilities that

support numerical optimization on generic mathematical expressions, which deep learning uses for

training. Note that both features are useful for scientific computing in general, not exclusively for

deep learning. In fact, PyTorch can be viewed as a high-performance library with optimization

support for scientific computing in Python.

Fig.7.1 shows how PyTorch supports a deep learning project. The diagram consists of three layers:

physical layer, Python layer, and PyTorch layer. The physical layer is the hardware platform on

which the project gets trained and deployed. In our context, we only need to pay attention to Python

layer and PyTorch layer. To train a neural network, first we need to physically get the data, most

often from some sort of storage as the data source. Then we need to convert each sample from our

data into a tensor. The tensors are usually assembled into batches for mini-batch process. PyTorch

provides classes Dataset and DataLoader in torch.utils.data package for this purpose. With a

selected (untrained) model and batch tensors, a training loop will be implemented in CPUs or GPUs

to fit the model, i.e., to minimize the defined loss function. PyTorch packages, torch.optim and

torch.nn, provide various classes to support auto-computation of gradients, optimization and

construction of neural network layers.

Fig.7.1 PyTorch framework for deep learning

7.2 Tensors

7.2.1 Tensor: multidimensional array

Like arrays in NumPy, tensors are the fundamental data structure in PyTorch. A tensor is an array:

that is, a data structure that stores a collection of numbers that are accessible individually using an

index, and that can be indexed with multiple indices. PyTorch provides many functions for

operating on these tensors. Behind the scenes, tensors can keep track of a computational graph and

gradients, PyTorch tensors can be converted to NumPy arrays and vice versa very efficiently.

Tensors can be understood as the generalization of vectors and matrices to an arbitrary number of

dimensions, illustrated in Fig.7.2.

 [
0.5
0.4
0.7

] [
0.5 0.3
0.4 0.1
0.7 0.4

] [[
0.5 0.3
0.4 0.1
0.7 0.4

] , [
0.7 0.9
0.4 0.3
0.2 0.1

] , [
0.2 0.1
0.6 0.7
0.9 0.5

]]

 1D tensor, size (3) 2D tensor, size (3,2) 3D tensor, size (3,3,2)

Fig.7.2 Tensor data structure

7.2.2 Indexing and operations on tensors

We will encounter some frequently used tensor operations as we proceed with the book. The

complete description of all operations associated with tensors can be found online

(https://pytorch.org/docs/stable/index.html). In this section, we will demonstrate some basic

operations on tensors by examples through Jupyter Notebook.

1) Create a tensor

We can create a tensor in different ways: from Numpy array, list, random numbers, filling 0s or 1s,

a range, linear or log scale space, and byte.

Summary of functions for creating tensors

Function Description Example

eye Identity matrix torch.eye(3)

from_numpy Convert Numpy array to tensor torch.from_numpy(a)

linspace Linear space vector torch.linspace(1, 10, steps=10)

logspace Log scale space vector torch.logspace(start=-10, end=10,

steps=5)

ones Filling with ones torch.ones(2, 1, 2, 1)

ones_like Filling with ones torch.ones_like(eye)

arange Return a 1-D tensor torch.arange(1, 2.5, 0.5)

zeros Filling with zeros torch.zeros(2, 3)

zeros_like Filling with zeros for a tensor shape torch.zeros_like(input)

randn Filling with random numbers torch.randn(3,2)

https://pytorch.org/docs/stable/index.html

import torch

import numpy as np

creating tensors

from numpy array

v_np = np.zeros([3,4])

v_tensor = torch.tensor(v_np)

v_tensor

tensor([[0., 0., 0., 0.],

 [0., 0., 0., 0.],

 [0., 0., 0., 0.]], dtype=torch.float64)

create tensor from list

v = torch.tensor([2,3]) # a tensor initialized with a list, int64

v = torch.Tensor([2,3]) # a tensor initialized with a list, float32

create tensor from random numbers

torch.manual_seed(1)

points=torch.randn(3,2) # standard normal distribution

print(points)

points.shape

tensor([[0.6614, 0.2669],

 [0.0617, 0.6213],

 [-0.4519, -0.1661]])

torch.Size([3, 2])

create by filling with 1 or 0

eye = torch.eye(3) # Create an identity 3x3 tensor

v = torch.ones(10) # A tensor of size 10 containing all ones

v = torch.ones(2, 1, 2, 1) # fill with 1, Size 2x1x2x1

v = torch.ones_like(eye) # A tensor with same shape as eye.Fill it with 1.

v = torch.zeros(10) # A tensor of size 10 containing all zeros

create by arange

v = torch.arange(9)

print(v)

v = v.view(3, 3)

print(v)

tensor([0, 1, 2, 3, 4, 5, 6, 7, 8])

tensor([[0, 1, 2],

 [3, 4, 5],

 [6, 7, 8]])

v = torch.linspace(1, 10, steps=10)

print(v)

Create a Tensor with 10 linear points for (1, 10) inclusively

v = torch.logspace(start=-10, end=10, steps=5)

Size 5: 1.0e-10 1.0e-05 1.0e+00, 1.0e+05, 1.0e+10

print(v)

tensor([1., 2., 3., 4., 5., 6., 7., 8., 9., 10.])

tensor([1.0000e-10, 1.0000e-05, 1.0000e+00, 1.0000e+05, 1.0000e+10])

c = torch.ByteTensor([0, 1, 1, 0])

print(c)

tensor([0, 1, 1, 0], dtype=torch.uint8)

The objects within a tensor must all be numbers of the same type, and PyTorch must keep track of

this numeric type. The dtype argument to tensor constructors (e.g. tensor, zeros, ones) specifies the

numerical data (d) type that will be contained in the tensor. Here’s a list of the possible values for

the dtype argument:

 torch.float32 or torch.float: 32-bit floating-point

 torch.float64 or torch.double: 64-bit, double-precision floating-point

 torch.float16 or torch.half: 16-bit, half-precision floating-point

 torch.int8: signed 8-bit integers

 torch.uint8: unsigned 8-bit integers

 torch.int16 or torch.short: signed 16-bit integers

 torch.int32 or torch.int: signed 32-bit integers

 torch.int64 or torch.long: signed 64-bit integers

 torch.bool: Boolean

2) Indexing, Slicing, Joining, Mutating Ops

The commonly used functions for indexing, slicing, joining, and mutating are summarized in the

table below.

Function Description Example

torch.cat Concatenation along a specified

dimension
y=torch.cat([v,v,v,v],1)

x.view Re-organize the tensor shape v.view(3,3)

torch.stack Add a dimension by stacking y=torch.stack((v,v))

torch.gather Gather values along an axis specified

by dim.

t = torch.tensor([[1, 2], [3, 4]])

torch.gather(t, 0,

torch.tensor([[0, 0], [1, 0]]))

torch.transpose Transpose a tensor y = torch.transpose(x, 0, 1)

torch.squeeze Remove dimensions of size one y = torch.squeeze(x)

torch.unsqueeze Add a dimension with size one y=torch.unsqueeze(x, 0)

torch.chunk torch.chunk(input, chunks, dim=0)

→ List of Tensors: Attempts to split

a tensor into the specified number of

chunks.

y=torch.chunk(x,3,1)

torch.split torch.split(tensor, split_size, dim=0) y= torch.split(x, [1,2], 1)

[1,2] is the size of each section

torch.index_select torch.index_select(input, dim, index,

*, out=None) → Tensor

indices = torch.tensor([0, 2])

torch.index_select(x, 1, indices)

Returns a new tensor which indexes

the input tensor along dimension dim

using the entries in index

torch.masked_select torch.masked_select(input, mask, *,

out=None) → Tensor

Returns a new 1-D tensor which

indexes the input tensor according to

the boolean mask mask which is a

BoolTensor

mask = x.ge(0)

y=torch.masked_select(x, mask)

torch.nonzero returns a 2-D tensor where each row

is the index for a nonzero value

y=torch.nonzero(v)

torch.take torch.take(input, index) → Tensor

Returns a new tensor with the

elements of input at the given indices.

y=torch.take(x, torch.tensor([0,

2, 5]))

The continued part of Jupyter notebook shows some examples.

