

Chapter 6

Practical Considerations in Neural Networks

So far, we have covered the basic principles of regression and neural networks. In practice, many

tasks are much more complicated than our examples presented in previous chapters. We usually

need to go through iterative design cycles for developing a large neural network, as shown in

Fig.6.1. Before training the model, we have to set up the constraints for the model. For example,

to build an L-layer neural network for an image classification, we need to define the number of

layers, the number of units in each layer, learning rate, activation functions, and so on. To achieve

an acceptable result, we usually try different settings, and run the code to see how it works. This

try and see cycle may repeat iteratively multiple times.

Fig.6.1 try and see cycle

In this chapter we will describe the general architecture of a neural network with an arbitrary

layer length L, by mathematical equations for forward propagation and gradient backward

propagation. An activation function, called ReLU, is typically used for the neural network hidden

layers with a big number of layers. Then we will address some basic practical considerations for

designing and training the multiple-layer neural networks. These considerations include

normalization, weight initialization, regularization, batch gradient descent, and Adam

optimization. The purpose of these considerations is to improve the effectiveness and efficiency

of training neural networks.

In this chapter, you will learn:

o Mathematical representation of multiple-layer neural networks

o Overfitting and underfitting

o Regularization techniques: weight penalty and dropout

o Weight initialization

o Mini-batch gradient descent and epoch schedule

o Batch normalization

o Learning rate decay

o Derivative checking

6.1 Multiple-Layer Neural Networks

6.1.1 Architecture

A deep neural network consists of multiple hidden layers with multiple units (or neurons) in each

layer. Fig.6.2 shows a fully connected 3-hidden-layer neural network. There are 9 units in each

hidden layer. Please note that different hidden layers may have different numbers of units. “Fully-

connected” means that the output of any unit in a hidden layer is connected to all units in the next

layer.

Fig.6.2 multiple layer neural network

Now let’s focus on a particular layer. Let L be the total number of layers (not including the input

layer, input layer is called layer [0], just input data). Thus, layer l, l=1,2,..,L-1, is a hidden layer,

and layer L is the output layer. In general, layer l can be defined by weight matrix 𝑊[𝑙] and bias

vector 𝑏[𝑙], and an activation function 𝑔[𝑙](). The input and output of layer l are denoted by

vectors 𝑎[𝑙−1] and 𝑎[𝑙], respectively. The block diagram representation of layer l is shown in

Fig.6.3. The dimensions or shapes of 𝑊[𝑙] and 𝑏[𝑙] are determined by the number of units in layer

l and layer l-1 which are denoted by 𝑛[𝑙] and 𝑛[𝑙−1].

Fig. 6.3 diagram of layer l.

Suppose the numbers of units in layer l is 𝑛[𝑙]. Now let’s zoom in layer l with parameters 𝑊[𝑙]

and 𝑏[𝑙]. The shape of 𝑊[𝑙] is (𝑛[𝑙], 𝑛[𝑙−1]), and shape of 𝑏[𝑙] is (𝑛[𝑙], 1). The ith row in 𝑊[𝑙] and

𝑏[𝑙] is associated with the ith unit in this layer. The relationship between the input 𝑎[𝑙−1] and the

output 𝑎[𝑙] of layer l can be described as

𝑧[𝑙] = 𝑊[𝑙]𝑎[𝑙−1] + 𝑏[𝑙] (6.1.a)

𝑎[𝑙] = 𝑔[𝑙](𝑧[𝑙]) (6.1.b)

It is helpful to check the matrix shapes on both sides of the above equations by the rule of matrix

multiplication. Check shape consistence for (6.1.a): (𝑛[𝑙], 1)=(𝑛[𝑙], 𝑛[𝑙−1]) × (𝑛[𝑙−1], 1) +

(𝑛[𝑙−1], 1). Check shape consistence for (6.1.b): (𝑛[𝑙], 1)=𝑔[𝑙](𝑛[𝑙], 1). Please note that (6.1.a)

and (6.1.b) is based on one data example.

6.1.2 Forward propagation and backward propagation

Forward propagation and backward propagation are two important ingredients of neural network

training process. The data flow, shown in Fig.6.4, from the input layer to the output layer, is

referred as forward propagation (indicated by blue arrows), which involves computing of (6.1.a)

and (6.1.b) for all layers. The purpose of calculating forward propagation is two-fold: 1) to

deliver quantities (indicated by green arrows) which are needed for computing gradients during

the training process; 2) to predict the output for an input x during the inference for new data

examples. The backward propagation (indicated by red arrows) will provide all derivatives of cost

function with respect to parameters, which are needed in the gradient descent algorithm. The

gradient descent algorithm updates the parameters until the optimal parameters have been found

according to a stopping criterion.

Fig.6.4 forward and backward block diagram

In Fig.6.4, the top row of boxes shows the forward propagation, i.e. the neural network, and the

bottom row shows the backward propagation for derivative computation. The computations in the

forward propagation and the backward propagation can be described below.

1) Forward propagation for layer l. 𝑙 = 1, 2,… 𝐿

For one data example x

𝑎[0] = 𝑥

Input: 𝑎[𝑙−1] (from cache, i.e., the output of the previous layer)

Output: 𝑎[𝑙], 𝑧[𝑙]

𝑧[𝑙] = 𝑊[𝑙]𝑎[𝑙−1] + 𝑏[𝑙]

𝑎[𝑙] = 𝑔[𝑙](𝑧[𝑙])

(these outputs are saved to a cache for further use in layer l+1 computation and backward

propagation)

For m data examples (vectorized) (shape)

 𝐴[0] = 𝑋 (𝑛𝑥 ,𝑚)

Input: 𝐴[𝑙−1] (from cache)

Output: 𝐴[𝑙], 𝑍[𝑙](saved to cache)

𝑍[𝑙] = 𝑊[𝑙]𝐴[𝑙−1] + 𝑏[𝑙] (𝑛[𝑙], 𝑚)=(𝑛[𝑙], 𝑛[𝑙−1]) × (𝑛[𝑙−1],𝑚) + (𝑛[𝑙−1], 1)

𝐴[𝑙] = 𝑔[𝑙](𝑍[𝑙]) (𝑛[𝑙], 𝑚)

(these outputs are saved to a cache for further use in layer l+1 computation and backward

propagation, note that +𝑏[𝑙] is a broadcasting adder operation to different columns)

2) Backward propagation for layer l

Input: 𝑑𝑎[𝑙](from layer l+1 backward propagation), 𝑎[𝑙−1], 𝑧[𝑙]

(from cache)

Output: 𝑑𝑎[𝑙−1], 𝑑𝑊[𝑙], 𝑑𝑏[𝑙]

For one data example x (shape)

Output layer (𝑙 = 𝐿)

𝑑𝑎[𝐿] = −
𝑦

𝑎[𝐿] +
1−𝑦

1−𝑎[𝐿] (assume sigmoid function in the output layer)

𝑑𝑎[𝐿] =
𝑑𝐿(𝑦̂,𝑦)

𝑑𝑎[𝐿] = −
𝑦

𝑎[𝐿] (assume softmax in the output layer)

𝑑𝑧[𝐿] = 𝑎[𝐿] − 𝑦 (for either sigmoid or softmax)

Hidden layers (𝑙 = 𝐿 − 1, 𝐿 − 2,… , 2, 1.)

𝑑𝑧[𝑙] = 𝑑𝑎[𝑙] ∗ 𝑔[𝑙]′(𝑧[𝑙]) (𝑛[𝑙], 1) = (𝑛[𝑙], 1) ∗ (𝑛[𝑙], 1)

𝑑𝑊[𝑙] = 𝑑𝑧[𝑙]𝑎[𝑙−1]𝑇 (𝑛[𝑙], 𝑛[𝑙−1]) = (𝑛[𝑙], 1) × (𝑛[𝑙−1], 1)
𝑇

𝑑𝑏[𝑙] = 𝑑𝑧[𝑙] (𝑛[𝑙], 1) = (𝑛[𝑙], 1)

𝑑𝑎[𝑙−1] = 𝑊[𝑙]𝑇𝑑𝑧[𝑙] (𝑛[𝑙−1], 1) = (𝑛[𝑙], 𝑛[𝑙−1])
𝑇

× (𝑛[𝑙], 1)

For m data examples (vectorized)

Output layer (𝑙 = 𝐿)

𝑑𝐴[𝐿] = −
𝑌

𝑎[𝐿] +
1−𝑌

1−𝑎[𝐿] (1,𝑚) for sigmoid function at layer L

𝑑𝐴[𝐿] = −
𝑌

𝑎[𝐿] (𝑛
[𝐿], 𝑚) for softmax function at layer L

𝑑𝑍[𝐿] = 𝐴[𝐿] − 𝑌 (𝑛[𝐿], 𝑚) for either sigmoid or softmax

Hidden layers (𝑙 = 𝐿 − 1, 𝐿 − 2,… , 2, 1.)

𝑑𝑍[𝑙] = 𝑑𝐴[𝑙] ∗ 𝑔[𝑙]′(𝑍[𝑙]) (𝑛[𝑙], 𝑚) = (𝑛[𝑙], 𝑚) ∗ (𝑛[𝑙], 𝑚)

𝑑𝑊[𝑙] = 𝑑𝑍[𝑙]𝐴[𝑙−1]𝑇 ∗ (
1

𝑚
) (𝑛[𝑙], 𝑛[𝑙−1]) = (𝑛[𝑙],𝑚) × (𝑛[𝑙−1],𝑚)

𝑇

𝑑𝑏[𝑙] = (
1

𝑚
) 𝑛𝑝. 𝑠𝑢𝑚(𝑑𝑍[𝑙], 𝑎𝑥𝑖𝑠 = 1, 𝑘𝑒𝑒𝑝𝑑𝑖𝑚𝑠 = 𝑇𝑟𝑢𝑒) (𝑛[𝑙], 1) = (𝑛[𝑙], 1)

𝑑𝐴[𝑙−1] = 𝑊[𝑙]𝑇𝑑𝑍[𝑙] (𝑛[𝑙−1], 1) = (𝑛[𝑙], 𝑛[𝑙−1])
𝑇

× (𝑛[𝑙], 1)

Attention should be paid to the differences when different activation functions (sigmoid for

binary classification or softmax for multiple classification) are applied in the output layer. In the

case of softmax, Y is encoded as one-hot code matrix with a shape of (𝑛[𝐿],𝑚). Although 𝑑𝐴[𝐿]

has different equations for sigmoid and softmax functions, 𝑑𝑍[𝐿] = 𝐴[𝐿] − 𝑌 is the same for both.

In the gradient descent algorithm, the parameters can be updated as

𝑊[𝑙] ← 𝑊[𝑙] − 𝛼 ∙ 𝑑𝑊[𝑙] (6.2.a)

𝑏[𝑙] ← 𝑏[𝑙] − 𝛼 ∙ 𝑑𝑏[𝑙] (6.2.b)

6.2 Generalization and Model Selection

6.2.1 Generalization, Underfitting and Overfitting

In a standard supervised learning setting, we train the model based on the training dataset, which

is usually a small portion of the entire possible data space. The goal of learning the model is to

discover the pattens of the entire data space. For example, in a task of classifying a picture as cat

or dog, we first collect a training dataset, which includes many (e.g. hundreds or thousands of)

pictures of either cat or dog. After trained by the training set, the model is expected to recognize

any picture with either cat or dog from a test dataset, which the model has never seen before. This

capability of the model is called generalization. This generalization capability assumes that both

the training dataset and the test dataset are drawn independently from an identical distribution.

This is commonly called the i.i.d (identical independent distribution) assumption.

A model with low generalization capability usually demonstrates a phenomenon known as

overfitting: the model fits the training data more closely than it fits the underlying distribution.

There are two factors that affect the generalization of a model: 1) model complexity; and 2)

training dataset size. There is no strict definition of model complexity. Intuitively, a model with

more parameters might be considered more complex. A model whose parameters can take a wider

range of values might be more complex. With neural networks, a model that takes more training

iterations is considered more complex. The training dataset size is measured by the number of

training examples. In general, the more complex the model with a small training dataset, the more

likely overfitting occurs. Opposite to overfitting, underfitting occurs when the model is too

simple to capture the pattern of the training dataset.

Fig.6.5 illustrates three results of a curve fitting problem. Fig.6.5(a) shows the underfitting result,

where the model is the linear line. Fig.6.5(b) shows the overfitting result. In Fig.6.5(b), although

the error between the curve and the training examples is very small (perfectly fitting), if we

generate some new data examples, then these examples might be far away from the curve. The

overfitting model captures the noise pattern of the training set, that is not the true relationship

between the input and the target. Fig.6.5(c) shows the appropriate fitting curve that is quadratic.

Similarly, Fig. 6.6 shows the underfitting and overfitting for a classification task.

(a) underfitting (b) overfitting (c) appropriate fitting

Fig.6.5 Underfitting and overfitting in curve fitting

 (a) underfitting (b) overfitting (c) appropriate

Fig.6.6 Underfitting and overfitting in classification

6.2.2 Training set, Validation set, and Test set

To develop a machine learning product, we usually divide the original dataset into three non-

overlapping subsets: training set, validation set, and test set. In deep learning, the training set is

used to learn the weights (or parameters) of candidate models. We use the validation set to test

each candidate model, so that we can compare the models and select the best candidate model.

The test set is reserved for testing the final selected model.

Ideally, all the data are expected to be drawn from the same underlying distribution (i.i.d

assumption). It is a common practice to maintain an approximate same categorical ratio in the

three subsets, which is called stratified sampling. The percentages of three parts are typically

60%, 20% and 20% for training, validation and test sets, respectively. However, if the number of

data examples is very large (e.g. more than 1,000,000), the percentages for validation and test sets

are expected to be reduced. For example, for a size of 1,000,000 dataset, a reasonable partition

would be 980,000 (98% training), 10,000 (1% validation), and 10,000 (1% test).

To diagnose the overfitting or the underfitting of a model, we can examine the training error and

the validation error. The training error is the error when the trained model is tested on the training

set, while the validation error is the error when the trained model is tested on the validation set. In

a sense of statistics, there is no reason for a trained model to perform better on the validation set

than on the training set because the model has never seen the validation data before. Thus, in

general, the training error is always smaller than the validation error.

When the model underfits the training set, both the training error and the validation error are

unacceptably large. This implies that the model is too simple to capture the basic pattern of the

training set. For example, this will happen when we use a linear function to fit a dataset generated

by a quadratic function. With the training set size fixed, we can alleviate the underfitting problem

by increasing the complexity of the model. As the result, both the training error and the validation

error are expected to decrease. However, if the complexity of the model is increased too much,

the validation error will increase while the training error keeps decreasing. The model will lose

the generalization capability. This indicates the occurrence of overfitting.

For examples, consider the following cases:

1) Training set error — 1% and validation set error — 10% means that our model is overfitting

train set and not being able to generalize unseen examples.

