

Chapter 5

Basics of Neural Networks

The term “neural network” has its origins in attempts to find mathematical representation of

information processing in biological systems. From the perspective of practical applications of

machine learning and pattern recognition, however, biological realism would impose entirely

unnecessary constraints. Therefore, we will treat neural networks as efficient models for statistical

learning.

This chapter will cover the basics of neural networks. A logistic regression (discussed in the

previous chapter) is a typical element in neural networks, called neuron. We will re-visit logistic

regression and explain the principle of neural networks from a perspective of extended or

generalized logistic regression. We represent the parameters of a neural network by matrices and

vectors. The data processed by the neural network are also represented by matrices or vectors. To

train a neural network by gradient descent algorithm, we need to compute the derivatives (i.e.,

gradients) of the cost function, with respect to parameters. Derivative backpropagation is an

efficient way to compute the gradients.

The detailed implementation of neural networks from scratch will be presented through two

examples: binary classification on synthetic data and multi-class classification on handwritten

digits.

In this chapter you will learn

o Neural network architecture and its representation in math

o Activation functions in neural networks

o Backpropagation for training neural networks

o Softmax and cross entropy loss for multi-classification tasks

o Python program for neural networks from scrath

5.1 A simplest Neural Network: A Logistic Regression Unit

A neural network generally comprises multiple layers of nodes, known as neurons. In this text, the

relationship between the neuron in machine learning and the neuron in biological literatures is not

our concern. We will see that a neuron in machine learning is a logistic regression unit. In this

section, we will re-visit logistic regression model with new notations and terminology which will

be used to discuss general issues of neural networks in the subsequent text. The methodology we

use to train a logistic unit can be easily extended to train a typical neural network.

The purpose of logistic regression is to estimate the conditional probability of the label y given an

observation 𝐱 ∈ ℝ𝒏𝒙, where 𝑛𝑥 is the number of features, i.e. 𝑝(𝑦 = 1|𝐱), and a label “1” will be

predicted if the probability is more than 0.5, otherwise a label “0” will be predicted. Specifically, a

logistic regression learns a weight vector 𝑊 ∈ ℝ𝑛𝑥 and a scalar 𝑏 ∈ ℝ from a training dataset, and

then estimate the conditional probability for a new value of x as

 �̂� = 𝑝(𝑦 = 1|𝐱) = 𝜎(𝑧) = 𝜎(𝑊𝑇𝐱 + 𝑏) (5.1)

where 𝑧 = ∑ 𝑤𝑗𝑥𝑗
𝑛𝑥
𝑗=1 + 𝑏 is a linear combination of input features with a bias b, 𝜎() is the sigmoid

activation function, shown in Fig.5.1, defined by

𝜎(𝑧) =
1

1+𝑒−𝑧 (5.2)

Fig. 5.1 Sigmoid function

To learn the optimal parameters W and b, we first define a cost function, and then minimize the

cost function with respect to W and b. The cost function of logistic regression, for a single data

example (x,y), is defined as the cross entropy loss

𝐿(�̂�, 𝑦) = −𝑦 ln(�̂�) − (1 − 𝑦) ln(1 − �̂�) (5.3)

Thus, the average cost over m data samples is given by

𝐽(𝑊, 𝑏) =
1

𝑚
∑ 𝐿(�̂�(𝑖), 𝑦(𝑖)) = −

1

𝑚
∑ [𝑦(𝑖) ln(�̂�(𝑖)) + (1 − 𝑦(𝑖)) ln(1 − �̂�(𝑖))]𝑚

𝑖=1
𝑚
𝑖=1 (5.4)

where

�̂�(𝑖) = 𝜎(𝑊𝑇𝑥(𝑖) + 𝑏) (5.5)

A gradient descent algorithm is used to find W and b that minimize the cost function 𝐽(𝑊, 𝑏):

Repeat {

𝑊 ≔ 𝑊 − 𝛼
𝑑𝐽(𝑊,𝑏)

𝑑𝑊
 (5.6.a)

𝑏 ≔ 𝑏 − 𝛼
𝑑𝐽(𝑊,𝑏)

𝑑𝑏
 (5.6.b)

}

where 𝛼 is the learning rate, a hyperparameter.

The logistic regression can be viewed as a special neural network that has only one neuron,

illustrated in Fig.5.2. Multiple logistic regression units can be used to construct a multi-layer neural

network, shown in Fig.5.3, which includes multiple layers, and each layer includes multiple logistic

regression units. The outputs of the precious layers serve as the inputs of units in the present layer.

We will discuss the mathematical representation of neural networks later.

Fig.5.2 A logistic regression unit Fig.5.3 An example of multi-layer neural network

5.2 From Regression to Neural Networks

Before giving the mathematical representation of neural networks, let’s introduce the core idea of

neural networks by generalizing the concepts of linear and logistic regressions presented in

previous chapters. The development of neural network concepts from regression will help us deeply

understand the key characteristics of neural networks. The linear models for regression and

classification discussed in Chapter 3 and 4, are based on linear combinations of input features and

take the form

�̂�(𝑥; 𝑤) = 𝑓 (∑ 𝑤𝑗𝑥𝑗
𝑛𝑥
𝑗=1 + 𝑤0) = 𝑓 (∑ 𝑤𝑗𝑥𝑗

𝑛𝑥
𝑗=0) (5.7)

where 𝑥𝑗, 𝑗 = 1,2,… , 𝑛𝑥 are input features, 𝑥0 = 1, f(.) is a nonlinear activation function (e.g.

sigmoid function) in the case of classification and is the identity in the case of linear regression. 𝑤𝑗

are weight parameters in the model. The semicolon in �̂�(𝑥; 𝑤) separates the variables and

parameters. However, the resulting fitting curve for linear regression or the resulting decision

boundary for classification is linear with respect to input features.

To learn a nonlinear relationship in the case of curve fitting, we can define the curve in the form of

linear combination of fixed nonlinear basis functions 𝜙𝑗(𝐱) of input features, instead of a linear

combination of input features,

�̂�(𝐱; 𝑤) = ∑ 𝑤𝑗𝜙𝑗(𝐱)
𝑀
𝑗=0 (5.8)

For example, �̂�(𝐱; 𝑤) = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥1𝑥2 + 𝑤4𝑥1
2 + 𝑤5𝑥2

2 , with {𝜙𝑗(𝐱)} =

{1, 𝑥1, 𝑥2, 𝑥1𝑥2, 𝑥1
2, 𝑥2

2 }, can fit a quadratic surface in a two-feature regression. In general,

{𝜙𝑗(𝐱), 𝑗 = 1,2, … ,𝑀} is called a set of basis functions, or kernels. Similarly, in the case of

classification, if we replace the linear combination of input features with the linear combination of

nonlinear basis function 𝜙𝑗(𝐱),

�̂�(𝐱; 𝑤) = 𝑓(∑ 𝑤𝑗𝜙𝑗(𝐱)
𝑀
𝑗=0) (5.9)

then the decision boundaries are nonlinear with the input features. A nonlinear decision boundary

obviously can classify more complex data pattern, and thus being more powerful compared to linear

decision boundaries. For example, �̂�(𝐱; 𝑤) = 𝜎(𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥1
2 + 𝑤4𝑥2

2), with

{𝜙𝑗(𝐱)} = {1, 𝑥1, 𝑥2, 𝑥1
2, 𝑥2

2 }, can learn a circle decision boundary.

So far the nonlinear basis functions, 𝜙𝑗(𝐱), are fixed for a particular problem, and a training process

is to fit the parameters 𝑤𝑗 using a training dataset. Our goal here is to extend this model (5.9) by

making the basis functions 𝜙𝑗(𝐱) depend on parameters and then to allow these parameters to be

adjusted, along with the parameters 𝑤𝑗, during training. To achieve this, we construct M linear

logistic regression units to generate M basis functions, 𝜙𝑗(𝐱) for (5.9) (note that 𝜙0(𝐱) is always

equal to 1 so that 𝑤0 is a bias)

𝑧𝑗 = ∑ 𝑤𝑗𝑖𝑥𝑖
𝑛𝑥
𝑖=0 (5.10)

𝜙𝑗(𝐱;𝐰𝑗:) = 𝑎𝑗 = ℎ(𝑧𝑗) (5.11)

where j=1,2,…,M, and in the notation 𝑤𝑗𝑖 and 𝑧𝑗, j indicates that the parameter or the quantity is

associated with the jth basis function, and i indicates that the parameter is the weight for input

feature xi. Thus 𝑧𝑗 , j=1,2,…,M, are the linear combinations of input features. The basis function 𝜙𝑗

is generated by passing the linear combination 𝑧𝑗 through a differentiable nonlinear activation

function h(.), for example a sigmoid function. The quantities 𝑎𝑗 are known as activation, which is

the output of activation function. These activations, used as the basis functions in (5.9), are linearly

combined to give

𝑧 = ∑ 𝑤𝑗𝑎𝑗
𝑀
𝑗=1 + 𝑤0 (5.12)

�̂�(𝐱; 𝑊) = 𝑓(𝑧) (5.13)

Finally, we can combine equations (5.10)-(5.13) to give the overall network function

�̂�(𝐱; 𝐖,𝐁) = 𝒇(∑𝑤𝑗𝒉(∑𝑤𝑗𝑖𝑥𝑖

𝑛𝑥

𝑖=1

+ 𝑤𝑗0)

𝑀

𝑗=1

+ 𝑤0)

= 𝒇(∑𝑤𝑗
[2]

𝒉(∑𝑤𝑗𝑖
[1]

𝑥𝑖

𝑛𝑥

𝑖=1

+ 𝑏𝑗
[1]

)

𝑀

𝑗=1

+ 𝑏[2]) (5.14)

where the set of all weight and bias parameters have been grouped into W and B, respectively. In

our text, we use superscripts [] to denote the network layer for the parameters. Although 𝑤𝑗0 and

𝑤0 can be grouped into the weight set by introducing constant nodes 𝑥0 = 1 and 𝑎0 = 1, sometimes

it may be convenient to denote them as biases 𝑏𝑗
[1]

 and 𝑏[2] separately. In (5.14), the outputs of h(.)

serve as a role of parameter-dependent (not fixed) basis functions in (5.8). In this example, the first

layer includes all logistic regression units which generate 𝜙𝑗 while the second layer has only one

logistic regression unit that generates �̂�, as shown in Fig.5.4(a). Each logistic regression unit is

called a neuron or node.