indexing

a=points[:, -1]

print(a)

a.shape

tensor([0.2669, 0.6213, -0.1661])

torch.Size([3])

re-organize: view, cat, stack, gather, squeeze, unsqueeze

v=torch.arange(9)

v=v.view(3,3)

v

tensor([[0, 1, 2],

 [3, 4, 5],

 [6, 7, 8]])

y=torch.cat([v,v,v,v],1)

concatenation along with 1 (column) dimension or 0 (row) dimension

#y.shape

y

tensor([[0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2],

 [3, 4, 5, 3, 4, 5, 3, 4, 5, 3, 4, 5],

 [6, 7, 8, 6, 7, 8, 6, 7, 8, 6, 7, 8]])

y=torch.stack((v,v)) # add one more dimension

y.shape

torch.Size([2, 3, 3])

t = torch.tensor([[1, 2], [3, 4]])

torch.gather(t, 1, torch.tensor([[0, 0], [1, 0]])) # gather along with column

(axis 1)

tensor([[1, 1],

 [4, 3]])

t = torch.tensor([[1, 2], [3, 4]])

torch.gather(t, 0, torch.tensor([[0, 0], [1, 0]])) # gather along with row

(axis 0)

tensor([[1, 2],

 [3, 2]])

x = torch.zeros(2, 1, 2, 1, 2)

print("original", x.size())

y = torch.squeeze(x) # dimensions with size 1 will be removed

print("after squeeze", y.size())

original torch.Size([2, 1, 2, 1, 2])

after squeeze torch.Size([2, 2, 2])

x = torch.tensor([1, 2, 3, 4])

print(x.shape, x)

y=torch.unsqueeze(x, 0)

Returns a new tensor with a dimension of size one

inserted at the specified position.

print(y.shape, y)

y=torch.unsqueeze(x, 1)

print(y.shape, y)

torch.Size([4]) tensor([1, 2, 3, 4])

torch.Size([1, 4]) tensor([[1, 2, 3, 4]])

torch.Size([4, 1]) tensor([[1],

 [2],

 [3],

 [4]])

torch.transpose(input, dim0, dim1)

Returns a tensor that is a transposed version of input.

The given dimensions dim0 and dim1 are swapped.

x = torch.randn(2,3)

y = torch.transpose(x, 0, 1)

print(x)

print(y)

tensor([[-1.5228, 0.3817, -1.0276],

 [-0.5631, -0.8923, -0.0583]])

tensor([[-1.5228, -0.5631],

 [0.3817, -0.8923],

 [-1.0276, -0.0583]])

y=torch.chunk(x,3,1) # 3 is the number of chunks

y= torch.split(x, [1,2], 1) # [1,2] is the size of each section

y[1]

tensor([[0.3817, -1.0276],

 [-0.8923, -0.0583]])

indices = torch.tensor([0, 2])

torch.index_select(x, 1, indices) # select along dimension 1 by indices

tensor([[-1.5228, -1.0276],

 [-0.5631, -0.0583]])

mask = x.ge(0)

print(mask)

tensor([[False, True, False],

 [False, False, False]])

y=torch.masked_select(x, mask)

print(y.shape, y)

torch.Size([1]) tensor([0.3817])

y=torch.nonzero(v) # return the index for non-zero elements in v

print(y.shape, y)

torch.Size([8, 2]) tensor([[0, 1],

 [0, 2],

 [1, 0],

 [1, 1],

 [1, 2],

 [2, 0],

 [2, 1],

 [2, 2]])

y=torch.take(x, torch.tensor([0, 2, 5]))

print(y)

tensor([-1.5228, -1.0276, -0.0583])

3) Point-wise operations

Pointwise (or element-wise) operations operate on each element in the tensor in the same way

simultaneously. Commonly used point-wise operations are summarized in the table below.

Function Description Example

abs Absolute value torch.abs(x)

acos arc cosine torch.acos(x)

add Return: a+10*b torch.add(a,10, b)

addcmul t1+s*(t2*t3) torch.addcmul(t1, t2, t3, value=s)

asin, atan, atan2 arcsine and arctangent torch.asin(x)

ceil Round up to the integer torch.ceil(x)

clamp Clamp values in a tensor torch.clamp(x, min=-0.5, max=0.5)

cos, cosh Cosine, hyperbolic cosine

div Element-wise divide torch.div(x, x2)

erf Compute Gaussian error function

erfinv Inverse of erf

exp Exponential function torch.exp(x)

expm1 Computes exp(x)-1, but provides

greater precision than exp(x) - 1 for

small values of x.

torch.expm1(x)

floor Round down to integer torch.floor(x)

fmod Remainder of division

frac Get fraction part torch.frac(x)

lerp Linear interpolation torch.lerp(start, end, 0.5)

log Natural log torch.log(x)

logp1 Log(x+1) torch.log(x)

mul Element-wise multiply torch.mul(x,x2)

neg Return negative of elements torch.neg(x)

pow Take power of each element torch.pow(x,x2)

reciprocal 1/x torch.reciprocal(x)

remainder Remainder of division torch.remainder(x,x2)

round Rounds elements of input to the

nearest integer.

torch.round(x)

sigmoid Sigmoid function torch.sigmoid(x)

sign Returns a new tensor with the signs

of the elements of input. (1 for

positive, 0 for 0, -1 for negative)

torch.sign(x)

sin, sinh sine, hyperbolic sine torch.sin(x)

sqrt Square root torch.sqrt(x)

tan, tanh Tangent, hyperbolic tangent torch.tan(x)

trunc Returns a new tensor with the

truncated integer values of the

elements of input.

torch.trunc(x)

Examples are shown in the following codes. For more detailed information, one can refer to Pytorch

official website (https://pytorch.org/docs/stable/).

point-wise operations

y=torch.abs(x)

print(y)

tensor([[1.5228, 0.3817, 1.0276],

 [0.5631, 0.8923, 0.0583]])

x2=torch.randn(2,3)

print(x2)

tensor([[-0.1955, -0.9656, 0.4224],

 [0.2673, -0.4212, -0.5107]])

y=torch.add(x,10) # add 10 to all elements

print(y)

tensor([[8.4772, 10.3817, 8.9724],

 [9.4369, 9.1077, 9.9417]])

y=torch.add(x,10,x2) # x+10*x2

print(y)

tensor([[-3.4779, -9.2747, 3.1965],

 [2.1101, -5.1042, -5.1652]])

y=torch.clamp(x2,min=-0.5, max=0.5)

print(y)

tensor([[-0.1955, -0.5000, 0.4224],

 [0.2673, -0.4212, -0.5000]])

y=torch.div(x, x2)

y=torch.mul(x,x2)

y=torch.acos(x)

y=torch.ceil(x)

y=torch.pow(x,x2)

y=torch.reciprocal(x)

y=torch.sign(x)

y=torch.sqrt(x)

print(y)

tensor([[nan, 0.6178, nan],

 [nan, nan, nan]])

https://pytorch.org/docs/stable/

4) Reduction operations

Reduction operations usually return a scalar or a tensor with a smaller size than input tensor. The

commonly used reduction operations are summarized below.

Function Description Example

cumprod Returns the cumulative product of

elements of input in the dimension dim.

y=torch.cumprod(v,0)

cumsum Returns the cumulative sum of

elements of input in the dimension dim.

y=torch.cumsum(v,1)

dist torch.dist(input, other, p=2)

Returns the p-norm of (input - other)

d=torch.dist(x, x2, p=2)

mean Returns mean d=torch.mean(v,0, True)

median Returns median for all or a dimension d=torch.median(v,0)

mode Returns mode and index d=torch.mode(v,1)

prod Returns product of elements d=torch.prod(v,0)

std Standard deviation d=torch.std(v,0)

sum Returns sum d=torch.sum(v, 1)

var Variance of all elements d=torch.var(v,0)

Examples:

Reduction operations

v=v.to(torch.float32) # some operations do not support long type,

v

tensor([[0., 1., 2.],

 [3., 4., 5.],

 [6., 7., 8.]])

y=torch.cumprod(v,0) #cummulative product along dimension 0

y=torch.cumsum(v,1) #cummulative sum along dimension 1

d=torch.dist(v, v+3, p=2)

d=torch.mean(v,0, True) # True keep dimension

d=torch.mean(v) # mean for all elements

d=torch.sum(v,1)

d=torch.median(v,0)

d=torch.mode(v,1) # return mode and index

d=torch.prod(v,0) # product of elements

d=torch.std(v,0) # standard deviation

d=torch.var(v,0) # variance

print(d)

tensor([9., 9., 9.])

