
Chapter 4  

Classification and Logistic Regression 

 
In the previous chapter, we studied linear regression that predicts a label whose value is continuous. 

In this chapter, we will learn another type of supervised learning – classification, where the label 

has discrete (categorical) values. In a classification task, the model maps a specific input to a 

specific category. Logistic regression, an extension of linear regression, can perform some simple 

classification tasks. However, a typical classification task in practice, for example, image 

recognition, may require larger models such as deep neural networks. In subsequent chapters, we 

will see that a logistic regression classifier is a neuron that is the basic element of neural networks. 

Thus, logistic regression is a foundation of neural networks. 

In this chapter, you will learn 

o The settings of a classification task 

o Logistic regression model 

o Cost function and gradient descent algorithm for training logistic regression models 

o Metrics of classification performance 

o How to build and train a regression model in Python 

 

4.1 Logistic Regression  

4.2.1 Classification 

The linear regression previously discussed assumes that the target (or label) variable is quantitative 

(or continuous). But in many situations, the target variable is instead qualitative (or categorical, or 

discrete). The task for predicting a categorical variable is called classification. The goal in 

classification is to take an input vector x and to map it to one of K discrete categories or classes, 

Ck, k=1,2,.., K. Thus, classification is a function that maps data examples to finite categories. In 

other words, some data examples with certain common characteristics are grouped into the same 

category. The input space is thereby divided into decision regions by boundaries, which are called 

decision boundaries or decision surfaces. For example, the label variable y for two-category 

classification can be coded in binary, i.e. 𝑦 ∈ {0,1}, which implies that y=0 represents class C1 and 

y=1 represents class C2. For m-class classification tasks, y is typically represented by an integer or 

an m-bit one-hot code. For instance, if we have K=5 classes, then the label y for class C3 would be 

y=[0,0,1,0,0]T in a one-hot code. The following table lists three examples of classification task. 

 
Input (X) Categorical label or class (y) 

Email y=0 (not spam), y=1 (spam) 

Online Transaction y=0 (not fraudulent), y=1 (fraudulent) 

Tumor feature y=0 (benign), y=1 (malignant) 



4.2.2 Logistic regression model 

Consider a binary classification problem (i.e., K=2). If the examples in the training dataset are 

linearly separable, there exists a linear surface, called decision boundary whose one side is associated 

with one class and another side with another class, as illustrated in Fig.4.1. This decision boundary 

can be represented by 𝛉𝑇𝐱 = 0, where θ is the parameter vector and x is the input feature vector 

variable. 

𝛉 = [

𝜃0

𝜃1

⋮
𝜃𝑛

] ∈ 𝑅(𝑛+1)×1, 𝐱 = [

1
𝑥1

⋮
𝑥𝑛

] ∈ 𝑅(𝑛+1)×1 

 

where 𝑥𝑗, j=1,2,…, n is the jth feature. We define a dummy feature 𝑥0 = 1. For example, we 

consider n=2, and let 𝛉𝑇𝐱= 0 be the decision boundary, shown in Fig.1. An input vector x is 

assigned to one class (say class2) if 𝛉𝑇𝐱 ≥ 0, or to another class (say class1) otherwise. It can be 

proven that the value of 𝛉𝑇𝐱 gives a signed measure of the perpendicular distance r of any point x 

to the decision boundary by 

𝑟 =
𝛉𝑇𝐱

√𝜃1
2+𝜃2

2
∝ 𝛉𝑇𝐱                                                                 (4.1) 

If data examples are linearly separable and an optimal decision boundary has been found, illustrated 

in Fig.4.1, the signed distance r can be used to measure or predict how likely a data example comes 

from class 1 or class 2. If r>0, x is assigned to class 2, and the larger the r, the more likely x comes 

from class 2. If r<0, x is assigned to class 1, and the larger of the magnitude of r, the more likely x 

comes from class 1. 

 

Fig. 4.1 Illustration of linear decision boundary for a two-class classification with two features. 

    

Fig.2 Sigmoid function g(z) 



 

 

 

 

For classification problems, however, we wish to predict discrete class labels, or more generally 

posterior probabilities p(Ck|x) that lie in the range of [0,1]. To achieve this, we apply a non-linear 

g(.)  

ℎ𝛉(𝐱) = 𝑔(𝛉𝑻𝐱)                                                          (4.2) 

to map the signed distance r to a probabilistic space [0,1], and thus ℎ𝛉(𝐱) can be interpreted as the 

probability of x belonging to a class. g(.) is known as an activation function. A popular choice of 

activation function is sigmoid function, shown in Fig.4.2, defined as 

 𝑔(𝑧) =
1

1+𝑒−𝑧                                                                  (4.3) 

When z=0, g(z) is equal to 0.5. When z departures from zero to the positive side, g(z) quickly 

approaches 1. When z moves from zero to the negative side, g(z) will quickly approaches 0. It is 

worthy to note that any other functions with similar shape, e.g. tanh(), can be used for activation 

function. 

Thus, based on the model (4.2), x would be predicted as class 1 if ℎ𝛉(𝐱) < 0.5 (i.e. 𝛉𝑻𝐱 < 𝟎) , and 

as class 2 if ℎ𝛉(𝐱) ≥ 0.5 (i.e.  𝛉𝑻𝐱 > 𝟎). The decision boundary is defined by ℎ𝛉(𝐱) = 0.5, i.e. 

    𝛉𝑻𝐱 = 𝑔−1(0.5) = 0.                                                           (4.4)  

The hypothesis ℎ𝛉(𝐱) = 𝑔(𝛉𝑻𝐱) can be interpreted as the probability of x belonging to one of the 

classes (say class 2), and thus the probability of x belonging to another class (say class 1) is 1-

ℎ𝛉(𝐱). 

The model defined by (4.2) is called logistic regression, which is a generalized linear model in the 

sense that we don’t output the weighted sum of inputs directly, but instead we pass it through an 

activation function that maps the input linear combination to the probabilistic space. Fig.4.3 

illustrates the block diagrams for linear regression and logistic regression, where θ is the weight 

parameter vector.  