A concise graphic representation for the neural network is shown in Fig.5.4 (b), without showing

the details within a node. The neural network has a three-layer structure: input layer, hidden layer,

and output layer, even though the neural network is two-layer (the input layer does not count

because there is no operation in the input layer). The process of computing (5.14) can be interpreted

as a forward propagation of information through the network. The input, hidden, and output

variables are represented by nodes, and the weight parameters are represented by links between the

nodes.

(a) A neural network with one hidden layer and one output layer.

(b) a simplified graphic representation of the two-layer neural network.

Fig.5.4 Diagram for the two-layer neural network corresponding to (5.14)

We can extend the neural network in Fig.5.4 by adding additional hidden layers and/or

more nodes in each hidden layer. Theoretically, there is no limit on the number of layers

or on the number of nodes in each hidden layer. In general, a larger neural network is

expected to recognize more complicated patterns but may suffer overfitting if the training

data is not sufficient. The choice of activation functions such as h(.) and f(.) depends on

the nature of data and the task of the network. We will discuss activation functions when

specific neural networks are presented. Another generalization of the network architecture

is to have K nodes, instead of a single node, in the output layer so that it can solve K-class

classification problems with each node delivering the probability of a class. Furthermore,

the network can be sparse, with not all possible links between two consecutive layers being

present. Convolutional neural networks are examples of sparse network and are widely

used in computer vision.

5.3 Neural Network Representation: Feed-forward Propagation

This section describes the mathematical representation of a general feedforward neural network,

with a focus on notations of variables and parameters. It is essential to understand these notations

for efficiently implementing neural network algorithms in computer program languages.

We will use the example shown in Fig.5.5 to demonstrate the fundamental concepts of neural

networks though a typical neural network in practice is much larger. Fig.5.5 shows a neural network

that has two layers: hidden layer with 4 units and output layer with one unit.

Fig.5.5 A two-layer neural network: an example

The important notations are described as follows. First, 𝑎𝑗
[𝑖]

 denotes the output of the jth node in

layer i, and is also the name of this node. Thus, 𝑎[𝑖], a concatenation of 𝑎𝑗
[𝑖]

, is the vector that

represents the outputs of layer i. 𝑎[𝑖] is also the input vector to layer i+1. The input layer is defined

as layer 0. Therefore, for the neural network in Fig.5.5, we have

 𝑎[0] = 𝐱 = [

𝑥1

𝑥2

𝑥3

] 𝑎[1] =

[

 𝑎1

[1]

𝑎2
[1]

𝑎3
[1]

𝑎4
[1]

]

 𝑎[2] = �̂�

The parameters associated with layer i are denoted by

 𝑊[𝑖] =

[

 − − −𝑊1

[𝑖]𝑇
− − −

− − −𝑊2
[𝑖]𝑇

− − −
⋮

− − −𝑊
𝑛[𝑖]
[𝑖] 𝑇

− − −]

(𝑛[𝑖],𝑛[𝑖−1])

 𝑏[𝑖] =

[

 𝑏1

[𝑖]

𝑏2
[𝑖]

⋮

𝑏
𝑛[𝑖]
[𝑖]

]

where 𝑊𝑗
[𝑖]

 represents a weight column-vector for node j in layer i and its element 𝑊𝑗𝑘
[𝑖]

 is the weight

from node k in the previous layer (i.e. layer i-1) to node j in layer i. The weight vectors of all nodes

in layer i are organized as a weight matrix 𝑊[𝑖]. All weights to node j in layer i form row j in the

matrix 𝑊[𝑖] and thus the weight matrix has a shape of (𝑛[𝑖], 𝑛[𝑖−1]), i.e., matrix 𝑊[𝑖] has 𝑛[𝑖] rows

and 𝑛[𝑖−1] columns, and 𝑛[𝑖] is the number of nodes in layer i. The bias vector for layer i is denoted

by 𝑏[𝑖], whose element 𝑏𝑗
[𝑖]

is the bias to the node j in layer i. In general, the superscripts in square

brackets indicate the layer number.

Therefore, given input vector x, the forward propagation can be described by a series of equations:

1) hidden layer

𝐳[1] = 𝑊[1]𝐱 + 𝐛[1] (5.15.a)

𝐚[1] = 𝜎(𝐳[1]) (5.15.b)

2) output layer

𝐳[2] = 𝑊[2]𝐚[1] + 𝐛[2] (5.15.c)

𝐚[2] = 𝜎(𝐳[2]) (5.15.d)

If m examples are given, we can represent m examples in a format of (𝑛𝑥,𝑚) matrix, where 𝑛𝑥 is

the number of features of x. (𝑛𝑥 = 3 in the case of Fig.5.5)

𝑋 = [

| | |

𝐱(1) 𝐱(2) 𝐱(𝑚)

| | |
]

(𝑛𝑥,𝑚)

where one example forms a corresponding column, the superscript in parentheses indicates the the

index of an example. Thus, the forward propagation for m examples can be described by a set of

equations:

1) hidden layer

𝑍[1] = 𝑊[1]𝑋 + 𝐛[1] (5.16.a)

𝐴[1] = 𝜎(𝑍[1]) (5.16.b)

2) output layer

𝑍[2] = 𝑊[2]𝐴[1] + 𝐛[2] (5.16.c)

𝐴[2] = 𝜎(𝑍[2]) (5.16.d)

Please note that the operator “+” in (5.16.a) and (5.16.c) imposes broadcasting function since the

shape of the two operands, e.g. 𝑊[1]𝑋 and 𝐛[1], are not the same and different data examples share

the same parameters. For example, the shape of 𝑊[1]𝑋 is (4,m), and the shape of 𝐛[1] is (4,1). The

broadcasting “+” means that 𝐛[1] is added to each column of 𝑊[1]𝑋. It is helpful for a reader to

verify the shape of each variable in (5.16.a)-(5.16.d).

5.4 Activation Functions

An activation function is used to introduce non-linearity in a network. This non-linearity allows the

model to learn complex mappings based on the available data, and thus the network becomes a

universal approximator. The activation function defined in (5.2) is the sigmoid function. In fact,

there are other commonly used activation functions. The choice of activation function for each

layer is critical. Another important aspect of the activation function is that it should be

differentiable. This is required when we compute gradients, and thus tune our weights accordingly.

Summary of activation functions

For a quick reference, we summarize the activation functions in the following table.

Name Plot Equation derivative

Sigmoid

range: (0,1)

𝜎(𝑧) =
1

1 + 𝑒𝑥𝑝(−𝑧)

𝜎′(𝑧)
= 𝜎(𝑧)(1 − 𝜎(𝑧))

Bipolar sigmoid

Range:(-1,1)

𝑓(𝑧) =
1 − 𝑒𝑥𝑝 (−𝑧)

1 + 𝑒𝑥𝑝(−𝑧)
 𝑓′(𝑧) =

2𝑒−𝑧

(1 + 𝑒−𝑧)2

Tanh

Range: (-1,1)

𝑓(𝑧) = 𝑡𝑎𝑛ℎ(𝑧)

=
𝑒𝑥𝑝(𝑧) − 𝑒𝑥𝑝(−𝑧)

𝑒𝑥𝑝(𝑧) + 𝑒𝑥𝑝(−𝑧)
= 2𝜎(2𝑧) − 1

𝑓′(𝑧) = 1 − 𝑓(𝑧)2

Arctan

Range:(−π/2,π/2)

𝑓(𝑧) = 𝑡𝑎𝑛−1(𝑧)

𝑓′(𝑧) =

1

1 + 𝑧2

Binary step

Range: {0,1}

𝑓(𝑧) = {
0 𝑧 < 0
1 𝑧 > 0

 0 if z≠ 0

ReLU

Range: [0,+∞)

𝑓(𝑧) = max (0, 𝑥) 𝑓′(𝑧) = {
0 𝑥 < 0
1 𝑥 > 0

Leaky ReLU

Range: (-∞,+∞)

𝑓(𝑧) = 𝑚𝑎𝑥(𝛼𝑧, 𝑧) 𝑓′(𝑧) = {
𝛼 𝑥 < 0
1 𝑥 > 0

Smooth ReLU

(softplus)

Range: (0,+∞)

𝑓(𝑧) = 𝑙𝑛 (1 + exp(𝑧))
𝑓′(𝑧) =

1

1 + 𝑒−𝑧

Softmax 𝑓(𝑧[𝑖])

=
𝑒𝑥𝑝(𝑧[𝑖])

∑ exp (𝑧𝑘
[𝑖])𝐾

𝑘=1

See Section 3.6.3

To visually compare the activation functions, we plot them in Fig.5.6.