5) Comparison operation

Function Description Example

eq Element-wise comparison. Return a

tensor with Boolean elements (True or

False)

y=torch.eq(x,x2)

equal True if two tensors are the same d=torch.equal(x,x2)

ge, gt True if greater or equal, if greater,

element-wise

 d=torch.ge(x, x2)

kthvalue Returns a namedtuple (values, indices)

where values is the k-th smallest element

of each row of the input tensor in the

given dimension dim

d=torch.kthvalue(v,2, 0, True)

le, lt True if less or equal, if less than, element-

wise

d=torch.le(x,x2)

max Returns maximal elements and indices d=torch.max(v,0)

min Returns minimal elements and indices d=torch.min(v,0)

ne True if not equal, element-wise d=torch.ne(x,x2)

sort Returns a sorted tensor and indices d=torch.sort(v,0)

topk Returns top k values along the dimension d=torch.topk(v,2)

Examples:

Comparison operations

d=torch.eq(x,x2)

d=torch.max(v,0)

d=torch.equal(v,v)

d=torch.ge(x,x2)

d=torch.gt(x,x2)

d=torch.kthvalue(v, 2, 0, True)

d=torch.ne(x,x2)

d=torch.sort(v,0)

d=torch.topk(v,2)

print(d)

torch.return_types.topk(

values=tensor([[2., 1.],

 [5., 4.],

 [8., 7.]]),

indices=tensor([[2, 1],

 [2, 1],

 [2, 1]]))

6) Matrix, vector multiplication

Commonly used basic functions:

Function Description Example

dot Computes the dot product of two 1D

tensors.

d=torch.dot(torch.tensor([1,2]),

torch.tensor([3,4]))

mv Performs a matrix-vector product of the

matrix input and the vector vec

d = torch.mv(input, vec)

addmv Performs a matrix-vector product of the

matrix mat and the vector vec. The

vector input is added to the final result.

input+matvec

 d = torch.addmv(input, mat, vec)

mm Performs a matrix multiplication of the

matrices input and mat2.

d=torch.mm(input, mat2)

addmm Performs a matrix multiplication of the

matrices mat1 and mat2. The matrix

input is added to the final result.

d=torch.addmm(input,mat1,mat2)

bmm Batch matrix multiplication d = torch.bmm(batch1, batch2)

addbmm Performs a batch matrix-matrix product

of matrices stored in batch1 and batch2,

with a reduced add step (all matrix

multiplications get accumulated along

the batch dimension). input is added to

the final result.

d = torch.addbmm(M, batch1,

batch2)

Examples:

Matrix, vector multiplication

d=torch.dot(torch.tensor([1,2]), torch.tensor([3,4]))

mat = torch.randn(2, 4)

vec = torch.tensor([1.,2.,3.,4.])

d = torch.mv(mat, vec)

Matrix + Matrix X vector

Size 2

M = torch.randn(2)

mat = torch.randn(2, 3)

vec = torch.randn(3)

d = torch.addmv(M, mat, vec)

Matrix x Matrix

Size 2x4

mat1 = torch.randn(2, 3)

mat2 = torch.randn(3, 4)

d = torch.mm(mat1, mat2)

Matrix + Matrix X Matrix

Size 3x4

M = torch.randn(3, 4)

mat1 = torch.randn(3, 2)

mat2 = torch.randn(2, 4)

d = torch.addmm(M, mat1, mat2)

Batch Matrix x Matrix

Size 10x3x5

batch1 = torch.randn(10, 3, 4)

batch2 = torch.randn(10, 4, 5)

d = torch.bmm(batch1, batch2)

Batch Matrix + Matrix x Matrix

Performs a batch matrix-matrix product

3x2 + (5x3x4 X 5x4x2) -> 5x3x2

M = torch.randn(3, 2)

batch1 = torch.randn(5, 3, 4)

batch2 = torch.randn(5, 4, 2)

d = torch.addbmm(M,batch1, batch2)

print(d.shape)

torch.Size([3, 2])

Note that our purpose in this section is to get familiar with operations on tensors, but is not to

include a complete reference for all available tensor operations. There are many other operations

which are not included here. Please check PyTorch website for a complete reference.

7.3 Data Representation using Tensors

In PyTorch framework, neural networks take tensors as input and produce tensors as outputs.

Furthermore, all operations within a neural network and during optimization are operations between

tensors, and all parameters (for example, weights and biases) in a neural network are tensors. In

this section, we will describe how to handle real-world data using tensors.

7.3.1 Images

An image is represented as a collection of scalars arranged in a regular grid with a height and a

width (in pixels). A grayscale image has a single scalar per pixel while a colorful image typically

has three or more scalars per pixel. The three scalars for colorful images are associated with the

intensity of three colors (Red, Green, Blue), and are often encoded as 8-bit integers (i.e. 0-255).

There are different formats to store images in files (e.g. *.jpg, *.gif, *.png) and different ways to

load (read) image file in Python. If the image data is loaded into a NumPy array, it can be converted

to PyTorch tesnor. Note that PyTorch modules dealing with image data require tensors to be laid

out as C × H × W: channels, height, and width, respectively. A batch tensor of multiple images

should have a dimension layout as: N × C × H × W: image, channel, height, and width. For instance,

we can use the following statements to read an image file, and then load to a tensor for PyTorch

modules.

import imageio

import matplotlib.pyplot as plt

read to numpy array

img_np = imageio.imread('../torch_tutorial/data/faces/person.jpg')

print(img_np.shape)

(239, 209, 3)

display the image

plt.imshow(img_np)

plt.show()

img_tensor=torch.from_numpy(img_np)

print(img_tensor.shape)

torch.Size([239, 209, 3])

display the image

plt.imshow(img_tensor)

plt.show()

out=img_tensor.permute(2,0,1) # Pytorch: Channelxheightxwidth =CxHxW

print(out.shape)

torch.Size([3, 239, 209])

The following codes read multiple image files in a folder, and then store them in a batch

tensor with a format [batch, C, W, H].

batch_size = 4

batch = torch.zeros(batch_size, 3, 96, 96, dtype=torch.uint8)

import os

data_dir = '../torch_tutorial/data/student_faces/'

filenames = [name for name in os.listdir(data_dir) if os.path.splitext(name)[-1

] == '.jpg']

for i, filename in enumerate(filenames):

 img_arr = imageio.imread(os.path.join(data_dir, filename))

 img_t = torch.from_numpy(img_arr)

 img_t = img_t.permute(2, 0, 1)

 img_t = img_t[:3]

 batch[i] = img_t

print(batch.shape)

display the image

plt.imshow(batch[1].permute(1,2,0))

plt.show()

torch.Size([4, 3, 96, 96])

7.3.2 Excel CSV files

Another format for data storage is spreadsheet or CSV file. It’s a table with each row corresponding

to one example (or record), while each column corresponds to one feature (or attribute) or the label

of the example.

We can use numpy.loadtxt to read the data from a CSV file. For example, the image examples of

handwritten digits are saved as CSV files mnist_train.csv and mnist_test.csv, which are available

at https://www.kaggle.com/datasets/oddrationale/mnist-in-csv. The mnist_train.csv file contains

the 60,000 training examples and labels. The mnist_test.csv contains 10,000 test examples and

labels. Each row consists of 785 values: the first value is the label (a number from 0 to 9) and the

remaining 784 values (i.e. 28 × 28 pixels) are the pixel values (a number from 0 to 255).
import csv

import numpy as np

xy_path = "c:/machine_learning/mnist_test.csv"

xy_numpy = np.loadtxt(xy_path, delimiter=",")

xy_t=torch.tensor(xy_numpy)

print(xy_t.shape)

xy_t

torch.Size([10000, 785])

tensor([[7., 0., 0., ..., 0., 0., 0.],

 [2., 0., 0., ..., 0., 0., 0.],

 [1., 0., 0., ..., 0., 0., 0.],

 ...,

 [4., 0., 0., ..., 0., 0., 0.],

 [5., 0., 0., ..., 0., 0., 0.],

 [6., 0., 0., ..., 0., 0., 0.]], dtype=torch.float64)

display the image

plt.imshow(xy_t[0][1:].view(28,28))

plt.show()

https://www.kaggle.com/datasets/oddrationale/mnist-in-csv

Some CSV files use “;” as delimiter and/or include a header line. For example, the wine quality

dataset, publicly available at https://archive.ics.uci.edu/ml/datasets/wine+quality, contains a

semicolon-separated collection of values organized in 12 columns preceded by a header line

containing the column names. The first 11 columns contain values of chemical variables, and the

last column contains the sensory quality score from 0 (very bad) to 10 (excellent), shown in Fig.7.3.