2) Training set error — 10% and validation set error — 11% means that our model is

underfitting the training set.

3) Training set error — 0.5% and validation set error — 1% means that our model is performing

well, and we can test this model on the test set.

On the other hand, for an overfitting model, we can increase the training set size to alleviate or

avoid the overfitting. Thus, whether underfitting or overfitting can depend on both the complexity

of the model and the training set size.

Fig.6.7 illustrates the relationship between overfitting/underfitting and model complexity, given

the fixed training set. By examining the error curves, we can tell whether the model is overfitting

or underfitting. The general strategies to avoid underfitting or overfitting are shown in Fig.6.8. we

will treat regularizations in Section 6.3.

Fig. 6.7 Relationship between overfitting and model complexity

Fig.6.8 Strategies to avoid underfitting and overfitting

6.2.3 Model Selection and k-Fold Cross-Validation

In machine learning, we usually select our final model after evaluating serval candidate models

on validation dataset. The final model should have the best generalization performance. This

process is called model selection.

Model selection involves hyperparameter selection and model type selection. Hyperparameters

control the effective complexity of the model. For example, when we want to fit a sequence of

data using a polynomial curve, the order of the polynomial controls the number of free parameters

in the model and thereby governs the model complexity. There is an optimal order that gives the

best generalization. With neural networks, we may wish to compare models with different

numbers of layers, different numbers of units in each layer, and different choices of activation

functions. The parameters that control the training process, such as learning rate, the number of

iterations, optimization method, and weight initialization method, also have impacts on the

performance of the model. All these parameters that controls either the model complexity or

training process are called hyperparameters. Furthermore, we may also wish to consider a range

of different types (e.g. decision trees, support vector machines, or neural networks) of model in

order to find the best one for a particular application.

In the previous section, we mentioned that a validation dataset is hold out for testing and

comparing the generalization performance of the candidate models. In many applications,

however, the availability of the original dataset is very limited, and we wish to use as much of the

available data as possible for training. But, if the validation set is small, the performance estimate

will be sensitive to the content of the validation set, and thereby the performance estimate has a

high variance. One solution to this problem is to use K-fold cross-validation, which is illustrated

in Fig.6.9 for K=5.

Fig.6.9 K-fold cross-validation (K=5): the red box indicates the validation set for the run.

To implement K-fold cross-validation, we split the original dataset into two parts: training set and

test set. We randomly partition the training set into K groups, each of which has the same size.

Then we perform K runs. For each run, say the k-th run, we evaluate the model using the k-th

group while training the model using the remaining K-1 groups. After completing K runs, the

training and validation errors can be obtained by averaging the results of the K runs. This allows

(K-1)/K of the available data to be used for training while making use of all of the data to

evaluate performance. This average of the K runs will be less noisy, and be used for model

selection.

The typical value for K in K-fold cross-validation is 10. However, if the training set is relatively

small, it may be helpful to increase K, which results in more data to be used for training in each

run. The extreme case is K=N, where N is the number of data examples in the training set, which

gives the leave-one-out technique. One major drawback of cross-validation is the computational

cost because the higher the K value, the more training runs are needed. Thus, on the other hand, if

the training set is relatively large, we can decrease the value of K (e.g. 4 or 5) to reduce the

training time.

6.3 Regularization

As we discussed in the previous section, to alleviate the overfitting problem, we can reduce the

model complexity or increase the training data. A model with high variance is likely overfitting

train set and not being able to generalize unseen examples. A theoretical analysis of the bias and

variance for a model can be found in Section 3.4. Since collecting more data is usually

prohibitively expensive in practice, reducing the model complexity is often a practical solution to

the overfitting issue.

Indeed, simply reducing the number of parameters of the model may avoid overfitting. For

example, in the case of polynomial curve fitting task, we can use a low-order polynomial for the

model. In the case of neural networks, we can use a neural network with a smaller number of

layers and/or a smaller number of units in each layer. However, this may easily lead to

underfitting.

In practice, an effective technique to control the model complexity is regularization. Weight

regularization is the most widely used one for regularizing the model. In weight regularization,

the norm of weight vector is a measure of the model complexity. To reduce the model

complexity, we just need to decrease the norm of the weight vector at the cost of increased

training error. We minimize the objective function, which is the sum of the loss and the norm of

the weight vector. If the weights are too large, the algorithm might mainly focus on minimizing

the weights. Another effective regularization technique for neural networks is dropout, which will

be addressed in Section 6.3.4.

6.3.1 Regularization for Linear Regression

Consider a linear regression model ℎ𝜃(x) = 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2 + ⋯+ 𝜃𝑛𝑥𝑛. The modified cost

function for regularization is given by

𝐽(𝜃) =
1

2𝑚
[∑ (𝑒(𝑖))

2𝑚
𝑖=1 + 𝜆 ∑ 𝜃𝑗

2𝑛
𝑗=1]

=
1

2𝑚
[∑ (ℎ𝜃(𝑥(𝑖)) − 𝑦(𝑖))

2𝑚
𝑖=1 + 𝜆 ∑ 𝜃𝑗

2𝑛
𝑗=1] =

1

2𝑚
[(𝐗 ∙ 𝜃 − 𝑌)𝑇(𝐗 ∙ 𝜃 − 𝑌) + 𝜆 ∑ 𝜃𝑗

2𝑛
𝑗=1] (6.3)

where X is the matrix of training dataset with each row representing one example, Y is the column

vector of labels of the training set, and θ is the column vector of weights. In the above equation,

we regularize all the parameters by adding the penalty of the parameters’ magnitudes to the

square-error based cost function. Please note that 𝜃0 is not included in the penalty term. To learn

the model, we minimize the modified cost function:

min
𝜃

𝐽(𝜃) (6.4)

The 𝜆, or lambda, is the regularization parameter, a non-negative hyperparameter. It controls the

degree of regularization. A larger λ will lead to a heavier regularization. Under the regularization,

the hypothesis model will have a smooth output, hence with a reduced overfitting. If λ is too

larger, it may smooth out the function too much and cause underfitting. On the other hand, if λ is

too small or zero, the model is reduced to the case without regularization.

Now we can calculate the gradient of the regularization cost function. From Chapter 3

Linear Regression, we have the gradient of cost function without considering

regularization

𝜕𝐽(𝜃)

𝜕𝜃𝑗
=

1

𝑚
∑ (ℎ𝜃(𝑥(𝑖)) − 𝑦(𝑖))𝑥𝑗

(𝑖)𝑚
𝑖=1 (6.5)

 𝑔𝑟𝑎𝑑 =

[

𝜕𝐽(𝜃)

𝜕𝜃0

𝜕𝐽(𝜃)

𝜕𝜃1

⋮
𝜕𝐽(𝜃)

𝜕𝜃𝑛]

=
1

𝑚
𝑋𝑇 ∙ (𝑋 ∙ 𝜃 − 𝑌) (6.6)

Consider the term 𝜆 ∑ 𝜃𝑗
2𝑛

𝑗=1 added to the cost function for regularization (6.3), we can have the

gradient with regularization as

𝜕𝐽(𝜃)

𝜕𝜃0
=

1

𝑚
∑ (ℎ𝜃(𝑥(𝑖)) − 𝑦(𝑖))𝑥0

(𝑖)𝑚
𝑖=1 (6.7a)

𝜕𝐽(𝜃)

𝜕𝜃𝑗
=

1

𝑚
∑ (ℎ𝜃(𝑥(𝑖)) − 𝑦(𝑖))𝑥𝑗

(𝑖)𝑚
𝑖=1 +

𝜆

𝑚
𝜃𝑗 j=1,2, …., n (6.7b)

Its vectorized form is

 𝑔𝑟𝑎𝑑 =

[

𝜕𝐽(𝜃)

𝜕𝜃0

𝜕𝐽(𝜃)

𝜕𝜃1

⋮
𝜕𝐽(𝜃)

𝜕𝜃𝑛]

=
1

𝑚
𝑋𝑇 ∙ (𝑋 ∙ 𝜃 − 𝑌) +

𝜆

𝑚
[

0
𝜃1

⋮
𝜃𝑛

] (6.8)

6.3.2 Regularization for logistic regression

The cost function of logistic regression, without regularization, can be represented by

𝐽(𝑊, 𝑏) =
1

𝑚
∑ 𝐿(𝑦̂(𝑖), 𝑦(𝑖)) = −

1

𝑚
∑ [𝑦(𝑖) ln(𝑦̂(𝑖)) + (1 − 𝑦(𝑖)) ln(1 − 𝑦̂(𝑖))]𝑚

𝑖=1
𝑚
𝑖=1 (6.9)

where, 𝑊 ∈ ℝ𝑛𝑥, 𝑏 ∈ ℝ , 𝑛𝑥 is the number of features in the input X. The idea of regularization

is to modify the cost function by adding a new term to the cost function, that is, to introduce the

weight penalty. The new term is proportional to the norm of W. The consequence of this

modification is to reduce the magnitude of W, and thus to reduce the sensitivity of the model to

data variation.

L2 regularization is given by

𝐽(𝑊, 𝑏) =
1

𝑚
∑ 𝐿(𝑦̂(𝑖), 𝑦(𝑖)) +

𝜆

2𝑚
‖𝑊‖2

2𝑚
𝑖=1 (6.10)

‖𝑊‖2
2 = ∑𝑤𝑗

2

𝑛𝑥

𝑗=1

= 𝑊𝑇𝑊

The coefficient ½ and squaring L2 norm make the computation easy.

L1 regularization is given by

𝐽(𝑊, 𝑏) =
1

𝑚
∑ 𝐿(𝑦̂(𝑖), 𝑦(𝑖)) +

𝜆

2𝑚
‖𝑊‖1

𝑚
𝑖=1 (6.11)

‖𝑊‖1 = ∑|𝑤𝑗|

𝑛𝑥

𝑗=1

L2 regularization places a large penalty on large components of the weight vector. This biases our

learning algorithm towards models that distribute weight evenly across a larger number of

features. In practice, this might make them more robust to measurement error in a single variable.

By contrast, L1 penalties lead to models that concentrate weights on a small set of features by

clearing the other weights to zero. This is called feature selection, which may be desirable for

some applications.

6.3.3 Regularization for neural network

Like the regularization for logistic regression, we can have the regularization for neural network

by adding the penalty of weights to cost function,

𝐽(𝑊, 𝑏) =
1

𝑚
∑ 𝐿(𝑦̂(𝑖), 𝑦(𝑖)) +

𝜆

2𝑚
∑ ‖𝑊[𝑙]‖

𝐹

2𝐿
𝑙=1

𝑚
𝑖=1 (6.12)

where ‖𝑊[𝑙]‖
𝐹

2
= ∑ ∑ (𝑤𝑖𝑗

[𝑙]
)
2

𝑛[𝑙−1]

𝑗=1
𝑛[𝑙]

𝑖=1 is called Frobenius norm.

The backward propagation will be modified as

𝑑𝑊[𝑙] = 𝑑𝑍[𝑙]𝐴[𝑙−1]𝑇 ∗ (
1

𝑚
) +

𝜆

𝑚
𝑊[𝑙] (6.13)

The parameter update is given by

 𝑊[𝑙]: = 𝑊[𝑙] − 𝛼 ∗ 𝑑𝑊[𝑙] = 𝑊[𝑙] − 𝛼 ∗ 𝑑𝑍[𝑙]𝐴[𝑙−1]𝑇 ∗ (
1

𝑚
) − 𝛼

𝜆

𝑚
𝑊[𝑙]

= (1 − 𝛼
𝜆

𝑚
)𝑊[𝑙] − 𝛼 ∗ 𝑑𝑍[𝑙]𝐴[𝑙−1]𝑇 ∗ (

1

𝑚
) (6.14)

The coefficient of the first term, 1 − 𝛼
𝜆

𝑚
 <1, implies that the weight is decaying during the

parameter update process. The regularization becomes stronger when increasing 𝜆.

How the regularization can prevent overfitting can be interpreted intuitively by examining the

curve of an activation function, say tanh(z), in Fig.6.10. If 𝜆 is increased to impose a

regularization, 𝑊[𝑙] will be reduced. Then

𝑍[𝑙] = 𝑊[𝑙]𝐴[𝑙−1] + 𝑏[𝑙] (6.15)

will be reduced. The activation function 𝑔(𝑍[𝑙]) will work in an approximately linear region

when 𝑍[𝑙] is small. Thus, the behavior of the whole neural network moves toward the linear

direction, which leads to a relatively simple model.

Fig.6.10 curve of tanh(z)

6.3.4 Dropout for regularization

Dropout is another technique to address the overfitting problem in neural networks. The key idea

is to randomly drop (i.e., remove) units (along with their connections) from the neural network

during training. By dropping a unit out, we mean temporarily removing it from the network,

along with all its incoming and outgoing connections, as shown in Fig.6.11. The choice of units

to drop is random. In the simplest case, each unit is retained with a fixed probability p

independent of other units, where p can be chosen by using a validation set or can simply be set at

0.5, which is an appropriate empirical value for a wide range of networks and tasks. For the input

units, however, the optimal probability of retention is usually closer to 1 than to 0.5.

Fig.6.11 Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right: An

example of a thinned net produced by applying dropout to the network on the left. Crossed units

have been dropped.

This prevents units from co-adapting too much. During training, dropout samples from an

exponential number of different “thinned” networks. At test time, it is easy to approximate the

effect of averaging the predictions of all these thinned networks by simply using a single

unthinned network that has smaller weights. This significantly reduces overfitting and gives

major improvements over other regularization methods.

Dropout may be implemented on any or all hidden layers in the network as well as the visible or

input layer. It is not used on the output layer. A new hyperparameter is introduced that specifies

the probability at which outputs of the layer are dropped out, or inversely, the probability at

which outputs of the layer are retained. After each parameter update during the training process,

the units to be dropped out will be randomly selected again. The outputs of the retained units will

be scaled larger by dividing p, to avoid the outputs being varnished after many iterations.

Let’s use layer 2 as an example to explain how to implement dropout in forward propagation and

backward propagation. Other layers (except the output layer L) can be done in the same way.

Forward dropout:

1. A2 = relu(Z2) # activation without dropout
2. D2 = np.random.rand(A2.shape[0], A1.shape[1])
3. D2 = (D2<keep_prob) # mask for dropout, keep_prob is the retain prob.
4. A2 = np.multiply(A2,D2) # activation with dropout
5. A2 = A2/keep_prob # adjust the value

Note that D2 is a random binary matrix, and its shape is (𝑛[2],𝑚), where 𝑛[2] is the number of

units in layer 2, and m is the number of training examples. Thus, D2 has the same shape as A2,

and serves as a mask to specify which units in A2 will be delivered to the next layer. Consider an

example with 5 units in layer 2, and 4 training examples, i.e., (𝑛[2], 𝑚) = (5, 4). During a

training iteration, D2 could be

𝐷2 =

[

1 0 1 1
1 1 0 1
0
1
0

1
1
1

1
0
1

0
0
1]

During this training iteration, the above content of D2 shows that the model drops out unit 3 and

unit 5 for the first data example (according to the first column in D2), and drops out unit 1 for the

second example (indicated by column 2 in D2), and so on.