Fig.5.6 Comparison of activation functions

Among the above-mentioned activation functions, three widely used activation functions are

sigmoid function, ReLU, and softmax.

Sigmoid function

The sigmoid or logistic activation function maps the input values into the range (0,1), and its output

is interpreted as the probability of the input x belonging to a class. So, it is mostly used for

classification. However, it suffers from the vanishing gradient problem. Also, the output is not zero-

centered, which causes difficulties during optimization. It also has a low convergence rate.

ReLU (Rectified linear unit)

ReLU has the output 0 if its input is less than or equal to 0, otherwise, its output is equal to its input.

This has been widely used in convolutional neural networks. It is also superior to the sigmoid and

tanh activation function, as it does not suffer from the vanishing gradient problem. Thus, it allows

for faster and effective training of deep neural architectures.

Softmax

The softmax function is widely used for the output layer activation of a neural network in multi-

class classification tasks. It is an extension of sigmoid function. Sigmoid function maps a real

number to a probability value, which is in the range of (0, 1). In a K-class classification neural

network, the softmax function maps a real vector 𝒛 ∈ ℝ𝐾 to a probability distribution vector 𝒂 ∈

(𝟎, 𝟏)𝑲, as shown in Fig.5.7. It is obvious that a larger 𝑧𝑗 results in a larger probability element 𝑎𝑗,

and the sum of all elements in 𝒂 is equal to 1. Thus, the output 𝒂 is interpreted as the predicted

probability distribution of the input x over K classes.

𝑎𝑗 =
𝑒𝑥𝑝(𝑧𝑗)

∑ 𝑒𝑥𝑝(𝑧𝑘)𝐾
𝑘=1

 (5.17)

Fig.5.7 Softmax activation (in a case of K=3)

5.5 Network Training: Backward Propagation

The cost function achieves a minimal value at optimal values of parameters, e.g. W and b.

Searching for the optimal parameter values is called neural network training. In this section, we

will discuss how to use gradient descent to train a neural network. Let’s consider a 2-layer neural

network shown in Fig.5.5. The neural network has one hidden layer with 4 units (or nodes), and

one output layer with one node. The activation function in the hidden layer is now chosen to be

tanh function for an easier mathematical representation. The output layer uses the sigmoid function

as its activation function.

In the neural network in Fig.5.5, the parameters include:

◼ 𝑛𝑥 is the number of features in input x.

◼ 𝑛[𝑖] is the number of units in layer i. Thus 𝑛[0] = 𝑛𝑥 = 3, 𝑛[1]=4, 𝑛[2] = 1

◼ 𝑊[𝑖] is the weight matrix in layer i. The shape of 𝑊[𝑖] is (𝑛[𝑖], 𝑛[𝑖−1]). Thus 𝑊[1] shape is

(4,3). 𝑊[2] shape is (1,4).

◼ 𝐛[𝑖] is the bias of layer i. The shape of 𝐛[𝑖] is (𝑛[𝑖], 1). Thus 𝐛[1] shape is (4,1), 𝐛[2] shape

is (1,1).

The cost function is given by

𝐽(𝑊[1], 𝑏[1],𝑊[2], 𝑏[2]) =
1

𝑚
∑ 𝐿(𝑎[2](𝑖)𝑚

𝑖=1 , 𝑦(𝑖)) (5.18)

where the loss function for one example is cross-entropy loss

𝐿(𝑎[2], 𝑦) = −(𝑦 ∙ 𝑙𝑛𝑎[2] + (1 − 𝑦)𝑙𝑛(1 − 𝑎[2])) (5.19)

Note that the superscript (i) indicates the ith example in the dataset, and the superscript [i] indicates

the layer i. The training dataset is organized as a matrix with each column corresponding to one

example.

𝑋 = [

| | |

𝑥(1) 𝑥(2) 𝑥(𝑚)

| | |
]

(𝑛𝑥,𝑚)

 (5.20)

𝑌 = [𝑦(1) 𝑦(2) 𝑦(𝑚)](1,𝑚) (5.21)

The gradient descent algorithm can be partitioned into three steps: 1) forward propagation, 2)

backward propagation, and 3) parameter updating. The forward propagation is to calculate the

output of each layer following the direction from input to output and the cost (or loss) function. In

the backward propagation, the derivatives of the cost function (i.e. gradient), with respect to the

parameters W and b, are computed in a backward direction. Finally, the parameters are updated

based on the derivatives calculated in the backward propagation. The forward propagation is

implemented by just following the equations (5.16) and (5.29). The backward propagation requires

a series of derivative computations in a backward order.

First, let’s consider the derivatives of one example loss function. For the simplicity of notations,

we use 𝑑𝑢 to denote the derivative of the loss L with respect to a parameter or variable u, i.e., 𝑑𝑢 ≜
𝑑

𝑑𝑢
𝐿. The derivatives of the loss function with respect to parameters can be calculated in the

following sequence by applying calculus chain rule.

𝑑𝑎[2] ≜
𝑑

𝑑𝑎[2] 𝐿(𝑎[2], 𝑦) = −
𝑦

𝑎[2] +
1−𝑦

1−𝑎[2] (5.22)

 𝑑𝑧[2] ≜
𝑑

𝑑𝑧[2] 𝐿(𝑎[2], 𝑦) = 𝑑𝑎[2] ∙
𝑑

𝑑𝑧[2] (𝑎
[2])

= (−
𝑦

𝑎[2] +
1−𝑦

1−𝑎[2]) ∙ 𝜎(𝑧[2]) (1 − 𝜎(𝑧[2])) = 𝑎[2] − 𝑦 (5.23)

𝑑𝑊[2] ≜
𝑑

𝑑𝑊[2] 𝐿(𝑎[2], 𝑦) = 𝑑𝑧[2] ∙
𝑑

𝑑𝑊[2] (𝑧
[2]) = 𝑑𝑧[2] ∙ (𝑎[1])

𝑇
 (5.23)

 Note: 𝑑𝑊[2] has the same shape as 𝑊[2]: (1,4) in the case of Fig.5.5.

𝑑𝑏[2] ≜
𝑑

𝑑𝑏[2] 𝐿(𝑎[2], 𝑦) = 𝑑𝑧[2] ∙
𝑑

𝑑𝑏[2] (𝑧
[2]) = 𝑑𝑧[2] (5.24)

𝑑𝑎[1] ≜
𝑑

𝑑𝑎[1] 𝐿(𝑎[2], 𝑦) = 𝑑𝑧[2] ∙
𝑑

𝑑𝑎[1] (𝑧
[2]) = (𝑊[2])

𝑇
∙ 𝑑𝑧[2] (5.25)

𝑑𝑧[1] ≜
𝑑

𝑑𝑧[1] 𝐿(𝑎[2], 𝑦) = 𝑑𝑎[1] ∙
𝑑

𝑑𝑧[1] (𝑎
[1]) = (𝑊[2])

𝑇
∙ 𝑑𝑧[2] ∗ 𝑔[1]′(𝑧[1]) (5.26)

 Note: * indicates element-wise multiplication.

𝑑𝑊[1] ≜
𝑑

𝑑𝑊[1] 𝐿(𝑎[2], 𝑦) = 𝑑𝑧[1] ∙
𝑑

𝑑𝑊[1] (𝑧
[1]) = 𝑑𝑧[1] ∙ (𝑥)𝑇 (5.27)

𝑑𝑏[1] ≜
𝑑

𝑑𝑏[1] 𝐿(𝑎[2], 𝑦) = 𝑑𝑧[1] ∙
𝑑

𝑑𝑏[1] (𝑧
[1]) = 𝑑𝑧[1] (5.28)

Fig.5.8 Data forward propagation and derivative backward propagation

Fig.5.8 shows the data forward propagation and derivative backward propagation for one data

example x. The data forward propagation diagram illustrates how to calculate the data output at

each layer (or each node). After the forward propagation has been completed, the derivatives of

loss function L with respect to different intermediate data or parameters can be computed in an

opposite (backward) direction by using the results of forward propagation.

Now we consider the cost function for m data examples defined by (5.18). By extending the input

x from a one-dimensional vector to two-dimensional matrix with a shape of (𝑛𝑥 ,𝑚), we can

develop the vectorized gradient descent algorithm as follows. It is essential to understand the shape

of each variable.

Gradient descent algorithm for the neural network in Fig.5.5.