                                               

(a) Linear regression                                        (b) Logistic regression 

Fig.4.3 Comparison between linear regression and logistic regression 

 

The output of the linear combination is 

 

𝑧 = 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2 + ⋯+ 𝜃𝑛𝑥𝑛 = 𝛉𝑻𝐱                                                 (4.5) 

 



 

 

Given x and θ, the hypothesis for the logistic regression, which is defined as the output of logistic 

regression, is given by 

 

ℎ𝛉(𝐱) = 𝑔(𝑧) = 𝑔(𝛉𝑻𝐱) =
1

1+𝑒−𝛉𝑻𝐱
                                                        (4.6) 

For a two-class classification task, we usually label one class as y=0 and another class as y=1. For 

a sake of mathematic convenience, the class labeled as y=1 corresponds to ℎ𝛉(𝐱) > 0.5. Thus, 

ℎ𝛉(𝐱) can be interpreted as the estimated probability of y=1, denoted by 𝑝(𝑦 = 1|𝐱; 𝜃). The 

probability of x belongs to class y=0 can be predicted as 𝑝(𝑦 = 0|𝐱; 𝜃) = 1 − ℎ𝛉(𝐱).  

 

Intuitively, the prediction of y can be performed as 

𝑦̂ = {
1          ℎ𝛉(𝐱) ≥ 0.5  

0          ℎ𝛉(𝐱) < 0.5
                                                                         (4.7) 

The decision boundary separating the two classes can be determined by setting the weighted sum of 

inputs to 0, i.e., 𝛉𝑻𝐱 = 0, as shown in Fig.4.4 (a). If the input examples are nonlinear separable as 

shown in Fig.4.4(b) and (c), we can generalize (4.5) to a nonlinear function of x.  

 

Fig.4(a) a linear decision boundary, (b) a circle decision boundary, (c) high-order non-linear 

decision boundary. 

Fig.4(a) shows a linear decision boundary for a linearly separable dataset. The hypothesis is 

ℎ𝛉(𝐱) = 𝑔(𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2), where, for example,  

𝜽 = [

𝜃0

𝜃1

𝜃2

] = [
−3
1
1

] 

We will predict y=1 for any data point (𝑥1, 𝑥2) with 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2 ≥ 0, and predict y=0 if 

𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2 < 0. Thus, the decision boundary is the line 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2 = 0, i.e., −3 +

𝑥1 + 𝑥2 = 0 for this case. Any point located right-up the line will be classified as y=1, and a point 

below the line will be classified as y=0. The hypothesis values on the decision boundary is equal 

to 0.5. 

Fig.4(b) shows a non-linear decision boundary when the data set is not linearly separable. The 

hypothesis ℎ𝛉(𝐱) = 𝑔(𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2 + 𝜃3𝑥1
2 + 𝜃4𝑥2

2), with 𝜃 = [−1, 0, 0, 1,1]𝑇. The 

decision boundary is 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2 + 𝜃3𝑥1
2 + 𝜃4𝑥2

2 = 0, i.e., 𝑥1
2 + 𝑥2

2 = 1. The model 

predicts y=1 if 𝑥1
2 + 𝑥2

2 ≥ 1, and predicts y=0 if otherwise.  



 

 

Fig.4(c) shows a more complicated decision boundary, based on the hypothesis ℎ𝛉(𝐱) =

𝑔(𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2 + 𝜃3𝑥1
2 + 𝜃4𝑥2

2 + 𝜃5𝑥1𝑥2
2 + 𝜃6𝑥1

2𝑥2 + ⋯) with higher-order polynomial 

features involved.  

4.2.3 Learn the model: find optimal θ based on a data set 

 

In this section, we will discuss how to fit the parameter θ so that the decision boundary can 

effectively classify the data examples. Given a value of θ and a value of x, the corresponding label 

y is predicted according to (4.7). In general, for a dataset, some predictions match the true labels 

while other predictions do not. This implies that the value of θ is not the optimal one or/and the 

data examples are not perfectly separable by the decision boundary. This mismatch is measured by 

a cost function. Leaning the model is to adjust parameters θ such that the cost function is minimum. 

Since the cost function is a function of parameter θ (given a dataset), we can use optimization 

method to search for a value of θ to minimize the cost function.  This optimization process is called 

model learning, training or fitting.  

 

Cost function 

To search for an optimal θ, we first quantify this mismatch between the current model and data 

examples, i.e., defining a cost function, and then minimize the cost function over the θ space. The 

cost function of logistic regression, for a single data example (x,y), is defined as 

𝐽(ℎ𝛉(𝐱), 𝑦) = {
− ln(ℎ𝛉(𝐱))                         𝑖𝑓  𝑦 = 1

− ln(1 − ℎ𝛉(𝐱))                 𝑖𝑓  𝑦 = 0
                                    (4.8) 

where y is the value of the label. We can understand the cost function in an intuitive way: if the 

label y is 1, the hypothesis ℎ𝛉(𝐱) is expected to be close 1. In other words, the value of ℎ𝛉(𝐱) near 

0 will result in a larger penalty than ℎ𝛉(𝐱) near 1. The function, − ln(ℎ𝛉(𝐱)), has this characteristic, 

shown in Fig.4.5(a). Similarly, if the label y is 0, the penalty should be smaller when the hypothesis 

ℎ𝛉(𝐱) is close to 0. The function, − ln(1 − ℎ𝛉(𝐱)), has this characteristic, shown in Fig.4.5(b).   

                                

Fig.4.5. cost function 𝐽(ℎ𝛉(𝐱), 𝑦), a) y=1, b) y=0 

Remarks: 1) cost =0 if ℎ𝛉(𝐱) = 𝑦,  

                 2) cost →∞, if y=1 but ℎ𝛉(𝐱)→0,  

                 3) cost→∞, if y=0 but ℎ𝛉(𝐱)→1 

The cost function in (4.8) can be equivalently represented by a more compact format 



 

 

𝐽(ℎ𝛉(𝐱), 𝑦) = −𝑦 ln(ℎ𝛉(𝐱)) − (1 − 𝑦) ln(1 − ℎ𝛉(𝐱))                                    (4.9) 

The cost function for m examples, (𝐱(1), 𝑦(1)),  (𝐱(2), 𝑦(2)),   … , (𝐱(𝑚), 𝑦(𝑚)), will be the average 

cost over the training set, given by 

             𝐽(𝛉) =
1

𝑚
∑ 𝐽(ℎ𝛉(𝐱

(𝑖)), 𝑦(𝑖))𝑚
𝑖=1  

= −
1

𝑚
∑ [𝑦(𝑖) ln (ℎ𝛉(𝐱

(𝑖))) + (1 − 𝑦(𝑖)) ln (1 − ℎ𝛉(𝐱
(𝑖)))  ]𝑚

𝑖=1                         (4.10) 

where 

ℎ𝛉(𝐱) = 𝑔(𝑧) = 𝑔(𝛉𝑻𝐱) =
1

1 + 𝑒−𝛉𝑻𝐱
 

Note that the cost (4.10) is the binary cross entropy loss defined by (2.123). 