Backward dropout: the mask matrix D2 generated in forward propagation will be used in

backward.

1. dA2 = np.dot(W3.T, dZ3) # derivatives without dropout
2. ### dropout
3. dA2 = np.multiply(dA2, D2)
4. dA2 = dA2/keep_prob
5. ### end code
6.
7. dZ2 = np.multiply(dA2, np.int64(A2 > 0))

The elements in A2 associated with the dropped units will be equal to zero. The resulting W will

be used for predictions. It is important to note that dropout is only applied at the training phase. In

other words, no dropout will be applied for prediction at test time. A complete tutorial is provided

in Section 6.9.

6.4 Weight Initialization

6.4.1 Random initialization

In gradient descent algorithms, the weights of the neural networks are updated from a set of initial

values. The initial values of the weights play an important role in how quickly and to which local

optimum the weights converge, because the loss function of a deep neural network is a complex,

high-dimensional and non-convex function with many local minima. It is obviously not an option

to initialize all weights to a zero or constant value. With the same initial weights for all nodes in a

layer, the nodes are indistinguishable and redundant.

Random initialization is a widely used technique for the weight initialization. In random

initialization, the initial values of the weights (W) are randomly generated from a distribution

with mean zero and variance 𝜎2. In practice, the bias (b) in each node is usually initialized to

zero. There are two type of distributions which are typically used for the initialization. One is the

normal distribution, denoted as 𝒩(0, 𝜎2), while another is the uniform distribution, denoted as

𝑈[−𝑎, 𝑎]. Note that the variance of the uniform distribution is 𝜎2 =
(2𝑎)2

12
=

𝑎2

3
.

The selection of the variance is critical for the effectiveness of training process. A large variance

likely generates large magnitudes of the initial weights. If the variance is too small, the

activations of the nodes with ReLU will vanish in the forward propagation or the nodes with

sigmoid or tanh activation lose the non-linearity. If the variance is too large, the outputs of the

nodes with ReLU will likely overflow due to a large value or the activation function (e.g. sigmoid

and tanh) works in the saturation region, which leads to gradient vanishing.

6.4.2 Xavier initialization

To alleviate the problems of gradient vanishing or exploding, we initialize the weights in such

way that the variances of the output and the input for a node are equal. Consider layer l, denoted

as 𝑎[𝑙]. Its input is composed of the outputs of all nodes in the previous layer, denoted as 𝑎[𝑙−1].

Thus, the i-th node in layer l is

𝑎𝑖
[𝑙] = 𝑔 (∑ 𝑤𝑖𝑗

[𝑙]𝑎𝑗
[𝑙−1]𝑛[𝑙−1]

𝑗=1) (6.16)

where g is the activation function, 𝑤𝑖𝑗
[𝑙] is the weight from node j in layer l-1 to node i in layer l,

𝑎𝑗
[𝑙−1] is the output of node j in layer l-1, 𝑛[𝑙−1] is the number of nodes in layer l-1, i.e., the fan-in

of a node in layer l.

Assume that g is the identity function (i.e., 𝑔(𝑧) = 𝑧) for simplicity, and the weights 𝑤𝑖𝑗
[𝑙] are

mutually independent and share the same distribution with zero mean, and the input 𝑎𝑗
[𝑙−1] are

also independent and share the same distribution with zero mean, and the weights and the input

are independent of each other. Then, the mean of the output 𝑎𝑖
[𝑙] is zero, and the variance is

𝑉𝑎𝑟[𝑎𝑙] = 𝑛[𝑙−1] 𝑉𝑎𝑟[𝑤𝑙] ∙ 𝑉𝑎𝑟[𝑎𝑙−1] (6.17)

where 𝑎𝑙, 𝑤𝑙, and 𝑎𝑙−1 represent the random variables of each element in 𝑎[𝑙], 𝑊[𝑙], and 𝑎[𝑙−1]

respectively.

This implies that, passing through a node, the variance is scaled by a factor of 𝑛[𝑙−1] 𝑉𝑎𝑟[𝑤𝑙]. For

the variances of the input and the output to be equal, we have

𝑛[𝑙−1] 𝑉𝑎𝑟[𝑤𝑙] = 𝑛[𝑙−1]𝜎2 = 1 (6.18)

To account for both the forward propagation and backward propagation, we set the average of the

forward and the backward scale factors to be a unit,

𝑛[𝑙−1]+𝑛[𝑙]

2
 𝜎2 = 1 (6.19)

Thus,

𝜎2 =
2

𝑛[𝑙−1]+𝑛[𝑙] (6.20)

Derivation of (6.20) requires the assumption of the identity activation function. Since the initial

weights and the inputs are relatively small, the activation function (e.g., sigmoid and tanh)

typically works in its approximate linear region where its input is close to zero. Equation (6.20) is

directly applicable for the tanh activation function because
𝑑

𝑑𝑧
tanh(𝑧) |𝑧=0 = 1.

For the nodes with a sigmoid activation function, since
𝑑

𝑑𝑧
σ(𝑧) |𝑧=0 =

1

4
, the variance of the initial

weights is adjusted accordingly,

𝜎2 = 16 ×
2

𝑛[𝑙−1]+𝑛[𝑙] (6.21)

The initialization methods, defined by (6.20) and (6.21) for tanh and sigmoid activations

respectively, are called Xavier initialization.

6.4.3 He initialization

ReLU is one of the most commonly used activation functions in deep learning (especially in

convolutional neural networks), defined as

𝑅𝑒𝐿𝑈(𝑧) = 𝑚𝑎𝑥(0, 𝑧) (6.22)

Xavier initialization sometimes does not work well if the activation function is ReLU. He

initialization was proposed to initialize the weights for layers with ReLU activations in deep

neural networks.

For layer l in the forward pass, the linear combination (assuming the bias is zero) is

𝑧[𝑙] = 𝑊[𝑙]𝑎[𝑙−1] (6.23)

where 𝑧[𝑙] ∈ ℝ𝑛[𝑙]
, 𝑊[𝑙] ∈ ℝ𝑛[𝑙]×𝑛[𝑙−1]

, 𝑎[𝑙] ∈ ℝ𝑛[𝑙−1]
. Based on the assumptions of independence

on 𝑊[𝑙] and 𝑎[𝑙−1], we have

𝑉𝑎𝑟[𝑧𝑙] = 𝑛[𝑙−1]𝑉𝑎𝑟[𝑤𝑙𝑎𝑙−1] (6.24)

where 𝑧𝑙, 𝑤𝑙, and 𝑎𝑙−1 represent the random variables of each element in 𝑧[𝑙], 𝑊[𝑙], and 𝑎[𝑙−1]

respectively. Since the mean of 𝑤𝑙 is zero, (6.24) can be represented as

𝑉𝑎𝑟[𝑧𝑙] = 𝑛[𝑙−1]𝑉𝑎𝑟[𝑤𝑙] 𝐸[𝑎𝑙−1
2] (6.25)

It is worth noticing that 𝑉𝑎𝑟[𝑎𝑙−1] ≠ 𝐸[𝑎𝑙−1
2] because 𝐸[𝑎𝑙−1] ≠ 0. Since 𝑎𝑙−1 = 𝑀𝑎𝑥(0, 𝑧𝑙−1)

and 𝑧𝑙−1 has zero mean and a symmetrical distribution around zero, we have

𝐸[𝑎𝑙−1
2] =

1

2
𝑉𝑎𝑟[𝑧𝑙−1] (6.26)

This leads to

𝑉𝑎𝑟[𝑧𝑙] =
1

2
𝑛[𝑙−1]𝑉𝑎𝑟[𝑤𝑙] 𝑉𝑎𝑟[𝑧𝑙−1] (6.27)

To avoid reducing or magnifying the magnitudes of input signals exponentially through L layers,

we set the scale factor to one, i.e.,

1

2
𝑛[𝑙−1]𝑉𝑎𝑟[𝑤𝑙] = 1 for 𝑙 = 2, 3,… , 𝐿 (6.28)

Or

 𝜎2 = 𝑉𝑎𝑟[𝑤𝑙] =
2

𝑛[𝑙−1] for 𝑙 = 2, 3, … , 𝐿 (6.29)

For the first layer (l = 1), we should have 𝑛[0]𝑉𝑎𝑟[𝑤1] = 1 because there is no ReLU applied on

the input signal. But the factor 1/2 does not matter if it just exists on one layer. So we also adopt

(6.28) and (6.29) in the first layer for simplicity.

For the backward propagation, a similar result can be obtained. It has been demonstrated that

(6.29) is sufficient to avoid gradients from being reduced or magnified exponentially. A reader

can refer to paper (He 2015) for details.

In summary, it is important to properly initialize the values of weights W for an effective and

efficient training process. We randomly generate the initial values for W by following either the

normal distribution or uniform distribution, with a mean of zero and a variance of 𝜎2. The

variance depends on the type of activation function and the number of inputs to the node. The

details are summarized in the following table.

Activation

function

Initialization

method

Normal distribution

𝓝(𝟎, 𝝈𝟐)

Uniform distribution

𝑼[−𝒂,𝒂]

Sigmoid Xavier initialization
𝜎2 = 16 ×

2

𝑛[𝑙−1] + 𝑛[𝑙]

𝑎 = 4 × √
6

𝑛[𝑙−1] + 𝑛[𝑙]

Tanh Xavier initialization
𝜎2 =

2

𝑛[𝑙−1] + 𝑛[𝑙]

𝑎 = √
6

𝑛[𝑙−1] + 𝑛[𝑙]

ReLU He initialization
𝜎2 =

2

𝑛[𝑙−1]

𝑎 = √
6

𝑛[𝑙−1]

Since ReLU is the most frequently used activation function for modern deep neural networks, we

will adopt He initialization in our examples later, which works well practically for sigmoid or

softmax activation.

6.5 Mini-batch Gradient Descent

6.5.1 Three types of gradient descent

As discussed in previous chapters, we use a gradient descent algorithm to search for the optimal

or suboptimal values of model parameters. In the gradient descent algorithm, each update of the

parameters can be based on the entire dataset, a single data example, or a batch of data examples.

This leads to three types of gradient descent algorithms – batch, stochastic, and mini-batch,

respectively.

Batch gradient descent is the gradient descent algorithm that updates the model parameters each

time based on the entire training dataset. So far, all gradient descent algorithms in previous

chapters were implemented as batch gradient descent. One cycle through the entire training

dataset is called a training epoch. Therefore, it is often said that batch gradient descent performs

model updates at the end of each training epoch. The major disadvantage of batch gradient

descent is that a larger memory is required for one update, and thus leading to a slower update

rate.

In contrast, stochastic gradient descent, often abbreviated SGD, calculates the gradients and

updates the model on each example in the training dataset.

Mini-batch gradient descent is another variation of the gradient descent algorithm that randomly

splits the training dataset into small batches. The batches typically have the same size, possibly

except the last batch. During the training process, the model parameters are updated once per a

batch until all batches are applied (i.e., the epoch is completed). In deep learning, one epoch is

typically not enough for the model to converge. To start a new epoch, we should create batches

again in the same random way.

Thus, batch gradient descent and stochastic descent are the two extreme cases of mini-batch

gradient descent. Mini-batch gradient descent with the batch size equal to the training set size is

identical to the batch gradient descent. On the other hand, with the batch size of one, the mini-

batch gradient descent is the same as the stochastic gradient descent.

To understand the concepts of mini-batch gradient descent and epoch, let’s consider the following

example. Suppose we use a dataset that has 200 samples, and we train a neural network through a

mini-batch gradient descent with a batch size of 5 for 1000 epochs. For each epoch, the dataset

then is randomly split into 40 batches with each having 5 samples. During the training iteration

loop, the weights of the model are updated when each batch of 5 samples passes through. Thus,

the model will be updated 40 times during one epoch. Furthermore, since the epoch number is

1,000, the model will be updated 40,000 times during the entire training process.

6.5.2 Implementation of mini-batch gradient descent

Suppose that the training dataset has m=5,000,000 examples (𝑥(𝑖), 𝑦(𝑖), 𝑖 = 1,2… ,5,000,000).

We can split the dataset into mini-batches given a particular batch size, say 1000. Thus, there are

total 5000 mini-batches with the batch size 1000. The batches are denoted by (𝑋{𝑡}, 𝑌{𝑡}, 𝑡 =

1,2,… , 5,000). The gradient descent algorithm is applied on mini-batches sequentially, which is

call mini-batch gradient descent. The algorithm for a neural network with regularization is

described as

Repeat {

for t=1,2,…, 5000

{

Forward propagation on 𝑋{𝑡} 𝑌{𝑡} (1000 examples)

𝑍[𝑙] = 𝑊[𝑙]𝑋{𝑡} + 𝑏[𝑙]

𝐴[𝑙] = 𝑔[𝑙](𝑍[𝑙])

…

𝐴[𝐿] = 𝑔[𝐿](𝑍[𝐿])

 Compute cost 𝐽{𝑡} =
1

1000
∑ 𝐿(𝑦̂(𝑖), 𝑦(𝑖)) +

𝜆

2∙1000
∑ ‖𝑊[𝑙]‖

𝐹

2
𝑙𝑡 𝑏𝑎𝑡𝑐ℎ

 Backward to compute gradient using 𝑋{𝑡} 𝑌{𝑡} (1000 examples)

 Update parameters

𝑊[𝑙]≔𝑊[𝑙] − 𝛼𝑑𝑊[𝑙]

𝑏[𝑙]≔𝑏[𝑙] − 𝛼𝑑𝑏[𝑙]

}

To understand the behavior of the mini-gradient descent, we can plot the cost J as a function of t.

The cost plot should have a similar overall trend as that of the batch gradient descent, but with

some noise on the curve, sketched in Fig.6.12.

Fig.6.12 Cost curves. Left: batch gradient descent. Right: mini-gradient descent

6.5.3 Selection of mini-batch size

The mini-batch gradient descent introduces a hyperparameter, called batch size. If the batch size

is equal to the total number of examples in the training set, m, then the algorithm is a batch

gradient descent. If batch size is 1, the algorithm is a stochastic gradient descent.

In general, a smaller value of batch size gives a learning process that updates the model more

frequently at the cost of noise in the training process. Large values give a learning process that

updates less frequently with accurate estimates of the error gradient. Fig.6.13 illustrates the

converge paths for batch (purple), mini-batch(blue) and stochastic (red) gradient algorithms. For

the batch gradient descent, the path (purple) is most straightforward, but each update takes a long

time because it involves the entire dataset. For stochastic, the path (red) demonstrates a big noise,

but each update takes a small time. The mini-batch path is generally a good balance.

A few practical tips for choosing mini-batch size are suggested as following (based on the

hardware technology in 2022).

1) If the training set is small, e.g. less than 2000, then use batch

gradient descent.