Fig.7.3 a portion of winequality-white.csv

The following codes read the wine quality data, split the data into two parts: input features and

labels, and normalize each feature. The results are stored in the corresponding tensors.

wine_path = "../torch_tutorial/data/winequality-white.csv"

wine_numpy = np.loadtxt(wine_path, delimiter=";", skiprows=1)

wine_tensor=torch.from_numpy(wine_numpy)

print(wine_tensor.shape)

wine_tensor

torch.Size([4898, 12])

tensor([[7.0000, 0.2700, 0.3600, ..., 0.4500, 8.8000, 6.0000],

 [6.3000, 0.3000, 0.3400, ..., 0.4900, 9.5000, 6.0000],

 [8.1000, 0.2800, 0.4000, ..., 0.4400, 10.1000, 6.0000],

 ...,

 [6.5000, 0.2400, 0.1900, ..., 0.4600, 9.4000, 6.0000],

 [5.5000, 0.2900, 0.3000, ..., 0.3800, 12.8000, 7.0000],

 [6.0000, 0.2100, 0.3800, ..., 0.3200, 11.8000, 6.0000]],

 dtype=torch.float64)

split the data into input and label

input_data=wine_tensor[:,:-1]

label=wine_tensor[:, -1].long()

print(label)

tensor([6, 6, 6, ..., 6, 7, 6])

normalize each feature

input_data_mean=torch.mean(input_data, 0)

input_data_var=torch.var(input_data,0)

input_data_normalized = (input_data - input_data_mean) /

torch.sqrt(input_data_var)

We can use the following statement to read the header line to col_list that may be useful.

col_list =next(csv.reader(open(wine_path), delimiter=';'))

col_list

['fixed acidity',

 'volatile acidity',

 'citric acid',

 'residual sugar',

https://archive.ics.uci.edu/ml/datasets/wine+quality

 'chlorides',

 'free sulfur dioxide',

 'total sulfur dioxide',

 'density',

 'pH',

 'sulphates',

 'alcohol',

 'quality']

7.3.3 Converting categorical label to one-hot label

As we discussed in previous chapters, the categorical labels in a multi-classification task

are usually converted to one-hot encoded labels. Consider a 10-category classification. Ten

categories are first labeled as ten integers (0,1,2,3,4,5,6,7,8,9), respectively. The one-hot

label of a category is a vector of 10 elements, with all elements set to 0, but 1 at the index

specified by the categorical integer label. For example, category “2” will be mapped to a

one-hot label [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]. The following codes show how to convert the

integer labels into one-hot coded labels.

generate onehot for label tensor

label_examples=torch.tensor([0,1,2,3,4,5,6,7,8,9,3,4,9,1])

label_onehot = torch.zeros(label_examples.shape[0], 10)

label_onehot.scatter_(1, label_examples.unsqueeze(1), 1.0)

label_onehot

tensor([[1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],

 [0., 1., 0., 0., 0., 0., 0., 0., 0., 0.],

 [0., 0., 1., 0., 0., 0., 0., 0., 0., 0.],

 [0., 0., 0., 1., 0., 0., 0., 0., 0., 0.],

 [0., 0., 0., 0., 1., 0., 0., 0., 0., 0.],

 [0., 0., 0., 0., 0., 1., 0., 0., 0., 0.],

 [0., 0., 0., 0., 0., 0., 1., 0., 0., 0.],

 [0., 0., 0., 0., 0., 0., 0., 1., 0., 0.],

 [0., 0., 0., 0., 0., 0., 0., 0., 1., 0.],

 [0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],

 [0., 0., 0., 1., 0., 0., 0., 0., 0., 0.],

 [0., 0., 0., 0., 1., 0., 0., 0., 0., 0.],

 [0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],

 [0., 1., 0., 0., 0., 0., 0., 0., 0., 0.]])

7.4 Linear Regression using PyTorch

In this section, we will implement a linear regression using PyTorch. Through the example, we will

show how to utilize the PyTorch resources (e.g. autograd and optim) for machine learning. These

resources will significantly reduce the efforts of development.

7.4.1 Dataset

Consider a task of fitting a linear model to a dataset (X,Y). All examples are given

x=torch.tensor([6.1101, 5.5277, 8.5186, 7.0032, 5.8598, 8.3829, 7.4764, 8.5781, 6.4862,

5.0546, 5.7107, 14.164, 5.734, 8.4084, 5.6407, 5.3794, 6.3654, 5.1301, 6.4296, 7.0708])

y=torch.tensor([17.592, 9.1302, 13.662, 11.854, 6.8233, 11.886, 4.3483, 12, 6.5987,

3.8166,3.2522, 15.505, 3.1551, 7.2258, 0.71618, 3.5129, 5.3048, 0.56077, 3.6518, 5.3893])

7.4.2 Linear regression without using autograd

To get familiar with PyTorch tensors, we fit the above dataset to a linear model in the same way as

we did in chapter 3, except using tensors instead of NumPy arrays. In the next section, we will

utilize PyTorch autograd and optimization functions to reduce the efforts of computing the

backward propagation.

x=torch.tensor([6.1101, 5.5277, 8.5186, 7.0032, 5.8598, 8.3829, 7.4764, 8.5781,

6.4862, 5.0546, 5.7107, 14.164, 5.734, 8.4084, 5.6407, 5.3794, 6.3654, 5.1301,

6.4296, 7.0708])

y=torch.tensor([17.592, 9.1302, 13.662, 11.854, 6.8233, 11.886, 4.3483, 12,

6.5987, 3.8166,3.2522, 15.505, 3.1551, 7.2258, 0.71618, 3.5129, 5.3048,

0.56077, 3.6518, 5.3893])

from matplotlib import pyplot as plt

fig = plt.figure(dpi=600)

plt.xlabel("x")

plt.ylabel("y")

plt.plot(x.numpy(), y.numpy(), 'o')

plt.show()

1) define the linear model

def model_linear(x,w,b):

 y=w*x+b

 return y

2) define the loss function

def loss_fn(y, label):

 se=(y-label)**2

 mse=se.mean()

 return mse

3) define the gradient

def grad_fn(x,y,w,b):

 y_pred=model_linear(x,w,b)

 dw=2.0*(y_pred-y)*x/y.size(0)

 db=2.0*(y_pred-y)/y.size(0)

 return torch.stack([dw.sum(),db.sum()])

4) define the training loop

def training_loop(n_epochs, learning_rate, params, x, y):

 loss_tensor=torch.zeros(n_epochs)

 for epoch in range(1, n_epochs+1):

 w,b=params

 y_pred=model_linear(x,w,b)

 loss=loss_fn(y_pred,y)

 grad=grad_fn(x,y,w,b)

 params=params-learning_rate*grad

 print('Epoch %d, Loss %f' % (epoch, float(loss)))

 loss_tensor[epoch-1]=loss

 return params, loss_tensor

5) run the training loop

params, loss_tensor= training_loop(

 n_epochs = 100,

 learning_rate = 0.002,

 params =torch.tensor([0.0,0.0]),

 x=x,

 y=y)

Epoch 1, Loss 76.284782

Epoch 2, Loss 52.976959

Epoch 3, Loss 38.543888

Epoch 4, Loss 29.606319

…

6) plot the results

params

tensor([1.0746, 0.0512])

fig = plt.figure(dpi=600)

pred=model_linear(x,params[0],params[1])

plt.xlabel("x")

plt.ylabel("y")

plt.plot(x.numpy(), pred.detach().numpy())

plt.plot(x.numpy(), y.numpy(), 'o')

fig = plt.figure(dpi=600)

plt.xlabel("epochs")

plt.ylabel("MSE")

plt.plot(loss_tensor.detach().numpy())

7.4.3 Linear regression using autograd

1) PyTorch autograd

In many applications, especially deep learning, it is challenging to analytically compute the

derivatives of loss function with respect to parameters. PyTorch provides a component called

autograd to track and compute the derivatives of a tensor with respect to its source tensors. PyTorch

tensors can remember where they come from, in terms of the operations and parent tensors that

originated them, and they can automatically provide the chain of derivatives of such operations

with respect to their inputs. Therefore, given a forward expression, PyTorch will automatically

provide the gradient of that expression with respect to its input parameters.