To fit parameters, we minimize the cost function with respect to θ, i.e., 𝜽∗ = 𝑎𝑟𝑔min
𝜽

𝐽(𝜽) . To 

predict, given a new value of x, the label can be predicted as 

𝑦̂ = {
1          ℎ𝛉∗(𝐱) ≥ 0.5  

0          ℎ𝛉∗(𝐱) < 0.5
                                                                (4.11) 

 

Logistic regression: maximum likelihood, a probabilistic view 

Before we develop the gradient descent algorithm for training the logistic regression, let’s look at 

logistic regression from a maximum likelihood point of view for a further understanding. In this 

section, we will see that minimizing the cost function of m examples (4.10), 𝐽(𝛉), is equivalent to 

maximizing the likelihood function.  

Consider a problem of two-class classification with the following assumptions: 1) the probability 

𝑝(𝑦 = 1|𝐱; 𝜽) = ℎ𝛉(𝐱) and 𝑝(𝑦 = 0|𝐱; 𝜽) = 1 − ℎ𝛉(𝐱), where ℎ𝛉(𝐱) defined by (4.6) is the 

output of activation function and is interpreted/treated as the posterior probability of class; 2) all 

examples in the training dataset are independently drawn from the same probability distribution. 

The first assumption can be represented by a compact form 

𝑝(𝑦|𝐱; 𝜃) = ℎ𝜃(𝐱)𝑦 ∙ (1 − ℎ𝜃(𝐱))1−𝑦                                                     (4.12) 

The likelihood function for m examples can be defined as the m-dimensional joint posterior 

probability of vector y given a matrix of features X 

ℒ(𝜽) = 𝑝(𝐲|𝐗; 𝜽) = ∏ 𝑝(𝑦(𝑖)|𝐱(𝑖); 𝜽)𝑚
𝑖=1 = ∏ ℎ𝜃(𝐱(𝑖))

𝑦(𝑖)

∙ (1 − ℎ𝜃(𝐱(𝑖)))
1−𝑦(𝑖)

𝑚
𝑖=1          (4.13) 

The logarithm likelihood function can be obtained by applying ln(.) operation to (2.13) 

ℓ(𝛉) = ∑ [𝑦(𝑖) ln (ℎ𝛉(𝐱
(𝑖))) + (1 − 𝑦(𝑖)) ln (1 − ℎ𝛉(𝐱

(𝑖)))  ]𝑚
𝑖=1                                    (4.14) 

By comparing (4.14) with (4.10), we have  

𝐽(𝜽) = −
1

𝑚
ℓ(𝜽)                                                                         (4.15) 



 

 

(4.15) implies that minimizing the cost function 𝐽(𝜽) is equivalent to maximizing the likelihood 

function ℓ(𝜽), i.e., 

𝜽∗ = 𝑎𝑟𝑔min
𝜽

𝐽(𝜽) = 𝑎𝑟𝑔max
𝜽

ℓ(𝜽)                                                     (4.16) 

This conclusion validates the effectiveness of cost function in (4.9) from a probabilistic point of 

view. 

Gradient descent algorithm 

To learn the parameter θ, we will use gradient descent algorithm to minimize the cost function 

(4.10) and equivalently to maximize the likelihood function (4.16). To calculate the partial 

derivative of J(θ) with respect to θ, we need to use the chain rule and the following derivative 

equations, 

𝑑

𝑑𝑧
𝑔(𝑧) = 𝑔(𝑧)(1 − 𝑔(𝑧))       g(z) is the sigmoid function                                    (4.17) 

𝑑

𝑑𝑢
ln(𝑢) =

1

𝑢
,  ln(u) is the nature logarithm function                                                (4.18)                           

It can be shown that the partial derivative of J(θ) is 

𝜕𝐽(𝛉)

𝜕𝜃𝑗
=

1

𝑚
∑ [(ℎ𝛉(𝐱

(𝑖)) − 𝑦(𝑖)) ∙ 𝑥𝑗
(𝑖)

]𝑚
𝑖=1                                                    (4.19) 

where j =0,1,2,….,n, 𝑥𝑗
(𝑖)

 is the jth feature of the ith example, and 𝑥0
(𝑖)

= 1. Please note that (4.19) 

has the same form as (3.14) that was used for linear regression with a different definition of 

hypothesis function ℎ𝛉(𝐱). 

If we format the above derivatives as a gradient vector 

𝐠𝐫𝐚𝐝 =
𝜕𝐽(𝛉)

𝜕𝛉
=

[
 
 
 
 
 
𝜕𝐽(𝛉)

𝜕𝜃0

𝜕𝐽(𝛉)

𝜕𝜃1

⋮
𝜕𝐽(𝛉)

𝜕𝜃𝑛 ]
 
 
 
 
 

                                                                    (4.20) 

then it is easy to verify that the gradient vector can be represented in vectorized format 

𝐠𝐫𝐚𝐝 =
1

𝑚
𝐗𝑇(𝑔(𝐗 ∙ 𝛉) − 𝒀)                                                           (4.21) 

where       𝐗 =

[
 
 
 
 − − 𝐱(1)𝑇 − −

− − 𝐱(2)𝑇 − −
⋮

− − 𝐱(𝑚)𝑇 − −]
 
 
 
 

=

[
 
 
 
 1 𝑥1

(1)
… 𝑥𝑛

(1)

1 𝑥1
(2)

… 𝑥𝑛
(2)

⋮
1

⋮

𝑥1
(𝑚) …

⋮

𝑥𝑛
(𝑚)

]
 
 
 
 

∈ 𝑅𝑚×(𝑛+1)              𝒀 =

[
 
 
 
𝑦(1)

𝑦(2)

⋮
𝑦(𝑚)]

 
 
 

 

𝐗𝑇 is the transpose of X. In matrix X, each row represents a data example while each column 

corresponds to a feature. Y is the label vector. The sigmoid function 𝑔( ) is applied to 𝐗 ∙ 𝛉 in an 

element wise style. Like the gradient decent algorithm for linear regression, we can have a gradient 

decent algorithm for logistic regression as follows: 



 

 

Gradient decent algorithm for logistic regression 

 

 

 

 

 

 

 

 

 

 

 

There are two limitations for logistic regression models:  

1) The decision boundary is linear with input features. This will severely limit its applications in 

practice. 