2) Typically, mini-batch size is the power of two, such as 2, 4, 16, 32,

64, 128, …. , to match the hardware memory structures.

3) It is a good idea to review learning curves of model validation

error against training time with different batch sizes when tuning

the batch size.

4) Tune batch size and learning rate after tuning all other

hyperparameters.

Fig.6.13 converge path

6.6 Normalization

In a machine learning pipeline, normalization or standardization of the training dataset is

generally considered good practice, as it simplifies the input data distribution to a known standard

distribution and thus accelerates the convergence of training process.

6.6.1 Input feature normalization

In many applications, the features in the data are measured by different scales. For example, the

value of feature x1 (e.g. square feet of a house) may vary in the range from 1 to 10000 while the

range of feature x2 (e.g. the number of bedrooms) varies from 1 to 5. To achieve an efficient

optimization computation, it is essential to transform them into quantities with similar scales. It is

a common practice to independently normalize each feature into the quantities with zero mean

and unit variance. Then the normalized data is used to train the model. To predict on test set, we

use the same mean and variance, which was used to normalize training set, to normalize the test

set. The prediction will be performed on the normalized test set. The normalized feature of a

feature xi is calculated as:

𝑧𝑖 =
𝑥𝑖−𝑢𝑖

𝑠𝑖
 (6.30a)

where ui is the mean of the feature xi, and si is the standard deviation of the feature xi.

𝜇𝑖 =
1

𝑚
∑ 𝑥𝑖(𝑗)

𝑚
𝑗=1 (6.30b)

𝑠𝑖
2 =

1

𝑚
∑ (𝑥𝑖(𝑗) − 𝜇𝑖)

2𝑚
𝑗=1 (6.30c)

6.6.2 Batch normalization

Training a deep neural network requires careful tuning of the model hyper-parameters,

specifically the learning rate used in optimization, as well as the initial values for the model

parameters. It also suffers from a phenomenon, called internal covariate shift, which is defined as

the change in the distribution of network activations due to the change in network parameters

during training. The internal covariate shift presents a problem because the layers need to

continuously adapt to the new distribution.

Batch normalization (BN) is an effective technique to address the issue of internal covariate shift.

In addition, it allows us to use much higher learning rates and be less careful about initialization.

It also acts as a regularization, in some cases eliminating the need for dropout. Thus, batch

normalization makes the training of deep neural networks faster and more stable. Batch

normalization can be applied either right before or right after the activation function in each layer.

For a fully connected neural network, each feature is normalized separately within a batch. Batch

normalization for convolutional neural networks will be addressed in Chapter 8.

Fig.6.14 illustrates the bath normalization for layer l, which is applied right before the activation.

For the ith data example in a batch, the linear combination is

𝑋 = 𝑊𝐴[𝑙−1] + 𝑏 (6.31)

where 𝑊 ∈ ℝ𝑛[𝑙]×𝑛[𝑙−1]
, 𝐴[𝑙−1] ∈ ℝ𝑛[𝑙−1]

, 𝑏 ∈ ℝ𝑛𝑙
, 𝑛[𝑙] and 𝑛[𝑙−1] are the number of nodes in

layer l and layer l-1 respectively. For a batch with a size of m, the variables 𝐴[𝑙−1] and 𝑋 will be

extended by one more dimension with the size m. For example, we will use 𝑋(𝑗,𝑖) to denote the

quantity at feature j (i.e. node j) and data example i. Fig.6.14 shows the case with 𝑛[𝑙−1] = 5,

𝑛[𝑙] = 4, batch size m=8. Each dash-line box represents a batch data for one feature.

Fig.6.14 Batch normalization (red) applied in a neural network

Batch normalization is applied to each feature separately. The batch normalization for one

feature, say feature j, can be described by the following equations

Let 𝑥𝑖 = 𝑋(𝑗,𝑖)

Mini-batch mean: 𝜇 =
1

𝑚
∑ 𝑥𝑖

𝑚
𝑖=1 (6.32a)

Mini-batch variance: 𝜎2 =
1

𝑚
∑ (𝑥𝑖 − 𝜇)2𝑚

𝑖=1 (6.32b)

Normalize: 𝑥𝑖 =
𝑥𝑖−𝜇

√𝜎2+𝜖
, 𝑖 = 1,2,… ,𝑚 (6.32c)

Scale and shift: 𝑦𝑖 = 𝛾𝑥𝑖 + 𝛽, 𝑖 = 1,2,… ,𝑚 (6.32d)

𝑦𝑖 in (6.32d) is the result of batch normalization at feature j and example i. (6.32a) and (6.32b)

calculate the mean and the variance within one batch, respectively. (6.32c) normalizes the batch

data so that the input of each feature at each layer has a mean of zero and a variance of one. Note

that ϵ is a small positive number to avoid dividing by zero. Two learnable parameters γ and β in

(6.32d) are used to scale and shift the batch data, and thus to improve the representation ability of

the network. The forward propagation in batch normalization, defined by (6.32), is illustrated in

Fig.6.15, where L is the loss of the neural network.

Fig.6.15 Dataflow in batch normalization

In backpropagation, we need to calculate the gradients of the loss with respect to the parameters

and the input for each layer, given the gradient of the loss with respect to the output of this layer.

specifically, consider the batch normalization in Fig.6.15, and suppose we know the results

associated with the forward propagation (such as 𝑥𝑖, 𝜇, 𝜎2, 𝑥𝑖), and
𝜕𝐿

𝜕𝑦𝑖
, 𝑖 = 1,2,… ,𝑚. We will

calculate
𝜕𝐿

𝜕𝛾
,
𝜕𝐿

𝜕𝛽

𝜕𝐿

𝜕𝑥𝑖
, 𝑖 = 1,2,… , 𝑚.

By the calculus chain rule, we can easily have

𝜕𝐿

𝜕𝛽
= ∑

𝜕𝐿

𝜕𝑦𝑖

𝜕𝑦𝑖

𝜕𝛽
𝑚
𝑖=1 = ∑

𝜕𝐿

𝜕𝑦𝑖

𝑚
𝑖=1 (6.33)

𝜕𝐿

𝜕𝛾
= ∑

𝜕𝐿

𝜕𝑦𝑖

𝜕𝑦𝑖

𝜕𝛾
𝑚
𝑖=1 = ∑

𝜕𝐿

𝜕𝑦𝑖

𝑚
𝑖=1 𝑥𝑖 (6.34)

To calculate
𝜕𝐿

𝜕𝑥𝑖
, we compute the derivatives in a backward direction in Fig.6.15 as follows.

𝜕𝐿

𝜕𝑥̂𝑖
=

𝜕𝐿

𝜕𝑦𝑖

𝜕𝑦𝑖

𝜕𝑥̂𝑖
=

𝜕𝐿

𝜕𝑦𝑖
𝛾 (6.35)

𝜕𝐿

𝜕𝜎2 = ∑
𝜕𝐿

𝜕𝑥̂𝑖

𝑚
𝑖=1

𝜕𝑥̂𝑖

𝜕𝜎2 = ∑
𝜕𝐿

𝜕𝑥̂𝑖

𝑚
𝑖=1 (𝑥𝑖 − 𝜇)(−

1

2
)(𝜎2 + 𝜖)−

3

2 (6.36)

𝜕𝐿

𝜕𝜇
=

𝜕𝐿

𝜕𝜎2

𝜕𝜎2

𝜕𝜇
+ ∑

𝜕𝐿

𝜕𝑥̂𝑖

𝑚
𝑖=1

𝜕𝑥̂𝑖

𝜕𝜇
=

𝜕𝐿

𝜕𝜎2

−2

𝑚
∑ (𝑥𝑖 − 𝜇)𝑚

𝑖=1 + ∑
𝜕𝐿

𝜕𝑥̂𝑖

𝑚
𝑖=1

−1

√𝜎2+𝜖
= ∑

𝜕𝐿

𝜕𝑥̂𝑖

𝑚
𝑖=1

−1

√𝜎2+𝜖
 (6.37)

𝜕𝐿

𝜕𝑥𝑖
=

𝜕𝐿

𝜕𝑥̂𝑖

𝜕𝑥̂𝑖

𝜕𝑥𝑖
+

𝜕𝐿

𝜕𝜎2

𝜕𝜎2

𝜕𝑥𝑖
+

𝜕𝐿

𝜕𝜇

𝜕𝜇

𝜕𝑥𝑖
=

𝜕𝐿

𝜕𝑥̂𝑖

1

√𝜎2+𝜖
+

𝜕𝐿

𝜕𝜎2

𝜕𝜎2

𝜕𝑥𝑖
+

𝜕𝐿

𝜕𝜇

1

𝑚
 =

𝜕𝐿

𝜕𝑥̂𝑖

1

√𝜎2+𝜖
+

𝜕𝐿

𝜕𝜎2

2

𝑚
(𝑥𝑖 − 𝜇) +

𝜕𝐿

𝜕𝜇

1

𝑚

(6.38)

During the training process, the computations (6.32-6.38) are based on a batch of data examples.

However, during inference, we only have one data point, and thus need to estimate the global

mean and the variance of x, using the mini-batch means and variances generated during the

training process.

𝐸[𝑥] ← 𝐸ℬ[𝜇] (6.39)

𝑉𝑎𝑟[𝑥] ←
𝑚

𝑚−1
𝐸ℬ[𝜎2] (6.40)

where 𝜇, 𝜎2 are the mean and the variance for a batch during the training process. In practice, to

improve the computation efficiency, we can use the moving average to estimate the expectations

in (6.39) and (6.40). For instance, during the training process, we can accumulate the batch means

by moving average

𝑚𝑒𝑎𝑛𝑟𝑢𝑛𝑛𝑖𝑛𝑔 ← 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 × 𝑚𝑒𝑎𝑛𝑟𝑢𝑛𝑛𝑖𝑛𝑔 + (1 − 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚) × 𝜇 (6.41)

where the hyperparameter 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚, is a given coefficient between 0 and 1 At the end of

training, 𝑚𝑒𝑎𝑛𝑟𝑢𝑛𝑛𝑖𝑛𝑔 is an estimate of 𝐸[𝑥], and thus can be used in inference. 𝐸ℬ[𝜎2] in (6.40)

can be similarly estimated by moving average.

In inference, the computation of the batch normalization is defined as

𝑦𝑖 = 𝛾
𝑥𝑖−𝐸[𝑥]

√𝑉𝑎𝑟[𝑥]+𝜖
+ 𝛽 (6.42)

where 𝛾, 𝛽 are learned parameters. Thus, a batch normalization can be illustrated in Fig.6.16.

Fig.6.16 Batch normalization

6.7 Adam Optimization

6.7.1 Gradient descent with momentum

Due to the limited data amount in one batch when the batch size is small, there is significant

oscillating in the converge path if the parameters are updated only based on the current batch

gradients. In many applications, the gradient descent usually demonstrates a “zigzag”

convergence path, as shown in Fig.6.17. Fortunately, the overall direction of the converge path

eventually points to the minimal cost. Thus, if the average of the parameter update directions over

a certain number of previous directions (including current mini-batch direction) is used, the path

is expected to be smoother. In other words, the learning speed can be improved by averaging the

recent gradients. Since the gradients are becoming more accurate as the iterations proceed, the

recent gradients should have larger weights when the averaging is performed. Thus, we compute

exponentially weighted averages over the gradients of all previous mini-batches. In fact, we

already applied this technique to estimate the average in (6.41).

Fig.6.17 Gradient descent with momentum. The red path is obtained by averaging a few previous

mini-batch gradients.

Consider an example of computing a smooth curve to approximate a series of noisy data samples

{𝜃1, 𝜃2, … 𝜃𝑡, … }. The exponentially weighted averages, also called moving averages, denoted by

{𝑣1, 𝑣2, … 𝑣𝑡 , … }, can be used for this purpose, and computed by

𝑣𝑡 = 𝛽𝑣𝑡−1 + (1 − 𝛽)𝜃𝑡 (6.43)

where 𝛽 is a parameter for weight control (0 < 𝛽 < 1). Given zero initial value for 𝑣𝑡, (6.43) can

be expressed by {𝜃1, 𝜃2, … 𝜃𝑡, … } explicitly

𝑣𝑡 = (1 − 𝛽)(𝜃𝑡 + 𝛽𝜃𝑡−1 + 𝛽2𝜃𝑡−2 + ⋯+ 𝛽𝑡−1𝜃1) (6.44)

(6.44) shows that the weights are exponentially distributed over the past values, and the larger the

𝛽, the more weights are put on the far away past values. A minor problem with (6.43) and (6.44)

is a bias existing in the beginning of the process due to the zero initialization. A bias correction

is available to compensate this initial bias

𝑣𝑡 ≔
𝑣𝑡

1−𝛽𝑡 (6.45)

As t increases, the effect of the bias correction will be ignored.

Given {𝜃1, 𝜃2, … 𝜃𝑡, … } and 𝛽, the algorithm for exponentially weighted average can be described

as follows.

vθ = 0

Repeat {

Get next θt

vθ ≔ βvθ + (1 − β)θt (6.46)

}

Now let’s return to gradient descent with momentum. On each iteration t (mini-batch), the

parameters W and b are updated based on the exponentially weighted average of gradients of

previous mini-batch iterations. The algorithm can be described as

Initialization: 𝑣𝑑𝑤 = 0, 𝑣𝑑𝑏 = 0

On iteration t:

 Compute dW, db on the current mini-batch

 𝑣𝑑𝑤 = 𝛽𝑣𝑑𝑤 + (1 − 𝛽)𝑑𝑊

𝑣𝑑𝑏 = 𝛽𝑣𝑑𝑏 + (1 − 𝛽)𝑑𝑏

𝑊 ≔ 𝑊 − 𝛼𝑣𝑑𝑤

 𝑏 ≔ 𝑏 − 𝛼𝑣𝑑𝑏 (6.47)

where 𝑑𝑊 and 𝑑𝑏 are the derivatives of the loss function with respect to the weights and bias on

the current batch. Note that there are two hyperparameters 𝛼, 𝛽 for this update.

