
 

 

Chapter 7  

Introduction to PyTorch 

 

 

 

So far we have studied the fundamentals of neural networks. We implemented and trained the 

neural network models in Python from scratch. To make a solid understand of the fundamentals, it 

is essential for us to be able to implement an algorithm from scratch (without relying on package 

tools). In practice, however, it is very time consuming and error-prone to build everything from 

scratch when the project (e.g. deep learning) is typically sophisticated in the real world. Fortunately, 

there are some frameworks or package tools available to accelerate the development of machine 

learning products, such as Scikit-learn, Tensorflow, and PyTorch. These packages include 

functions/classes to abstract commonly used modules or functions from designer’s codes. We just 

need to call those functions/classes instead of writing the codes ourselves, so that we can 

concentrate on the overall project.   

Before we proceed to the topic of deep learning, we introduce PyTorch which you will use to 

develop deep learning project in subsequent chapters. Appendix A gives a tutorial of Jupyter 

Notebook and PyTorch installation. In this chapter, you will learn: 

o The framework of PyTorch 

o Basics of tensors in PyTorch 

o Data representation in tenors 

o Autograd and optimizers in PyTorch 

o Example of linear regression using PyTorch 

o Example of neural network for image classification using Pytorch 

 

7.1 Why PyTorch? 

Deep learning allows us to carry out a very wide range of complicated tasks, like speech 

recognition, playing strategy games (e.g. Alpha Go), or identifying objects in cluttered scenes. In 

practice, we need tools that are flexible, so that they can be adapted to such a wide range of 

problems, and efficient to allow training to occur over large amounts of data in reasonable times; 

and we need the trained model to perform correctly in the presence of variability in the inputs. 

PyTorch is a framework for Python programs that facilitates building deep learning projects. 

PyTorch’s clear syntax, streamlined API, and easy debugging make it an excellent choice 

for implementing deep learning projects. PyTorch has been proven to be fully qualified for use 



 

 

in professional contexts for real-world, high-profile work. PyTorch provides a core data structure, 

the tensor, which is a multidimensional array that shares many similarities with NumPy arrays. 

Compared to NumPy arrays, PyTorch tensors have a few superpowers, such as the ability to 

perform very fast operations on graphical processing units (GPUs), distribute operations on 

multiple devices or machines, and keep track of the graph of computations. These are all important 

features when implementing a modern deep learning framework. 

PyTorch offers two things that make it particularly relevant for deep learning. First, it provides 

accelerated computation using graphical processing units (GPUs), often yielding speedups in the 

range of 50x over doing the same calculation on a CPU. Second, PyTorch provides facilities that 

support numerical optimization on generic mathematical expressions, which deep learning uses for 

training. Note that both features are useful for scientific computing in general, not exclusively for 

deep learning. In fact, PyTorch can be viewed as a high-performance library with optimization 

support for scientific computing in Python. 

Fig.7.1 shows how PyTorch supports a deep learning project. The diagram consists of three layers: 

physical layer, Python layer, and PyTorch layer. The physical layer is the hardware platform on 

which the project gets trained and deployed. In our context, we only need to pay attention to Python 

layer and PyTorch layer. To train a neural network, first we need to physically get the data, most 

often from some sort of storage as the data source. Then we need to convert each sample from our 

data into a tensor. The tensors are usually assembled into batches for mini-batch process. PyTorch 

provides classes Dataset and DataLoader in torch.utils.data package for this purpose. With a 

selected (untrained) model and batch tensors, a training loop will be implemented in CPUs or GPUs 

to fit the model, i.e., to minimize the defined loss function. PyTorch packages, torch.optim and 

torch.nn, provide various classes to support auto-computation of gradients, optimization and 

construction of neural network layers.  

 

 

Fig.7.1 PyTorch framework for deep learning 



 

 

7.2 Tensors 

7.2.1 Tensor: multidimensional array 

Like arrays in NumPy, tensors are the fundamental data structure in PyTorch. A tensor is an array: 

that is, a data structure that stores a collection of numbers that are accessible individually using an 

index, and that can be indexed with multiple indices. PyTorch provides many functions for 

operating on these tensors. Behind the scenes, tensors can keep track of a computational graph and 

gradients, PyTorch tensors can be converted to NumPy arrays and vice versa very efficiently.  

Tensors can be understood as the generalization of vectors and matrices to an arbitrary number of 

dimensions, illustrated in Fig.7.2.  
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Fig.7.2 Tensor data structure 

7.2.2 Indexing and operations on tensors 

We will encounter some frequently used tensor operations as we proceed with the book. The 

complete description of all operations associated with tensors can be found online 

(https://pytorch.org/docs/stable/index.html). In this section, we will demonstrate some basic 

operations on tensors by examples through Jupyter Notebook. 

1) Create a tensor 

We can create a tensor in different ways: from Numpy array, list, random numbers, filling 0s or 1s, 

a range, linear or log scale space, and byte. 

Summary of functions for creating tensors 

Function Description  Example  

eye Identity matrix torch.eye(3) 

from_numpy Convert Numpy array to tensor  torch.from_numpy(a) 

linspace Linear space vector torch.linspace(1, 10, steps=10) 

logspace Log scale space vector torch.logspace(start=-10, end=10, 

steps=5) 

ones Filling with ones  torch.ones(2, 1, 2, 1)       

ones_like Filling with ones torch.ones_like(eye)         

arange Return a 1-D tensor torch.arange(1, 2.5, 0.5) 

zeros Filling with zeros torch.zeros(2, 3) 

zeros_like Filling with zeros for a tensor shape torch.zeros_like(input) 

randn Filling with random numbers torch.randn(3,2)    

https://pytorch.org/docs/stable/index.html


 

 

 

import torch 

import numpy as np 

 

# creating tensors 

# from numpy array 

v_np = np.zeros([3,4]) 

v_tensor = torch.tensor(v_np) 

v_tensor 

 
tensor([[0., 0., 0., 0.], 

        [0., 0., 0., 0.], 

        [0., 0., 0., 0.]], dtype=torch.float64) 

 

# create tensor from list 

v = torch.tensor([2,3])      # a tensor initialized with a list, int64 

v = torch.Tensor([2,3])      # a tensor initialized with a list, float32 

# create tensor from random numbers 

torch.manual_seed(1) 

points=torch.randn(3,2)   # standard normal distribution 

print(points) 

points.shape 

  

tensor([[ 0.6614,  0.2669], 

        [ 0.0617,  0.6213], 

        [-0.4519, -0.1661]]) 

 

torch.Size([3, 2]) 

 

# create by filling with 1 or 0 

eye = torch.eye(3)            # Create an identity 3x3 tensor 

v = torch.ones(10)            # A tensor of size 10 containing all ones 

v = torch.ones(2, 1, 2, 1)    # fill with 1, Size 2x1x2x1 

v = torch.ones_like(eye)      # A tensor with same shape as eye.Fill it with 1. 

v = torch.zeros(10)           # A tensor of size 10 containing all zeros 

 

# create by arange 

v = torch.arange(9) 

print(v) 

v = v.view(3, 3) 

print(v) 

tensor([0, 1, 2, 3, 4, 5, 6, 7, 8]) 

tensor([[0, 1, 2], 

        [3, 4, 5], 

        [6, 7, 8]]) 

 

v = torch.linspace(1, 10, steps=10)  

print(v) 

# Create a Tensor with 10 linear points for (1, 10) inclusively 

v = torch.logspace(start=-10, end=10, steps=5)  

# Size 5: 1.0e-10 1.0e-05 1.0e+00, 1.0e+05, 1.0e+10 

print(v) 

tensor([ 1.,  2.,  3.,  4.,  5.,  6.,  7.,  8.,  9., 10.]) 

tensor([1.0000e-10, 1.0000e-05, 1.0000e+00, 1.0000e+05, 1.0000e+10]) 

 

c = torch.ByteTensor([0, 1, 1, 0]) 

print(c) 

tensor([0, 1, 1, 0], dtype=torch.uint8) 

 



 

 

The objects within a tensor must all be numbers of the same type, and PyTorch must keep track of 

this numeric type. The dtype argument to tensor constructors (e.g. tensor, zeros, ones) specifies the 

numerical data (d) type that will be contained in the tensor. Here’s a list of the possible values for 

the dtype argument: 

 torch.float32 or torch.float: 32-bit floating-point 

 torch.float64 or torch.double: 64-bit, double-precision floating-point 

 torch.float16 or torch.half: 16-bit, half-precision floating-point 

 torch.int8: signed 8-bit integers 

 torch.uint8: unsigned 8-bit integers 

 torch.int16 or torch.short: signed 16-bit integers 

 torch.int32 or torch.int: signed 32-bit integers 

 torch.int64 or torch.long: signed 64-bit integers 

 torch.bool: Boolean 

 

2) Indexing, Slicing, Joining, Mutating Ops 

 

The commonly used functions for indexing, slicing, joining, and mutating are summarized in the 

table below. 