Applying autograd

In general, all PyTorch tensors have an attribute named grad. To activate the computation of

gradients with respect to a tensor, say params, the argument, requires_grad, for tensor params has

to be set True, so that PyTorch will track the entire family tree of tensors resulting from operations

on this tensor params. In other words, any tensor that has params as an ancestor will have access

to the chain of functions that were called to get from params to that tensor. In case these functions

are differentiable (and most PyTorch tensor operations will be), the value of the derivative will be

automatically populated as a grad attribute of the params tensor. Let’s consider the linear regression

in the previous section and compute the gradient of loss function with respect to tensor params

([w,b]) in one step. Fig.7.4 shows the compuation flow chart. All tensors have an attribute of *.grad,

and this attribute has an initial value “None”, which means that no gradient has been computed (or

available).

Fig.7.4 autograd computation chart

An example of using autograd is shown below.

params = torch.tensor([1.0, 0.0], requires_grad=True) #initial and requires_grad to True

y_pred=model_linear(x,params[0], params[1]) #forward propagation

loss=loss_fn(y_pred,y) #loss computation

loss.backward() # call .backward() for autograd

params.grad # display gradient values, dloss/dw, dloss/db

tensor([-8.5768, -0.6954])

Remarks: a) the grad attribute of params contains the derivatives of the loss with respect to each

element of params. Its value is “None” before the first loss.backward() is called.

No need to compute the gradient from the analytical expression.

 b) the exution of computation from params to loss is required each time before

loss.backward() is called;

 c) if we repeat the autograd from “y_pre…” statement to statement loss.backward()

, the new gradient will accumulated (added) to the old one.

Zero gradient

As we knew previsouly, if loss.backward was called earlier, and the forward path and the loss are

evaluated again, backward is called again (as in any training loop), then the gradient is accumulated

(that is added) to the one computed at the previous iteration, which leads to an incorrect value for

the gradient. To prevent this from happening, we need to set the gradient to zero explicitly at each

iteration by inserting the following statement any location before loss.backward().

if params.grad is not None:

params.grad.zero_()

Disable gradient calculation

with torch.no_grad():

Context-manager that disables gradient calculation. Disabling gradient calculation is useful for

inference, when you are sure that you will not call Tensor.backward(). It will reduce memory

consumption for computations that would otherwise have requires_grad=True. In this mode, the

result of every computation will have requires_grad=False, even when the inputs have

requires_grad=True.

2) Linear regression using autograd

Now, we are ready to apply autograd to our previous linear regression project. Please note that: 1)

we need to zero the params.grad at the beginning of iteration; 2) we disable the gradient calculation

during the params updating; and 3) In-place update is used for params updating.

def training_loop_autograd(n_epochs, learning_rate, params, x, y):

 loss_tensor=torch.zeros(n_epochs)

 for epoch in range(1, n_epochs+1):

 if params.grad is not None:

 params.grad.zero_()

 w,b=params

 y_pred=model_linear(x,w,b)

 loss=loss_fn(y_pred,y)

 loss.backward()

 with torch.no_grad(): # no grad computation involved

 params -= learning_rate * params.grad

 #params=params-learning_rate*grad

 print('Epoch %d, Loss %f' % (epoch, float(loss)))

 loss_tensor[epoch-1]=loss

 return params, loss_tensor

run the training loop

params, loss_tensor= training_loop_autograd(

 n_epochs = 100,

 learning_rate = 0.002,

 params =torch.tensor([0.0,0.0], requires_grad=True),

 x=x,

 y=y)

Epoch 1, Loss 76.284782

Epoch 2, Loss 52.976959

Epoch 3, Loss 38.543884

Epoch 4, Loss 29.606318

…

Results, shown below, are close to the results we got based on analytic gradient calculation in the

previous section.

params

tensor([1.0746, 0.0512], requires_grad=True)

fig = plt.figure(dpi=600)

pred=model_linear(x,params[0],params[1])

plt.xlabel("x")

plt.ylabel("y")

plt.plot(x.numpy(), pred.detach().numpy())

plt.plot(x.numpy(), y.numpy(), 'o')

7.4.4 Linear regression using autograd and optim

To further take advantage of PyTorch, we can instantiate PyTorch optimization module for

parameter updating. In chapter 6, we discussed how to update the parameters based on gradients,

such as momentum and Adam algorithms, in addition to the simple constant learning rate updating.

In fact, there are more optimization methods available. PyTorch provide a submodule module

torch.optim where we can find classes implementing different optimization algorithms. It is

beneficial to utilize this optimization facility in terms of code efficiency and reliability.

import torch.optim as optim

dir(optim)

['ASGD',

 'Adadelta',

 'Adagrad',

 'Adam',

 'AdamW',

 'Adamax',

 'LBFGS',

 'Optimizer',

 'RMSprop',

 'Rprop',

 'SGD',

 'SparseAdam',

 '__builtins__',

 '__cached__',

 '__doc__',

 '__file__',

 '__loader__',

 '__name__',

 '__package__',

 '__path__',

 '__spec__',

 'lr_scheduler']

To use one of the optimization algorithms in torch.optim, first we should construct (instantiate) an

optimizer by taking a list of parameters (aka PyTorch tensors, typically with requires_grad set to

True) as the first input. All parameters passed to the optimizer are retained inside the optimizer

object so the optimizer can update their values and access their grad attribute. Then, we need to

zero the gradient and call the optimizer. Two methods associated with the optimizer allow us to

achieve this: zero_grad and step. Method zero_grad zeroes the grad attribute of all the parameters

passed to the optimizer upon construction. Method step updates the value of those parameters

according to the optimization strategy implemented by the specific optimizer. One iteration of

parameters can be implemented as follows.

params = torch.tensor([0.0, 0.0], requires_grad=True)

learning_rate = 0.002

optimizer = optim.SGD([params], lr=learning_rate) # construct an optimizer

y_pred=model_linear(x,params[0], params[1])

loss=loss_fn(y_pred,y)

loss = loss_fn(y_pred, y) # calculate loss

optimizer.zero_grad() # zero grad

loss.backward() # loss backward

optimizer.step() # one step params update

params

tensor([0.2265, 0.0292], requires_grad=True)

Thus, the linear regression can be implemented using autograd and optim as follows.

import torch.optim as optim

def training_loop_autograd_optim(optimizer, n_epochs, params, x, y):

 loss_tensor=torch.zeros(n_epochs)

 for epoch in range(1, n_epochs+1):

 w,b=params # forward path

 y_pred=model_linear(x,w,b)

 loss=loss_fn(y_pred,y) # loss

 optimizer.zero_grad() # zero grad

 loss.backward() # calculate grad by autograd

 optimizer.step() # update params by optimizer

 print('Epoch %d, Loss %f' % (epoch, float(loss)))

 loss_tensor[epoch-1]=loss

 return params, loss_tensor

Before running the training loop, we need to create a tensor params, with requires_grad=True, and

instantiate an optimizer. Note that the resulting params, shown below, is slightly different from

vanilla gradient descent algorithm. The reason is that different optimizers have different converge

speed, but we set the number of epochs to 100 for all. If we increase the number of epochs for the

iteration loop, the results should be closer.

params = torch.tensor([0.0, 0.0], requires_grad=True)

learning_rate = 1e-2

optimizer = optim.RMSprop([params], lr=learning_rate)

params, loss_tensor = training_loop_autograd_optim(

n_epochs = 100,

optimizer = optimizer,

params = params,

x = x,

y = y)

Epoch 1, Loss 76.284782

Epoch 2, Loss 64.170250

Epoch 3, Loss 56.819836

Epoch 4, Loss 51.455879

…

params

tensor([0.9578, 0.8307], requires_grad=True)

fig = plt.figure(dpi=600)

pred=model_linear(x,params[0],params[1])

plt.xlabel("x")

plt.ylabel("y")

plt.plot(x.numpy(), pred.detach().numpy())

plt.plot(x.numpy(), y.numpy(), 'o')

One can try a different optimizer, for example, by changing “RMSprop” to “Adam”. However, the

value of learning rate may need to change accordingly for an acceptable result, because different

optimizations may have significantly different convergence speeds. Thus, it is helpful to plot loss

function versus epochs to check whether it converges.

7.5 Neural Networks using PyTorch

So far, we understand the tensors in PyTorch and the mechanism of autograd computation on

tensors. PyTorch provides various optimization methods through the package torch.optim. In the

previous section, we demonstrated how to implement a linear regression by utilizing PyTorch. In

this section we will explore the power of PyTorch through a little more complicated example:

neural network for image classification. For example, Torchvision provides many built-in datasets

in the torchvision.datasets module, as well as utility classes for building your own datasets.

Transformers are available for preprocessing data. PyTorch torch.nn provides classes for neural

network building blocks. The class, DataLoader, helps us to arrange data set during the training

process.