Initialize the parameters and shapes: 𝑊[1]: (4,3), 𝑏[1]: (4,1),𝑊[2]: (1,4), 𝑏[2]: (1,1)

Repeat the loop {

1) Forward propagation:

Equations matrix shape verification

𝑍[1] = 𝑊[1]𝑋 + 𝑏[1] (4,𝑚) = (4,3) × (3,𝑚) + (4,1)

𝐴[1] = 𝑔[1](𝑍[1]) (4,𝑚)

𝑍[2] = 𝑊[2]𝐴[1] + 𝑏[2] (1,𝑚) = (1,4) × (4,𝑚) + (1,1)

𝐴[2] = 𝑔[2](𝑍[2]) = 𝜎(𝑍[2]) (1,𝑚)

Note: “+” broadcasting

2) Back propagation:

𝑑𝑍[2] = 𝐴[2] − 𝑌 (1,𝑚) = (1,𝑚) − (1,𝑚)

𝑑𝑊[2] =
1

𝑚
𝑑𝑍[2]𝐴[1]𝑇 (1,4) = (1,𝑚) × (4,𝑚)𝑇

𝑑𝑏[2] =
1

𝑚
𝑛𝑝. 𝑠𝑢𝑚(𝑑𝑍[2], 𝑎𝑥𝑖𝑠 = 1, 𝑘𝑒𝑒𝑝𝑑𝑖𝑚𝑠 = 𝑇𝑟𝑢𝑒) (1,1)

 Note: sum along axis=1, and keep the two dimensions

𝑑𝑍[1] = (𝑊[2]𝑇 ∙ 𝑑𝑍[2]) ∗ 𝑔[1]′(𝑍[1]) (Note: * element-wise product)

 (4,𝑚) = ((1,4)𝑇 × (1,𝑚)) ∗ (4,𝑚)

𝑑𝑊[1] =
1

𝑚
𝑑𝑍[1]𝑋𝑇 (4,3) = (4,𝑚) × (3,𝑚)𝑇

𝑑𝑏[1] =
1

𝑚
 𝑛𝑝. 𝑠𝑢𝑚(𝑑𝑍[1], 𝑎𝑥𝑖𝑠 = 1, 𝑘𝑒𝑒𝑝𝑑𝑖𝑚𝑠 = 𝑇𝑟𝑢𝑒) (4,1)

3) Parameter update:

𝑊[1] ≔ 𝑊[1] − 𝛼 ∙ 𝑑𝑊[1] (4,3)

𝑏[1] ≔ 𝑏[1] − 𝛼 ∙ 𝑑𝑏[1] (4,1)

𝑊[2] ≔ 𝑊[2] − 𝛼 ∙ 𝑑𝑊[2] (1,4)

𝑏[2] ≔ 𝑏[2] − 𝛼 ∙ 𝑑𝑏[2] (1,1)

}

To make the gradient descent algorithm work, we usually initialize all W parameters with small

random numbers, and b parameters with (but not necessarily) zeros. If we initialized W parameters

with all zeros, all the units in one layer would be identical, and thus be redundant.

5.6 Multi-class Classification: Softmax and Cross Entropy Loss

In this section, we will discuss how to develop a neural network for a multi-class classification task.

Softmax regression (or multinomial logistic regression) is a generalization of logistic regression for

the case where we want to handle multiple classes. In logistic regression we assumed that the labels

were binary: y(i)∈{0,1}. Softmax regression allows us to handle y(i)∈{1,…,K} where K is the

number of classes. The recognition of hand-written digits is a good example for K=10. In order for

a neural network to perform a multiple-class classification task, we need to implement the output

layer with softmax activation. The softmax activation delivers a vector that represent the

probabilities of all classes given an input x.

5.6.1 Softmax activation in neural network

Consider a multiple-layer neural network for a 4-class classification task, illustrated in Fig.5.9. The

neural network has five layers. Each of the first four layers has a regular activation function (e.g.,

tanh, or sigmoid). The activation function of the last layer (i.e., the output layer) is the softmax

function.

Fig.5.9 A multiple-layer neural network for a 4-class classification task

Specifically, the output layer consists of a linear function and the softmax function, which are

described by

Linear function: 𝑧 = 𝑊[𝐿]𝑎[𝐿−1] + 𝑏[𝐿] (5.29)

Softmax:

𝒕 = 𝑒𝑥𝑝(𝑧) (5.30.a)

𝑎[𝐿] = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧) =
𝒕

∑ 𝑡𝑘
𝐾
𝑘=1

 (5.30.b)

where L is the total number of layers in the neural network, L=5 in Fig.5.9.

 𝑊[𝐿] is the weight in the output layer, its shape is (4,3) in Fig.5.9.

𝑏[𝐿] is the bias parameter, its shape is (4,1) in Fig.5.9.

𝑎[𝐿−1] is the output of the previous layer, its shape is (3,1) in Fig.5.9.

𝑎[𝐿] is the output of the output layer, its shape is (4,1) in Fig.5.9.

Thus, z and t are vectors. 𝑡𝑘 is the k-th element of vector t. The output vector 𝑎[𝐿] can be interpreted

as the probabilities of the predicted label over classes for a given input x. We need to calculate the

derivative of softmax function and pass it back to the previous layer during backpropagation. Let

the input be a vector z and the output be a vector a. The derivative is denoted as
𝑑𝑎𝑖

𝑑𝑧𝑘
. It can be

shown (see exercise) that

𝑑𝑎𝑖

𝑑𝑧𝑘
= {

𝑎𝑖(1 − 𝑎𝑖) 𝑖 = 𝑘
−𝑎𝑖𝑎𝑘 𝑖 ≠ 𝑘

 (5.31)

5.6.2 Cross entropy loss and backpropagation

Now let’s consider the loss function for one example, say (x,y). To calculate the loss, we usually

represent the label y in a one-hot code vector, i.e., for class j, only the jth element in y is 1 and other

elements are all zero. For example, the following label represents class 3 out of classes (1,2,3,4).

𝑦 = [

0
0
1
0

]

Thus, the ground truth y is the desired ideal output of the neural network.

Cross entropy indicates the distance between the predicted probability distribution �̂� and the ground

truth (i.e. label) vector 𝑦. It is defined as

𝐿(�̂�, 𝑦) = −∑ 𝑦𝑗ln (�̂�𝑗)
𝐾
𝑗=1 (5.32)

Cross entropy measure is a widely used as a loss function in neural networks which have softmax

activations in the output layer. Now we can derive the derivative of the loss function with respect

to the input vector z. Since �̂� = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧), we have

𝑑𝐿(�̂�,𝑦)

𝑑𝑧𝑖
= −∑ 𝑦𝑗

𝑑

𝑑𝑧𝑖
(𝑙𝑛�̂�𝑗)

𝐾
𝑗=1 = −∑ 𝑦𝑗

1

�̂�𝑗

𝑑

𝑑𝑧𝑖
(�̂�𝑗)

𝐾
𝑗=1 (5.33)

Using the derivative of softmax function in (5.31) with 𝑎𝑖 = �̂�𝑖, (5.33) can be reduced to (exercise)

𝑑𝐿(�̂�,𝑦)

𝑑𝑧𝑖
= �̂�𝑖 − 𝑦𝑖 (5.34)

Thus, the derivative of the loss function w.r.t the input vector z is

𝑑𝐿(�̂�,𝑦)

𝑑𝑧
= �̂� − 𝑦 (5.35)

As an example, Fig.5.10 shows the forward propagation and backpropagation for a two-layer neural

network (i.e., L=2).

Fig.5.10 Backpropagation for a two-layer neural network (L=2) with softmax and cross entropy

loss function.

Although the softmax activation and cross entropy loss function are introduced for multi-class

classification, the derivative backpropagation (Fig.5.10) has the same equations as logistic

regression (see Fig.5.8 and equations (5.22)-(5.28)), except that the dimensions of the variables are

different. Therefore, the way to build a neural network for multi-class is the same as binary

classification. The only difference is that we label the target y in a one-hot code format. The shape

of parameters in the output layer should match the multiple outputs. For example, the original labels

for 4 samples in a 4-class task is

𝑌𝑜𝑟𝑖𝑔 = [1,4,2,3]

Then the label used in the neural network should be in the form of one-hot code

𝑌 = [

1 0
0 0
0
0

0
1

0 0
1 0
0
0

1
0

]

And the weight matrix for the output layer is of shape (4, 3), where 3 is assumed to be the number

of units in the previous layer.

For m samples, the cost function can be calculated by

𝐽(�̂�, 𝑌) =
−1

𝑚
∑(𝑌 ∗ ln (𝐴[𝐿])) (5.36)

Note: in (5.36), * represents element-wise multiplication of matrices and ∑ represents the sum

of all elements in a matrix. Y is the one-hot code label matrix with shape (𝑛[𝐿], 𝑚) given by the

training dataset. �̂� is the output of the neural network 𝐴[𝐿] for m examples, with the same shape of

Y.

In summary, based on the neural networks for binary classifications, we modify them by replacing

sigmoid activation with softmax activation function (5.30.b) in the output layer, for forward

propagation. The backward propagation does not need to change. The resulting neural network will

work for K-class classification tasks. The output of the output layer is a vector predicting the

probabilities of K classes given input x. The predicted class is the class corresponding to the largest

element in the output vector.

5.7 Practice in Python

In this section, we will guide you to build and train neural networks with Python from scratch.

5.7.1 A simple two-layer neural network for binary classification

First, we are going to build a neural network with one hidden layer for a 2-class classification task.

The input of the neural network has two features. The network architecture is shown in Fig.5.11.

The hidden layer has 4 units with tanh activation function. The output layer uses sigmoid activation

function to predict the probability of the class (y=1) to which the input x belongs.

Fig.5.11 NN architecture

Step 1: import packages and generate training examples

We start the project in Jupyter Notebook with importing the packages.

import numpy as np

import matplotlib.pyplot as plt

import sklearn

import sklearn.datasets

import sklearn.linear_model

Now let’s generate and visualize training examples. The training set to be generated has 200

examples. Each example has two features and a binary label. Specifically, we generate the dataset

using the function in the sklearn package. The features and the labels are stored in tensor X (2,

200), and tensor Y (1, 200), respectively.

np.random.seed(1)

m=200 # the number of samples

X, Y = sklearn.datasets.make_moons(n_samples=m, noise=.2)

X, Y = X.T, Y.reshape(1, Y.shape[0])

X: X(2,m), Y: Y(1,m)

Visualize the data

plt.scatter(X[0, :], X[1, :], c=Y[0,:], s=40, cmap=plt.cm.Spectral);

plt.show()

Step 2: build the NN model

First, we need to define the functions (or components) which will be used to build the neural

network.