Function Description  Example  

torch.cat Concatenation along a specified 

dimension 
y=torch.cat([v,v,v,v],1) 

x.view Re-organize the tensor shape v.view(3,3) 

torch.stack Add a dimension by stacking y=torch.stack((v,v)) 

torch.gather Gather values along an axis specified 

by dim. 

t = torch.tensor([[1, 2], [3, 4]]) 

torch.gather(t, 0, 

torch.tensor([[0, 0], [1, 0]])) 

torch.transpose Transpose a tensor y = torch.transpose(x, 0, 1) 

torch.squeeze Remove dimensions of size one y = torch.squeeze(x)   

torch.unsqueeze Add a dimension with size one y=torch.unsqueeze(x, 0) 

torch.chunk torch.chunk(input, chunks, dim=0) 

→ List of Tensors: Attempts to split 

a tensor into the specified number of 

chunks. 

y=torch.chunk(x,3,1) 

torch.split torch.split(tensor, split_size, dim=0) y= torch.split(x, [1,2], 1)  

# [1,2] is the size of each section 

torch.index_select torch.index_select(input, dim, index, 

*, out=None) → Tensor 

indices = torch.tensor([0, 2]) 

torch.index_select(x, 1, indices) 



 

 

Returns a new tensor which indexes 

the input tensor along dimension dim 

using the entries in index 

torch.masked_select torch.masked_select(input, mask, *, 

out=None) → Tensor 

Returns a new 1-D tensor which 

indexes the input tensor according to 

the boolean mask mask which is a 

BoolTensor 

mask = x.ge(0) 

y=torch.masked_select(x, mask) 

torch.nonzero returns a 2-D tensor where each row 

is the index for a nonzero value 

y=torch.nonzero(v) 

torch.take torch.take(input, index) → Tensor 

Returns a new tensor with the 

elements of input at the given indices. 

y=torch.take(x, torch.tensor([0, 

2, 5])) 

 

The continued part of Jupyter notebook shows some examples. 

# indexing 

a=points[:, -1] 

print(a) 

a.shape 

 

tensor([ 0.2669,  0.6213, -0.1661]) 

 

torch.Size([3]) 

  

# re-organize: view, cat, stack, gather, squeeze, unsqueeze 

 

v=torch.arange(9) 

v=v.view(3,3) 

v 

tensor([[0, 1, 2], 

        [3, 4, 5], 

        [6, 7, 8]]) 

 

y=torch.cat([v,v,v,v],1)    

# concatenation along with 1 (column) dimension or 0 (row) dimension    

#y.shape 

y 

 

tensor([[0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2], 

        [3, 4, 5, 3, 4, 5, 3, 4, 5, 3, 4, 5], 

        [6, 7, 8, 6, 7, 8, 6, 7, 8, 6, 7, 8]]) 

 

y=torch.stack((v,v))  # add one more dimension 

y.shape 

 

torch.Size([2, 3, 3]) 

 

t = torch.tensor([[1, 2], [3, 4]])    

torch.gather(t, 1, torch.tensor([[0, 0], [1, 0]])) # gather along with column 

(axis 1) 

 

tensor([[1, 1], 

        [4, 3]]) 

 

t = torch.tensor([[1, 2], [3, 4]]) 

torch.gather(t, 0, torch.tensor([[0, 0], [1, 0]]))  # gather along with row 

(axis 0) 



 

 

 

tensor([[1, 2], 

        [3, 2]]) 

 

x = torch.zeros(2, 1, 2, 1, 2) 

print("original", x.size()) 

y = torch.squeeze(x)               # dimensions with size 1 will be removed 

print("after squeeze", y.size()) 

original torch.Size([2, 1, 2, 1, 2]) 

after squeeze torch.Size([2, 2, 2]) 

 

x = torch.tensor([1, 2, 3, 4]) 

print(x.shape, x) 

y=torch.unsqueeze(x, 0)  

# Returns a new tensor with a dimension of size one  

# inserted at the specified position. 

print(y.shape, y) 

y=torch.unsqueeze(x, 1) 

print(y.shape, y) 

torch.Size([4]) tensor([1, 2, 3, 4]) 

torch.Size([1, 4]) tensor([[1, 2, 3, 4]]) 

torch.Size([4, 1]) tensor([[1], 

        [2], 

        [3], 

        [4]]) 

 

# torch.transpose(input, dim0, dim1) 

# Returns a tensor that is a transposed version of input. 

# The given dimensions dim0 and dim1 are swapped. 

x = torch.randn(2,3) 

y = torch.transpose(x, 0, 1) 

print(x) 

print(y) 

tensor([[-1.5228,  0.3817, -1.0276], 

        [-0.5631, -0.8923, -0.0583]]) 

tensor([[-1.5228, -0.5631], 

        [ 0.3817, -0.8923], 

        [-1.0276, -0.0583]]) 

 
y=torch.chunk(x,3,1)   # 3 is the number of chunks 

y= torch.split(x, [1,2], 1) # [1,2] is the size of each section 

y[1] 

 

tensor([[ 0.3817, -1.0276], 

        [-0.8923, -0.0583]]) 

indices = torch.tensor([0, 2]) 

torch.index_select(x, 1, indices) # select along dimension 1 by indices 

 

tensor([[-1.5228, -1.0276], 

        [-0.5631, -0.0583]]) 

 

mask = x.ge(0) 

print(mask) 

tensor([[False,  True, False], 

        [False, False, False]]) 

 

y=torch.masked_select(x, mask) 

print(y.shape, y) 

torch.Size([1]) tensor([0.3817]) 

 

y=torch.nonzero(v) # return the index for non-zero elements in v 

print(y.shape, y) 

torch.Size([8, 2]) tensor([[0, 1], 



 

 

        [0, 2], 

        [1, 0], 

        [1, 1], 

        [1, 2], 

        [2, 0], 

        [2, 1], 

        [2, 2]]) 

 

y=torch.take(x, torch.tensor([0, 2, 5])) 

print(y) 

tensor([-1.5228, -1.0276, -0.0583]) 

3) Point-wise operations 

Pointwise (or element-wise) operations operate on each element in the tensor in the same way 

simultaneously. Commonly used point-wise operations are summarized in the table below. 

Function Description  Example  

abs Absolute value torch.abs(x) 

acos arc cosine torch.acos(x) 

add Return: a+10*b torch.add(a,10, b) 

addcmul t1+s*(t2*t3) torch.addcmul(t1, t2, t3, value=s) 

asin, atan, atan2 arcsine and arctangent torch.asin(x) 

ceil Round up to the integer torch.ceil(x) 

clamp Clamp values in a tensor torch.clamp(x, min=-0.5, max=0.5) 

cos, cosh Cosine, hyperbolic cosine  

div Element-wise divide torch.div(x, x2) 

erf Compute Gaussian error function  

erfinv Inverse of erf  

exp Exponential function torch.exp(x) 

expm1 Computes exp(x)-1, but provides 

greater precision than exp(x) - 1 for 

small values of x. 

torch.expm1(x) 

floor Round down to integer torch.floor(x) 

fmod Remainder of division  

frac Get fraction part torch.frac(x) 

lerp Linear interpolation torch.lerp(start, end, 0.5) 

log Natural log torch.log(x) 

logp1 Log(x+1) torch.log(x) 

mul Element-wise multiply torch.mul(x,x2)  

neg Return negative of elements torch.neg(x) 

pow Take power of each element torch.pow(x,x2) 



 

 

reciprocal 1/x torch.reciprocal(x) 

remainder Remainder of division torch.remainder(x,x2) 

round Rounds elements of input to the 

nearest integer. 

torch.round(x)  

sigmoid Sigmoid function torch.sigmoid(x) 

sign Returns a new tensor with the signs 

of the elements of input. (1 for 

positive, 0 for 0, -1 for negative) 

torch.sign(x) 

sin, sinh sine, hyperbolic sine torch.sin(x) 

sqrt Square root torch.sqrt(x) 

tan, tanh Tangent, hyperbolic tangent torch.tan(x) 

trunc Returns a new tensor with the 

truncated integer values of the 

elements of input. 

torch.trunc(x) 

 

Examples are shown in the following codes. For more detailed information, one can refer to Pytorch 

official website (https://pytorch.org/docs/stable/).  
 

# point-wise operations 

y=torch.abs(x) 

print(y) 

tensor([[1.5228, 0.3817, 1.0276], 

        [0.5631, 0.8923, 0.0583]]) 

 

x2=torch.randn(2,3) 

print(x2) 

tensor([[-0.1955, -0.9656,  0.4224], 

        [ 0.2673, -0.4212, -0.5107]]) 

 

y=torch.add(x,10) # add 10 to all elements 

print(y) 

tensor([[ 8.4772, 10.3817,  8.9724], 

        [ 9.4369,  9.1077,  9.9417]]) 

 

y=torch.add(x,10,x2) # x+10*x2 

print(y) 

tensor([[-3.4779, -9.2747,  3.1965], 

        [ 2.1101, -5.1042, -5.1652]]) 

 

y=torch.clamp(x2,min=-0.5, max=0.5) 

print(y) 

tensor([[-0.1955, -0.5000,  0.4224], 

        [ 0.2673, -0.4212, -0.5000]]) 

 

y=torch.div(x, x2) 

y=torch.mul(x,x2) 

y=torch.acos(x) 

y=torch.ceil(x) 

y=torch.pow(x,x2) 

y=torch.reciprocal(x) 

y=torch.sign(x) 

y=torch.sqrt(x) 

print(y) 

tensor([[   nan, 0.6178,    nan], 

        [   nan,    nan,    nan]]) 

https://pytorch.org/docs/stable/


 

 

4) Reduction operations 

Reduction operations usually return a scalar or a tensor with a smaller size than input tensor. The 

commonly used reduction operations are summarized below. 