2) The model is limited to two-class classification tasks. 

 

Thus, logistic regression model has very limited applications. The significance of logistic 

regression model is that it is the basic element, called neuron, in neural networks.  As we will see 

in the next chapter, a neural network is a network of many logistic regression units. A neural 

network can achieve a complicated nonlinear decision boundary, and multi-class classification 

tasks. 

4.2 Performance Metrics for Classification 

If we have developed a machine learning algorithm, how do we make sure it will work well? In this 

section, we will discuss how to evaluate the performance of a classifier. Sometimes an algorithm 

may work well on training set but not on new data examples which were not seen in the training set. 

However, we expect the algorithm to generalize for new data examples. Thus, to test the capability 

of the generalization, we need a testing dataset that has never been used for training.   

4.2.1 Metrics for 2-class classification 

First, let’s look at performance metrics in two-class classification tasks. Suppose a classifier has 

been tested on a testing dataset. The testing dataset consists of m examples. The testing result is 

illustrated by Fig.4.6.  The “ground truth” box shows the distribution of examples among two classes 

(blue for class 1, and red for class 2). The “results” box shows how many examples from each class 

are classified into two classes. For a convenience, we refer examples in class 1 as positive and 

examples in class 2 as negative. Fig.4.6 tells us that 

1) TP (true positive) examples in class 1 are correctly classified into class 1 by the classifier,  

1) Set initial values for 𝛉 , select α 

2) Repeat: 

(i) Compute gradient vector:  𝑔𝑟𝑎𝑑 ∈ 𝑅(𝑛+1)×1 

 𝐠𝐫𝐚𝐝 =
1

𝑚
𝐗𝑇 ∙ (𝑔(𝐗 ∙ 𝛉) − 𝒀)  

(ii) Update simultaneously  𝛉 ≔ 𝛉 − 𝛼 ∙ 𝐠𝐫𝐚𝐝 

(iii) Update cost function 𝐽(𝛉) 

𝐽(𝛉) = −
1

𝑚
[(ln (𝑔(𝐗 ∙ 𝛉)))𝑇𝒀+(ln(1 − 𝑔(𝐗 ∙ 𝛉)))

𝑇
(1 − 𝒀)]                                        

(iv) Terminate: if the predefined maximal iterations have been completed, 

then exit to 3), otherwise go back to (i). Or Compare the current cost 

with the previous cost. If they are close enough, then exit to 3). 

3) Return θ 

Note: all the functions, ln( ), g( ), perform in a broadcasting manner. 



 

 

2) FP (false positive) examples in class 2 are incorrectly classified into class 1,  

3) TN (true negative) examples in class 2 are correctly classified into class 2,  

4) FN (false negative) examples in class 1 are incorrectly classified into class 2.  

Note that the total number of examples 𝑚 = 𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁. There are 𝑇𝑃 + 𝐹𝑁 examples 

in class 1 (positive) while 𝐹𝑃 + 𝑇𝑁 examples in class 2 (negative). 

 

Fig.4.6 A binary classification result 

There are several metrics to measure the classification performance with different emphases. A basic 

performance metric is classification accuracy, defined as the percentage of examples correctly 

classified 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑚
                                                  (4.22) 

However, it makes no sense to use the metric accuracy for some scenarios. For example, consider 

the classification of a very rare disease as positive or negative. In the dataset, there is only 1% 

patients in positive class and 99% in negative class. A bad algorithm that predicts any example to 

be negative will achieve an accuracy of 99%. When the costs of two types of misclassifications 

(positive classified as negative and negative classified as positive) are very different, the overall 

accuracy is less meaningful. For example, in a cancer diagnosis task, false negative and false positive 

will result in different costs. A patient will miss the required treatment if false negative occurs. A 

patient will be just over treated if a false positive happens. Obviously, the false negative diagnosis 

will lead to a much more serious consequence than the false positive. The following metrics may be 

more suitable for some special scenarios.  

Recall, also called true positive rate or sensitivity, is defined as the percentage of positive examples 

which are correctly predicted as positive 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                    (4.23) 

Recall indicates the probability of a positive example being correctly detected. 

Precision is defined as the ratio of the number of examples correctly classified as positive to the 

total number of examples which are predicted as positive. It indicates the purity of true positive 

examples in all predicted positive examples.  



 

 

 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                (4.24) 

There is usually a trade-off between recall and precision. “High recall and low precision” implies 

that most of the positive examples are correctly recognized, but there are a lot of false positive. “Low 

recall and high precision” means that we miss a lot positive examples, but those we predict as 

positive are indeed truly positive. 

While recall is the percentage of positive examples which are correctly detected, Specificity is the 

percentage of negative examples which are correctly detected.   

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃+𝑇𝑁
                                                               (4.25) 

False positive rate (FPR) is the percentage of negative examples which are incorrectly classified as 

positive. It indicates the probability of predicting an actual negative as a positive. 

𝐹𝑃𝑅 = 1 − 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
                                            (4.26) 

F-score (or F-measure) is an integrated metric of recall and precision and defined as the harmonic 

mean of the precision and recall. 

𝐹 =
2×𝑟𝑒𝑐𝑎𝑙𝑙×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑟𝑒𝑐𝑎𝑙𝑙+𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
=

2

𝑟𝑒𝑐𝑎𝑙𝑙−1+𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛−1                                                    (4.27) 

The F-score will always be nearer to the smaller value of recall or precision. The highest possible 

value of an F-score is 1.0, indicating perfect precision and recall, and the lowest possible value is 0, 

if either precision or recall are zero. 

Among the above metrics, recall (or true positive rate), specificity, and false positive rate can be 

interpreted as probabilities of predictions, illustrated in Fig. 4.7.    

 

Fig.4.7 Metrics as probabilities 

4.2.2 Metrics for multi-class classification 

Confusion matrix is defined as a square matrix that includes the information on how many examples 

in each class are classified into each class. Each row associated with an actual class in the data set 

while each column associated with a predicted class at the output of the algorithm. (Note that some 

textbook may define in opposite way: each row for a predicted class and each column associated 

with actual class). 