7.5.1 Download dataset and transforms

Download and load dataset

PyTorch provides a class, torchvision.datasets, as some popular datasets for users to download.

The built-in datasets (up to date July 2020) includes (but not limited to): MNIST, Fashion-MNIST,

KMNIST, EMNIST, QMNIST, FakeData, COCO, Captions, Detection, LSUN, ImageFolder,

DatasetFolder, ImageNet, CIFAR, STL10, SVHN, PhotoTour, SBU, Flickr, VOC, Cityscapes,

SBD, USPS, Kinetics-400, HMDB51, UCF101, and CelebA. A complete list of built-in datasets is

available at https://pytorch.org/vision/stable/datasets.html. All these datasets are subclasses of

torch.utils.data.Dataset, i.e, they have __getitem__ and __len__ methods implemented. Hence, they

can all be passed to a torch.utils.data.DataLoader.

CIFAR-10 consists of 60,000 (32 × 32) color (RGB) images, labeled with an integer corresponding

to 1 of 10 classes: airplane (0), automobile (1), bird (2), cat (3), deer (4), dog (5), frog (6), horse

(7), ship (8), and truck (9). We can download the train (50,000 images) and test (10,000 images)

datasets from internet to ‘./data’, load the datasets to cifar10 and cifar10_val, and display one

image as follows.

from torchvision import datasets

'''

CLASStorchvision.datasets.CIFAR10(root, train=True, transform=None, target_tran

sform=None, download=False)

--root (string) – Root directory of dataset where directory

 cifar-10-batches-py exists or will be saved to if download

 is set to True.

--train (bool, optional) – If True, creates dataset from training set,

 otherwise creates from test set.

--transform (callable, optional) – A function/transform that takes

 in an PIL image and returns a transformed version. E.g, transforms.RandomCrop

--target_transform (callable, optional) – A function/transform that

 takes in the target and transforms it.

--download (bool, optional) – If true, downloads the dataset from the internet

 and puts it in root directory.If dataset is already downloaded,

 it is not downloaded again.

Return

(image, target) where target is index of the target class.

https://pytorch.org/vision/stable/datasets.html

'''

data_path = './data'

cifar10 = datasets.CIFAR10(data_path, train=True, download=True)

cifar10_val = datasets.CIFAR10(data_path, train=False, download=True)

Files already downloaded and verified

Files already downloaded and verified

print("training set:", len(cifar10))

print("validation set:", len(cifar10_val))

training set: 50000

validation set: 10000

img, label = cifar10[5]

img, label

(<PIL.Image.Image image mode=RGB size=32x32 at 0x250A5844EF0>, 1)

plt.imshow(img)

plt.show()

Transforms

The object, img, generated by the dataset class at default, has a format of PIL image, which is not

ready to feed typical neural networks. Thus, we need to transform the loaded data so that they meet

the requirements of the neural network input. The module, torchvision.transforms, defines a set of

composable, function-like objects that can be passed as an argument to a torchvision dataset such

as datasets.CIFAR10(…), and that perform transformations on the data after it is loaded but before

it is returned by __getitem__. The list of available transforms is displayed as follows:

from torchvision import transforms

dir(transforms)

['CenterCrop',

 'ColorJitter',

 'Compose',

 'FiveCrop',

 'Grayscale',

 'Lambda',

 'LinearTransformation',

 'Normalize',

 'Pad',

 'RandomAffine',

 'RandomApply',

 'RandomChoice',

 'RandomCrop',

 'RandomErasing',

 'RandomGrayscale',

 'RandomHorizontalFlip',

 'RandomOrder',

 'RandomPerspective',

 'RandomResizedCrop',

 'RandomRotation',

 'RandomSizedCrop',

 'RandomVerticalFlip',

 'Resize',

 'Scale',

 'TenCrop',

 'ToPILImage',

 'ToTensor',

 '__builtins__',

 '__cached__',

 '__doc__',

 '__file__',

 '__loader__',

 '__name__',

 '__package__',

 '__path__',

 '__spec__',

 'functional',

 'transforms']

First, we transform the datasets from PIL images to tensors. Among these transforms, ToTensor

converts NumPy arrays and PIL images to tensors. It also defines the dimensions of the output

tensor as C × H × W. Whereas the values in the original PIL image ranged from 0 to 255 (8 bits

per channel), the ToTensor transform turns the data into a 32-bit floating-point per channel, scaling

the values down from 0.0 to 1.0.

from torchvision import transforms

to_tensor = transforms.ToTensor()

img_t = to_tensor(img)

img_t.shape

torch.Size([3, 32, 32])

Instead of transforming the data after loading, we can specify a transform (or a set of transforms)

when we load (or download) the data.

tensor_cifar10 = datasets.CIFAR10(data_path, train=True, download=False,

transform=transforms.ToTensor())

img_t, label = tensor_cifar10[20]

img_t.shape, label

(torch.Size([3, 32, 32]), 4)

plt.imshow(img_t.permute(1, 2, 0)) # change dimension order to H,W,Channel

plt.show()

Second, to improve the learning efficiency, we usually normalize the data from the range of [0,1]

to the range of [-1,1]. To achieve this, we can chain two transforms: transforms.ToTensor(),

transforms.Normalize using transforms.Compose.

transform = transforms.Compose([transforms.ToTensor(),

 transforms.Normalize((0.5,0.5,0.5), (0.5, 0.5, 0.5))])

norm_cifar10 = datasets.CIFAR10(data_path, train=True, download=False,

transform=transform)

norm_img, label=norm_cifar10[5]

plt.imshow(norm_img.permute(1, 2, 0)) # change dimension order to H,W,Channel

plt.show()

Combination of download and transforms

Therefore, we can use the following statements for downloading and transforming (toTensor and

Normalize):
data_path = './data'

transform = transforms.Compose([transforms.ToTensor(),

 transforms.Normalize((0.5,0.5,0.5), (0.5, 0.5, 0.5))])

norm_cifar10 = datasets.CIFAR10(data_path, train=True, download=True,

transform=transform)

norm_cifar10_test = datasets.CIFAR10(data_path, train=False, download=True,

transform=transform)

Files already downloaded and verified

Files already downloaded and verified

Now norm_cifar10 and norm_cifar10_test are lists [(image, label)] for normalized train set and test

set, where image is tensor [3, 32, 32], and label is integer.

7.5.2 Create customized datasets from CIFAR-10

If we want to design a neural network for a binary classification task: airplane or bird, the dataset to

the neural network should only include the images of airplane (originally labeled as 0) or bird (label

as 2). Now let’s create this sub dataset for airplanes and birds only. In the new dataset, the labels for

airplane and birds will be changed to “0” and “1”.

label_map = {0: 0, 2: 1}

class_names = ['airplane', 'bird']

norm_cifar2 = [(img, label_map[label]) for img, label in norm_cifar10 if label

in [0, 2]]

norm_cifar2_test = [(img, label_map[label]) for img, label in norm_cifar10_test

if label in [0, 2]]

The resulting datasets, stored in lists norm_cifar2 and norm_cifar2_test, are normalized and labeled

as 0 for airplane and 1 for bird. We can verify that there are 10,000 images in norm_cifar2 and 2,000

images in norm_cifar2_test.

img, label=norm_cifar2[0]

plt.imshow(img.permute(1, 2, 0)) # change dimension order to H,W,Channel

plt.show()

norm_cifar2[0] (bird) norm_cifar2[5] (airplane)

7.5.3 Build model using nn.Sequential()

PyTorch torch.nn provides classes for almost all neural network building blocks. As an example,

the following codes define a neural network with one 512-unit hidden layer and 2-unit output layer.

import torch.nn as nn

n_out = 2

model = nn.Sequential(

 nn.Linear(3072,512,),

 nn.Tanh(),

 nn.Linear(512,n_out,),

 nn.LogSoftmax(dim=1)

)

nn.Linear is used to define a linear operation before activation in each layer. An instance,

nn.Linear(3072, 512), accepts input tensor with shape (*, 3072) where * means any number of

dimensions including none, and delivers output tensor with shape (*, 512) where all but the last

dimension are the same shape as the input. 3072 and 512 are the size of each sample for input and

output respectively. The input data of neural networks is typically applied to the linear module in

the first hidden layer as a batch at a time for one iteration. Typically, for batch processing, the input

data for the model has a shape of (batch_size, 3072).

nn.Tanh() defines the activation for the hidden layer. loss_fn = nn.NLLLoss(logsoftmax_outs,

labels) takes the output of nn.LogSoftmax for a batch as the first argument and a tensor of class

indices (zeros and ones, in our case) as the second argument. Please note that all the building blocks

are included in order in nn.Sequential().