 

Function Description Example 

cumprod Returns the cumulative product of 

elements of input in the dimension dim. 

y=torch.cumprod(v,0) 

cumsum Returns the cumulative sum of 

elements of input in the dimension dim. 

y=torch.cumsum(v,1) 

dist torch.dist(input, other, p=2) 

Returns the p-norm of (input - other) 

d=torch.dist(x, x2, p=2) 

mean Returns mean d=torch.mean(v,0, True) 

median Returns median for all or a dimension d=torch.median(v,0) 

mode Returns mode and index d=torch.mode(v,1) 

prod Returns product of elements d=torch.prod(v,0) 

std Standard deviation d=torch.std(v,0) 

sum Returns sum d=torch.sum(v, 1) 

var Variance of all elements d=torch.var(v,0) 

 

Examples: 

# Reduction operations 

v=v.to(torch.float32) # some operations do not support long type,  

v 

 

tensor([[0., 1., 2.], 

        [3., 4., 5.], 

        [6., 7., 8.]]) 

 

y=torch.cumprod(v,0) #cummulative product along dimension 0 

y=torch.cumsum(v,1)  #cummulative sum along dimension 1 

d=torch.dist(v, v+3, p=2) 

d=torch.mean(v,0, True) # True keep dimension 

d=torch.mean(v) # mean for all elements 

d=torch.sum(v,1) 

d=torch.median(v,0) 

d=torch.mode(v,1) # return mode and index 

d=torch.prod(v,0) # product of elements 

d=torch.std(v,0)  # standard deviation 

d=torch.var(v,0)  # variance 

print(d) 

tensor([9., 9., 9.]) 

 

5) Comparison operation 
 

 

Function Description Example 

eq Element-wise comparison. Return a 

tensor with Boolean elements (True or 

False) 

y=torch.eq(x,x2) 

equal True if two tensors are the same d=torch.equal(x,x2) 



 

 

ge, gt True if greater or equal, if greater, 

element-wise 

 d=torch.ge(x, x2) 

kthvalue Returns a namedtuple (values, indices) 

where values is the k-th smallest element 

of each row of the input tensor in the 

given dimension dim 

d=torch.kthvalue(v,2, 0, True) 

le, lt True if less or equal, if less than, element-

wise 

d=torch.le(x,x2) 

max Returns maximal elements and indices d=torch.max(v,0) 

min Returns minimal elements and indices d=torch.min(v,0) 

ne True if not equal, element-wise d=torch.ne(x,x2) 

sort Returns a sorted tensor and indices d=torch.sort(v,0) 

topk Returns top k values along the dimension d=torch.topk(v,2) 

 

Examples: 

# Comparison operations 

 

d=torch.eq(x,x2) 

d=torch.max(v,0) 

d=torch.equal(v,v) 

d=torch.ge(x,x2) 

d=torch.gt(x,x2) 

d=torch.kthvalue(v, 2, 0, True) 

d=torch.ne(x,x2) 

d=torch.sort(v,0) 

d=torch.topk(v,2) 

print(d) 

torch.return_types.topk( 

values=tensor([[2., 1.], 

        [5., 4.], 

        [8., 7.]]), 

indices=tensor([[2, 1], 

        [2, 1], 

        [2, 1]])) 

 

6) Matrix, vector multiplication 

 

Commonly used basic functions: 

Function Description Example 

dot Computes the dot product of two 1D 

tensors. 

d=torch.dot(torch.tensor([1,2]), 

torch.tensor([3,4])) 

mv Performs a matrix-vector product of the 

matrix input and the vector vec 

d = torch.mv(input, vec) 

addmv Performs a matrix-vector product of the 

matrix mat and the vector vec. The 

vector input is added to the final result. 

input+matvec 

 d = torch.addmv(input, mat, vec) 

mm Performs a matrix multiplication of the 

matrices input and mat2. 

d=torch.mm(input, mat2) 

addmm Performs a matrix multiplication of the 

matrices mat1 and mat2. The matrix 

input is added to the final result. 

d=torch.addmm(input,mat1,mat2) 



 

 

bmm Batch matrix multiplication d = torch.bmm(batch1, batch2) 

addbmm Performs a batch matrix-matrix product 

of matrices stored in batch1 and batch2, 

with a reduced add step (all matrix 

multiplications get accumulated along 

the batch dimension). input is added to 

the final result. 

d = torch.addbmm(M, batch1, 

batch2) 

 

Examples: 

 

# Matrix, vector multiplication 

 

d=torch.dot(torch.tensor([1,2]), torch.tensor([3,4])) 

mat = torch.randn(2, 4) 

vec = torch.tensor([1.,2.,3.,4.]) 

d = torch.mv(mat, vec) 

# Matrix + Matrix X vector 

# Size 2 

M = torch.randn(2) 

mat = torch.randn(2, 3) 

vec = torch.randn(3) 

d = torch.addmv(M, mat, vec) 

# Matrix x Matrix 

# Size 2x4 

mat1 = torch.randn(2, 3) 

mat2 = torch.randn(3, 4) 

d = torch.mm(mat1, mat2) 

 

# Matrix + Matrix X Matrix 

# Size 3x4 

M = torch.randn(3, 4) 

mat1 = torch.randn(3, 2) 

mat2 = torch.randn(2, 4) 

d = torch.addmm(M, mat1, mat2) 

# Batch Matrix x Matrix 

# Size 10x3x5 

batch1 = torch.randn(10, 3, 4) 

batch2 = torch.randn(10, 4, 5) 

d = torch.bmm(batch1, batch2) 

# Batch Matrix + Matrix x Matrix 

# Performs a batch matrix-matrix product 

# 3x2 + (5x3x4 X 5x4x2 ) -> 5x3x2 

M = torch.randn(3, 2) 

batch1 = torch.randn(5, 3, 4) 

batch2 = torch.randn(5, 4, 2) 

d = torch.addbmm(M,batch1, batch2) 

 

print(d.shape) 

torch.Size([3, 2]) 

 

Note that our purpose in this section is to get familiar with operations on tensors, but is not to 

include a complete reference for all available tensor operations. There are many other operations 

which are not included here. Please check PyTorch website for a complete reference. 
 



 

 

7.3 Data Representation using Tensors 
 

In PyTorch framework, neural networks take tensors as input and produce tensors as outputs. 

Furthermore, all operations within a neural network and during optimization are operations between 

tensors, and all parameters (for example, weights and biases) in a neural network are tensors. In 

this section, we will describe how to handle real-world data using tensors. 

7.3.1 Images 

An image is represented as a collection of scalars arranged in a regular grid with a height and a 

width (in pixels). A grayscale image has a single scalar per pixel while a colorful image typically 

has three or more scalars per pixel.  The three scalars for colorful images are associated with the 

intensity of three colors (Red, Green, Blue), and are often encoded as 8-bit integers (i.e. 0-255).  

There are different formats to store images in files (e.g. *.jpg, *.gif, *.png) and different ways to 

load (read) image file in Python. If the image data is loaded into a NumPy array, it can be converted 

to PyTorch tesnor. Note that PyTorch modules dealing with image data require tensors to be laid 

out as C × H × W: channels, height, and width, respectively. A batch tensor of multiple images 

should have a dimension layout as: N × C × H × W: image, channel, height, and width. For instance, 

we can use the following statements to read an image file, and then load to a tensor for PyTorch 

modules. 

import imageio 

import matplotlib.pyplot as plt 

 

# read to numpy array 

img_np = imageio.imread('../torch_tutorial/data/faces/person.jpg') 

print(img_np.shape) 

(239, 209, 3) 

 

# display the image 

plt.imshow(img_np) 

plt.show() 

 

img_tensor=torch.from_numpy(img_np) 

print(img_tensor.shape) 

torch.Size([239, 209, 3]) 

 

# display the image 

plt.imshow(img_tensor) 

plt.show() 

 

 

out=img_tensor.permute(2,0,1)   # Pytorch: Channelxheightxwidth =CxHxW 

print(out.shape) 

torch.Size([3, 239, 209]) 

 

The following codes read multiple image files in a folder, and then store them in a batch 

tensor with a format [batch, C, W, H].  

batch_size = 4 

batch = torch.zeros(batch_size, 3, 96, 96, dtype=torch.uint8) 



 

 

import os 

data_dir = '../torch_tutorial/data/student_faces/' 

filenames = [name for name in os.listdir(data_dir) if os.path.splitext(name)[-1

] == '.jpg'] 

for i, filename in enumerate(filenames): 

    img_arr = imageio.imread(os.path.join(data_dir, filename)) 

    img_t = torch.from_numpy(img_arr) 

    img_t = img_t.permute(2, 0, 1) 

    img_t = img_t[:3] 

    batch[i] = img_t 

     

print(batch.shape) 

# display the image 

plt.imshow(batch[1].permute(1,2,0)) 

plt.show() 

torch.Size([4, 3, 96, 96]) 

 

7.3.2 Excel CSV files 

Another format for data storage is spreadsheet or CSV file. It’s a table with each row corresponding 

to one example (or record), while each column corresponds to one feature (or attribute) or the label 

of the example.  