A variation of the momentum algorithm is called RMS prop (root means square Propagation),

given by

Initialization: 𝑠𝑑𝑤 = 0, 𝑠𝑑𝑏 = 0, 𝜀: 10E-8 (avoid dividing by zero)

On iteration t:

 Compute dW, db on the current mini-batch

 𝑠𝑑𝑤 = 𝛽𝑠𝑑𝑤 + (1 − 𝛽)(‖𝑑𝑊‖2)

𝑠𝑑𝑏 = 𝛽𝑠𝑑𝑏 + (1 − 𝛽)(‖𝑑𝑏‖2)

𝑊 ≔ 𝑊 − 𝛼
𝑑𝑊

√𝑠𝑑𝑤+𝜀
, 𝑏 ≔ 𝑏 − 𝛼

𝑑𝑏

√𝑠𝑑𝑏+𝜀
 (6.48)

6.7.2 Adam optimization algorithm

Adam optimization algorithm is a combination of gradient descent with momentum and RMS

prop. It can be described as

Initialization: 𝑣𝑑𝑤 = 0, 𝑠𝑑𝑤 = 0, 𝑣𝑑𝑏 = 0, 𝑠𝑑𝑏 = 0

On batch iteration t:

 Compute dW, db on the current mini-batch

 𝑣𝑑𝑤 = 𝛽1𝑣𝑑𝑤 + (1 − 𝛽1)𝑑𝑤,

𝑣𝑑𝑏 = 𝛽1𝑣𝑑𝑏 + (1 − 𝛽1)𝑑𝑏

𝑠𝑑𝑤 = 𝛽2𝑠𝑑𝑤 + (1 − 𝛽2)(𝑑𝑤 ∗ 𝑑𝑤),

𝑠𝑑𝑏 = 𝛽2𝑠𝑑𝑏 + (1 − 𝛽2)(𝑑𝑏 ∗ 𝑑𝑏)

𝑣𝑑𝑤 ≔
𝑣𝑑𝑤

1 − 𝛽1
𝑡

𝑣𝑑𝑏 ≔
𝑣𝑑𝑏

1 − 𝛽1
𝑡

𝑠𝑑𝑤 ≔
𝑠𝑑𝑤

1 − 𝛽2
𝑡

𝑠𝑑𝑏 ≔
𝑠𝑑𝑏

1 − 𝛽2
𝑡

𝑊 ≔ 𝑊 − 𝛼
𝑣𝑑𝑤

√𝑠𝑑𝑤+𝜀
, 𝑏 ≔ 𝑏 − 𝛼

𝑣𝑑𝑏

√𝑠𝑑𝑏+𝜀
 (6.49)

Typical hyperparameters:

𝛼: needs to be tuned

𝛽1: 0.9 for dW, db

𝛽2: 0.999 for dW*dW, db*db

 𝜀: 10E-8 (avoid dividing by zero)

In practice, Adam optimization algorithm has been implemented in packages of popular program

libraries.

6.7.3 Learning rate decay

The hyperparameter 𝛼, called learning rate, defines the step size of model parameter updating. It

is desirable to have relatively large learning rates at the earlier updating stages, while smaller

learning rates when the updating is approaching close to the minimal cost. In other words, we

would like the learning rate to decay with the update process. We define one epoch as one pass

through the dataset, as shown in Fig.6.18.

Fig.6.18 Epoch concept

An empirical learning rate decay is given by

𝛼 =
𝛼0

1+𝑑𝑒𝑐𝑎𝑦_𝑟𝑎𝑡𝑒∗𝑒𝑝𝑜𝑐ℎ_𝑛𝑢𝑚
 (6.50)

Other empirical equations for learning rate decay include

𝛼 = 0.95𝑒𝑝𝑜𝑐ℎ_𝑛𝑢𝑚 ∙ 𝛼0 (6.51)

𝛼 =
𝑘

√𝑒𝑝𝑜𝑐ℎ_𝑛𝑢𝑚
𝛼0 (6.52)

where 𝑒𝑝𝑜𝑐ℎ_𝑛𝑢𝑚 is the index of epoch.

6.8 Gradient checking

The gradient computation is usually difficult to debug. We describe a numerical method to verify

whether the derivatives were correctly calculated. Carrying out the derivative checking procedure

will significantly increase your confidence in the correctness of your code, though it is not

required for model training.

Suppose we want to minimize J(θ). For simplicity, suppose J:R↦R, so that θ∈R. If we are using

an optimization algorithm, then we usually have implemented some function g(θ) that computes
𝑑

𝑑𝜃
𝐽(𝜃).

𝑔(𝜃) =
𝑑

𝑑𝜃
𝐽(𝜃) = lim

𝜀→0

𝐽(𝜃+𝜀)−𝐽(𝜃−𝜀)

2𝜀
 (6.53)

How can we check if our implementation of g is correct? In practice, we set 𝜀 to a small constant,

say around 10−4. Thus, given a function g(θ) that is supposed to compute
𝑑

𝑑𝜃
𝐽(𝜃) in the

backpropagation, we can now numerically verify its correctness by checking that

𝑔(𝜃) ≈
𝐽(𝜃+𝜀)−𝐽(𝜃−𝜀)

2𝜀
 (6.54)

where 𝑔(𝜃) is the derivative we calculated in the backpropagation during the training process.

The right-hand side of (6.54) shows the way we calculate the approximate derivative for the

verification purpose.

Now, consider the case where θ∈ Rn is a vector rather than a single real number (so that we have

n parameters that we want to learn), and J:Rn↦R. We now generalize our derivative checking

procedure to the case where θ is a vector. If we are optimizing over several variables or over

matrices, we can always pack these parameters into a long vector and use the same method here

to check our derivatives.

Suppose we have a function gi(θ) that purportedly computes
𝜕

𝜕𝜃𝑖
𝐽(𝜃); we’d like to check if gi is

outputting correct derivative values. Let 𝜃(𝑖+) = 𝜃 + 𝜀 × 𝑒𝑖, where

 𝑒𝑖=

[

0
0
⋮
0
1
0
⋮
0]

 (6.55)

where 𝑒𝑖 is the i-th basis vector (a vector of the same dimension as θ, with a “1” for the i-th

element and “0” for the rest elements). So, θ(i+) is the same as θ, except its i-th element has been

incremented by 𝜀. Similarly, let 𝜃(𝑖−) = 𝜃 − 𝜀 × 𝑒𝑖⃑⃑⃑ ⃑, be the corresponding vector with the i-th

element decreased by 𝜀. We can now numerically verify gi(θ) correctness by checking, for each i,

that:

 𝑔𝑖(𝜃) ≈ 𝑔𝑎𝑝𝑝𝑟𝑜𝑥,𝑖(𝜃) =
𝐽(𝜃(𝑖+))−𝐽(𝜃(𝑖−))

2𝜀
 (6.56)

In practice, we can calculate the relative distance between 𝑔(𝜃) and 𝑔𝑎𝑝𝑝𝑟𝑜𝑥(𝜃), where 𝑔(𝜃) is a

vector consisting of 𝑔𝑖(𝜃) and 𝑔𝑎𝑝𝑝𝑟𝑜𝑥(𝜃) is a vector consisting of 𝑔𝑎𝑝𝑝𝑟𝑜𝑥,𝑖(𝜃), i=1,2…, n.

𝑑 =
‖𝑔𝑎𝑝𝑝𝑟𝑜𝑥(𝜃)−𝑔(𝜃)‖

2

‖𝑔𝑎𝑝𝑝𝑟𝑜𝑥(𝜃)‖
2
+‖𝑔(𝜃)‖2

 (6.57)

If d is small enough, say 10-7, then g(𝜃) is likely correct.

A few reminders are suggested for gradient checking:

◼ Don’t use it in training, only to debug, because 𝑔𝑎𝑝𝑝𝑟𝑜𝑥,𝑖(𝜃) is very computationally

expensive, so turn off the gradient checking during the training phase.

◼ If algorithm fails gradient check, look at components to try to identify bug.

◼ Doesn’t work with dropout

1) Turn off dropout (keep_prob=1)

2) Use gradient check

3) Turn on dropout (for example, keep_prob=0.8)

6.9 Examples in Python

In this section, we will present how the practical considerations addressed earlier are

implemented from scratch in Python. A reader is encouraged to read carefully and run the

provided codes.

6.9.1 A 3-layer network with regularization and dropout

Now we will develop a 3-layer neural network with regularization or dropout control. The

network size is layers_dims =[X.shape[0], 20, 5, 1], shown in Fig.6.19. Layer 0 is input. Layer 1

(hidden layer) has 20 units with ReLU activations. Layer 2 (hidden layer) has 5 units with ReLU

activations. The output layer has one unit with sigmoid activation. We can specify a different

number of units for each hidden layer by changing the corresponding number in the vector

layers_dims. For example, we can change 20 to 10 for 10 units in the first hidden layer. However,

if we want to build a network with more layers, we need to extend the Python code by explicitly

adding more layers. Thus, this network can perform a binary classification. We will use this

network to classify the dataset, which is plotted in Fig.6.20.

Fig.6.19 The implemented 3-layer network

(a) training set (b) test set

Fig.6.20 A dataset (data.mat) to be classified

We implement this project in Jupyter notebook (regularization_dropout.ipynb) through the

following steps:

1) Prepare the data. The training and test datasets are saved in a single file data.mat.

import numpy as np

import matplotlib.pyplot as plt

import scipy.io

def load_2D_dataset():

 data = scipy.io.loadmat('data.mat')

 train_X = data['X'].T

 train_Y = data['y'].T

 test_X = data['Xval'].T

 test_Y = data['yval'].T

 return train_X, train_Y, test_X, test_Y

load and visualize dataset

train_X, train_Y, test_X, test_Y = load_2D_dataset()

plt.scatter(train_X[0, :], train_X[1, :],c=train_Y[0,:], s=40,

cmap=plt.cm.Spectral)

plt.xlabel("X[0,:]")

plt.ylabel("X[1,:]")

plt.title("training set, red: y=0, blue: y=1")

plt.show()

#train_X.shape: (2,211), train_Y.shape: (1,211)

#test_X.shape: (2,200), test_Y.shape: (1,200)

2) Define functions:

Activation functions: relu(x), sigmoid(x)

def relu(x):

 """

 Arguments:

 x -- A scalar or numpy array of any size.

 Return:

 s -- relu(x)

 """

 s = np.maximum(0,x)

 return s

def sigmoid(x):

 """

 Arguments:

 x -- A scalar or numpy array of any size.

 Return:

 s -- sigmoid(x)

 """

 s = 1/(1+np.exp(-x))

 return s

 Forward propagation functions: 1) without dropout; and 2) with dropout

def forward_propagation(X, parameters):

 """

 Implements the forward propagation, without dropout

 Arguments:

 X -- input dataset, of shape (input size, number of examples)

 parameters -- python dictionary containing:

 W1 -- weight matrix

 b1 -- bias vector

 W2 -- weight matrix

 b2 -- bias vector

 W3 -- weight matrix

 b3 -- bias vector

 Returns:

 A3 -- the output

 cache -- internal variables and weights

 """

 # retrieve parameters

 W1 = parameters["W1"]

 b1 = parameters["b1"]

 W2 = parameters["W2"]

 b2 = parameters["b2"]

 W3 = parameters["W3"]

 b3 = parameters["b3"]

 # LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID

 Z1 = np.dot(W1, X) + b1

 A1 = relu(Z1)

 Z2 = np.dot(W2, A1) + b2

 A2 = relu(Z2)

 Z3 = np.dot(W3, A2) + b3

 A3 = sigmoid(Z3)

 cache = (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3)

 return A3, cache

def forward_propagation_with_dropout(X, parameters, keep_prob):

 """

 Implements the forward propagation with dropout

 keep_prob = 1 for no dropout

 Arguments:

 X -- input dataset, of shape (input size, number of examples)

 parameters -- python dictionary containing:

 W1 -- weight matrix

 b1 -- bias vector

 W2 -- weight matrix

 b2 -- bias vector

 W3 -- weight matrix

 b3 -- bias vector

 keep_prob - probability of keeping a neuron active during dropout, scalar

 Returns:

 A3 -- activation value, output of the forward propagation, of shape(1,1)

 cache -- tuple, information stored for computing the backward propagation

 """

 np.random.seed(4)

 # retrieve parameters

 W1 = parameters["W1"]

 b1 = parameters["b1"]

 W2 = parameters["W2"]

 b2 = parameters["b2"]

 W3 = parameters["W3"]

 b3 = parameters["b3"]

 # LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID

 Z1 = np.dot(W1, X) + b1

 A1 = relu(Z1)

 ### randomly drop out in layer 1 ###

 D1 = np.random.rand(A1.shape[0], A1.shape[1])

 D1 = (D1<keep_prob) ### dropout mask

 A1 = np.multiply(A1,D1)

 A1 = A1/keep_prob ### scale large

 ## end code

 Z2 = np.dot(W2, A1) + b2

 A2 = relu(Z2)

 ### drop out A2 ###

 D2 = np.random.rand(A2.shape[0], A1.shape[1])

 D2 = (D2<keep_prob)

 A2 = np.multiply(A2,D2)

 A2 = A2/keep_prob

 ## end code

 Z3 = np.dot(W3, A2) + b3

 A3 = sigmoid(Z3)

 cache = (Z1, D1, A1, W1, b1, Z2, D2, A2, W2, b2, Z3, A3, W3, b3)

 return A3, cache

Cost functions: 1) without regularization and 2) with regularization

def compute_cost(a3, Y):

 """

 Implement the cost function

 Arguments:

 a3 -- activation, output of forward propagation

 Y -- "true" labels vector, same shape as a3

 Returns:

 cost - value of the cost function

 """

 m = Y.shape[1]

 logprobs = np.multiply(-np.log(a3),Y) + np.multiply(-np.log(1 - a3), 1 - Y)

 cost = 1./m * np.nansum(logprobs)

 return cost

def compute_cost_with_regularization(A3, Y, parameters, lambd):

 """

 adding L2 norm of weights to cross entropy cost

 """

 m = Y.shape[1]

 W1 = parameters["W1"]

 W2 = parameters["W2"]

 W3 = parameters["W3"]

 # the cross-entropy part of the cost

 cross_entropy_cost = compute_cost(A3, Y)

 # regularization part

 L2_regularization_cost = (1. / m)*(lambd / 2) * (np.sum(np.square(W1)) +

np.sum(np.square(W2)) + np.sum(np.square(W3)))

 cost = cross_entropy_cost + L2_regularization_cost

 return cost

Backward propagation functions: 1) no regularization and no dropout; 2) with regularization; 3)

with dropout.

def backward_propagation(X, Y, cache):

 """

 Implement backward propagation without dropout and without regularization.