Define sigmoid function.

sigmoid function

def sigmoid(x):

 s = 1/(1+np.exp(-x))

 return s

Determine the input layer size and the output size. The size of input layer, n_x, is determined

by the shape of dataset. The size of output layer is determined by the shape of label Y.

def layer_sizes(X, Y):

 """

 Argument:

 X -- input dataset of shape (input size, number of examples)

 Y -- labels of shape (output size, number of examples)

 Return:

 n_x -- the number of nodes in the input layer

 n_y -- the number of nodes in the output layer

 """

 ### extract the layer sizes from input and output shapes ###

 n_x = X.shape[0] # size of input layer

 n_y = Y.shape[0] # size of output layer

 ######

 return (n_x, n_y)

Parameter initialization. The shapes of parameters W1, b1, W2 and b2 are determined by the

layer sizes (n_x, n_h, n_y). The elements in W1 and W2 are initialized to small random numbers

while those in b1 and b3 are initialized to zeros. The results are stored in a python dictionary

parameter.

FUNCTION: initialize_parameters

def initialize_parameters(n_x, n_h, n_y):

 """

 Argument:

 n_x -- size of the input layer

 n_h -- size of the hidden layer

 n_y -- size of the output layer

 Returns:

 params -- python dictionary containing parameters:

 W1 -- weight matrix of shape (n_h, n_x)

 b1 -- bias vector of shape (n_h, 1)

 W2 -- weight matrix of shape (n_y, n_h)

 b2 -- bias vector of shape (n_y, 1)

 """

 np.random.seed(2) # set up a seed for reproductivity.

 W1 = np.random.randn(n_h, n_x) * 0.01 # random numbers for weights

 b1 = np.zeros((n_h, 1)) # zeros for bias

 W2 = np.random.randn(n_y, n_h) * 0.01

 b2 = np.zeros((n_y,1))

 assert (W1.shape == (n_h, n_x))

 assert (b1.shape == (n_h, 1))

 assert (W2.shape == (n_y, n_h))

 assert (b2.shape == (n_y, 1))

 parameters = {"W1": W1,

 "b1": b1,

 "W2": W2,

 "b2": b2}

 return parameters

Forward propagation. In the gradient descent algorithm, we iteratively update the parameters to

reduce the value of cost function. During each iteration, we first calculate the forward propagation,

then the backward propagation (derivatives), and finally update the parameters.

FUNCTION: forward_propagation

def forward_propagation(X, parameters):

 """

 Argument:

 X -- input data of size (n_x, m)

 parameters -- python dictionary containing your parameters

 Return:

 A2 -- The sigmoid output of the second activation

 cache -- a dictionary containing "Z1", "A1", "Z2" and "A2"

 """

 # Retrieve each parameter from the dictionary "parameters"

 W1 = parameters["W1"]

 b1 = parameters["b1"]

 W2 = parameters["W2"]

 b2 = parameters["b2"]

 # Implement Forward Propagation to calculate A2 (probabilities)

 Z1 = np.dot(W1, X) + b1

 A1 = np.tanh(Z1)

 Z2 = np.dot(W2, A1) + b2

 A2 = sigmoid(Z2)

 assert(A2.shape == (1, X.shape[1]))

 cache = {"Z1": Z1,

 "A1": A1,

 "Z2": Z2,

 "A2": A2} # Results at all layers

 return A2, cache

Cost function. Computing cost is not required for training the model, but it is a useful tool to

monitor the training process.
FUNCTION: compute_cost

def compute_cost(A2, Y, parameters):

 """

 Computes the cross-entropy loss

 Argument:

 A2 -- The output of the seccond layer, of shape (1, number of examples)

 Y -- "true" labels vector of shape (1, number of examples)

 parameters -- python dictionary containing parameters W1, b1, W2 and b2

 Return:

 cost -- cross-entropy loss

 """

 m = Y.shape[1] # number of examples

 # Compute the cross-entropy cost

 logprobs = np.multiply(np.log(A2),Y) + np.multiply(np.log(1-A2), (1-Y))

 cost = -1/m*np.sum(logprobs)

 cost = np.squeeze(cost) # makes sure cost is the dimension we expect.

 # E.g., turns [[17]] into 17

 assert(isinstance(cost, float))

 return cost

Backward propagation. This function takes the forward propagation results as inputs, and

computes the gradient in a backward order.

FUNCTION: backward_propagation

def backward_propagation(parameters, cache, X, Y):

 """

 Implement the backward propagation.

 Argument:

 parameters -- python dictionary containing parameters

 cache -- a dictionary containing "Z1", "A1", "Z2" and "A2".

 X -- input data of shape (n_x, number of examples)

 Y -- "true" labels vector of shape (1, number of examples)

 Return:

 grads -- python dictionary containing gradients with respect to different p

arameters

 """

 m = X.shape[1] # number of examples

 # First, retrieve W1 and W2 from the dictionary "parameters".

 W1 = parameters["W1"]

 W2 = parameters["W2"]

 # Second, retrieve A1 and A2 from dictionary "cache".

 A1 = cache["A1"]

 A2 = cache["A2"]

 # Backward propagation: calculate dW1, db1, dW2, db2.

 dZ2= A2-Y

 dW2 = 1./m*np.dot(dZ2, A1.T)

 db2 = 1./m*np.sum(dZ2, axis = 1, keepdims=True)

 dZ1 = np.dot(W2.T, dZ2) * (1 - np.power(A1, 2))

 dW1 = 1./m* np.dot(dZ1, X.T)

 db1 = 1./m*np.sum(dZ1, axis = 1, keepdims=True)

 # Save the results

 grads = {"dW1": dW1,

 "db1": db1,

 "dW2": dW2,

 "db2": db2}

 return grads

Parameter update. This function updates the parameters according to gradient descent algorithm,

based on the current parameters and the gradient from backward propagation function.

FUNCTION: update_parameters

def update_parameters(parameters, grads, learning_rate = 1.2):

 """

 Update parameters using the gradient descent

 Argument:

 parameters -- python dictionary containing parameters

 grads -- python dictionary containing gradients

 Return:

 parameters -- python dictionary containing updated parameters

 """

 # Retrieve each parameter from the dictionary "parameters"

 W1 = parameters["W1"]

 W2 = parameters["W2"]

 b1 = parameters["b1"]

 b2 = parameters["b2"]

 # Retrieve each gradient from the dictionary "grads"

 dW1 = grads["dW1"]

 db1 = grads["db1"]

 dW2 = grads["dW2"]

 db2 = grads["db2"]

 # Update for each parameter

 W1 = W1 - dW1 * learning_rate

 b1 = b1 - db1 * learning_rate

 W2 = W2 - dW2 * learning_rate

 b2 = b2 - db2 * learning_rate

 # Save updated parameter results

 parameters = {"W1": W1,

 "b1": b1,

 "W2": W2,

 "b2": b2}

 return parameters

Build the NN model by putting all previous functions together: specify layer sizes, initialize

parameters, and define the iteration loop. In each iteration, forward propagation, cost, and backward

propagation (or gradient) are calculated, and the parameters are updated.

FUNCTION: nn_model

def nn_model(X, Y, n_h, num_iterations = 10000, print_cost=False):

 """

 define a model: input, output, hidden layer size, iteration numbers, print_

cost or not.

 Argument:

 X -- input shape (2, number of examples)

 Y -- label shape (1, number of examples)

 n_h -- size of the hidden layer

 num_iterations -- number of iterations in update loop

 print_cost -- if True, print the cost every 1000 iterations

 Return:

 parameters -- learned parameters.

 """

 np.random.seed(3)

 n_x = layer_sizes(X, Y)[0]

 n_y = layer_sizes(X, Y)[1]

 # Initialize parameters, then retrieve W1, b1, W2, b2.

 # Inputs: "n_x, n_h, n_y".

 # Outputs: "parameters".

 parameters = initialize_parameters(n_x, n_h, n_y)

 W1 = parameters["W1"]

 W2 = parameters["W2"]

 b1 = parameters["b1"]

 b2 = parameters["b2"]

 # Loop (gradient descent)

 for i in range(0, num_iterations):

 # Forward propagation. Inputs: "X, parameters". Outputs: "A2, cache".

 A2, cache = forward_propagation(X, parameters)

 # Cost function. Inputs: "A2, Y, parameters". Outputs: "cost".

 cost = compute_cost(A2, Y, parameters)

 # Backpropagation. Inputs: "parameters, cache, X, Y". Outputs: "grads".

 grads = backward_propagation(parameters, cache, X, Y)

 # Gradient descent parameter update.

 # Inputs: "parameters, grads". Outputs: "parameters".

 parameters = update_parameters(parameters, grads)

 # Print the cost every 1000 iterations

 if print_cost and i % 1000 == 0:

 print ("Cost after iteration %i: %f" %(i, cost))

 return parameters

Predict. This function predicts the labels for a given test dataset X, based on the trained model.