We can use numpy.loadtxt to read the data from a CSV file. For example, the image examples of 

handwritten digits are saved as CSV files mnist_train.csv and mnist_test.csv, which are available 

at https://www.kaggle.com/datasets/oddrationale/mnist-in-csv. The mnist_train.csv file contains 

the 60,000 training examples and labels. The mnist_test.csv contains 10,000 test examples and 

labels. Each row consists of 785 values: the first value is the label (a number from 0 to 9) and the 

remaining 784 values (i.e. 28 × 28 pixels) are the pixel values (a number from 0 to 255).  
import csv 

 

import numpy as np 

 

xy_path = "c:/machine_learning/mnist_test.csv" 

xy_numpy = np.loadtxt(xy_path, delimiter=",") 

xy_t=torch.tensor(xy_numpy) 

 

print(xy_t.shape) 

xy_t 

torch.Size([10000, 785]) 

 

tensor([[7., 0., 0.,  ..., 0., 0., 0.], 

        [2., 0., 0.,  ..., 0., 0., 0.], 

        [1., 0., 0.,  ..., 0., 0., 0.], 

        ..., 

        [4., 0., 0.,  ..., 0., 0., 0.], 

        [5., 0., 0.,  ..., 0., 0., 0.], 

        [6., 0., 0.,  ..., 0., 0., 0.]], dtype=torch.float64) 

 

# display the image 

plt.imshow(xy_t[0][1:].view(28,28)) 

plt.show() 

 

 

 

  

https://www.kaggle.com/datasets/oddrationale/mnist-in-csv


 

 

Some CSV files use “;” as delimiter and/or include a header line. For example, the wine quality 

dataset, publicly available at https://archive.ics.uci.edu/ml/datasets/wine+quality, contains a 

semicolon-separated collection of values organized in 12 columns preceded by a header line 

containing the column names. The first 11 columns contain values of chemical variables, and the 

last column contains the sensory quality score from 0 (very bad) to 10 (excellent), shown in Fig.7.3. 

 

 

Fig.7.3 a portion of winequality-white.csv 

The following codes read the wine quality data, split the data into two parts: input features and 

labels, and normalize each feature. The results are stored in the corresponding tensors. 

wine_path = "../torch_tutorial/data/winequality-white.csv" 

wine_numpy = np.loadtxt(wine_path, delimiter=";", skiprows=1) 

wine_tensor=torch.from_numpy(wine_numpy) 

print(wine_tensor.shape) 

wine_tensor 

torch.Size([4898, 12]) 

 

tensor([[ 7.0000,  0.2700,  0.3600,  ...,  0.4500,  8.8000,  6.0000], 

        [ 6.3000,  0.3000,  0.3400,  ...,  0.4900,  9.5000,  6.0000], 

        [ 8.1000,  0.2800,  0.4000,  ...,  0.4400, 10.1000,  6.0000], 

        ..., 

        [ 6.5000,  0.2400,  0.1900,  ...,  0.4600,  9.4000,  6.0000], 

        [ 5.5000,  0.2900,  0.3000,  ...,  0.3800, 12.8000,  7.0000], 

        [ 6.0000,  0.2100,  0.3800,  ...,  0.3200, 11.8000,  6.0000]], 

       dtype=torch.float64) 

 

# split the data into input and label 

input_data=wine_tensor[:,:-1] 

label=wine_tensor[:, -1].long() 

print(label) 

tensor([6, 6, 6,  ..., 6, 7, 6]) 

 

# normalize each feature 

input_data_mean=torch.mean(input_data, 0) 

input_data_var=torch.var(input_data,0) 

input_data_normalized = (input_data - input_data_mean) / 

torch.sqrt(input_data_var) 

 

We can use the following statement to read the header line to col_list that may be useful. 

col_list =next(csv.reader(open(wine_path), delimiter=';')) 

 

col_list 

 

['fixed acidity', 

 'volatile acidity', 

 'citric acid', 

 'residual sugar', 

https://archive.ics.uci.edu/ml/datasets/wine+quality


 

 

 'chlorides', 

 'free sulfur dioxide', 

 'total sulfur dioxide', 

 'density', 

 'pH', 

 'sulphates', 

 'alcohol', 

 'quality'] 

 

7.3.3 Converting categorical label to one-hot label 

As we discussed in previous chapters, the categorical labels in a multi-classification task 

are usually converted to one-hot encoded labels. Consider a 10-category classification. Ten 

categories are first labeled as ten integers (0,1,2,3,4,5,6,7,8,9), respectively. The one-hot 

label of a category is a vector of 10 elements, with all elements set to 0, but 1 at the index 

specified by the categorical integer label. For example, category “2” will be mapped to a 

one-hot label [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]. The following codes show how to convert the 

integer labels into one-hot coded labels. 

# generate onehot for label tensor 

label_examples=torch.tensor([0,1,2,3,4,5,6,7,8,9,3,4,9,1]) 

label_onehot = torch.zeros(label_examples.shape[0], 10) 

label_onehot.scatter_(1, label_examples.unsqueeze(1), 1.0) 

label_onehot 

 

tensor([[1., 0., 0., 0., 0., 0., 0., 0., 0., 0.], 

        [0., 1., 0., 0., 0., 0., 0., 0., 0., 0.], 

        [0., 0., 1., 0., 0., 0., 0., 0., 0., 0.], 

        [0., 0., 0., 1., 0., 0., 0., 0., 0., 0.], 

        [0., 0., 0., 0., 1., 0., 0., 0., 0., 0.], 

        [0., 0., 0., 0., 0., 1., 0., 0., 0., 0.], 

        [0., 0., 0., 0., 0., 0., 1., 0., 0., 0.], 

        [0., 0., 0., 0., 0., 0., 0., 1., 0., 0.], 

        [0., 0., 0., 0., 0., 0., 0., 0., 1., 0.], 

        [0., 0., 0., 0., 0., 0., 0., 0., 0., 1.], 

        [0., 0., 0., 1., 0., 0., 0., 0., 0., 0.], 

        [0., 0., 0., 0., 1., 0., 0., 0., 0., 0.], 

        [0., 0., 0., 0., 0., 0., 0., 0., 0., 1.], 

        [0., 1., 0., 0., 0., 0., 0., 0., 0., 0.]]) 

 

7.4 Linear Regression using PyTorch 

In this section, we will implement a linear regression using PyTorch. Through the example, we will 

show how to utilize the PyTorch resources (e.g. autograd and optim) for machine learning. These 

resources will significantly reduce the efforts of development. 

7.4.1 Dataset 

Consider a task of fitting a linear model to a dataset (X,Y). All examples are given 

x=torch.tensor([6.1101, 5.5277, 8.5186, 7.0032, 5.8598, 8.3829, 7.4764, 8.5781, 6.4862, 

5.0546, 5.7107, 14.164, 5.734, 8.4084, 5.6407, 5.3794, 6.3654, 5.1301, 6.4296, 7.0708]) 

y=torch.tensor([17.592, 9.1302, 13.662, 11.854, 6.8233, 11.886, 4.3483, 12, 6.5987, 

3.8166,3.2522, 15.505, 3.1551, 7.2258, 0.71618, 3.5129, 5.3048, 0.56077, 3.6518, 5.3893])  



 

 

7.4.2 Linear regression without using autograd 

To get familiar with PyTorch tensors, we fit the above dataset to a linear model in the same way as 

we did in chapter 3, except using tensors instead of NumPy arrays. In the next section, we will 

utilize PyTorch autograd and optimization functions to reduce the efforts of computing the 

backward propagation.   

x=torch.tensor([6.1101, 5.5277, 8.5186, 7.0032, 5.8598, 8.3829, 7.4764, 8.5781, 

6.4862, 5.0546, 5.7107, 14.164, 5.734, 8.4084, 5.6407, 5.3794, 6.3654, 5.1301, 

6.4296, 7.0708]) 

 

y=torch.tensor([17.592, 9.1302, 13.662, 11.854, 6.8233, 11.886, 4.3483, 12, 

6.5987, 3.8166,3.2522, 15.505, 3.1551, 7.2258, 0.71618, 3.5129, 5.3048, 

0.56077, 3.6518, 5.3893])  

 

from matplotlib import pyplot as plt 

fig = plt.figure(dpi=600) 

plt.xlabel("x") 

plt.ylabel("y") 

plt.plot(x.numpy(), y.numpy(), 'o') 

plt.show() 

 

# 1) define the linear model 

def model_linear(x,w,b): 

    y=w*x+b 

    return y 

 

# 2) define the loss function 

def loss_fn(y, label): 

    se=(y-label)**2 

    mse=se.mean() 

    return mse 

 

# 3) define the gradient 

def grad_fn(x,y,w,b): 

    y_pred=model_linear(x,w,b) 

    dw=2.0*(y_pred-y)*x/y.size(0) 

    db=2.0*(y_pred-y)/y.size(0) 

    return torch.stack([dw.sum(),db.sum()]) 

 

# 4) define the training loop 

def training_loop(n_epochs, learning_rate, params, x, y): 

    loss_tensor=torch.zeros(n_epochs) 

    for epoch in range(1, n_epochs+1): 

        w,b=params 

        y_pred=model_linear(x,w,b) 

        loss=loss_fn(y_pred,y) 

        grad=grad_fn(x,y,w,b) 

        params=params-learning_rate*grad 

        print('Epoch %d, Loss %f' % (epoch, float(loss)))  

        loss_tensor[epoch-1]=loss 

    return params, loss_tensor 



 

 

# 5) run the training loop 

 

params, loss_tensor= training_loop( 

    n_epochs = 100, 

    learning_rate = 0.002, 

    params =torch.tensor([0.0,0.0]), 

    x=x, 

    y=y)  

 

Epoch 1, Loss 76.284782 

Epoch 2, Loss 52.976959 

Epoch 3, Loss 38.543888 

Epoch 4, Loss 29.606319 

 

… 

 

# 6) plot the results 

params 

 

tensor([1.0746, 0.0512]) 

 

fig = plt.figure(dpi=600) 

pred=model_linear(x,params[0],params[1]) 

plt.xlabel("x") 

plt.ylabel("y") 

plt.plot(x.numpy(), pred.detach().numpy()) 

plt.plot(x.numpy(), y.numpy(), 'o') 

 

 
 
fig = plt.figure(dpi=600) 

plt.xlabel("epochs") 

plt.ylabel("MSE") 

plt.plot(loss_tensor.detach().numpy()) 

 

 
 



 

 

7.4.3 Linear regression using autograd 

 

1) PyTorch autograd 

In many applications, especially deep learning, it is challenging to analytically compute the 

derivatives of loss function with respect to parameters. PyTorch provides a component called 

autograd to track and compute the derivatives of a tensor with respect to its source tensors. PyTorch 

tensors can remember where they come from, in terms of the operations and parent tensors that 

originated them, and they can automatically provide the chain of derivatives of such operations 

with respect to their inputs. Therefore, given a forward expression, PyTorch will automatically 

provide the gradient of that expression with respect to its input parameters. 