 Arguments:

 X -- input dataset, of shape (input size, number of examples)

 Y -- true "label" vector (1 for yes, 0 for no)

 cache – cache from forward_propagation()

 Returns:

 gradients -- A dictionary with the gradients with respect to each

 parameter, activation and pre-activation variables

 """

 m = X.shape[1]

 (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3) = cache

 dZ3 = A3 - Y

 dW3 = 1./m * np.dot(dZ3, A2.T)

 db3 = 1./m * np.sum(dZ3, axis=1, keepdims = True)

 dA2 = np.dot(W3.T, dZ3)

 dZ2 = np.multiply(dA2, np.int64(A2 > 0))

 dW2 = 1./m * np.dot(dZ2, A1.T)

 db2 = 1./m * np.sum(dZ2, axis=1, keepdims = True)

 dA1 = np.dot(W2.T, dZ2)

 dZ1 = np.multiply(dA1, np.int64(A1 > 0))

 dW1 = 1./m * np.dot(dZ1, X.T)

 db1 = 1./m * np.sum(dZ1, axis=1, keepdims = True)

 gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3,

 "dA2": dA2, "dZ2": dZ2, "dW2": dW2, "db2": db2,

 "dA1": dA1, "dZ1": dZ1, "dW1": dW1, "db1": db1}

 return gradients

def backward_propagation_with_regularization(X, Y, cache, lambd):

 """

 Arguments:

 X -- input dataset, of shape (input size, number of examples)

 Y -- "true" labels vector, of shape (output size, number of examples)

 cache -- from forward_propagation()

 lambd -- regularization hyperparameter, scalar

 Returns:

 gradients -- A dictionary with the gradients with respect to each

 parameter, activation and pre-activation variables

 """

 m = X.shape[1]

 (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3) = cache

 dZ3 = A3 - Y

 ### Regularization for W3 ###

 dW3 = 1./m * (np.dot(dZ3, A2.T) + lambd * W3)

 ######

 db3 = 1./m * np.sum(dZ3, axis=1, keepdims = True)

 dA2 = np.dot(W3.T, dZ3)

 dZ2 = np.multiply(dA2, np.int64(A2 > 0))

 ### regularization for W2 ###

 dW2 = 1./m * (np.dot(dZ2, A1.T) + lambd * W2)

 ######

 db2 = 1./m * np.sum(dZ2, axis=1, keepdims = True)

 dA1 = np.dot(W2.T, dZ2)

 dZ1 = np.multiply(dA1, np.int64(A1 > 0))

 ### regularization for W1 ###

 dW1 = 1./m * (np.dot(dZ1, X.T) + lambd * W1)

 ######

 db1 = 1./m * np.sum(dZ1, axis=1, keepdims = True)

 gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3,"dA2": dA2,

 "dZ2": dZ2, "dW2": dW2, "db2": db2, "dA1": dA1,

 "dZ1": dZ1, "dW1": dW1, "db1": db1}

 return gradients

def backward_propagation_with_dropout(X, Y, cache, keep_prob):

 """

 Implement the backward propagation with dropout, but no regularization

 Arguments:

 X -- input dataset, of shape (input size, number of examples)

 Y -- true "label" vector of shape (output size, number of examples)

 cache -- from forward_propagation_with_dropout()

 keep_prob - probability of keeping a neuron active during dropout, scalar

 Returns:

 gradients -- A dictionary with the gradients with respect to each

 parameter, activation and pre-activation variables

 """

 m = X.shape[1]

 (Z1, D1, A1, W1, b1, Z2, D2, A2, W2, b2, Z3, A3, W3, b3) = cache

 dZ3 = A3 - Y

 dW3 = 1./m * np.dot(dZ3, A2.T)

 db3 = 1./m * np.sum(dZ3, axis=1, keepdims = True)

 dA2 = np.dot(W3.T, dZ3)

 ### start for dropout ####

 dA2 = np.multiply(dA2, D2)

 dA2 = dA2/keep_prob

 ### end code

 dZ2 = np.multiply(dA2, np.int64(A2 > 0))

 dW2 = 1./m * np.dot(dZ2, A1.T)

 db2 = 1./m * np.sum(dZ2, axis=1, keepdims = True)

 dA1 = np.dot(W2.T, dZ2)

 ### start code for dropout

 dA1 = np.multiply(dA1, D1)

 dA1 = dA1/keep_prob

 #### end code

 dZ1 = np.multiply(dA1, np.int64(A1 > 0))

 dW1 = 1./m * np.dot(dZ1, X.T)

 db1 = 1./m * np.sum(dZ1, axis=1, keepdims = True)

 gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3,

 "dA2": dA2, "dZ2": dZ2, "dW2": dW2, "db2": db2,

 "dA1": dA1, "dZ1": dZ1, "dW1": dW1, "db1": db1}

 return gradients

Update parameter by gradient descent

def update_parameters(parameters, grads, learning_rate):

 """

 Update parameters using gradient descent

 Arguments:

 parameters -- python dictionary containing the parameters: wi, bi

 grads -- python dictionary containing the gradients for each parameters:

 dWi, dbi

 learning_rate -- the learning rate, scalar.

 Returns:

 parameters -- python dictionary containing your updated parameters

 """

 n = len(parameters) // 2 # number of layers in the neural networks

 # Update rule for each parameter

 for k in range(n):

 parameters["W" + str(k+1)] = parameters["W" + str(k+1)] - learning_rate

* grads["dW" + str(k+1)]

 parameters["b" + str(k+1)] = parameters["b" + str(k+1)] - learning_rate

* grads["db" + str(k+1)]

 return parameters

Initialize parameters

def initialize_parameters(layer_dims):

 """

 Arguments:

 layer_dims -- python array (list) containing the dimensions of each layer

 Returns: He initialization

 parameters -- python dictionary containing parameters "W1", "b1", ...,

"WL", "bL":

 Wl -- weight matrix of shape (layer_dims[l], layer_dims[l-1])

 bl -- bias vector of shape (layer_dims[l], 1)

 """

 np.random.seed(3)

 parameters = {}

 L = len(layer_dims) # number of layers in the network

 for l in range(1, L):

 parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l-

1]) / np.sqrt(0.5*layer_dims[l-1])

 parameters['b' + str(l)] = np.zeros((layer_dims[l], 1))

 assert(parameters['W' + str(l)].shape == (layer_dims[l], layer_dims[l-

1]))

 assert(parameters['b' + str(l)].shape == (layer_dims[l], 1))

 return parameters

3) Model function: put all together, define the size of the network, initialize the parameters,

define the training iteration loop including forward propagation, backward propagation,

parameter updating, optionally computing and display cost. The model function returns the

learned parameters.

def model(X,Y, learning_rate=0.3, num_iterations=30000, print_cost= True,

lambd=0, keep_prob=1):

 """

 Arguments:

 X -- input dataset, of shape (input size, number of examples)

 Y -- true "label" vector

 learning_rate -- learning rate hyperparameter

 num_interations -- number of updates

 print_cost -- whether print cost

 lambd -- regularization parameter

 keep_prob - probability of keeping a neuron active during dropout, scalar

 Returns:

 gradients -- A dictionary with the gradients with respect to each

 parameter, activation and pre-activation variables

 """

 grads={}

 costs=[]

 m=X.shape[1]

 layers_dims = [X.shape[0],20,5,1]

 #initialize parameters dictionary.

 parameters = initialize_parameters(layers_dims)

 # loop (gradient descent)

 for i in range (0, num_iterations):

 # Linear-->Relu-->linear-->Relu-->linear-->sigmoid

 if keep_prob == 1:

 a3, cache = forward_propagation(X, parameters)

 elif keep_prob <1:

 a3, cache=forward_propagation_with_dropout(X,parameters,keep_prob)

 #cost

 if lambd == 0:

 cost = compute_cost(a3, Y)

 else:

 cost = compute_cost_with_regularization(a3,Y,parameters,lambd)

 #backward propagation

 assert(lambd == 0 or keep_prob ==1) # No reg and dropout at same time

 if lambd ==0 and keep_prob ==1:

 grads=backward_propagation(X,Y, cache)

 elif lambd != 0:

 grads=backward_propagation_with_regularization(X,Y, cache, lambd)

 elif keep_prob < 1:

 grads=backward_propagation_with_dropout(X,Y, cache, keep_prob)

 parameters = update_parameters(parameters, grads, learning_rate)

 if print_cost and i % 1000 ==0:

 print("cost after iteration {}: {}".format(i,cost))

 costs.append(cost)

 #plot the loss

 plt.plot(costs)

 plt.ylabel('cost')

 plt.xlabel('iterations (per thousands)')

 plt.title("learning rate = " + str(learning_rate))

 plt.show()

 return parameters

4) Prediction functions: accuracy, plot decision boundary

def predict(X, y, parameters):

 """

 This function is used to predict the results of an n-layer neural network.

 Arguments:

 X -- data set of examples you would like to label

 parameters -- parameters of the trained model

 Returns:

 p -- predictions for the given dataset X

 """

 m = X.shape[1]

 p = np.zeros((1,m), dtype = np.int)

 # Forward propagation

 a3, caches = forward_propagation(X, parameters)

 # convert probas to 0/1 predictions

 for i in range(0, a3.shape[1]):

 if a3[0,i] > 0.5:

 p[0,i] = 1

 else:

 p[0,i] = 0

 # print results

 #print ("predictions: " + str(p[0,:]))

 #print ("true labels: " + str(y[0,:]))

 print("Accuracy: " + str(np.mean((p[0,:] == y[0,:]))))

 return p

def predict_dec(parameters, X):

 """

 Used for plotting decision boundary.

 Arguments:

 parameters -- python dictionary containing your parameters

 X -- input data of size (m, K)

 Returns

 predictions -- vector of predictions of our model (red: 0 / blue: 1)

 """

 # Predict using forward propagation and a classification threshold of 0.5

 a3, cache = forward_propagation(X, parameters)

 predictions = (a3>0.5)

 return predictions

def plot_decision_boundary(model, X, y):

 # Set min and max values and give it some padding

 x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1

 y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1

 h = 0.01

 # Generate a grid of points with distance h between them

 xx, yy = np.meshgrid(np.arange(x_min, x_max, h),np.arange(y_min,y_max,h))

 # Predict the function value for the whole grid

 Z = model(np.c_[xx.ravel(), yy.ravel()])

 Z = Z.reshape(xx.shape)

 # Plot the contour and training examples

 plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)

 plt.ylabel('x2')

 plt.xlabel('x1')

 plt.scatter(X[0, :], X[1, :], c=y.ravel(), cmap=plt.cm.Spectral)

 plt.show()

5) Run the model and test

Without regularization and dropout. Overfitting occurs because training accuracy =0.95 and test

accuracy= 0.92.

parameters = model(train_X, train_Y, lambd=0, keep_prob = 1.0)

cost after iteration 0: 0.7174841115578868

cost after iteration 1000: 0.20018269019856624

…

print("on the train set:")

predictions_train = predict(train_X, train_Y, parameters)

on the train set:
Accuracy: 0.95260663507109

print("on the test set:")

predictions_train = predict(test_X, test_Y, parameters)

on the test set:
Accuracy: 0.92

plt.xlim([-0.75, 0.40])

plt.ylim([-0.75, 0.65])

plot_decision_boundary(lambda x: predict_dec(parameters, x.T),train_X,train_Y)

With regularization or dropout.

The statement parameters = model(train_X, train_Y, lambd=0.1, keep_prob = 1) implements

regularization with λ=0.1, shown in Fig.6.21(a). Accuracy on training set is 0.95260663507109

and 0.95 on test set. The statement parameters = model(train_X, train_Y, lambd=0, keep_prob

= 0.8) implements a dropout with keep probability of 0.8, shown in Fig.6.21(b). Accuracy is

0.9241706161137441 on training set and 0.935 on test set.

a) Weight regularization with λ=0.1 b) dropout with keep probability=0.8

Fig.6.21 Regularization a) weight regularization; b) dropout

6.9.2 A 3-layer network for multi-classification with mini-batch training and

different optimization options

In this project, we will build a generic 3-layer neural network, as shown in Fig.6.22, where the

activation function in the output layer uses softmax for multiple-class classification. The size of

each layer is defined by the corresponding element in the list layers_dims. For example,

layers_dims =[12288, 25,12,6] specifies 12288 features of input, 25 units in the first hidden layer

and 12 units in the second hidden layer, 6 units in the output layer. All hidden layers use ReLU

activation function while the output layer uses softmax for classification. Note that binary

classification can be implemented by assigning 2 to layers_dims[3] with one-hot-coded labels.

The purpose of this project is to demonstrate how mini-batch training, optimization method, and

softmax are implemented from scratch. At the end, we will apply the designed neural network to

two different tasks: a simple binary classification task and a 6-class image classification task.

Fig.6.22 A generic 3-layer neural network

The design flowchart of the model is shown in Fig.6.23. The red fonts indicate functions defined

separately. This flowchart can help a reader understand the overall picture of mini-batch concept

and its implementation. It is helpful to refer to this flowchart when reading through the

subsequent texts. We will train the neural network using mini-batch strategy to feed data, and

using three different optimization options: basic gradient descent, momentum and Adam. The

resulting network model in python is given by

model(X, Y, layers_dims, optimizer, learning_rate = 0.0007, mini_batch_size = 64,

beta = 0.9, beta1 = 0.9, beta2 = 0.999, epsilon = 1e-8, num_epochs = 10000,

print_cost = True)

The values for arguments are default. The meaning of each argument will be explained in the

following texts.

The model has the following arguments:

 X -- input data, of shape (number of features, number of examples)

 Y – one-hot-label, of shape (K, number of examples), where K is the number of classes.

 layers_dims -- python list, containing the size of each layer

 learning_rate α -- the learning rate, scalar.

 mini_batch_size -- the size of a mini batch

 beta -- Momentum hyperparameter

 beta1 -- Exponential decay hyperparameter for the past gradients estimates

 beta2 -- Exponential decay hyperparameter for the past squared gradients estimates

 epsilon -- hyperparameter preventing division by zero in Adam updates

 num_epochs -- number of epochs

 print_cost -- True to print the cost every 100 epochs

Returns: parameters -- python dictionary containing your updated parameters

The parameters W and b are updated in two nested loops. The outer loop is designed for different

epochs while the inner loop works for different batches within an epoch. Each epoch is obtained

by partitioning the randomly shuffled dataset into mini-batches. Each update of parameters is

based on one mini-batch. For example, if the total number of epochs is 10,000, and 5 mini-

batches in each epoch, then the cost and the parameters W and b will be updated 50,000 times.

Please note that we can choose to save and plot some costs (not all) which includes enough

information for monitoring the behavior of training. When the mini-batch size is equal to one, the

model implements stochastic gradient descent. When the mini-batch size is m, the model

implements batch gradient descent. There are two levels of initializations: 1) basically initialize

W and b; and 2) extra initialize V for momentum and (V,S) for Adam.

Fig.6.23 Design flowchart of the neural network model

Now let’s go through the details of Python program (mini_batch.ipynb):

1) Basic activation functions: sigmoid(x), softmax(x), relu(x).

import numpy as np

import matplotlib.pyplot as plt

import math

import sklearn.datasets

def sigmoid(x):

 """

 """

 s = 1/(1+np.exp(-x))

 return s

def softmax(x):

 """

 Arguments:

 x -- A numpy array of any size.

 Return:

 s -- softmax(x)

 """

 t=np.exp(x)

 s = t/np.sum(t, axis=0)

 return s

def relu(x):

 """

 """

 s = np.maximum(0,x)

 return s

2) Update parameters using basic gradient descent

def update_parameters_with_gd(parameters, grads, learning_rate):

 """

 Update parameters using one step of gradient descent

 Arguments:

 parameters -- python dictionary containing parameters to be updated:

 parameters['W' + str(l)] = Wl

 parameters['b' + str(l)] = bl

 grads -- python dictionary containing gradients to update each parameters:

 grads['dW' + str(l)] = dWl

 grads['db' + str(l)] = dbl

 learning_rate -- the learning rate, scalar.