Now, let’s run one forward propagation on one image.

get the image and label, torch.Size([3, 32, 32])

img, label = norm_cifar2[10]

convert to batch, torch.Size([1, 3072])

img_batch = img.view(-1).unsqueeze(0)

out=model(img_batch) # compute the softmax output

out

out torch.Size([1, 2])
tensor([[-0.8021, -0.5949]], grad_fn=<LogSoftmaxBackward>)

loss = nn.NLLLoss() # define loss function

loss(out, torch.tensor([label]))

tensor(0.5949, grad_fn=<NllLossBackward>)

The following codes run the stochastic gradient descent (i.e. batch size =1) for training.

learning_rate = 1e-2

optimizer = optim.SGD(model.parameters(), lr=learning_rate)

loss_fn = nn.NLLLoss()

n_epochs = 10

for epoch in range(n_epochs):

 for img, label in norm_cifar2:

 out = model(img.view(-1).unsqueeze(0))

 # img: torch.Size([3,32,32])

 # img.view(-1).unsqueeze(0): torch.Size([1,3072])

 # out: torch.Size([1,2])

 loss = loss_fn(out, torch.tensor([label]))

 # torch.tensor([label]) is the target index

 optimizer.zero_grad()

 loss.backward()

 optimizer.step()

 print("Epoch: %d, Loss: %f" % (epoch, float(loss)))

Epoch: 0, Loss: 3.246083

Epoch: 1, Loss: 2.461254

Epoch: 2, Loss: 3.279747

Epoch: 3, Loss: 3.953358

Epoch: 4, Loss: 5.009982

Epoch: 5, Loss: 6.931544

Epoch: 6, Loss: 3.779669

Epoch: 7, Loss: 9.554771

Epoch: 8, Loss: 11.038675

Epoch: 9, Loss: 13.619962

Note that the loss is increasing as the training proceeds. This implies that the training process is not

converging. A reader is encouraged to figure out the reason and fix it.

7.5.4 Train the model using DataLoader

In this section, to utilize PyTorch more efficiently, we modify the model in the previous section and

its training approach in the following aspects:

1) Model architecture

The model will have two hidden layers: the first with 25 units and the second with 12 units. The

hidden layers use ReLU for activation.

2) Loss function

In practice, it is convenient to compute the loss using nn.CrossEntropyLoss, which is

equivalently the combination of nn.LogSoftmax and nn.NLLLoss. Furthermore, LogSoftmax is

a monotonical function whose output is interpreted as the probabilities of classes. The prediction

will pick a class associated with the maximum element in the output of LogSoftmax. Thus, the

output of the nn.Linear in output layer (i.e. the input of LogSoftmax) can be directly used for

prediction. Therefore, nn.LogSoftmax can be removed in the feed-forward model, and

nn.CrossEntropyLoss can be used to compute the loss by taking linear output at the output layer

and the labels (ground truth).

3) Training using DataLoader

The torch.utils.data module has a class that helps with shuffling and organizing the data in

minibatches: DataLoader. The DataLoader constructor takes a Dataset object as input, along

with batch_size and a shuffle Boolean that indicates whether the data needs to be shuffled at the

beginning of each epoch. A DataLoader can be iterated over, so we can use it directly in the

inner loop.

Now let’s put all things together and train the neural network.

import torch.optim as optim

import torch

import torch.nn as nn

train_loader = torch.utils.data.DataLoader(norm_cifar2, batch_size=64,

shuffle=True)

norm_cifar2: list[[tensor[3,32,32], label], [tensor[3,32,32], label],…]

model = nn.Sequential(

 nn.Linear(3072,25),

 nn.ReLU(),

 nn.Linear(25,12),

 nn.ReLU(),

 nn.Linear(12,2)

)

learning_rate = 1e-2

optimizer = optim.SGD(model.parameters(), lr=learning_rate)

loss_fn = nn.CrossEntropyLoss()

n_epochs = 100

for epoch in range(n_epochs):

 for imgs, labels in train_loader:

 batch_size = imgs.shape[0]

 #64 for all, except 16 for the last batch, 10000/64=145.25

 #print(labels.shape)

 outputs = model(imgs.view(batch_size, -1))

 # imgs.view(batch_size,-1): [batch_size, 3072]

 # outputs: [batch_size,2]

 loss = loss_fn(outputs, labels)

 # labels: [64]

 optimizer.zero_grad()

 loss.backward()

 optimizer.step()

 print("Epoch: %d, Loss: %f" % (epoch, float(loss)))

Epoch: 0, Loss: 0.491145

Epoch: 1, Loss: 0.562495

Epoch: 2, Loss: 0.326086

Epoch: 3, Loss: 0.628043

Epoch: 4, Loss: 0.337991

…
Epoch: 94, Loss: 0.019337

Epoch: 95, Loss: 0.022442

Epoch: 96, Loss: 0.034940

Epoch: 97, Loss: 0.022771

Epoch: 98, Loss: 0.161970

Epoch: 99, Loss: 0.052434

To test the accuracy of the trained model on the test dataset, we can similarly feed the data in batches,

and compare the predictions with the labels. Note that the data in the batch is not shuffled, and that

the gradient calculation is disabled.

val_loader = torch.utils.data.DataLoader(norm_cifar2_test, batch_size=64,

shuffle=False)

correct = 0

total = 0

with torch.no_grad():

 for imgs, labels in val_loader:

 batch_size = imgs.shape[0]

 outputs = model(imgs.view(batch_size, -1))

 values, predicted = torch.max(outputs, dim=1) # return (values,indices)

 #print(values, predicted.shape)

 total += labels.shape[0]

 correct += int((predicted == labels).sum())

print("Accuracy: %f" % (correct / total))

Accuracy: 0.837500

7.5.5 Access parameters of the trained model

The overall architecture of model can be printed by

model.parameters

<bound method Module.parameters of Sequential(

 (0): Linear(in_features=3072, out_features=25, bias=True)

 (1): ReLU()

 (2): Linear(in_features=25, out_features=12, bias=True)

 (3): ReLU()

 (4): Linear(in_features=12, out_features=2, bias=True)

)>

The following statement prints all the named parameters, their shapes and values.

for name, param in model.named_parameters():

 if param.requires_grad:

 print (name, param.data.shape, param.data)

PyTorch offers a quick way to determine how many parameters a model has through the parameters()

method of nn.Model (the same method we use to provide the parameters to the optimizer). To find

out how many elements are in each tensor instance, we can call the numel method. Summing those

gives us our total count. Counting parameters might require us to check whether a parameter has

requires_grad set to True, as well.

numel_list = [p.numel() for p in model.parameters()]

sum(numel_list), numel_list

(77163, [76800, 25, 300, 12, 24, 2])

7.6 An Example by PyTorch: Finger Signs

In this section, we will show how easily one can implement a neural network for finger sign

recognition by PyTorch. The neural network architecture is shown in Fig.7.5. The dataset files are

train_signs.h5 (1080 images for training) and test_signs.h5 (120 images for testing). Each image

(64x64x3) is labeled by one of digits from 0 to 5 corresponding to a certain combination of

finger positions.

y=0 y=1 y=2 y=3 y=4 y=5

Fig.7.5 neural network for finger sign recognition

Through this example, we will learn to:

1) Create a class Dataset for DataLoader.

2) Apply regularization: weight penalty or dropout in neural network.

3) Use model.train() for training and model.eval() for testing.