FUNCTION: predict

def predict(parameters, X):

 """

 predicts a class for each example in X

 Arguments:

 parameters -- python dictionary containing your parameters

 X -- input data of size (n_x, m)

 Returns

 predictions -- vector of predictions of our model (red: 0 / blue: 1)

 """

 # Computes probabilities using forward propagation,

 # and classifies to 0/1 using 0.5 as the threshold.

 A2, cache = forward_propagation(X, parameters)

 predictions = A2 > 0.5

 return predictions

plot_decision_boundary. This function computes and plots the predictions of the model on points

in the two-dimensional grid.

this function plots the predictions for all points.

def plot_decision_boundary(model, X, y):

 # Set min and max values and give it some padding

 x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1

 y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1

 h = 0.01

 # Generate a grid of points with distance h between them

 xx, yy = np.meshgrid(np.arange(x_min, x_max, h),np.arange(y_min, y_max, h))

 # Predict the function value for the whole grid

 Z = model(np.c_[xx.ravel(), yy.ravel()])

 Z = Z.reshape(xx.shape)

 # Plot the contour and training examples

 plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)

 plt.ylabel('x2')

 plt.xlabel('x1')

 plt.scatter(X[0, :], X[1, :], c=y[0,:], cmap=plt.cm.Spectral)

Step 3: train and test the NN model

The top-level model is nn_model(X, Y, n_h, num_iterations = 10000, print_cost=False). Now we

train the neural network model on the loaded dataset (X,Y), and then plot the decision

regions, and evaluate the classification accuracy.

from sklearn.metrics import accuracy_score

Build a model with a n_h-dimensional hidden layer

n_h=4

parameters = nn_model(X, Y, n_h, num_iterations = 10000, print_cost=True)

Plot the decision boundary

plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y)

plt.title("Decision Boundary for hidden layer size " + str(n_h))

predictions = predict(parameters, X)

accuracy_nn = accuracy_score((Y.T).flatten(),predictions.T)

print('Accuracy of nn: ', accuracy_nn)

print('parameters are ', parameters)

Cost after iteration 0: 0.692995

Cost after iteration 1000: 0.090063

Cost after iteration 2000: 0.064688

Cost after iteration 3000: 0.056812

Cost after iteration 4000: 0.050300

Cost after iteration 5000: 0.044030

Cost after iteration 6000: 0.043814

Cost after iteration 7000: 0.042719

Cost after iteration 8000: 0.041756

Cost after iteration 9000: 0.040949

Accuracy of nn: 0.985

parameters are {'W1': array([[-4.60909564, 4.50592485],

 [2.77721501, 2.62387821],

 [-6.12507597, 0.32178735],

 [12.79405415, -6.32560328]]), 'b1': array([[6.12498998],

 [-2.22646889],

 [-4.01149508],

 [3.28497244]]), 'W2': array([[-10.37014269, -13.33751484, -4.32423522,

6.68597777]]), 'b2': array([[-0.48635814]])}

 (n_h = 4) (n_h = 6)

In the plots, the red color indicates the predicted label y=0, and the blue color indicates the predict

ed label y=1. We can see that the feature space is divided into multiple regions with either red or b

lue color.

5.7.2 Multi-class classification on MNIST dataset

Revisit of two-class classification

Before working on multi-class tasks, it is helpful to summarize the model we developed in the

previous section. The model is defined by

nn_model(X, Y, n_h, num_iterations = 1000, print_cost=False)

where X is the matrix of m data examples, Y is the label vector, n_h is the number of units in the

hidden layer (only one hidden layer in the model), num_iterations is the number of iterations for

updating parameters, and print_cost is a command for whether print the cost during the training. It

is important to identify the shape of X and Y,

𝑋 = [

| | |

𝑥(1) 𝑥(2) 𝑥(𝑚)

| | |
]

(𝑛𝑥,𝑚)

 𝑌 = [𝑦(1) 𝑦(2) 𝑦(𝑚)](1,𝑚) 𝑦
(𝑖) ∈ {0,1}

The model consists of two input features (𝑛𝑥 = 2), one hidden layer with 4 units(𝑛ℎ = 4), and the

output layer with single unit. The hidden layer uses Tanh() as activation functions and the output

layer uses sigmoid function for binary classification.

In this section, we will show how to modify the previous work for implementing multi-class

classification. Specifically, we consider the recognition of handwritten digits in MNIST dataset.

Since there are totally 10 handwritten digits (i.e., 0,1,2,3,4,5,6,7,8,9), the recognition is a 10-class

classification task.

MNIST dataset

The MNIST database (Modified National Institute of Standards and Technology database) of

handwritten digits consists of a training set of 60,000 examples, and a test set of 10,000 examples.

The images from the data set have the size of 28 x 28 pixels. They are saved in the csv data files

mnist_train.csv and mnist_test.csv (note: there are other ways to load MNIST dataset, such as

torchvision.datasets). Every row of these files consists of 785 numbers between 0 and 255. The

first number in a row is the label, i.e. the digit which the image represents. The next 784 numbers

are the pixels of the image. A part of mnist_train.csv opened by Excel is shown below (one row is

too long to display). The first five images represent digits 5, 0, 4, 1, 9, respectively.

Neural network architecture

For this MNIST classification task, we adopt the neural network shown in Fig.5.12. The input layer

is an image organized as a vector. The hidden layer has 25 nodes with tanh() activation. The output

layer has 10 nodes with softmax activation.

Fig.5.12 Neural network for MNIST classification

Start Jupyter Notebook

Let’s start the project in Jupyter Notebook.

Import packages and explore the dataset

Package imports

import numpy as np

import matplotlib.pyplot as plt

from sklearn.metrics import accuracy_score

image_size = 28 # width and length

no_of_different_labels = 10 # i.e. 0, 1, 2, 3, ..., 9

image_pixels = image_size * image_size

train_data = np.loadtxt("C:/machine_learning/NN_nn_overview/mnist_train.csv",

 delimiter=",")

test_data = np.loadtxt("C:/machine_learning/NN_nn_overview/mnist_test.csv",

 delimiter=",")

The following codes read the data and display some examples. The images of the MNIST dataset

are greyscale and the pixels range between 0 and 255 including both bounding values. We map

these values into an interval from [0.01, 1] by multiplying each pixel by 0.99 / 255 and adding 0.01

to the result. This way, we avoid 0 values as inputs, which may prevent weight updates.

fac = 0.99/255 # convert [0,255] to [0,1]

train_imgs = np.asfarray(train_data[:, 1:])*fac+0.01

test_imgs = np.asfarray(test_data[:, 1:])*fac+0.01

first column is labels

train_labels = np.asfarray(train_data[:,:1])

test_labels = np.asfarray(test_data[:, :1])

print ('The shape of train_imgs is: ' + str(train_imgs.shape))

print ('The shape of train_labels is: ' + str(train_labels.shape))

print ('The shape of test_imgs is: ' + str(test_imgs.shape))

print ('The shape of test_labels is: ' + str(test_labels.shape))

The shape of train_imgs is: (60000, 784)

The shape of train_labels is: (60000, 1)

The shape of test_imgs is: (10000, 784)

The shape of test_labels is: (10000, 1)

display the first 10 examples

for i in range(10):

 img = train_imgs[i].reshape((28,28))

 plt.subplot(2,5,1+i)

 plt.imshow(img, cmap="Greys")

plt.show()

Prepare the data for the neural network. The following codes convert the original labels to one-

hot-code format, and also transpose the input feature matrix to match the format defined earlier

(one column represents one example). The resulting X is shape of (784,60000), X_test is shape of

(784,10000) and Y is shape of (10, 60000).

np.random.seed(1) # set a seed so that the results are consistent

lr = np.arange(no_of_different_labels)

transform labels into one hot representation

train_labels_one_hot = (lr==train_labels).astype(np.float)

test_labels_one_hot = (lr==test_labels).astype(np.float)

X=np.transpose(train_imgs)

Y=np.transpose(train_labels_one_hot)

X_test=np.transpose(test_imgs)

find the shape of X and Y

find the number of examples

shape_X = X.shape

shape_Y = Y.shape

m = X.shape[1] # training set size

print ('The shape of X is ' + str(shape_X))

print ('The shape of Y is ' + str(shape_Y))

print ('the number of examples is m = %d' % (m))

The shape of X is (784, 60000)

The shape of Y is (10, 60000)

the number of examples is m = 60000

Build neural network

To build the neural network for MNIST classification, we just need to make the following changes

to our previous binary classification project.

1) Network size: we still use a two-layer network but a larger hidden layer with 25 units (you

can select a different number, say 20 or 31), as shown in Fig.5.12. The input layer and

output layer sizes are automatically determined by the shape of X and Y. Thus n_h is

assigned to 25.

2) Output layer: we use softmax activation function to replace sigmoid function in the output

layer.

In forward_propagation(X, parameters), A2 = sigmoid(Z2) should be changed to

A2 = softmax(Z2)

assert(A2.shape == (W2.shape[0], X.shape[1])) ## double check the shape

No change is needed for backward_propagation.

3) Cost function computation. compute_cost(A2, Y, parameters) is only for cost display, and

does not contribute training process.

for 2-class task

logprobs = np.multiply(np.log(A2),Y) + np.multiply(np.log(1-A2), (1-Y))

 # for multiple-class task

 logprobs = np.multiply(np.log(A2),Y)

4) Prediction. If we use X_test as the input, the output A2 is a matrix of shape (10,10000).

Each column of A2 represents the probability distribution over 10 classes for one example.

Thus we can use

 predictions = np.argmax(A2, axis=0)

to find the predicted digits. The following statement is used to calculated the accuracy.

 accuracy = accuracy_score(test_labels.flatten(), predictions)

In the end, it shows the classification accuracy is 98% based on the test dataset.

The Python code is attached below. Compared to the previous binary classification, the changes

are highlighted.

Sigmoid() is replaced by softmax().