For example, Table 4.1 shows an example of a 3×3 confusion matrix for 3-class classification task. 

The first row shows that, among 11 (8+1+2=11) examples of class 1, eight are correctly classified, 

one is incorrectly classified as class 2, and two are incorrectly classified as class 3. The second row 



 

 

similarly shows how class 2 examples are classified, and so on. Thus, the diagonal elements in the 

matrix are the numbers of examples correctly classified. The overall accuracy, defined as the 

percentage of total examples correctly classified, can be calculated as dividing the sum of diagonal 

elements by the sum of all elements in the confusion matrix. The accuracy is 0.7576 for the table. 

Table 4.1 confusion matrix for a 3-class classification task 

 Predicted output 

Class 1 Class 2 Class 3 
A

ct
u

a
l 

cl
a
ss

 
Class 1 8 1 2 

Class 2 0 9 1 

Class 3 3 1 8 

 

The definitions for recall, precision, F-score for the binary classification can be generalized for 

multi-classifications. In a multi-classification task, there is a recall, precision, F-score defined for 

each class. When we define these metrics for a particular class, we treat this class as positive and all 

other classes as negative. 

In many multi-classification applications, the classifier outputs the probabilities over classes and the 

predicted class is the one with the highest probability. Sometimes we use the top-1 accuracy and the 

top-5 accuracy to measure the classification accuracy. For the top-1 accuracy (the strictest match), 

we check if the top class (the one with the highest probability) is the same as the target label. For the 

top-5 accuracy (the relaxed match), we check if the target label matches one of your top 5 predictions 

(the 5 classes with the top-5 probabilities). In both cases, the error rate is computed as the number 

of times a predicted label NOT matched the target label, divided by the number of data points 

evaluated. 

4.2.3 Receive operating characteristic (ROC) curve 

ROC stands for Receiver Operating Characteristic. It originates from sonar back in the 1940s; ROCs 

were used to measure how well a sonar signal could be detected from noise. Regardless of the origin, 

in machine learning an ROC curve is a graph showing the performance of a classification model at 

all classification thresholds. This curve plots two parameters: true positive rate (i.e., recall) and false 

positive rate. 

 

Fig.4.8 Probability outputs of three classifiers on 30 examples 



 

 

 

Consider a binary classification task. A typical classification model outputs an estimated probability 

of “the current input example belongs to the positive class”, and then a threshold is applied to decide 

the predicted class based on the probability. A default threshold is 0.5 for our logistic regression 

model. However, in general, an alternative threshold may exist to achieve the best classification 

performance, depending on the probability distribution over examples. Furthermore, different 

models may generate different probability distribution over a particular testing set of examples. For 

example, Fig.4.8 illustrates the outputs of three different models on the same 30 testing examples. 

The examples are labeled as red for positive class and blue for negative class. The position of each 

example indicates the probability of a data example being positive. The first model is perfect because 

the examples can be completely separated with an appropriate threshold. The second one is a typical 

classifier where there are always some misclassifications regardless the choice of threshold.  The 

third model has a large number of misclassifications even with a best threshold. 

 

Fig.4.9 ROC curves for three classifiers 

In general, when we decrease the threshold, we get more positive predictions thus the recall (TPR) 

is increased, but at the same time the FPR (false positive rate) is also undesirably increased. The 

separability characteristics of three models in Fig.4.8 can be distinguished by plotting their ROC 

curves as Fig.8. The ROC curve is obtained by plotting TPR vs. FPR when changing the threshold 

from 0 to 1. The area under the ROC curve (AUC) measures the separability of outputs. In other 

words, AUC represents the probability that a randomly selected positive (red) example is located to 

the right of a random negative (blue) example. The AUC of a perfect classifier is equal to 1. The 

lowest AUC is equal to 0 for the case that all predictions are wrong. Thus, the higher the AUC of 

the ROC curve, the better the performance. 

4.2 Implementation of Logistic Regression in Python 

In this section, by an example, we will demonstrate how to build and train a logistic regression 

classifier in Python. The problem is to predict whether a student will get a grade of A or not, based 

on the scores of two exams during the semester for a particular course. Please note that the actual 

grade will be calculated as the weighted sum of the scores of two exams, final exam, and homework 

assignments. Suppose we have the grades and scores of students in the previous semester for the 

same course. This information is used to construct a training dataset and a testing dataset, as shown 

below. Thus, each example in training dataset is represented by triplet (𝑥1, 𝑥2, 𝑦), where (𝑥1, 𝑥2) 



 

 

are the scores of two exams for one student, and y is the label (𝑦 = 1 indicates that the student got 

A). For convenience, we save the examples as grades_train.txt and grades_test.txt, for training set 

and testing set, respectively. 

 

Training set
60,83,1 

65,84,1 

85,10,0 

60,91,1 

70,62,0 

100,96,1 

40,83,1 

65,87,0 

90,75,0 

48,75,1 

23,72,0 

43,71,0 

62,96,1 

75,95,0 

85,90,1 

57,78,1 

33,63,0 

60,75,1 

92,97,1 

60,44,0

 

Testing set
62,73,0 

39,79,0 

50,86,1 

45,83,1 

12,57,0 

51,55,0 

68,52,0 

57,90,1 

85,77,1 

39,51,0 

 

 

Import packages 
 

import numpy as np   

import matplotlib.pyplot as plt    

 

 

Then, we load the training data to the Numpy array dataset. The input features are assigned to 

X, and labels are assigned to y. Furthermore, inputs for label 1 are saved in X_1 and inputs for 

label 0 are saved in X_0. For this dataset, we can check that X.shape is (20,2), y.shape is (20,), 

X_1.shape is (11,2), X_0.shape is (9,2). 

 
# load training data     

dataset = np.loadtxt("grades_train.txt", delimiter=",")   

X = dataset[:, :-1]     

y = dataset[:, -1] 

X_1 = X[np.where(dataset[:,-1]==1)] 

X_0 = X[np.where(dataset[:,-1]==0)] 

 

Similarly, we load the testing data. 
 