 

Applying autograd 

In general, all PyTorch tensors have an attribute named grad. To activate the computation of 

gradients with respect to a tensor, say params, the argument, requires_grad, for tensor params has 

to be set True, so that PyTorch will track the entire family tree of tensors resulting from operations 

on this tensor params. In other words, any tensor that has params as an ancestor will have access 

to the chain of functions that were called to get from params to that tensor. In case these functions 

are differentiable (and most PyTorch tensor operations will be), the value of the derivative will be 

automatically populated as a grad attribute of the params tensor. Let’s consider the linear regression 

in the previous section and compute the gradient of loss function with respect to tensor params 

([w,b]) in one step. Fig.7.4 shows the compuation flow chart. All tensors have an attribute of *.grad, 

and this attribute has an initial value “None”, which means that no gradient has been computed (or 

available). 

 

 
Fig.7.4 autograd computation chart 

 

An example of using autograd is shown below. 

 
params = torch.tensor([1.0, 0.0], requires_grad=True)  #initial and requires_grad to True 

y_pred=model_linear(x,params[0], params[1])           #forward propagation 

loss=loss_fn(y_pred,y)           #loss computation 

loss.backward()           # call .backward() for autograd 

params.grad             # display gradient values, dloss/dw, dloss/db 

 

tensor([-8.5768, -0.6954]) 



 

 

 

Remarks: a) the grad attribute of params contains the derivatives of the loss with respect to each 

element of params. Its value is “None” before the first loss.backward() is called. 

No need to compute the gradient from the analytical expression.  

  b) the exution of computation from params to loss is required each time before 

loss.backward() is called; 

 c) if we repeat the autograd from “y_pre…” statement to statement loss.backward()           

, the new gradient will accumulated (added) to the old one. 

Zero gradient 

As we knew previsouly, if loss.backward was called earlier, and the forward path and the loss are 

evaluated again, backward is called again (as in any training loop), then the gradient is accumulated 

(that is added) to the one computed at the previous iteration, which leads to an incorrect value for 

the gradient. To prevent this from happening, we need to set the gradient to zero explicitly at each 

iteration by inserting the following statement any location before loss.backward(). 

 
if params.grad is not None: 

params.grad.zero_() 

 

Disable gradient calculation 

with torch.no_grad(): 

Context-manager that disables gradient calculation. Disabling gradient calculation is useful for 

inference, when you are sure that you will not call Tensor.backward(). It will reduce memory 

consumption for computations that would otherwise have requires_grad=True. In this mode, the 

result of every computation will have requires_grad=False, even when the inputs have 

requires_grad=True. 

 

2) Linear regression using autograd 

Now, we are ready to apply autograd to our previous linear regression project. Please note that: 1) 

we need to zero the params.grad at the beginning of iteration; 2) we disable the gradient calculation 

during the params updating; and 3) In-place update is used for params updating.   

def training_loop_autograd(n_epochs, learning_rate, params, x, y): 

    loss_tensor=torch.zeros(n_epochs) 

    for epoch in range(1, n_epochs+1): 

        if params.grad is not None: 

            params.grad.zero_() 

        w,b=params 

        y_pred=model_linear(x,w,b) 

        loss=loss_fn(y_pred,y) 

        loss.backward() 

         

        with torch.no_grad():       # no grad computation involved 

            params -= learning_rate * params.grad 

         

        #params=params-learning_rate*grad 

        print('Epoch %d, Loss %f' % (epoch, float(loss)))  

        loss_tensor[epoch-1]=loss 

    return params, loss_tensor 

 



 

 

# run the training loop 

params, loss_tensor= training_loop_autograd( 

    n_epochs = 100, 

    learning_rate = 0.002, 

    params =torch.tensor([0.0,0.0], requires_grad=True), 

    x=x, 

    y=y) 

 

Epoch 1, Loss 76.284782 

Epoch 2, Loss 52.976959 

Epoch 3, Loss 38.543884 

Epoch 4, Loss 29.606318 

… 

 

Results, shown below, are close to the results we got based on analytic gradient calculation in the 

previous section. 
 

params 

 

tensor([1.0746, 0.0512], requires_grad=True) 

 

fig = plt.figure(dpi=600) 

pred=model_linear(x,params[0],params[1]) 

plt.xlabel("x") 

plt.ylabel("y") 

plt.plot(x.numpy(), pred.detach().numpy()) 

plt.plot(x.numpy(), y.numpy(), 'o') 

 
 

7.4.4 Linear regression using autograd and optim 

 

To further take advantage of PyTorch, we can instantiate PyTorch optimization module for 

parameter updating. In chapter 6, we discussed how to update the parameters based on gradients, 

such as momentum and Adam algorithms, in addition to the simple constant learning rate updating. 

In fact, there are more optimization methods available. PyTorch provide a submodule module 

torch.optim where we can find classes implementing different optimization algorithms. It is 

beneficial to utilize this optimization facility in terms of code efficiency and reliability.  

 
import torch.optim as optim 

dir(optim) 

['ASGD', 

 'Adadelta', 

 'Adagrad', 



 

 

 'Adam', 

 'AdamW', 

 'Adamax', 

 'LBFGS', 

 'Optimizer', 

 'RMSprop', 

 'Rprop', 

 'SGD', 

 'SparseAdam', 

 '__builtins__', 

 '__cached__', 

 '__doc__', 

 '__file__', 

 '__loader__', 

 '__name__', 

 '__package__', 

 '__path__', 

 '__spec__', 

 'lr_scheduler'] 

To use one of the optimization algorithms in torch.optim, first we should construct (instantiate)  an 

optimizer by taking a list of parameters (aka PyTorch tensors, typically with requires_grad set to 

True) as the first input. All parameters passed to the optimizer are retained inside the optimizer 

object so the optimizer can update their values and access their grad attribute. Then, we need to 

zero the gradient and call the optimizer. Two methods associated with the optimizer allow us to 

achieve this: zero_grad and step. Method zero_grad zeroes the grad attribute of all the parameters 

passed to the optimizer upon construction. Method step updates the value of those parameters 

according to the optimization strategy implemented by the specific optimizer. One iteration of 

parameters can be implemented as follows. 

 
params = torch.tensor([0.0, 0.0], requires_grad=True) 

learning_rate = 0.002 

optimizer = optim.SGD([params], lr=learning_rate)   # construct an optimizer 

y_pred=model_linear(x,params[0], params[1]) 

loss=loss_fn(y_pred,y) 

loss = loss_fn(y_pred, y)                     # calculate loss 

optimizer.zero_grad()      # zero grad 

loss.backward()            # loss backward 

optimizer.step()           # one step params update 

params 

tensor([0.2265, 0.0292], requires_grad=True) 

 

Thus, the linear regression can be implemented using autograd and optim as follows. 
 

import torch.optim as optim 

 
def training_loop_autograd_optim(optimizer, n_epochs, params, x, y): 

    loss_tensor=torch.zeros(n_epochs) 

    for epoch in range(1, n_epochs+1): 

        w,b=params                  # forward path 

        y_pred=model_linear(x,w,b) 

        loss=loss_fn(y_pred,y)      # loss 

        optimizer.zero_grad()       # zero grad 



 

 

        loss.backward()             # calculate grad by autograd 

        optimizer.step()            # update params by optimizer 

          

        print('Epoch %d, Loss %f' % (epoch, float(loss)))  

        loss_tensor[epoch-1]=loss 

    return params, loss_tensor 

 

Before running the training loop, we need to create a tensor params, with requires_grad=True, and 

instantiate an optimizer. Note that the resulting params, shown below, is slightly different from 

vanilla gradient descent algorithm. The reason is that different optimizers have different converge 

speed, but we set the number of epochs to 100 for all. If we increase the number of epochs for the 

iteration loop, the results should be closer.  

 
params = torch.tensor([0.0, 0.0], requires_grad=True) 

learning_rate = 1e-2 

optimizer = optim.RMSprop([params], lr=learning_rate) 

params, loss_tensor = training_loop_autograd_optim( 

n_epochs = 100, 

optimizer = optimizer, 

params = params, 

x = x, 

y = y) 

 

Epoch 1, Loss 76.284782 

Epoch 2, Loss 64.170250 

Epoch 3, Loss 56.819836 

Epoch 4, Loss 51.455879 

…  

 

params 

 

tensor([0.9578, 0.8307], requires_grad=True) 

 

fig = plt.figure(dpi=600) 

pred=model_linear(x,params[0],params[1]) 

plt.xlabel("x") 

plt.ylabel("y") 

plt.plot(x.numpy(), pred.detach().numpy()) 

plt.plot(x.numpy(), y.numpy(), 'o') 

 

 

  

 

One can try a different optimizer, for example, by changing “RMSprop” to “Adam”. However, the 

value of learning rate may need to change accordingly for an acceptable result, because different 

optimizations may have significantly different convergence speeds. Thus, it is helpful to plot loss 

function versus epochs to check whether it converges.  