Neural network from scratch

def softmax(x):

 t=np.exp(x)

 s = t/np.sum(t, axis=0)

 return s

No change to layer_sizes() function.

def layer_sizes(X, Y):

 """

 Argument:

 X -- input dataset of shape (input size, number of examples)

 Y -- labels of shape (output size, number of examples)

 Return:

 n_x -- the number of nodes in the input layer

 n_y -- the number of nodes in the output layer

 """

 ### extract the layer sizes from input and output shapes ###

 n_x = X.shape[0] # size of input layer

 n_y = Y.shape[0] # size of output layer

 ######

 return (n_x, n_y)

No change to initialize_parameters() function.

FUNCTION: initialize_parameters

def initialize_parameters(n_x, n_h, n_y):

 """

 Argument:

 n_x -- size of the input layer

 n_h -- size of the hidden layer

 n_y -- size of the output layer

 Returns:

 params -- python dictionary containing parameters:

 W1 -- weight matrix of shape (n_h, n_x)

 b1 -- bias vector of shape (n_h, 1)

 W2 -- weight matrix of shape (n_y, n_h)

 b2 -- bias vector of shape (n_y, 1)

 """

 np.random.seed(2) # set up a seed for reproductivity.

 W1 = np.random.randn(n_h, n_x) * 0.01 # random numbers for weights

 b1 = np.zeros((n_h, 1)) # zeros for bias

 W2 = np.random.randn(n_y, n_h) * 0.01

 b2 = np.zeros((n_y,1))

 assert (W1.shape == (n_h, n_x))

 assert (b1.shape == (n_h, 1))

 assert (W2.shape == (n_y, n_h))

 assert (b2.shape == (n_y, 1))

 parameters = {"W1": W1,

 "b1": b1,

 "W2": W2,

 "b2": b2}

 return parameters

Changes to forward_propagation () are highlighted.

FUNCTION: forward_propagation

def forward_propagation(X, parameters):

 """

 Argument:

 X -- input data of size (n_x, m)

 parameters -- python dictionary containing current parameters

 Returns:

 A2 -- The softmax output of the second activation

 cache -- a dictionary containing "Z1", "A1", "Z2" and "A2"

 """

 # Retrieve each parameter from the dictionary "parameters"

 W1 = parameters["W1"]

 b1 = parameters["b1"]

 W2 = parameters["W2"]

 b2 = parameters["b2"]

 # Implement Forward Propagation to calculate A2 (probabilities)

 Z1 = np.dot(W1, X) + b1

 A1 = np.tanh(Z1)

 Z2 = np.dot(W2, A1) + b2

 # multiple classes

 A2 = softmax(Z2)

 assert(A2.shape == (W2.shape[0], X.shape[1])) #for multiple classes

 cache = {"Z1": Z1,

 "A1": A1,

 "Z2": Z2,

 "A2": A2}

 return A2, cache

Changes to compute_cost () are highlighted.

FUNCTION: compute_cost

def compute_cost(A2, Y, parameters):

 """

 Computes the cross-entropy cost

 Arguments:

 A2 --The softmax output of the second activation, of shape (n_y, number of

examples)

 Y -- "true" labels vector of shape (n_y, number of examples)

 parameters --python dictionary containing your parameters W1, b1, W2 and b2

 Returns:

 cost -- cross-entropy cost

 """

 m = Y.shape[1] # number of example

 # for multiple-class task

 logprobs = np.multiply(np.log(A2),Y)

 cost = -1/m*np.sum(logprobs)

 cost = np.squeeze(cost) # makes sure cost is the dimension we expect.

 # E.g., turns [[17]] into 17

 assert(isinstance(cost, float))

 return cost

No changes for backward_propagation ().

FUNCTION: backward_propagation

def backward_propagation(parameters, cache, X, Y):

 """

 Implement the backward propagation

 Arguments:

 parameters -- python dictionary containing current parameters

 cache -- a dictionary containing "Z1", "A1", "Z2" and "A2".

 X -- input data of shape (n_x, number of examples)

 Y -- "true" labels vector of shape (n_y, number of examples)

 Returns:

 grads -- python dictionary containing the gradients with respect to differe

nt parameters

 """

 m = X.shape[1]

 # First, retrieve W1 and W2 from the dictionary "parameters".

 W1 = parameters["W1"]

 W2 = parameters["W2"]

 # Retrieve also A1 and A2 from dictionary "cache".

 A1 = cache["A1"]

 A2 = cache["A2"]

 # Backward propagation: calculate dW1, db1, dW2, db2.

 dZ2= A2-Y

 dW2 = 1./m*np.dot(dZ2, A1.T)

 db2 = 1./m*np.sum(dZ2, axis = 1, keepdims=True)

 dZ1 = np.dot(W2.T, dZ2) * (1 - np.power(A1, 2))

 dW1 = 1./m* np.dot(dZ1, X.T)

 db1 = 1./m*np.sum(dZ1, axis = 1, keepdims=True)

 grads = {"dW1": dW1,

 "db1": db1,

 "dW2": dW2,

 "db2": db2}

 return grads

No changes to update_parameters().

FUNCTION: update_parameters

def update_parameters(parameters, grads, learning_rate = 1.2):

 """

 Updates parameters using the gradient descent

 Arguments:

 parameters -- python dictionary containing your parameters

 grads -- python dictionary containing your gradients

 Returns:

 parameters -- python dictionary containing your updated parameters

 """

 # Retrieve each parameter from the dictionary "parameters"

 W1 = parameters["W1"]

 W2 = parameters["W2"]

 b1 = parameters["b1"]

 b2 = parameters["b2"]

 # Retrieve each gradient from the dictionary "grads"

 dW1 = grads["dW1"]

 db1 = grads["db1"]

 dW2 = grads["dW2"]

 db2 = grads["db2"]

 # Update rule for each parameter

 W1 = W1 - dW1 * learning_rate

 b1 = b1 - db1 * learning_rate

 W2 = W2 - dW2 * learning_rate

 b2 = b2 - db2 * learning_rate

 parameters = {"W1": W1,

 "b1": b1,

 "W2": W2,

 "b2": b2}

 return parameters

No change to nn_model().

FUNCTION: nn_model

def nn_model(X, Y, n_h, num_iterations = 10000, print_cost=False):

 """

 Arguments:

 X -- dataset of shape (n_x, number of examples)

 Y -- labels of shape (n_y, number of examples)

 n_h -- size of the hidden layer

 num_iterations -- Number of iterations in gradient descent loop

 print_cost -- if True, print the cost every 1000 iterations

 Returns:

 parameters -- parameters learnt by the model. They can then be used to pred

ict.

 """

 np.random.seed(3)

 n_x = layer_sizes(X, Y)[0]

 n_y = layer_sizes(X, Y)[1]

 # Initialize parameters,

 # then retrieve W1, b1, W2, b2.

 # Inputs: "n_x, n_h, n_y". Outputs = "W1, b1, W2, b2 in parameters".

 parameters = initialize_parameters(n_x, n_h, n_y)

 W1 = parameters["W1"]

 W2 = parameters["W2"]

 b1 = parameters["b1"]

 b2 = parameters["b2"]

 # Loop (gradient descent)

 for i in range(0, num_iterations):

 # Forward propagation. Inputs: "X, parameters". Outputs: "A2, cache".

 A2, cache = forward_propagation(X, parameters)

 # Cost function. Inputs: "A2, Y, parameters". Outputs: "cost".

 cost = compute_cost(A2, Y, parameters)

 # Backpropagation. Inputs: "parameters, cache, X, Y". Outputs: "grads".

 grads = backward_propagation(parameters, cache, X, Y)

 # Gradient descent parameter update.

 # Inputs: "parameters, grads". Outputs: "parameters".

 parameters = update_parameters(parameters, grads)

 # Print the cost every 1000 iterations

 if print_cost and i % 10 == 0:

 print ("Cost after iteration %i: %f" %(i, cost))

 return parameters

changes to predict() are highlighted.

FUNCTION: predict

def predict(parameters, X):

 """

 Using the learned parameters, predicts a class for each example in X

 Arguments:

 parameters -- python dictionary containing your parameters

 X -- input data of size (n_x, m)

 Returns

 predictions -- vector of predictions

 """

 # Computes probabilities using forward propagation,

 # and classifies by argmax.

 A2, cache = forward_propagation(X, parameters)

 # for multiple classes

 # use argmax to find the digit: np.argmax(a, axis=0)

 predictions = np.argmax(A2, axis=0)

 return predictions

Train the model and test its classification accuracy.

from sklearn.metrics import accuracy_score

Build a model with a n_h-dimensional hidden layer

n_h=25

parameters = nn_model(X, Y, n_h, num_iterations = 100, print_cost=True)

predictions = predict(parameters, X)

accuracy_train = accuracy_score(train_labels.flatten(),predictions)

print('Accuracy of training: ', accuracy_train)

predictions = predict(parameters, X_test)

accuracy_test = accuracy_score(test_labels.flatten(), predictions)

print('Accuracy of test: ', accuracy_test)

Cost after iteration 0: 2.302137

Cost after iteration 10: 1.239301

Cost after iteration 20: 0.902871

Cost after iteration 30: 0.530826

Cost after iteration 40: 0.465360

Cost after iteration 50: 0.398585

Cost after iteration 60: 0.345182

Cost after iteration 70: 0.321645

Cost after iteration 80: 0.313386

Cost after iteration 90: 0.325701

Accuracy of training: 0.92115

Accuracy of test: 0.9254

Summary and further reading

This chapter provides foundations of neural networks, including mathematical representation

(notations), forward propagation, backward propagation, and parameter updating based on gradient

descent. Section 5.7 describes the details of implementation of simple neural networks in Python

from scratch.