# load testing data    

  

dataset_test = np.loadtxt("grades_test.txt", delimiter=",")   

X_test = dataset_test[:, :-1]     

y_test = dataset_test[:, -1] 

X_1_test = X_test[np.where(dataset_test[:,-1]==1)] 

X_0_test = X_test[np.where(dataset_test[:,-1]==0)] 

 

 

The following functions are defined for the gradient descent algorithm for logistic regression in a 

hierarchical style. 

 

 
def sigmoid(x):   

   return 1 / (1 + np.exp(-x))   

 

def h(theta, x):   



 

 

    # Returns the probability after passing through sigmoid  

    return sigmoid(np.matmul(x,theta))   

 
def cost_function(theta, x, y):  

    # Computes the cost function for all the training samples   

    m = x.shape[0]   

    t1=np.dot(np.transpose((np.log(h(theta,x)))),y)   

    t2=np.dot(np.transpose((np.log(1-h(theta,x)))),1-y)   

    total_cost = -(1 / m) * (t1+t2)    

    return total_cost   

 
def gradient(theta, x, y):   

    # Computes the gradient of the cost function at the point theta   

    m = x.shape[0]   

    return (1 / m) * np.matmul(x.T, h(theta,x) - y)   

 
def gradient_descent(alpha, x, y, numIterations):   

    # x.shape=(m,n+1), the first column is one 

    # y.shape=(m,1) 

    # theta.shape (n+1,1) 

    cost=[]    

       

    theta = np.zeros((x.shape[1], 1))   

       

    for iter in range(0, numIterations):   

        theta=theta-alpha*gradient(theta,x,y)   

        J=cost_function(theta,x,y)   

        cost.append(J)   

    return theta,cost;  

 

According to the above functions, the input feature matrix x includes the extra column with all 

“one” (thus x has a shape of m rows and n+1 columns), and y is a matrix of (m, 1), where m is the 

number of examples. Before we call the gradient_descent(), we need to prepare the input 

feature matrix X_add_ones and label matrix y_2d. We should select appropriate values for 

learning rate (alpha and the number of iterations) to achieve desirable results. The cost is plotted in 

Fig. 4. 10 to monitor the convergence speed of the algorithm. 

 
# prepare data in np.ndarray format   

X_add_ones=np.c_[np.ones((X.shape[0],1)), X]   # add 1 to X: np.ndarray (m,n+1)   

y_2d=np.expand_dims(y, axis=1) # y: (m,), y_2d: (m,1) 

 

# learn the model by gradient descent   

theta, cost=gradient_descent(0.0009,X_add_ones,y_2d,400000)   

# X_add_ones: (m, n+1) 

# y_2d: (m,1) 

print("theta by gradient_decent:", theta)    

cost1=np.ndarray.flatten(np.array(cost))   

plt.plot(cost1, color='red')   

plt.xlabel('iteration')   

plt.ylabel('cost J(theta)')   

plt.title('cost function')   

plt.show()   

 

theta by gradient_decent: [[-6.55274552] 

 [-0.00865777] 

 [ 0.09343879]] 

 



 

 

 

Fig.4.10 Cost plot during the training.                 Fig.4.11 Plots for decision boundary  
 

 

To visualize the results, we plot the decision boundary: 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2 = 0, along with data 

examples, as Fig.4.11. From Fig.4.11, we can see how the data examples are separated by the 

decision boundary. 

 
# plot decision boundaries    

x_values = [0, 100] 

y_values_my = - (theta[0][0] + np.dot(theta[1][0], x_values)) / theta[2][0]   

 

plt.subplot(1, 2, 1) 

plt.plot(x_values, y_values_my, label='decision boundary', color='red')   

plt.scatter(X_1[:,0], X_1[:,1], s=10, label='y=1')   

plt.scatter(X_0[:,0], X_0[:,1], s=10, label='y=0')  

plt.xlim([0,100]) 

plt.ylim([0,100]) 

plt.xlabel('x1')   

plt.ylabel('x2')   

plt.legend(loc='lower left')   

plt.title('training examples') 

 

plt.subplot(1, 2, 2) 

plt.plot(x_values, y_values_my, label='decision boundary', color='red')   

plt.scatter(X_1_test[:,0], X_1_test[:,1], s=10, label='y=1')   

plt.scatter(X_0_test[:,0], X_0_test[:,1], s=10, label='y=0')  

plt.xlim([0,100]) 

plt.ylim([0,100]) 

plt.xlabel('x1')   

plt.ylabel('x2')   

plt.legend(loc='lower left')     

plt.title('testing examples')   

plt.show()   

 

The package sklearn provides many convenient functions to compute the metrics of a model on a 

dataset. As an example, we calculate the major metrics of our model on the training set, as below. 

The details of the functions in sklearn.metrics can be found at the sklearn website.  

 

 
from sklearn.metrics import confusion_matrix  

from sklearn.metrics import accuracy_score  

from sklearn.metrics import classification_report  

from sklearn.metrics import roc_curve 

from sklearn.metrics import roc_auc_score 

 



 

 

X_add_ones=np.c_[np.ones((X.shape[0],1)), X]   # add 1 to X:(m,n+1)  

prob=np.ndarray.flatten(h(theta,X_add_ones))  

# predicted probabilities for all examples 

 

temp=np.ndarray.flatten(np.asarray([prob>0.5]))  

# predicted labels (true/false) for all examples 

 

y_pred=temp.astype(int)   

# predicted labels (1 or 0) for all examples 

  

results = confusion_matrix(y, y_pred)  

print ('Confusion Matrix :') 

print(results) 

print ('Accuracy Score :',accuracy_score(y, y_pred))  

print ('Report : ') 

print (classification_report(y, y_pred))  

 
Confusion Matrix : 

[[ 7  2] 

 [ 1 10]] 

Accuracy Score : 0.85 

Report :  

              precision    recall  f1-score   support 

 

         0.0       0.88      0.78      0.82         9 

         1.0       0.83      0.91      0.87        11 

 

    accuracy                           0.85        20 

   macro avg       0.85      0.84      0.85        20 

weighted avg       0.85      0.85      0.85        20 

 

Given the labels of examples and their predicted probabilities, we can plot the ROC curve and 

calculate the area under the curve. 
 

fpr, recall, thresholds = roc_curve(y,prob) 

#create ROC curve 

plt.plot(fpr,recall) 

plt.ylabel('recall') 

plt.xlabel('False Positive Rate') 

plt.grid() 

plt.show() 

auc = roc_auc_score(y, prob) 

 

 

Fig.4.12 ROC curve 
 

 

 

 



 

 

Summary and Further Reading 

In this chapter, we began with the settings of classification problems. Logistic regression is a simple 

model that can perform a binary classification task. It is essential to understand the similarity and 

difference between linear regression and logistic regression.  A logistic regression classifier is 

composed of a linear summer and a non-linear activation function (e.g. sigmoid function). 