 Returns:

 parameters -- python dictionary containing your updated parameters

 """

 L = len(parameters) // 2 # number of layers in the neural networks

 # Update rule for each parameter

 for l in range(L):

 parameters["W" + str(l+1)] = parameters["W" + str(l+1)] –

 learning_rate*grads['dW' + str(l+1)]

 parameters["b" + str(l+1)] = parameters["b" + str(l+1)] –

 learning_rate*grads['db' + str(l+1)]

 return parameters

3) Update parameters using momentum gradient descent

def initialize_velocity(parameters):

 """

 Initializes the velocity as a python dictionary with:

 - keys: "dW1", "db1", ..., "dWL", "dbL"

 - values: numpy arrays of zeros of the same shape as the

 corresponding gradients/parameters.

 Arguments:

 parameters -- python dictionary containing parameters.

 parameters['W' + str(l)] = Wl

 parameters['b' + str(l)] = bl

 Returns:

 v -- python dictionary containing the current velocity.

 v['dW' + str(l)] = velocity of dWl

 v['db' + str(l)] = velocity of dbl

 """

 L = len(parameters) // 2 # number of layers in the neural networks

 v = {}

 # Initialize velocity

 for l in range(L):

 v["dW" + str(l+1)] = np.zeros(parameters['W'+str(l+1)].shape)

 v["db" + str(l+1)] = np.zeros(parameters['b'+str(l+1)].shape)

 return v

def update_parameters_with_momentum(parameters, grads, v, beta, learning_rate):

 """

 Update parameters using Momentum

 Arguments:

 parameters -- python dictionary containing parameters:

 parameters['W' + str(l)] = Wl

 parameters['b' + str(l)] = bl

 grads -- python dictionary containing gradients for each parameters:

 grads['dW' + str(l)] = dWl

 grads['db' + str(l)] = dbl

 v -- python dictionary containing the current velocity:

 v['dW' + str(l)] = ...

 v['db' + str(l)] = ...

 beta -- the momentum hyperparameter, scalar

 learning_rate -- the learning rate, scalar

 Returns:

 parameters -- python dictionary containing your updated parameters

 v -- python dictionary containing your updated velocities

 """

 L = len(parameters) // 2 # number of layers in the neural networks

 # Momentum update for each parameter

 for l in range(L):

 # compute velocities

 v["dW" + str(l+1)] = beta * v['dW' + str(l+1)] + (1-beta)*(grads['dW' +

 str(l+1)])

 v["db" + str(l+1)] = beta * v['db' + str(l+1)] + (1-beta)*(grads['db' +

 str(l+1)])

 # update parameters

 parameters["W" + str(l+1)] = parameters['W' + str(l+1)] - learning_rate

 * v['dW' + str(l+1)]

 parameters["b" + str(l+1)] = parameters['b' + str(l+1)] - learning_rate

 * v['db' + str(l+1)]

 return parameters, v

4) Update parameters using Adam gradient descent

def initialize_adam(parameters) :

 """

 inputs:

 parameters -- python dictionary containing parameters.

 Returns:

 v -- python dictionary for exponentially weighted average of the gradient.

 - keys: "dW1", "db1", ..., "dWL", "dbL"

 - values: zeros with the shape as the corresponding parameters.

 s -- python dictionary for exponentially weighted average of the squared

gradient.

 - keys: "dW1", "db1", ..., "dWL", "dbL"

 - values: zeros with the shape as the corresponding parameters.

 """

 L = len(parameters) // 2 # number of layers in the neural networks

 v = {}

 s = {}

 # Initialize v, s. Input: "parameters". Outputs: "v, s".

 for l in range(L):

 v["dW" + str(l+1)] = np.zeros(parameters['W' + str(l+1)].shape)

 v["db" + str(l+1)] = np.zeros(parameters['b' + str(l+1)].shape)

 s["dW" + str(l+1)] = np.zeros(parameters['W' + str(l+1)].shape)

 s["db" + str(l+1)] = np.zeros(parameters['b' + str(l+1)].shape)

 return v, s

def update_parameters_with_adam(parameters, grads, v, s, t, learning_rate =

0.01,beta1 = 0.9, beta2 = 0.999, epsilon = 1e-8):

 """

 Update parameters using Adam

 Arguments:

 parameters -- python dictionary containing current parameters:

 grads -- python dictionary containing gradients for each parameters:

 v -- moving average of the first gradient

 s -- moving average of the squared gradient

 t –- iteration index

 learning_rate -- the learning rate, scalar.

 beta1 -- Exponential decay hyperparameter for the first moment estimates

 beta2 -- Exponential decay hyperparameter for the second moment estimates

 epsilon –- a small positive number

 Returns:

 parameters -- python dictionary containing your updated parameters

 v -- moving average of the first gradient

 s -- moving average of the squared gradient

 """

 L = len(parameters) // 2 # number of layers in the neural networks

 v_corrected = {} # Initializing first moment estimate, python dictionary

 s_corrected = {} # Initializing second moment estimate, python dictionary

 # Perform Adam update on all parameters

 for l in range(L):

 # Moving average of the gradients. Inputs:"v,grads,beta1".Output: "v".

 v["dW"+str(l+1)]=beta1*v['dW'+str(l+1)]+(1-beta1)*grads['dW'+str(l+1)]

 v["db"+str(l+1)]=beta1*v['db'+str(l+1)]+(1-beta1)*grads['db'+str(l+1)]

 # Compute bias-corrected first moment estimate. Inputs: "v,beta1,t".

 # Output: "v_corrected".

 v_corrected["dW"+str(l+1)]=v['dW'+str(l+1)]/(1-np.power(beta1,t))

 v_corrected["db"+str(l+1)]=v['db'+str(l+1)]/(1-np.power(beta1,t))

 # Moving average of the squared gradients.

 # Inputs: "s, grads, beta2". Output: "s".

 s["dW"+str(l+1)]=beta2*s['dW'+str(l+1)]+(1-beta2)*np.power(grads['dW' +

str(l+1)],2)

 s["db"+str(l+1)]=beta2*s['db'+str(l+1)]+(1-beta2)*np.power(grads['db' +

str(l+1)],2)

 # Compute bias-corrected second raw moment estimate.

 # Inputs: "s, beta2, t". Output: "s_corrected".

 s_corrected["dW" + str(l+1)] = s['dW' + str(l+1)] / (1 -

np.power(beta2, t))

 s_corrected["db" + str(l+1)] = s['db' + str(l+1)] / (1 -

np.power(beta2, t))

 # Update parameters.

 # Inputs: "parameters,learning_rate,v_corrected,s_corrected, epsilon".

 # Output: "parameters".

 parameters["W" + str(l+1)] = parameters['W' + str(l+1)] - learning_rate

* v_corrected['dW' + str(l+1)] / np.sqrt(s_corrected['dW' + str(l+1)] +

epsilon)

 parameters["b" + str(l+1)] = parameters['b' + str(l+1)] - learning_rate

* v_corrected['db' + str(l+1)] / np.sqrt(s_corrected['db' + str(l+1)] +

epsilon)

 return parameters, v, s

5) Generate batches for one epoch in a random way.

def random_mini_batches(X, Y, mini_batch_size = 64, seed = 0):

 """

 Creates a list of random minibatches from (X, Y)

 Arguments:

 X -- input data, of shape (input size, number of examples)

 Y -- true "label" vector, of shape (1, number of examples)

 mini_batch_size -- size of the mini-batches, integer

 Returns:

 mini_batches -- list of synchronous (mini_batch_X, mini_batch_Y)

 """

 np.random.seed(seed) # To make your "random" minibatches deterministic

 m = X.shape[1] # number of training examples

 mini_batches = []

 # Step 1: Shuffle (X, Y)

 permutation = list(np.random.permutation(m))

 shuffled_X = X[:, permutation]

 shuffled_Y = Y[:, permutation].reshape((Y.shape[0],m))

 # Step 2: Partition (shuffled_X, shuffled_Y). Minus the end case.

 num_complete_minibatches = math.floor(m/mini_batch_size)

 # number of mini batches of size mini_batch_size in your partitionning

 for k in range(0, num_complete_minibatches):

 mini_batch_X = shuffled_X[:, k*mini_batch_size : (k+1)*mini_batch_size]

 mini_batch_Y = shuffled_Y[:, k*mini_batch_size : (k+1)*mini_batch_size]

 mini_batch = (mini_batch_X, mini_batch_Y)

 mini_batches.append(mini_batch)

 # Handling the end case (last mini-batch < mini_batch_size)

 if m % mini_batch_size != 0:

 mini_batch_X = shuffled_X[:, num_complete_minibatches*mini_batch_size:]

 mini_batch_Y = shuffled_Y[:, num_complete_minibatches*mini_batch_size:]

 mini_batch = (mini_batch_X, mini_batch_Y)

 mini_batches.append(mini_batch)

 return mini_batches

6) Parameter initialization

def initialize_parameters(layer_dims):

 """

 Arguments:

 layer_dims -- python array (list) containing the dimensions of each layer

 Returns:

 parameters -- python dictionary containing parameters

 Wl -- weight matrix of shape (layer_dims[l], layer_dims[l-1])

 bl -- bias vector of shape (layer_dims[l], 1)

 """

 np.random.seed(3)

 parameters = {}

 L = len(layer_dims) # number of layers in the network

 for l in range(1, L):

 parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l-

1])* np.sqrt(2 / layer_dims[l-1])

 parameters['b' + str(l)] = np.zeros((layer_dims[l], 1))

 assert(parameters['W' + str(l)].shape == layer_dims[l],layer_dims[l-1])

 assert(parameters['b' + str(l)].shape == layer_dims[l], 1)

 return parameters

7) Forward propagation

def forward_propagation(X, parameters):

 """

 Implements the forward propagation.

 Arguments:

 X -- input dataset, of shape (input size, number of examples)

 parameters -- python dictionary containing parameters "W1", "b1", "W2",

 "b2", "W3", "b3":

 Returns:

 a3 –- output of neural network

 cache –- internal signals and parameters

 """

 # retrieve parameters

 W1 = parameters["W1"]

 b1 = parameters["b1"]

 W2 = parameters["W2"]

 b2 = parameters["b2"]

 W3 = parameters["W3"]

 b3 = parameters["b3"]

 # LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SOFTMAX

 z1 = np.dot(W1, X) + b1

 a1 = relu(z1)

 z2 = np.dot(W2, a1) + b2

 a2 = relu(z2)

 z3 = np.dot(W3, a2) + b3

 a3 = softmax(z3)

 cache = (z1, a1, W1, b1, z2, a2, W2, b2, z3, a3, W3, b3)

 return a3, cache

8) Compute cost

def compute_cost(a3, Y):

 """

 Implement the cost function

 Arguments:

 a3 -- post-activation, output of forward propagation

 Y -- "true" labels vector, same shape as a3

 Returns:

 cost - value of the cost function

 """

 m = Y.shape[1]

 k = Y.shape[0]

 if k==1: # sigmoid for 2 classes

 logprobs = np.multiply(-np.log(a3),Y) + np.multiply(-np.log(1 - a3), 1 - Y)

 cost = 1./m * np.sum(logprobs)

 else: #softmax for multiple classes, each column in Y is one-hot-code

 logprobs = np.multiply(np.log(a3),Y)

 cost = -1/m*np.sum(logprobs)

 cost = np.squeeze(cost)

 return cost

9) Backward propagation

def backward_propagation(X, Y, cache):

 """

 Implement the backward propagation.

 Arguments:

 X -- input dataset, of shape (input size, number of examples)

 Y -- true "label" vector

 cache -- cache output from forward_propagation()

 Returns:

 gradients -- A dictionary with the gradients with respect to each

 parameter, activation and pre-activation variables

 """

 m = X.shape[1]

 (z1, a1, W1, b1, z2, a2, W2, b2, z3, a3, W3, b3) = cache

 dz3 = 1./m * (a3 - Y)

 dW3 = np.dot(dz3, a2.T)

 db3 = np.sum(dz3, axis=1, keepdims = True)

 da2 = np.dot(W3.T, dz3)

 dz2 = np.multiply(da2, np.int64(a2 > 0))

 dW2 = np.dot(dz2, a1.T)

 db2 = np.sum(dz2, axis=1, keepdims = True)

 da1 = np.dot(W2.T, dz2)

 dz1 = np.multiply(da1, np.int64(a1 > 0))

 dW1 = np.dot(dz1, X.T)

 db1 = np.sum(dz1, axis=1, keepdims = True)

 gradients = {"dz3": dz3, "dW3": dW3, "db3": db3,

 "da2": da2, "dz2": dz2, "dW2": dW2, "db2": db2,

 "da1": da1, "dz1": dz1, "dW1": dW1, "db1": db1}

 return gradients

10) Put all together: build the training model

def model(X, Y, layers_dims, optimizer, learning_rate = 0.0007, mini_batch_size =

64, beta = 0.9, beta1 = 0.9, beta2 = 0.999, epsilon = 1e-8, num_epochs = 10000,

print_cost = True):

 """

 3-layer neural network model which can be run in different optimizer modes.

 Arguments:

 X -- input data, of shape (2, number of examples)

 Y -- true "label" vector, of shape (1, number of examples)

 layers_dims -- python list, containing the size of each layer

 learning_rate -- the learning rate, scalar.

 mini_batch_size -- the size of a mini batch

 beta -- Momentum hyperparameter

 beta1 -- Exponential decay hyperparameter for the past gradients estimates

 beta2 -- Exponential decay hyperparameter for the past squared gradients

estimates

 epsilon -- hyperparameter preventing division by zero in Adam updates

 num_epochs -- number of epochs

 print_cost -- True to print the cost every 1000 epochs

 Returns:

 parameters -- python dictionary containing your updated parameters

 """

 L = len(layers_dims) # number of layers in the neural networks

 costs = [] # to keep track of the cost

 t = 0 # initializing the counter required for Adam update

 seed = 10 # For repeatability

 # Initialize parameters

 parameters = initialize_parameters(layers_dims)

 # Initialize the optimizer

 if optimizer == "gd":

 pass # no initialization required for gradient descent

 elif optimizer == "momentum":

 v = initialize_velocity(parameters)

 elif optimizer == "adam":

 v, s = initialize_adam(parameters)

 # Optimization loop

 for i in range(num_epochs):

 # Define the random minibatches.

 # We increment the seed to reshuffle differently the dataset

 # after each epoch

 seed = seed + 1

 minibatches = random_mini_batches(X, Y, mini_batch_size, seed)

 for minibatch in minibatches:

 # Select a minibatch

 (minibatch_X, minibatch_Y) = minibatch

 # Forward propagation

 a3, caches = forward_propagation(minibatch_X, parameters)

 # Compute cost

 cost = compute_cost(a3, minibatch_Y)

 # Backward propagation

 grads = backward_propagation(minibatch_X, minibatch_Y, caches)

 # Update parameters

 if optimizer == "gd":

 parameters = update_parameters_with_gd(parameters, grads,

learning_rate)

 elif optimizer == "momentum":

 parameters, v = update_parameters_with_momentum(parameters,

grads, v, beta, learning_rate)

 elif optimizer == "adam":

 t = t + 1 # Adam counter

 parameters, v, s = update_parameters_with_adam(parameters, grads,

v, s, t, learning_rate, beta1, beta2, epsilon)

 # Print the cost every 1000 epoch

 if print_cost and i % 100 == 0:

 #print(t)

 print ("Cost after epoch %i: %f" %(i, cost))

 if print_cost and i % 10 == 0:

 costs.append(cost)

 # plot the cost

 plt.plot(costs)

 plt.ylabel('cost')

 plt.xlabel('epochs (per 10)')

 plt.title("Learning rate = " + str(learning_rate))

 plt.show()

 return parameters, costs

11) Convert the class labels to one-hot codes. Note that the label to the model was defined as one-

hot code. Thus, we need to convert the label (e.g. an integer) to one-hot code before calling the

training model.

def convert_to_one_hot(Y, C):

 Y = np.eye(C)[Y.reshape(-1)].T

 return Y

12) Performance evaluation: predict accuracy, and plot decision boundary.

def predict(X, parameters):

 """

 This function is used to predict the results of an n-layer neural network.