 

 

 

7.5 Neural Networks using PyTorch 

So far, we understand the tensors in PyTorch and the mechanism of autograd computation on 

tensors. PyTorch provides various optimization methods through the package torch.optim. In the 

previous section, we demonstrated how to implement a linear regression by utilizing PyTorch. In 

this section we will explore the power of PyTorch through a little more complicated example: 

neural network for image classification. For example, Torchvision provides many built-in datasets 

in the torchvision.datasets module, as well as utility classes for building your own datasets. 

Transformers are available for preprocessing data. PyTorch torch.nn provides classes for neural 

network building blocks. The class, DataLoader, helps us to arrange data set during the training 

process. 

7.5.1 Download dataset and transforms 

Download and load dataset 

PyTorch provides a class, torchvision.datasets, as some popular datasets for users to download. 

The built-in datasets (up to date July 2020) includes (but not limited to): MNIST, Fashion-MNIST, 

KMNIST, EMNIST, QMNIST, FakeData, COCO, Captions, Detection, LSUN, ImageFolder, 

DatasetFolder, ImageNet, CIFAR, STL10, SVHN, PhotoTour, SBU, Flickr, VOC, Cityscapes, 

SBD, USPS, Kinetics-400, HMDB51, UCF101, and CelebA. A complete list of built-in datasets is 

available at https://pytorch.org/vision/stable/datasets.html. All these datasets are subclasses of 

torch.utils.data.Dataset, i.e, they have __getitem__ and __len__ methods implemented. Hence, they 

can all be passed to a torch.utils.data.DataLoader. 

CIFAR-10 consists of 60,000 (32 × 32) color (RGB) images, labeled with an integer corresponding 

to 1 of 10 classes: airplane (0), automobile (1), bird (2), cat (3), deer (4), dog (5), frog (6), horse 

(7), ship (8), and truck (9). We can download the train (50,000 images) and test (10,000 images) 

datasets from internet to ‘./data’, load the datasets to cifar10 and cifar10_val, and display one 

image as follows. 

from torchvision import datasets 

''' 

CLASStorchvision.datasets.CIFAR10(root, train=True, transform=None, target_tran

sform=None, download=False)  

 

--root (string) – Root directory of dataset where directory  

  cifar-10-batches-py exists or will be saved to if download  

  is set to True. 

--train (bool, optional) – If True, creates dataset from training set,  

  otherwise creates from test set. 

--transform (callable, optional) – A function/transform that takes  

  in an PIL image and returns a transformed version. E.g, transforms.RandomCrop 

--target_transform (callable, optional) – A function/transform that  

  takes in the target and transforms it. 

--download (bool, optional) – If true, downloads the dataset from the internet  

  and puts it in root directory.If dataset is already downloaded,  

  it is not downloaded again. 

 

Return 

(image, target) where target is index of the target class. 

 

https://pytorch.org/vision/stable/datasets.html


 

 

''' 

 

data_path = './data' 

cifar10 = datasets.CIFAR10(data_path, train=True, download=True) 

cifar10_val = datasets.CIFAR10(data_path, train=False, download=True) 

 

Files already downloaded and verified 

Files already downloaded and verified 

 

print("training set:", len(cifar10)) 

print("validation set:", len(cifar10_val)) 

training set: 50000 

validation set: 10000 

 

img, label = cifar10[5] 

img, label 

 

(<PIL.Image.Image image mode=RGB size=32x32 at 0x250A5844EF0>, 1) 

 

plt.imshow(img) 

plt.show() 

 

 
 

Transforms 

The object, img, generated by the dataset class at default, has a format of PIL image, which is not 

ready to feed typical neural networks. Thus, we need to transform the loaded data so that they meet 

the requirements of the neural network input. The module, torchvision.transforms, defines a set of 

composable, function-like objects that can be passed as an argument to a torchvision dataset such 

as datasets.CIFAR10(…), and that perform transformations on the data after it is loaded but before 

it is returned by __getitem__. The list of available transforms is displayed as follows: 

from torchvision import transforms 

dir(transforms) 

 

['CenterCrop', 

 'ColorJitter', 

 'Compose', 

 'FiveCrop', 

 'Grayscale', 

 'Lambda', 

 'LinearTransformation', 

 'Normalize', 

 'Pad', 

 'RandomAffine', 

 'RandomApply', 

 'RandomChoice', 

 'RandomCrop', 

 'RandomErasing', 

 'RandomGrayscale', 

 'RandomHorizontalFlip', 



 

 

 'RandomOrder', 

 'RandomPerspective', 

 'RandomResizedCrop', 

 'RandomRotation', 

 'RandomSizedCrop', 

 'RandomVerticalFlip', 

 'Resize', 

 'Scale', 

 'TenCrop', 

 'ToPILImage', 

 'ToTensor', 

 '__builtins__', 

 '__cached__', 

 '__doc__', 

 '__file__', 

 '__loader__', 

 '__name__', 

 '__package__', 

 '__path__', 

 '__spec__', 

 'functional', 

 'transforms'] 

 
 

First, we transform the datasets from PIL images to tensors. Among these transforms, ToTensor 

converts NumPy arrays and PIL images to tensors. It also defines the dimensions of the output 

tensor as C × H × W.  Whereas the values in the original PIL image ranged from 0 to 255 (8 bits 

per channel), the ToTensor transform turns the data into a 32-bit floating-point per channel, scaling 

the values down from 0.0 to 1.0. 

 
from torchvision import transforms 

to_tensor = transforms.ToTensor() 

img_t = to_tensor(img) 

img_t.shape 

 

torch.Size([3, 32, 32]) 

 

 

Instead of transforming the data after loading, we can specify a transform (or a set of transforms) 

when we load (or download) the data. 
 

tensor_cifar10 = datasets.CIFAR10(data_path, train=True, download=False, 

transform=transforms.ToTensor()) 

img_t, label = tensor_cifar10[20] 

img_t.shape, label 

 

(torch.Size([3, 32, 32]), 4) 

 
plt.imshow(img_t.permute(1, 2, 0))      # change dimension order to H,W,Channel 

plt.show() 

 



 

 

Second, to improve the learning efficiency, we usually normalize the data from the range of [0,1] 

to the range of [-1,1]. To achieve this, we can chain two transforms: transforms.ToTensor(), 

transforms.Normalize using transforms.Compose. 
 

transform = transforms.Compose([transforms.ToTensor(), 

                   transforms.Normalize((0.5,0.5,0.5), (0.5, 0.5, 0.5))]) 

norm_cifar10 = datasets.CIFAR10(data_path, train=True, download=False, 

transform=transform) 

norm_img, label=norm_cifar10[5] 

plt.imshow(norm_img.permute(1, 2, 0))   # change dimension order to H,W,Channel 

plt.show() 

 

 
Combination of download and transforms 

Therefore, we can use the following statements for downloading and transforming (toTensor and 

Normalize): 
data_path = './data' 

transform = transforms.Compose([transforms.ToTensor(), 

              transforms.Normalize((0.5,0.5,0.5), (0.5, 0.5, 0.5))])  

 

norm_cifar10 = datasets.CIFAR10(data_path, train=True, download=True, 

transform=transform) 

norm_cifar10_test = datasets.CIFAR10(data_path, train=False, download=True, 

transform=transform) 

 

Files already downloaded and verified 

Files already downloaded and verified 

 

Now norm_cifar10 and norm_cifar10_test are lists [(image, label)] for normalized train set and test 

set, where image is tensor [3, 32, 32], and label is integer. 

7.5.2 Create customized datasets from CIFAR-10 

If we want to design a neural network for a binary classification task: airplane or bird, the dataset to 

the neural network should only include the images of airplane (originally labeled as 0) or bird (label 

as 2). Now let’s create this sub dataset for airplanes and birds only. In the new dataset, the labels for 

airplane and birds will be changed to “0” and “1”.  

 
label_map = {0: 0, 2: 1} 

class_names = ['airplane', 'bird'] 

norm_cifar2 = [(img, label_map[label]) for img, label in norm_cifar10 if label 

in [0, 2]] 

norm_cifar2_test = [(img, label_map[label]) for img, label in norm_cifar10_test 

if label in [0, 2]] 

  

The resulting datasets, stored in lists norm_cifar2 and norm_cifar2_test, are normalized and labeled 

as 0 for airplane and 1 for bird. We can verify that there are 10,000 images in norm_cifar2 and 2,000 

images in norm_cifar2_test. 

 
img, label=norm_cifar2[0] 

 



 

 

plt.imshow(img.permute(1, 2, 0))      # change dimension order to H,W,Channel 

plt.show() 

 

                                                   
norm_cifar2[0]   (bird)                            norm_cifar2[5] (airplane) 

7.5.3 Build model using nn.Sequential() 

PyTorch torch.nn provides classes for almost all neural network building blocks. As an example, 

the following codes define a neural network with one 512-unit hidden layer and 2-unit output layer. 

import torch.nn as nn 

n_out = 2 

model = nn.Sequential( 

    nn.Linear(3072,512,), 

    nn.Tanh(), 

    nn.Linear(512,n_out,), 

    nn.LogSoftmax(dim=1) 

    ) 

   

nn.Linear is used to define a linear operation before activation in each layer. An instance, 

nn.Linear(3072, 512), accepts input tensor with shape (*, 3072) where * means any number of 

dimensions including none, and delivers output tensor with shape (*, 512) where all but the last 

dimension are the same shape as the input. 3072 and 512 are the size of each sample for input and 

output respectively. The input data of neural networks is typically applied to the linear module in 

the first hidden layer as a batch at a time for one iteration. Typically, for batch processing, the input 

data for the model has a shape of (batch_size, 3072).  

nn.Tanh() defines the activation for the hidden layer. loss_fn = nn.NLLLoss(logsoftmax_outs, 

labels) takes the output of nn.LogSoftmax for a batch as the first argument and a tensor of class 

indices (zeros and ones, in our case) as the second argument. Please note that all the building blocks 

are included in order in nn.Sequential(). 