The non-linear function, sigmoid function, is the key to understanding the logistic regression. The 

output of the sigmoid function in a logistic regression, called hypothesis, ℎ𝜃(𝑥), is interpreted as 

the probability of positive label (i.e., y=1). The gradient descent algorithm for logistic regression 

has been developed in a similar way as linear regression. The ln()-based cost function is the core 

for the algorithm development.  

The performance metrics of a classification model has been discussed. The accuracy of 

classification is the most commonly used metric. In addition, recall and precision are also important 

metrics especially for class-unbalanced data sets. ROC visualizes the performance of a classifier.  

Finally, an example of logistic regression using python is detailed. 

File: \Users\weido\ch2_log_reg\log_reg23.ipynb, grades_train.txt, grades_test.txt. 

 

 

Exercises 

 
1. Suppose that you have trained a logistic regression classifier, and for a given new example x it 

delivers a prediction ℎ𝜃(𝑥) = 0.4. This means (check all the apply): 

a) Our estimate for 𝑃(𝑦 = 0|𝑥; 𝜃) is 0.4 

b) Our estimate for 𝑃(𝑦 = 0|𝑥; 𝜃) is 0.6 

c) Our estimate for 𝑃(𝑦 = 1|𝑥; 𝜃) is 0.4 

a) Our estimate for 𝑃(𝑦 = 1|𝑥; 𝜃) is 0.6 

2. Suppose we want to predict, from data x about a tumor, whether it is malignant (y=1) or benign 

(y=0). Our logistic regression classifier outputs, for a specific tumor, ℎ𝜃(𝑥) = 𝑃(𝑦 =
1|𝑥; 𝜃) = 0.7, so we estimate that there is a 70% chance of this tumor being malignant. What 

should be our estimate for 𝑃(𝑦 = 0|𝑥; 𝜃), the probability that the tumor is benign?   

a) 𝑃(𝑦 = 0|𝑥; 𝜃) = 0.3 

b) 𝑃(𝑦 = 0|𝑥; 𝜃) = 0.7 

c) 𝑃(𝑦 = 0|𝑥; 𝜃) = 0.3 × 0.7 

d) 𝑃(𝑦 = 0|𝑥; 𝜃) = 0.72 

3. In logistic regression, the cost function for our hypothesis ℎ𝜃(𝑥) on a training example that 

has label 𝑦 ∈ {0,1} is: 

 

𝑐𝑜𝑠𝑡(ℎ𝜃(𝑥), 𝑦) = {
−𝑙𝑛ℎ𝜃(𝑥)                  𝑖𝑓 𝑦 = 1

−𝑙𝑛(1 − ℎ𝜃(𝑥))      𝑖𝑓 𝑦 = 0
 

Which of the followings are true? Check all that apply. 

a) If ℎ𝜃(𝑥) = 𝑦, then 𝑐𝑜𝑠𝑡(ℎ𝜃(𝑥), 𝑦) = 0 (𝑓𝑜𝑟 𝑦 = 0 𝑎𝑛𝑑 𝑦 = 1) 

b) If y=0, then 𝑐𝑜𝑠𝑡(ℎ𝜃(𝑥), 𝑦) → ∞ 𝑎𝑠 ℎ𝜃(𝑥) → 1   
c) If y=0, then 𝑐𝑜𝑠𝑡(ℎ𝜃(𝑥), 𝑦) → ∞ 𝑎𝑠 ℎ𝜃(𝑥) → 0   
d) Regardless of whether y=0 or y=1, if ℎ𝜃(𝑥) = 0.5, then cost >0. 

 

 



 

 

4. Derive the equation (4.21). 

5. Suppose you are running gradient descent to fit a logistic regression model with parameter 

𝜃 ∈ ℝ𝑛+1. Which of the following is a reasonable way to make sure the learning rate α is set 

properly and that gradient descent is running correctly? 

1) Plot 𝐽(𝜃) =
1

𝑚
∑ (ℎ𝜃(𝑥(𝑖)) − 𝑦(𝑖))

2𝑚
𝑖=1  as a function of the number of iterations and make 

sure 𝐽(𝜃) is decreasing on every iteration. 

2) Plot 𝐽(𝜃) = −
1

𝑚
∑ [𝑦(𝑖) ln (ℎ𝛉(𝐱

(𝑖))) + (1 − 𝑦(𝑖)) ln (1 − ℎ𝛉(𝐱
(𝑖)))]𝑚

𝑖=1  as a function of 

the number of iterations and make sure 𝐽(𝜃) is decreasing on every iteration. 

6. If we use tanh() as the activation function for logistic regression, instead of sigmoid function, 

tanh(𝑧) =
𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧
 

then the output of the regression model is  

ℎ𝛉(𝐱) = 𝑡𝑎𝑛ℎ(𝛉𝑻𝐱) =
𝑒𝛉𝑻𝐱 − 𝑒−𝛉𝑻𝐱

𝑒𝛉𝑻𝐱 + 𝑒−𝛉𝑻𝐱
 

 

1) Plot the curve of tanh(z). How should we predict the labels based on the value of ℎ𝛉(𝐱)? 

2) Find the derivative of tanh(z). 

3) Equation (4.9) defines the cost for one example 

𝐽(ℎ𝛉(𝐱), 𝑦) = −𝑦 ln(ℎ𝛉(𝐱)) − (1 − 𝑦) ln(1 − ℎ𝛉(𝐱))                 (4.9) 

Is equation (4.9) still effective when the activation function is tanh()? 

                             

4) Can you propose a cost function for the logistic regression with a tanh() activation 

function? 

5) Based on your cost function in d), develop a gradient descent algorithm for the logistic 

regression. 