Fig. 5.13 Training and inference processes for neural networks

The basic framework for developing neural networks is illustrated in Fig.5.13. After the

architecture of the network (e.g. size and activation functions) has been determined, we

can start the training process with randomized initial parameters. In each iteration of

parameter updating process, the intermediate outputs of each layer during the forward

propagation are stored for calculating the gradients of cost function with respect to

parameters in backward propagation. The parameters are updated based on the gradients.

The trained neural network can predict for new input X using forward propagation only.

This prediction process is called inference.

Files: (http://localhost:8889/tree/ch3_basic_nn)

C:\Users\weido\ch3_basic_nn\ch5_ex1.ipynb, ch5_mnist.ipynb,

C:/machine_learning/NN_nn_overview/mnist_train.csv

C:/machine_learning/NN_nn_overview/mnist_test.csv

Further reading

[1] Christopher M. Bishop, “Pattern recognition and machine learning”, chapter 5 Neural Networks.

Exercises

1. Sigmoid function and tanh() are two commonly used activation functions for neural networks.

They are defined as

𝜎(𝑧) =
1

1 + 𝑒𝑥𝑝(−𝑧)

𝑡𝑎𝑛ℎ(𝑧) =
𝑒𝑥𝑝(𝑧) − 𝑒𝑥𝑝(−𝑧)

𝑒𝑥𝑝(𝑧) + 𝑒𝑥𝑝(−𝑧)

1) Prove that

𝑡𝑎𝑛ℎ(𝑧) = 2𝜎(2𝑧) − 1

2) Calculate derivatives of 𝜎(𝑧) and 𝑡𝑎𝑛ℎ(𝑧) in terms of sigmoid function 𝜎().

2. Consider a two-layer neural network defined by (5.14), shown in Fig.5.4.

�̂�(𝐱; 𝐖, 𝐁) = 𝒇(∑𝑤𝑗
[2]

𝒉(∑𝑤𝑗𝑖
[1]

𝑥𝑖

𝑛𝑥

𝑖=1

+ 𝑏𝑗
[1]

)

𝑀

𝑗=1

+ 𝑏[2]) (5.14)

The hidden layer nonlinear activation function h() is given by sigmoid function

http://localhost:8889/tree/ch3_basic_nn

𝜎(𝑧) =
1

1 + 𝑒𝑥𝑝(−𝑧)

Show that there exists an equivalent neural network, which computes exactly the same

function, but with the hidden unit activation function given by

𝑡𝑎𝑛ℎ(𝑧) =
𝑒𝑥𝑝(𝑧) − 𝑒𝑥𝑝(−𝑧)

𝑒𝑥𝑝(𝑧) + 𝑒𝑥𝑝(−𝑧)

(Hint: first find the relation between 𝜎(𝑧) and 𝑡𝑎𝑛ℎ(𝑧), and then show the relationship between

the parameters between the two neural networks)

3. Prove equations (5.31) and (5.34). To understand the notations, you need to read the

corresponding contexts.

𝑑𝑎𝑖

𝑑𝑧𝑘
= {

𝑎𝑖(1 − 𝑎𝑖) 𝑖 = 𝑘
−𝑎𝑖𝑎𝑘 𝑖 ≠ 𝑘

 (5.31)

𝑑𝐿(�̂�,𝑦)

𝑑𝑧𝑖
= �̂�𝑖 − 𝑦𝑖 (5.34)

4. The architecture of a neural network is illustrated in the figure below. The input examples have

100 features, and X includes 1000 examples. Thus, X is a matrix of shape (100, 1000). Please

find the shapes of all parameters 𝑊[𝑙], 𝑏[𝑙], 𝑙 = 1,2,3,4, and the shapes of 𝐴[1], 𝐴[2], 𝐴[3], 𝐴[4].

5. Consider a neural network below, with tanh() function for the hidden layer activation and the

sigmoid function for the output layer activation. The initial weights are shown along with the

connections in the figure (all initial biases are zero). Suppose we have two training examples:

(𝑥1, 𝑥2) = (2,3) with the label 𝑦 = 1; and (𝑥1, 𝑥2) = (−1,−2) with the label 𝑦 = 0, and use

cross-entropy as the loss function.

By utilizing the Python code provided in this chapter, for the two examples, compute:

1) forward propagation (i.e. the outputs for the two examples).

2) the loss.

3) backward propagation (i.e. gradients).

4) one-step updated parameters, given that the learning rate is 0.1.

5) the loss, based on the updated parameters.

6. In section 5.7.1, we trained a neural network with two layers. The hidden layer has 4 units with

tanh() activations and the output layer has one unit with sigmoid activation. In this exercise,

we will build and train a neural network (shown below) with three layers: two hidden layers

with 4 units in each layer, and the output layer has one unit with sigmoid activation. The hidden

units use tanh() activation functions.

Choose an appropriate learning rate, print all trained parameters, plot the cost function

versus iterations, plot training example scatterplot and decision boundary, and print the

accuracy.

Do this project using one of the following datasets:

1) Noisy_moons.

noisy_moons = sklearn.datasets.make_moons(n_samples=N, noise=.2)

2) Noisy_circles.

noisy_circles = sklearn.datasets.make_circles(n_samples=N, factor=.5, noise=.3)

Compare this network with the one developed in section 5.7.1. which one is better? Justify

your answer.

7. Develop a neural network illustrated in the figure below to recognize the handwritten digit using

MNIST datasets mnist_train.csv and mnist_test.csv. (reference: Section 5.7.2)

1) Plot cost versus iteration index.

2) Find the accuracy of your trained neural network on mnist_test.csv.

3) Select a different size for the hidden layer, and repeat 1) and 2). Compare the results.

8. Consider the neural network in Fig.5.8 (below). The gradient descent algorithm can be

described as follows.

Initialize the parameters and shapes: 𝑊[1]: (4,3), 𝑏[1]: (4,1),𝑊[2]: (1,4), 𝑏[2]: (1,1)

Repeat the loop {

1) Forward propagation:

Equations matrix shape verification

𝑍[1] = 𝑊[1]𝑋 + 𝑏[1] (4,𝑚) = (4,3) × (3,𝑚) + (4,1)

𝐴[1] = 𝑔[1](𝑍[1]) (4,𝑚)

𝑍[2] = 𝑊[2]𝐴[1] + 𝑏[2] (1,𝑚) = (1,4) × (4,𝑚) + (1,1)

𝐴[2] = 𝑔[2](𝑍[2]) = 𝜎(𝑍[2]) (1,𝑚)

2) Back propagation:

𝑑𝑍[2] = 𝐴[2] − 𝑌 (1,𝑚) = (1,𝑚) − (1,𝑚)

𝑑𝑊[2] =
1

𝑚
𝑑𝑍[2]𝐴[1]𝑇 (1,4) = (1,𝑚) × (4,𝑚)𝑇

𝑑𝑏[2] =
1

𝑚
𝑛𝑝. 𝑠𝑢𝑚(𝑑𝑍[2], 𝑎𝑥𝑖𝑠 = 1, 𝑘𝑒𝑒𝑝𝑑𝑖𝑚𝑠 = 𝑇𝑟𝑢𝑒) (1,1)

𝑑𝑍[1] = (𝑊[2]𝑇 ∙ 𝑑𝑍[2]) ∗ 𝑔[1]′(𝑍[1]) (Note: * element-wise product)

 (4,𝑚) = ((1,4)𝑇 × (1,𝑚)) ∗ (4,𝑚)

𝑑𝑊[1] =
1

𝑚
𝑑𝑍[1]𝑋𝑇 (4,3) = (4,𝑚) × (3,𝑚)𝑇

𝑑𝑏[1] =
1

𝑚
 𝑛𝑝. 𝑠𝑢𝑚(𝑑𝑍[1], 𝑎𝑥𝑖𝑠 = 1, 𝑘𝑒𝑒𝑝𝑑𝑖𝑚𝑠 = 𝑇𝑟𝑢𝑒) (4,1)

3) Parameter update:

𝑊[1] ≔ 𝑊[1] − 𝛼 ∙ 𝑑𝑊[1] (4,3)

𝑏[1] ≔ 𝑏[1] − 𝛼 ∙ 𝑑𝑏[1] (4,1)

𝑊[2] ≔ 𝑊[2] − 𝛼 ∙ 𝑑𝑊[2] (1,4)

𝑏[2] ≔ 𝑏[2] − 𝛼 ∙ 𝑑𝑏[2] (1,1)

}

It is noted that

𝑑𝑍[1] = (𝑊[2]𝑇 ∙ 𝑑𝑍[2]) ∗ 𝑔[1]′(𝑍[1]) depends on the activation function 𝑔[1]() in the hidden

layer.

1) Show that if 𝑔[1]()=tanh(), the Python statement to calculate 𝑑𝑍[1], in

backward_propagation(parameters, cache, X, Y), is

dZ1 = np.dot(W2.T, dZ2) * (1 - np.power(A1, 2))

2) If sigmoid function 𝜎() is used for 𝑔[1](), what is the Python statement to calculate 𝑑𝑍[1]?

3) Modify codes in Section 5.7 for using 𝜎() as the activation function in hidden layer.

Compare the results with the case of tanh() activation function in hidden layer (i.e. Section

5.7).

Hint: modify the corresponding statements (relevant to 𝑔[1]())

𝐴[1] = 𝑔[1](𝑍[1]) in forward_propagation(X,parameters)

𝑑𝑍[1] = (𝑊[2]𝑇 ∙ 𝑑𝑍[2]) ∗ 𝑔[1]′(𝑍[1]) in backward_propagation(parameters,cache,X,Y)