Now, let’s run one forward propagation on one image.  

# get the image and label, torch.Size([3, 32, 32]) 

img, label = norm_cifar2[10]  

 

# convert to batch, torch.Size([1, 3072]) 

img_batch = img.view(-1).unsqueeze(0) 

 

out=model(img_batch) # compute the softmax output 

out 

# out torch.Size([1, 2])  
# tensor([[-0.8021, -0.5949]], grad_fn=<LogSoftmaxBackward>) 

 

loss = nn.NLLLoss()             # define loss function 

loss(out, torch.tensor([label])) 

# tensor(0.5949, grad_fn=<NllLossBackward>)   

    

 



 

 

The following codes run the stochastic gradient descent (i.e. batch size =1) for training. 

learning_rate = 1e-2 

optimizer = optim.SGD(model.parameters(), lr=learning_rate) 

loss_fn = nn.NLLLoss() 

n_epochs = 10 

for epoch in range(n_epochs): 

    for img, label in norm_cifar2: 

        out = model(img.view(-1).unsqueeze(0)) 

        # img: torch.Size([3,32,32]) 

        # img.view(-1).unsqueeze(0): torch.Size([1,3072]) 

        # out: torch.Size([1,2]) 

        loss = loss_fn(out, torch.tensor([label])) 

        # torch.tensor([label]) is the target index 

        optimizer.zero_grad() 

        loss.backward() 

        optimizer.step() 

    print("Epoch: %d, Loss: %f" % (epoch, float(loss))) 

 

Epoch: 0, Loss: 3.246083 

Epoch: 1, Loss: 2.461254 

Epoch: 2, Loss: 3.279747 

Epoch: 3, Loss: 3.953358 

Epoch: 4, Loss: 5.009982 

Epoch: 5, Loss: 6.931544 

Epoch: 6, Loss: 3.779669 

Epoch: 7, Loss: 9.554771 

Epoch: 8, Loss: 11.038675 

Epoch: 9, Loss: 13.619962 

 

Note that the loss is increasing as the training proceeds. This implies that the training process is not 

converging. A reader is encouraged to figure out the reason and fix it. 

7.5.4  Train the model using DataLoader 

In this section, to utilize PyTorch more efficiently, we modify the model in the previous section and 

its training approach in the following aspects: 

1) Model architecture 

The model will have two hidden layers: the first with 25 units and the second with 12 units. The 

hidden layers use ReLU for activation.  
 

2) Loss function 

In practice, it is convenient to compute the loss using nn.CrossEntropyLoss, which is 

equivalently the combination of nn.LogSoftmax and nn.NLLLoss. Furthermore, LogSoftmax is 

a monotonical function whose output is interpreted as the probabilities of classes. The prediction 

will pick a class associated with the maximum element in the output of LogSoftmax. Thus, the 

output of the nn.Linear in output layer (i.e. the input of LogSoftmax ) can be directly used for 

prediction. Therefore, nn.LogSoftmax can be removed in the feed-forward model, and 

nn.CrossEntropyLoss can be used to compute the loss by taking linear output at the output layer 

and the labels (ground truth).   

 

3) Training using DataLoader 

The torch.utils.data module has a class that helps with shuffling and organizing the data in 

minibatches: DataLoader. The DataLoader constructor takes a Dataset object as input, along 



 

 

with batch_size and a shuffle Boolean that indicates whether the data needs to be shuffled at the 

beginning of each epoch. A DataLoader can be iterated over, so we can use it directly in the 

inner loop. 

 

Now let’s put all things together and train the neural network.  

 
import torch.optim as optim 

import torch 

import torch.nn as nn 

train_loader = torch.utils.data.DataLoader(norm_cifar2, batch_size=64, 

shuffle=True) 

# norm_cifar2: list[[tensor[3,32,32], label], [tensor[3,32,32], label],…] 

model = nn.Sequential( 

    nn.Linear(3072,25), 

    nn.ReLU(), 

    nn.Linear(25,12), 

    nn.ReLU(), 

    nn.Linear(12,2) 

 ) 

learning_rate = 1e-2 

optimizer = optim.SGD(model.parameters(), lr=learning_rate) 

  

loss_fn = nn.CrossEntropyLoss() 

n_epochs = 100 

for epoch in range(n_epochs): 

    for imgs, labels in train_loader: 

        batch_size = imgs.shape[0]  

       #64 for all, except 16 for the last batch, 10000/64=145.25 

        #print(labels.shape) 

        outputs = model(imgs.view(batch_size, -1))  

        # imgs.view(batch_size,-1): [batch_size, 3072] 

        # outputs: [batch_size,2] 

        loss = loss_fn(outputs, labels) 

        # labels: [64] 

        optimizer.zero_grad() 

        loss.backward() 

        optimizer.step() 

      

    print("Epoch: %d, Loss: %f" % (epoch, float(loss))) 

 
Epoch: 0, Loss: 0.491145 

Epoch: 1, Loss: 0.562495 

Epoch: 2, Loss: 0.326086 

Epoch: 3, Loss: 0.628043 

Epoch: 4, Loss: 0.337991 

… 
Epoch: 94, Loss: 0.019337 

Epoch: 95, Loss: 0.022442 

Epoch: 96, Loss: 0.034940 

Epoch: 97, Loss: 0.022771 

Epoch: 98, Loss: 0.161970 

Epoch: 99, Loss: 0.052434 

 

 

To test the accuracy of the trained model on the test dataset, we can similarly feed the data in batches, 

and compare the predictions with the labels. Note that the data in the batch is not shuffled, and that 

the gradient calculation is disabled. 

 
val_loader = torch.utils.data.DataLoader(norm_cifar2_test, batch_size=64, 



 

 

shuffle=False) 

correct = 0 

total = 0 

with torch.no_grad(): 

    for imgs, labels in val_loader: 

        batch_size = imgs.shape[0] 

        outputs = model(imgs.view(batch_size, -1)) 

      

        values, predicted = torch.max(outputs, dim=1) # return (values,indices) 

        #print(values, predicted.shape) 

        total += labels.shape[0] 

        correct += int((predicted == labels).sum()) 

print("Accuracy: %f" % (correct / total)) 

Accuracy: 0.837500 

 

7.5.5 Access parameters of the trained model 

The overall architecture of model can be printed by  
 

model.parameters 

 

<bound method Module.parameters of Sequential( 

  (0): Linear(in_features=3072, out_features=25, bias=True) 

  (1): ReLU() 

  (2): Linear(in_features=25, out_features=12, bias=True) 

  (3): ReLU() 

  (4): Linear(in_features=12, out_features=2, bias=True) 

)> 

 

The following statement prints all the named parameters, their shapes and values. 

 
for name, param in model.named_parameters(): 

    if param.requires_grad: 

        print (name, param.data.shape, param.data) 

 

PyTorch offers a quick way to determine how many parameters a model has through the parameters() 

method of nn.Model (the same method we use to provide the parameters to the optimizer). To find 

out how many elements are in each tensor instance, we can call the numel method. Summing those 

gives us our total count. Counting parameters might require us to check whether a parameter has 

requires_grad set to True, as well. 
 

numel_list = [p.numel() for p in model.parameters()] 

sum(numel_list), numel_list 

 

(77163, [76800, 25, 300, 12, 24, 2]) 

 

 

7.6 An Example by PyTorch: Finger Signs 

In this section, we will show how easily one can implement a neural network for finger sign 

recognition by PyTorch. The neural network architecture is shown in Fig.7.5. The dataset files are 

train_signs.h5 (1080 images for training) and test_signs.h5 (120 images for testing). Each image 

(64x64x3) is labeled by one of digits from 0 to 5 corresponding to a certain combination of 

finger positions.  



 

 

 

     

y=0           y=1             y=2             y=3            y=4             y=5 

 

Fig.7.5 neural network for finger sign recognition  

Through this example, we will learn to: 

1) Create a class Dataset for DataLoader. 

2) Apply regularization: weight penalty or dropout in neural network. 

3) Use model.train() for training and model.eval() for testing. 