 Arguments:

 X -- data set of examples you would like to label

 parameters -- parameters of the trained model

 Returns:

 y_esti -- predictions (labels:0,1,2,3,4,,5) for the given dataset X

 """

 m = X.shape[1]

 y_esti = np.zeros((1,m), dtype = np.int)

 # Forward propagation

 a3, caches = forward_propagation(X, parameters)

 for i in range(0, a3.shape[1]):

 y_esti[0,i]=np.argmax(a3[:,i])

 return y_esti

def plot_decision_boundary(model, X, y):

 # Set min and max values and give it some padding

 x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1

 y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1

 h = 0.01

 # Generate a grid of points with distance h between them

 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))

 # Predict the function value for the whole grid

 Z = model(np.c_[xx.ravel(), yy.ravel()])

 Z = Z.reshape(xx.shape)

 # Plot the contour and training examples

 plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)

 plt.ylabel('x2')

 plt.xlabel('x1')

 plt.scatter(X[0, :], X[1, :], c=y.ravel(), cmap=plt.cm.Spectral)

 plt.show()

def predict_dec(parameters, X):

 """

 Used for plotting decision boundary.

 Arguments:

 parameters -- python dictionary containing your parameters

 X -- input data of size (m, K)

 Returns

 predictions -- vector of predictions of our model (red: 0 / blue: 1)

 """

 # Predict using forward propagation and a classification threshold of 0.5

 a3, cache = forward_propagation(X, parameters)

 predictions = (a3 > 0.5)

 return predictions

13) Train the model on the Moon dataset for a binary classification:

Generate the training data

def load_dataset():

 np.random.seed(3)

 train_X, train_Y = sklearn.datasets.make_moons(n_samples=300, noise=.2) #300 #0.2

 # Visualize the data

 plt.scatter(train_X[:,0],train_X[:,1],c=train_Y.ravel(),s=40, cmap=plt.cm.Spectral);

 train_X = train_X.T

 train_Y = train_Y.reshape((1, train_Y.shape[0]))

 return train_X, train_Y

train_X, train_Y = load_dataset()

plt.scatter(train_X[0, :], train_X[1, :],c=train_Y[0,:], s=40,

cmap=plt.cm.Spectral)

plt.xlabel("X[0,:]")

plt.ylabel("X[1,:]")

plt.title("training set, red: y=0, blue: y=1")

plt.show()

Train the model

layers_dims = [train_X.shape[0], 5, 2, 2]

train_Y_hot = convert_to_one_hot(train_Y, 2)

model(X, Y, layers_dims, optimizer, learning_rate = 0.0007,

mini_batch_size = 64, beta = 0.9,

beta1 = 0.9, beta2 = 0.999, epsilon = 1e-8, num_epochs = 10000,

print_cost = True)

parameters, costs=model(train_X, train_Y_hot, layers_dims,

optimizer="momentum", learning_rate = 0.1, mini_batch_size = 64, beta = 0.9,

beta1 = 0.9, beta2 = 0.999, epsilon = 1e-8, num_epochs = 1000, print_cost =

True)

Predict

predictions = predict(train_X, parameters)

accuracy = np.mean(predictions == train_Y)

print("accuracy of train set is "+ str(accuracy))

Predict

#predictions = predict(train_X, train_Y, parameters)

 # Plot decision boundary

plt.title("Model with momentum optimization")

axes = plt.gca()

axes.set_xlim([-1.5,2.5])

axes.set_ylim([-1,1.5])

plot_decision_boundary(lambda x: predict(x.T, parameters), train_X, train_Y)

Performance evaluation

Predict

predictions = predict(train_X, parameters)

accuracy = np.mean(predictions == train_Y)

print("accuracy of train set is "+ str(accuracy))

Predict

#predictions = predict(train_X, train_Y, parameters)

 # Plot decision boundary

plt.title("Model with momentum optimization")

axes = plt.gca()

axes.set_xlim([-1.5,2.5])

axes.set_ylim([-1,1.5])

plot_decision_boundary(lambda x: predict(x.T, parameters), train_X, train_Y)

Cost after epoch 0: 0.706019
Cost after epoch 100: 0.221365
Cost after epoch 200: 0.199276
Cost after epoch 300: 0.100450
Cost after epoch 400: 0.054298
Cost after epoch 500: 0.229595
Cost after epoch 600: 0.127700
Cost after epoch 700: 0.129801
Cost after epoch 800: 0.102676
Cost after epoch 900: 0.152990

accuracy of train set is 0.94

14) Train the model on MNIST dataset for a 10-class classification. The MNIST is a popular

benchmark dataset and was described in Section 5.7.2. In summary, the dataset consists of 60000

examples for training and 10000 examples for testing. Each example is a 28x28 gray image for

one of ten handwritten digits. Each pixel value is represented by an integer in the range of [0,

255].

As an example, we choose the architecture, shown in Fig.6.24, for the neural network. The input

of neural network is a gray image of 28x28, which has 784 features since each pixel corresponds

to one feature.

Fig.6.24 Neural network for image classification

Prepare data:

Load data

train_data = np.loadtxt("C:/machine_learning/NN_nn_overview/mnist_train.csv",

 delimiter=",")

test_data = np.loadtxt("C:/machine_learning/NN_nn_overview/mnist_test.csv",

 delimiter=",")

fac = 0.99/255 # convert [0,255] to [0,1]

train_imgs = np.asfarray(train_data[:, 1:])*fac+0.01

test_imgs = np.asfarray(test_data[:, 1:])*fac+0.01

first column for labels

train_labels = np.asfarray(train_data[:,:1])

test_labels = np.asfarray(test_data[:, :1])

Convert data to the format for the neural network

train_imgs_T=np.transpose(train_imgs) # shape to (784, 60000)

test_imgs_T=np.transpose(test_imgs) # shape to (784, 10000)

train_labels_T=np.transpose(train_labels) # shape to (1, 60000)

test_labels_T=np.transpose(test_labels) # shape to (1, 10000)

convert labels to one-hot codes

train_Y_hot = convert_to_one_hot(train_labels_T.astype(int), 10)

shape (10, 60000)

test_Y_hot = convert_to_one_hot(test_labels_T.astype(int), 10)

shape (10, 10000)

Train the model

train 3-layer model

layers_dims = [train_imgs_T.shape[0], 30, 20, 10]

parameters, costs=model(train_imgs_T, train_Y_hot, layers_dims, optimizer="gd",

learning_rate = 0.001, mini_batch_size = 32, beta = 0.9,

 beta1 = 0.9, beta2 = 0.999, epsilon = 1e-8, num_epochs = 100, print_cost =

True)

Performance: accuracy

Predict

predictions = predict(train_imgs_T, parameters)

accuracy = np.mean(predictions == train_labels_T)

print("accuracy of train set is "+ str(accuracy))

predictions = predict(test_imgs_T, parameters)

accuracy = np.mean(predictions == test_labels_T)

print("accuracy of test set is "+ str(accuracy))

accuracy of train set is 0.95945

accuracy of test set is 0.9558

Please note that one can use different values for hyperparameter when training the model. For

example, you can use a different optimizer, learning rate, batch size, and so on.

Summary

In this chapter, we present some important practical considerations while developing a neural

network. These considerations include overfitting, normalization, parameter initialization, weight

regularization, dropout for regularization, mini-batch gradient descent, optimization methods

(momentum and Adam), and gradient check. It should be emphasized that some of them are

heuristic (not formally proven) but very helpful. Examples show the details of implementation of

the major considerations (regularization, dropout, parameter initialization, optimization, mini-

batch gradient descent) in python programming.

To fully understand the principles, we implemented the examples from scratch. However, it is

common practice to use python packages and design frameworks (e.g. TensorFlow and PyTorch)

to develop a real project more efficiently and reliably, especially when the neural networks are

becoming deeper. From the next chapter, we introduce PyTorch framework, and apply it to deep

neural networks in subsequent chapters.

Files:

C:/Users/weido/ch4_practical/regularization_dropout.ipynb

C:/Users/weido/ch4_practical/data.mat

C:/Users/weido/ch4_practical/mini_batch.ipynb

C:/machine_learning/NN_nn_overview/mnist_train.csv

C:/machine_learning/NN_nn_overview/mnist_test.csv

Further reading

For dropout

[1] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, Ruslan Salakhutdinov

(2014), Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Journal of

Machine Learning Research 15 (2014) 1929-1958.

For initialization

[2] Glorot X, Bengio Y (2010), Understanding the difficulty of training deep feedforward neural

networks. In: Proceedings of the thirteenth international conference on artificial intelligence

and statistics, pp 249–256.

[3] He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: surpassing human-level

performance on imagenet classification. In: Proceedings of the IEEE international conference

on computer vision, pp 1026–1034.

For batch normalization

[4] Sergey Ioffe, Christian Szegedy (2015), Batch Normalization: Accelerating Deep Network

Training by Reducing Internal Covariate Shift. arXiv:1502.03167 [cs.LG]

For adam optimization

[5] Diederik P. Kingma, Jimmy Ba (2015), Adam: A Method for Stochastic Optimization. The

3rd International Conference for Learning Representations, San Diego, 2015.
arXiv:1412.6980 [cs.LG].

Exercises

1. Show that inserting a linear layer (i.e. the activation function is a unit function) between two

layers of a neural network never increases the expressive power of the neural network.

2. Suppose that our trained neural network achieves an accuracy of 0.98 on the training set and

an accuracy of 0.71 on the testing set. Thus, the model is likely overfitting. Discuss the

possible solutions to the overfitting.

3. Consider a neural network below and refer to the examples in Section 6.9.

https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980

1) Write the forward propagation equations and specify the shapes of all variables and

parameters.

2) Write the derivative backpropagation equations and specify the shapes of all variables.

3) Write Python functions for ReLU and Softmax.

 def softmax(x):

 def relu(x):

4) Write a Python function to initialize all the parameters using He intitialization:

def initialize_parameters(layer_dims):

 """

 Arguments:

 layer_dims -- python array (list) containing the dimensions of each layer

 layer_dims = [2, 6, 5, 4] for this neural network

 Returns: He initialization

 parameters -- python dictionary containing parameters "W1", "b1", ...,

 "WL", "bL":

 Wl -- weight matrix of shape (layer_dims[l], layer_dims[l-1])

 bl -- bias vector of shape (layer_dims[l], 1)

 """

5) Write a Python function to implement the forward propagation.

 def forward_propagation(X, parameters):

 """

 Implements the forward propagation.

 Arguments:

 X -- input dataset, of shape (input size, number of examples)

 parameters -- python dictionary containing parameters "W1", "b1", "W2",

 "b2", "W3", "b3":

 Returns:

 a3 –- output of neural network

 cache –- internal signals and parameters

 """

6) Write a Python function to implement the backward propagation.

def backward_propagation(X, Y, cache):

 """

 Implement the backward propagation.

 Arguments:

 X -- input dataset, of shape (input size, number of examples)

 Y -- true "label" vector

 cache -- cache output from forward_propagation()

 Returns:

 gradients -- A dictionary with the gradients with respect to each

 parameter, activation and pre-activation variables

 """

7) Write a Python program that initializes the model parameters, compute one forward

propagation and one backward propagation, and one parameter update with learning rate =0.1,

and two examples: 𝑥(1) = (
1
2
) , 𝑦(1) = (

0
1
0
0

), 𝑥(2) = (
−1
0

) , 𝑦(2) = (

0
0
0
1

).

4. For the example in Section 6.9.1, let’s optimize the hyperparameters jointly. Find the best set

of (lambd, keep_prob, learning_rate) for the dataset, by trying the different value

combinations.

model(X,Y, learning_rate=0.3, num_iterations=30000, print_cost= True,

lambd=0, keep_prob=1)

5. In Section 6.9.1 (regularization_dropout.ipynb), regularization and dropout cannot be applied

simultaneously. Please define and complete the following function, which considers both

weight regularization and dropout.

1. def backward_propagation_with_regularization_dropout(X, Y, cache, lambd, keep_prob):
2.

3. # start your code here

4.

5. gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3,

6. "dA2": dA2, "dZ2": dZ2, "dW2": dW2, "db2": db2,

7. "dA1": dA1, "dZ1": dZ1, "dW1": dW1, "db1": db1}

8.

9. return gradients

Then in model(X,Y, learning_rate=0.3, num_iterations=30000, print_cost= True,

lambd=0, keep_prob=1), include the situation for “lambd ==!0 and keep_prob<1” to call

function
backward_propagation_with_regularization_dropout(X, Y, cache, lambd, keep_prob).

Your modified regularization_dropout.ipynb should be able to do “weight regularization and

dropout” simultaneously. Try the case “λ=0.1 and keep_prob=0.9”, what are the accuracies

on training set and testing set of datasets generated by load_2D_dataset()? (answer:

ch8_ex2.py in \machine_learning\NN_setting\, 0.938xx, and 0.93)

(answer plot)

6. The MNIST training set has 60000 examples. If we set the mini-batch size to be 64, and the

training process runs for 100 epochs, then how many updates will be applied to parameters in

total?

7. The neural network in Fig.6.24 achieves an accuracy of 95.5% on the MNIST test set, with the

following settings:

train 3-layer model

layers_dims = [train_imgs_T.shape[0], 30, 20, 10]

parameters, costs=model(train_imgs_T, train_Y_hot, layers_dims, optimizer="gd",

learning_rate = 0.001, mini_batch_size = 32, beta = 0.9,

 beta1 = 0.9, beta2 = 0.999, epsilon = 1e-8, num_epochs = 100, print_cost =

True)

Can you improve the accuracy by changing the settings including layers_dims and other

hyperparameters?