 

7. Suppose you train a logistic classifier  
ℎ𝜃(𝑥) = 𝑔(𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2) 

and obtain 𝜃0 = −6, 𝜃1 = 0, 𝜃2 = 1. Which of the following figures represents the decision 

boundary of your classifier? 

 
a)                            b)                                    c)                                   d) 

 

8. Consider logistic regression with two features x1 and x2. After training, we obtain the result 

for paremters: 𝜃0 = 5, 𝜃1 = −1, 𝜃2 = −1. Which of following figures shows the decision 

boundary? 

 



 

 

 
a)                                 b)                              c)                                  d) 

 

9. (Programming) In this exercise, you will generate a training dataset and a testing dataset from 

a probability model, and then learn a logistic regression classifier using the training set, and 

test your trained classifier on the testing set. 

1)  The data examples in a form of (𝑥(𝑖), 𝑦(𝑖)), 𝑖 = 1,2,… ,𝑚 are generated based on the 

following Gaussian models 

𝑝(𝑥|𝑦 = 0, 𝜇0, 𝜎0
2)~𝑁(𝜇0, 𝜎0

2)   with 𝜇0 = 1, 𝜎0
2 = 4 

𝑝(𝑥|𝑦 = 1, 𝜇1, 𝜎1
2)~𝑁(𝜇1, 𝜎1

2)    with 𝜇1 = 4, 𝜎0
2 = 9 

 

Generate a training set consisting of 50 examples for y=0 and 50 examples for y=1, a total 

of 100 examples. 

Generate a testing set consisting of 25 examples for y=0 and 25 examples for y=1, a total 

of 50 examples. 

Note: you can plot the histogram of x for each set to validate your data. 

2) Thus, the data set has two classes and one input feature x. Train a logistic regression 

model to fit the training dataset. The initial parameters are suggested as 𝜃0 = −2, 𝜃1 = 1. 

What are your resulting parameters 𝜃0, 𝜃1? What is the classification accuracy on the 

training set? Plot the cost function versus iteration index. 

3) Test your logistic regression model using the testing set generated in 1), and find the 

classification accuracy on the testing set. 

4) Plot the ROC curve of your trained model on the testing set. 

10. (Programming) In this exercise, you will train a logistic regression model using the training set 

generated in the way illustrated in the figure below.  

1) A data example (𝑥1
(𝑖)

, 𝑥2
(𝑖)

, 𝑦(𝑖)) , 𝑖 = 1,2, . . , 𝑚, can be generated by the following steps:  

a) Generate a pair of random numbers (𝑥1
(𝑖)

, 𝑥2
(𝑖)

), 

𝑥1
(𝑖)

, 𝑥2
(𝑖)

 are independently drawn from the uniform 

distribution between -1.25 and 1.25. 

b) The label 𝑦(𝑖) is assign to 1 (shown by star) if 

√(𝑥1
(𝑖)

)
2
+ (𝑥2

(𝑖)
)
2

> 1, and assigned to 0 (shown 

by red dot) otherwise. 

 

2) Generate a training set consisting of 100 examples, and plot the scatterplot of the training 

set. 

3) Since it is known that the decision boundary is quadratic (not linear), you will use the 

model ℎ𝛉(𝐱) = 𝑔(𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2 + 𝜃3𝑥1𝑥2+𝜃4𝑥1
2 + 𝜃5𝑥2

2). Train this model, and 

find the resulting parameters (𝜃0, 𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5). Carefully select the initial parameter 



 

 

values but they should not be the optimal solution (−1,0,0,0,1,1). Plot the cost function 

versus iteration index. 

4) Train your model, plot the decision boundary along with the training examples, and print 

the classification accuracy. 

 

11. Which of the following statements are True? 

1) In binary classification, “high recall and low precision” implies that most of the positive 

examples are correctly recognized, but there are very few negative examples correctly 

recognized.  

2) In binary classification, “high recall and low precision” implies that most of the positive 

examples are correctly recognized, but there are a lot of false positive.  

3) In binary classification, “low recall and high precision” means that we miss a lot of 

positive examples, but those we predict as positive are indeed truly positive. 

4) F-score is always nearer to the bigger value among recall and precision.  

5) F-score is an arithmetic average of recall and precision.  

6) F-score is always nearer to the smaller value among recall and precision.  

7) The range of F-score is from 0 to 1.  

12. In a testing set, there are 999 data examples of negative class and one example of positive 

class, and the classifier is predicting all examples to be negative. 

1) Draw the confusion matrix. 

2) Calculate accuracy, recall, precision and F-score. 

13. A testing result of a classifier is summarized by the following confusion matrix 

 Predicted as positive Predicted as negative 

Actual positive 100 5 

Actual negative  10 50 

 

1) How many examples are there in the testing set?  

2) Calculate classification accuracy, recall, precision, and F-score.  

14. The testing result of a binary classifier is shown in the following table by comparing the actual 

label y and the predicted label 𝑦̂: 

y 1 1 0 1 0 0 1 0 0 0 

𝑦̂ 1 0 0 1 0 0 1 1 1 0 

 

1: positive, 0: negative 

1) Find the confusion matrix. 

2) Calculate accuracy, recall, precision, and F-measure. 



 

 

15. The following table shows the testing result for a classifier. Find accuracy, recall, sensitivity, 

true positive rate, specificity, false positive rate and F-score. 

 

16. The testing results of a binary classifier are shown in the following table. The labels and 

hypothesis outputs are listed for a test set of 20 examples.  

1) Suppose the decision threshold is 0.4, calculate accuracy, recall (or sensitivity or TPR), 

precision, specificity, FPR, F-score. 

2) Suppose the decision threshold is 0.6, calculate accuracy, recall (or sensitivity or TPR), 

precision, specificity, FPR and F-score. 

3) Sketch the ROC of the classifier. 

 

 

 

   

y 0 1 0 1 1 1 1 1 1 1 

𝒉𝜽(𝒙) 0.59 0.60 0.71 0.83 0.84 0.89 0.91 0.93 0.94 0.97 

  

 

 

 

 

index actual predicted

1 0 0

2 0 0

3 0 0

4 0 0 TN

5 0 0

6 0 0

7 0 0

8 0 1

9 0 1 FP

10 0 1

11 1 0

12 1 0 FN

13 1 1

14 1 1

15 1 1

16 1 1

17 1 1 TP

18 1 1

19 1 1

20 1 1

y 0 0 0 0 0 0 0 1 0 1 

𝒉𝜽(𝒙) 0.01 0.02 0.10 0.21 0.26 0.34 0.35 0.45 0.48 0.55 