Import packages.

import torch

from torchvision import transforms, datasets

import torch.nn.functional as F

import torch.nn as nn

import torch.optim as optim

import h5py

import numpy as np

from torch.utils.data import Dataset, DataLoader

%matplotlib inline

from matplotlib import pyplot as plt

torch.manual_seed(0)

7.6.1 Create Dataset for DataLoader

If the datasets are not available in the built-in “torchvision.datasets”, we need to generate datasets

which have the same format as torchvision.datasets so that we can use torch.utils.data.DataLoader

in training loop or testing process. In our case, since the datasets are stored in *.h5 files, an effort

is needed to generate the corresponding dataset class.

class signs_train_Dataset(Dataset):

 def __init__(self,root_dir,filename, transforms):

 self.transform = transforms

 self.root_dir = root_dir

 # read the train data file

 self.train_dataset = h5py.File(self.root_dir+filename, "r")

 # your train set features

 self.train_set_x_orig = np.array(self.train_dataset["train_set_x"][:])

 # your train set labels

 self.train_set_y_orig = np.array(self.train_dataset["train_set_y"][:])

 def __len__(self):

 return (self.train_set_x_orig.shape[0])

 def __getitem__(self, index):

 image = self.train_set_x_orig[index]

 if self.transform:

 image = self.transform(image)

 y = self.train_set_y_orig[index]

 return [image, y]

class signs_test_Dataset(Dataset):

 def __init__(self,root_dir,filename, transforms):

 self.transform = transforms

 self.root_dir = root_dir

 # read the test data file

 self.test_dataset = h5py.File(self.root_dir+filename, "r")

 # your test set features

 self.test_set_x_orig = np.array(self.test_dataset["test_set_x"][:])

 # your test set labels

 self.test_set_y_orig = np.array(self.test_dataset["test_set_y"][:])

 def __len__(self):

 return (self.test_set_x_orig.shape[0])

 def __getitem__(self, index):

 image = self.test_set_x_orig[index]

 y = self.test_set_y_orig[index]

 if self.transform:

 image = self.transform(image)

 return [image, y]

Based on the definitions of the Datasets above, we can generate the datasets by specifying the file

path, file name, and transforms, and then create DataLoaders by specifying batch size and shuffle.

train_dataset = signs_train_Dataset("C:/Users/weido/ch11/",'train_signs.h5', tr

ansforms=transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,0

.5,0.5), (0.5, 0.5, 0.5))]))

test_dataset = signs_test_Dataset("C:/Users/weido/ch11/",'test_signs.h5', trans

forms=transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,0.5,

0.5), (0.5, 0.5, 0.5))]))

train_dataloader = DataLoader(train_dataset, batch_size=32, shuffle=True)

test_dataloader = DataLoader(test_dataset, batch_size=32, shuffle=False)

 Now let’s explore and verify train_dataloader and test_dataloader.

for imgs, labels in train_dataloader:

 print(imgs.shape, labels.shape)

for imgs, labels in test_dataloader:

 print(imgs.shape, labels.shape)

The results will show how many batches and the shape of each batch in each dataloader.

7.6.2 Neural network model

The neural network is defined as follows. We add dropout to the first hidden layer.

model = nn.Sequential(

 nn.Linear(12288,25),

 nn.ReLU(),

 # dropout

 nn.Dropout(p=0.4),

 nn.Linear(25,12),

 nn.ReLU(),

 nn.Linear(12,6)

)

7.6.3 Train the model

The training process covers two for-loops. The outer for-loop is designed for epoch

iterations while the inner for-loop iterates on batches. We can add weight regularization by

modifying the loss, see the part commented out. Typically, to implement regularization,

we either use dropout or weight penalty, but not both. Thus, we suggest that you remove

the dropout in the model definition if you want to do weight regularization here.

learning_rate = 1e-3

optimizer = optim.SGD(model.parameters(), lr=learning_rate)

loss_fn = nn.CrossEntropyLoss()

n_epochs = 500

for epoch in range(n_epochs):

 for imgs, labels in train_dataloader:

 batch_size = imgs.shape[0]

 #print(labels.shape)

 outputs = model.train()(imgs.view(batch_size, -1))

 # input to the model: [batch_size, 12288]

 # output: [batch_size, 6]

 loss = loss_fn(outputs, labels) # loss: scalar

 #####--- regularization ----####

 #l2_lambda = 0.005

 #l2_norm = sum(p.pow(2.0).sum() for p in model.parameters())

 #loss = loss + l2_lambda * l2_norm

 optimizer.zero_grad()

 loss.backward()

 optimizer.step()

 if epoch % 10==0:

 print("Epoch: %d, Loss: %f" % (epoch, float(loss)))

Epoch: 0, Loss: 1.832473

Epoch: 10, Loss: 1.676556

Epoch: 20, Loss: 1.554291

…

Epoch: 470, Loss: 0.425223

Epoch: 480, Loss: 0.339189

Epoch: 490, Loss: 0.272545

7.6.4 Test the model

Now, we test the trained model using test_dataloader. To perform the inference, be sure to

disable the gradient calculation using with torch.no_grad(), and model.eval().

correct = 0

total = 0

with torch.no_grad():

 for imgs, labels in test_dataloader:

 batch_size = imgs.shape[0]

 outputs = model.eval()(imgs.view(batch_size, -1))

 values, predicted = torch.max(outputs, dim=1)

 total += labels.shape[0]

 correct += int((predicted == labels).sum())

print("Accuracy: %f" % (correct / total))

Accuracy: 0.891667

The above test, if applied on the train_dataloader, shows the training accuracy of 0.998,

which indicates a slight overfitting because the accuracy on test_dataloader is just

0.891667.

Summary

This chapter presents the basics of PyTorch, and demonstrate the major steps of developing and

training a neural network using PyTorch. There are a few important things of PyTorch make our job

easy:

1) PyTorch classes (Dataset, Compose, DataLoader) help us prepare data.

2) torch.nn provides modules, such as Linear, sigmoid, Tanh, ReLU, LogSoftmax, NLLLoss,

CrossEntropyLoss, so that we can build a neural network efficiently by instantiating relevant

modules. We don’t need to develop the code at a matrix-level.

3) Most importantly, during the training process, PyTorch can automatically track and

calculate the gradient of loss with respect to parameters.

4) Various optimizers are available in PyTorch library.

5) Implementations of regularizations (weight penalty or dropout).

6) It is easy to access the information about the parameters of a trained model.

PyTorch is a powerful tool for us to implement classical deep learning architectures (e.g. convolution

neural networks) in the subsequent chapters.

Files:

C:/Users/weido/torch_tutorial/basics_pytorch.ipynb

 ‘../torch_tutorial/data/faces/person.jpg’

‘../torch_tutorial/data/student_faces/andrew0.jpg, Antonio5.jpg, heidi0.jpg, Jonathon5.jpg

C:/machine_learning/mnist_test.csv, mnist_train.csv

‘../torch_tutorial/data/winequality-white.csv’

C: /Users/weido/ch11/finger_signs.ipynb

C:/Users/weido/ch11/test_signs.h5

C:/Users/weido/ch11/train_signs.h5

References

[1] Chapters 1 to 7, “Deep Learning with PyTorch”, Eli Stevens, Luca Antiga, Thomas Viehmann. 2020 by

Manning Publications Co.

[2] https://pytorch.org/

Exercises

1. Build and train a neural network to classify images: bird/cat using PyTorch:

1) Create your own training set and test set from CIFAR-10. The images in your datasets are

either bird or cat, and normalized.

2) The neural network has two hidden layers with ReLU activations. The first hidden layer

has 20 units and the second layer has 10 units. The output layer is Linear with two units.

Thus, nn.CrossEntropyLoss is used for loss computation.

3) Train your network on your own training set, created in 1).

4) Test your network on your own test set, created in 1). Print the accuracy.

5) How many parameters in your neural network? Print the values of all parameters.

2. Utilizing PyTorch resources, build and train a neural network to recognize handwritten digits

(MNIST dataset). You are free to select a reasonable architecture for the neural network. At the

end, test your trained model, and print the accuracy on the test set.

3. In Section 7.5.3, the training process does not converge because the loss keeps increasing. Try

the following modifications (separately) to see whether they work:

1) Reduce the value of learning_rate, and increase the value of n_epochs.

2) Implement mini-batch gradient descent optimization, with an appropriate value of batch

size.

4. To address the overfitting in the example in Section 7.6, try the following experiments:

1) Change the p value in the nn.Dropout, and train the neural network.

2) Remove the dropout and add weight regularization. You choose an appropriate value for

regularization factor λ, and train the neural network.

https://pytorch.org/

3) Reduce the complexity of the neural network, and train the neural network.

5. Suppose we want to create a DataLoader for training a neural network for a 10-class

classification task. For training, we have 100 images for each class. In the folder “/images”, 10

subfolders are created to store the images for 10 classes respectively. For example, “/images/C0”

stores 100 images for class 0, and “/images/C9” stores 100 images for class 9, and so on. In each

subfolder Cj (where j=0,1,…,9), the image files are named as Cj_img0.jpg, Cj_img1.jpg, …,

Cj_img99.jpg.

Create the following extended class my_Dataset

class my_Dataset(Dataset):

so that we can generate a train_dataloader

train_dataset = my_Dataset("./images", transforms=transforms)

train_dataloader = DataLoader(train_dataset, batch_size=4, shuffle=True)