Import packages. 

import torch 

from torchvision import transforms, datasets 

import torch.nn.functional as F 

import torch.nn as nn 

import torch.optim as optim 

import h5py 

import numpy as np 

from torch.utils.data import Dataset, DataLoader 

 

%matplotlib inline 

from matplotlib import pyplot as plt 

 

torch.manual_seed(0) 

 

7.6.1 Create Dataset for DataLoader 

If the datasets are not available in the built-in “torchvision.datasets”, we need to generate datasets 

which have the same format as torchvision.datasets so that we can use torch.utils.data.DataLoader 

in training loop or testing process. In our case, since the datasets are stored in *.h5 files, an effort 

is needed to generate the corresponding dataset class. 

class signs_train_Dataset(Dataset): 

 

    def __init__(self,root_dir,filename, transforms):   

        self.transform = transforms 

        self.root_dir = root_dir 



 

 

        # read the train data file 

        self.train_dataset = h5py.File(self.root_dir+filename, "r") 

        # your train set features 

        self.train_set_x_orig = np.array(self.train_dataset["train_set_x"][:])    

        # your train set labels   

        self.train_set_y_orig = np.array(self.train_dataset["train_set_y"][:])   

 

    def __len__(self): 

        return (self.train_set_x_orig.shape[0]) 

 

    def __getitem__(self, index): 

        image = self.train_set_x_orig[index] 

        if self.transform: 

            image = self.transform(image) 

        y = self.train_set_y_orig[index] 

        return [image, y] 

 

 

class signs_test_Dataset(Dataset): 

 

    def __init__(self,root_dir,filename, transforms): 

        self.transform = transforms 

        self.root_dir = root_dir 

        # read the test data file 

        self.test_dataset = h5py.File(self.root_dir+filename, "r") 

        # your test set features 

        self.test_set_x_orig = np.array(self.test_dataset["test_set_x"][:])   

        # your test set labels 

        self.test_set_y_orig = np.array(self.test_dataset["test_set_y"][:])   

         

    def __len__(self): 

        return (self.test_set_x_orig.shape[0]) 

 

    def __getitem__(self, index): 

        image = self.test_set_x_orig[index] 

        y = self.test_set_y_orig[index] 

        if self.transform: 

            image = self.transform(image) 

        return [image, y] 

 

 

 

Based on the definitions of the Datasets above, we can generate the datasets by specifying the file 

path, file name, and transforms, and then create DataLoaders by specifying batch size and shuffle.  

train_dataset = signs_train_Dataset("C:/Users/weido/ch11/",'train_signs.h5', tr

ansforms=transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,0

.5,0.5), (0.5, 0.5, 0.5))])) 

 

test_dataset = signs_test_Dataset("C:/Users/weido/ch11/",'test_signs.h5', trans

forms=transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,0.5,

0.5), (0.5, 0.5, 0.5))])) 

 

train_dataloader = DataLoader(train_dataset, batch_size=32, shuffle=True) 

 

test_dataloader = DataLoader(test_dataset, batch_size=32, shuffle=False) 

 Now let’s explore and verify train_dataloader and test_dataloader.  

for imgs, labels in train_dataloader: 



 

 

   print(imgs.shape, labels.shape)  

 

for imgs, labels in test_dataloader: 

   print(imgs.shape, labels.shape)  

The results will show how many batches and the shape of each batch in each dataloader. 

7.6.2 Neural network model 

The neural network is defined as follows. We add dropout to the first hidden layer. 

model = nn.Sequential( 

    nn.Linear(12288,25), 

    nn.ReLU(), 

    # dropout 

    nn.Dropout(p=0.4), 

    nn.Linear(25,12), 

    nn.ReLU(), 

    nn.Linear(12,6) 

 )  

7.6.3 Train the model 

The training process covers two for-loops. The outer for-loop is designed for epoch 

iterations while the inner for-loop iterates on batches. We can add weight regularization by 

modifying the loss, see the part commented out. Typically, to implement regularization, 

we either use dropout or weight penalty, but not both. Thus, we suggest that you remove 

the dropout in the model definition if you want to do weight regularization here. 

learning_rate = 1e-3 

optimizer = optim.SGD(model.parameters(), lr=learning_rate) 

  

loss_fn = nn.CrossEntropyLoss() 

n_epochs = 500 

for epoch in range(n_epochs): 

    for imgs, labels in train_dataloader: 

        batch_size = imgs.shape[0] 

        #print(labels.shape) 

        outputs = model.train()(imgs.view(batch_size, -1)) 

        # input to the model: [batch_size, 12288] 

        # output: [batch_size, 6] 

        loss = loss_fn(outputs, labels) # loss: scalar 

        #####--- regularization ----#### 

        #l2_lambda = 0.005 

        #l2_norm = sum(p.pow(2.0).sum() for p in model.parameters()) 

        #loss = loss + l2_lambda * l2_norm 

        optimizer.zero_grad() 

        loss.backward() 

        optimizer.step() 

    if epoch % 10==0: 

        print("Epoch: %d, Loss: %f" % (epoch, float(loss))) 

Epoch: 0, Loss: 1.832473 

Epoch: 10, Loss: 1.676556 

Epoch: 20, Loss: 1.554291 

… 

Epoch: 470, Loss: 0.425223 

Epoch: 480, Loss: 0.339189 

Epoch: 490, Loss: 0.272545 

 



 

 

 

7.6.4 Test the model 

Now, we test the trained model using test_dataloader. To perform the inference, be sure to 

disable the gradient calculation using with torch.no_grad(), and model.eval(). 

correct = 0 

total = 0 

with torch.no_grad(): 

    for imgs, labels in test_dataloader: 

        batch_size = imgs.shape[0] 

        outputs = model.eval()(imgs.view(batch_size, -1)) 

        values, predicted = torch.max(outputs, dim=1) 

        total += labels.shape[0] 

        correct += int((predicted == labels).sum()) 

print("Accuracy: %f" % (correct / total)) 

 

Accuracy: 0.891667 

 
  

The above test, if applied on the train_dataloader, shows the training accuracy of 0.998, 

which indicates a slight overfitting because the accuracy on test_dataloader is just 

0.891667. 

 

 
 

 

Summary 

This chapter presents the basics of PyTorch, and demonstrate the major steps of developing and 

training a neural network using PyTorch. There are a few important things of PyTorch make our job 

easy: 

1) PyTorch classes (Dataset, Compose, DataLoader) help us prepare data.  

2) torch.nn provides modules, such as Linear, sigmoid, Tanh, ReLU, LogSoftmax, NLLLoss, 

CrossEntropyLoss, so that we can build a neural network efficiently by instantiating relevant 

modules. We don’t need to develop the code at a matrix-level. 

3) Most importantly, during the training process, PyTorch can automatically track and 

calculate the gradient of loss with respect to parameters. 

4) Various optimizers are available in PyTorch library. 

5) Implementations of regularizations (weight penalty or dropout). 

6) It is easy to access the information about the parameters of a trained model. 

PyTorch is a powerful tool for us to implement classical deep learning architectures (e.g. convolution 

neural networks) in the subsequent chapters.  

 

Files:  

C:/Users/weido/torch_tutorial/basics_pytorch.ipynb 

 ‘../torch_tutorial/data/faces/person.jpg’ 



 

 

‘../torch_tutorial/data/student_faces/andrew0.jpg, Antonio5.jpg, heidi0.jpg, Jonathon5.jpg 

C:/machine_learning/mnist_test.csv, mnist_train.csv 

‘../torch_tutorial/data/winequality-white.csv’ 

C: /Users/weido/ch11/finger_signs.ipynb     

C:/Users/weido/ch11/test_signs.h5 

C:/Users/weido/ch11/train_signs.h5    
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Exercises 

1. Build and train a neural network to classify images: bird/cat using PyTorch: 

1) Create your own training set and test set from CIFAR-10. The images in your datasets are 

either bird or cat, and normalized.  

2) The neural network has two hidden layers with ReLU activations. The first hidden layer 

has 20 units and the second layer has 10 units. The output layer is Linear with two units. 

Thus, nn.CrossEntropyLoss is used for loss computation.  

3) Train your network on your own training set, created in 1). 

4) Test your network on your own test set, created in 1). Print the accuracy. 

5) How many parameters in your neural network? Print the values of all parameters.  

2. Utilizing PyTorch resources, build and train a neural network to recognize handwritten digits 

(MNIST dataset). You are free to select a reasonable architecture for the neural network. At the 

end, test your trained model, and print the accuracy on the test set. 

3. In Section 7.5.3, the training process does not converge because the loss keeps increasing. Try 

the following modifications (separately) to see whether they work: 

1) Reduce the value of learning_rate, and increase the value of n_epochs.  

2) Implement mini-batch gradient descent optimization, with an appropriate value of batch 

size. 

4. To address the overfitting in the example in Section 7.6, try the following experiments: 

1) Change the p value in the nn.Dropout, and train the neural network. 

2) Remove the dropout and add weight regularization. You choose an appropriate value for 

regularization factor λ, and train the neural network. 

https://pytorch.org/


 

 

3) Reduce the complexity of the neural network, and train the neural network. 

5. Suppose we want to create a DataLoader for training a neural network for a 10-class 

classification task. For training, we have 100 images for each class. In the folder “/images”, 10 

subfolders are created to store the images for 10 classes respectively. For example, “/images/C0” 

stores 100 images for class 0, and “/images/C9” stores 100 images for class 9, and so on. In each 

subfolder Cj (where j=0,1,…,9), the image files are named as Cj_img0.jpg, Cj_img1.jpg, …, 

Cj_img99.jpg. 

Create the following extended class my_Dataset 

class my_Dataset(Dataset): 

so that we can generate a train_dataloader 

train_dataset = my_Dataset("./images", transforms=transforms) 

train_dataloader = DataLoader(train_dataset, batch_size=4, shuffle=True) 


