
Chapter 3

Linear Regression

Regression refers to modeling the relationship between one or more independent variables and a

dependent variable. These variables take continuous (or numerical) values. Linear regression is the

simplest and most popular among the standard tools for regression. In linear regression, we assume

that the relationship between the dependent variable and the independent variables is approximately

linear, i.e., that the dependent variable can be predicted as a linear combination of input variables.

Thus, in a linear regression model, the prediction is not only a linear function of the parameters,

but also a linear function of input variables.

Through regression in this chapter, we introduce the basic concepts of machine learning, such as

models, datasets, loss function, training, inference, gradient descent algorithm, and so on.

Furthermore, linear regression can be generalized to many other more powerful machine learning

paradigms, such as logistic regression, neural networks, and deep neural networks. Thus, this

chapter provides a foundation for the rest of the book.

In this chapter you will learn about

o Linear regression model and its analytic solution.

o Gradient descent algorithm for linear regression.

o Linear models using basis functions: polynomial curve fitting.

o Analysis of bias and variance of a model.

o Basic Python programming for data-preprocessing and gradient descent algorithm for

linear regression models.

3.1 Linear Regression with Single Feature

3.1.1 Linear regression model

Linear regression is one of the most basic algorithms in machine learning. Many fancy and popular

machine learning algorithms can be viewed as generalizations or extensions of linear regression.

Thus, it serves as a good starting point of machine learning. In the setting of a supervised learning

task, we are given a training dataset that consists of m examples or samples defined as input-output

pairs (𝐱(1), 𝑦(1)), (𝐱(2), 𝑦(2))… (𝐱(𝑚), 𝑦(𝑚)), where the superscript indicates the index of

examples. Each input 𝐱(𝑖) is a vector including n features (or attributes, or predictors). The output,

often referred as the target or label, is assumed to be univariate, i.e., 𝑦(𝑖) ∈ ℝ, in this chapter. The

later chapters show that 𝑦(𝑖) could be a vector in general. The goal is to learn or train a model that

describes the relationship between the input and the output, based on the training dataset. After we

have completed training, given a new input value x, we can use the trained model to predict its

output, denoted as �̂�(𝑥) . A regression task is also called curve fitting in some texts. If the output y

can be approximated by a linear combination of features, the supervised learning problem can be

reduced to a linear regression problem.

We will begin to address the linear regression with a single feature. The linear regression on a single

feature is to predict a target y on a single feature variable x, assuming that there is approximately a

linear relationship between x and y, as shown in Fig.3.1. Mathematically, the relationship can be

represented as

𝑦 = 𝜃0
𝑡 + 𝜃1

𝑡𝑥 + 𝜖 (3.1)

where 𝜃0
𝑡, 𝜃1

𝑡 are the intercept and the slope for the assumed linear relationship, respectively. 𝜖 is

the error term for a consideration of the following facts: the true relationship is not exactly linear,

there are other variables that cause variation in y, and there exist measurement errors. In a linear

regression task, we are given a set of data examples drawn from (3.1), and learn a linear model (or

hypothesis) defined by

�̂� = ℎ𝜃(𝑥) = 𝜃0 + 𝜃1𝑥 (3.2)

In Fig.3.1, the blue dots represent the data example points, and the red line is the linear regression

line defined by (3.2).

Fig.3.1 Linear regression

3.1.2 Cost function

In general, a linear model (e.g. the red line in Fig.3.1) does not fit the training dataset exactly (e.g.

the blue dots in Fig.3.1). To find the optimal values for the parameters in (3.2), we need to define

a cost (or loss) function that quantifies the mismatch between the true values and predicted values

of the target. There are various loss functions available. However, a common choice of loss function

in regression problems is the mean squared error, given by

 𝐽(𝜃0, 𝜃1) =
1

2𝑚
∑ (�̂�(𝑖) − 𝑦(𝑖))2𝑚

𝑖=1 =
1

2𝑚
∑ (𝜃0 + 𝜃1𝑥

(𝑖) − 𝑦(𝑖))2𝑚
𝑖=1 (3.3)

3.1.3 Analytic solution

The optimal coefficients 𝜃0, 𝜃1 minimize the cost function. Since the cost function of linear

regression is a quadratic function of coefficients, there is just one critical point on the cost surface,

and it corresponds to the minimum of the cost. An analytical solution can be found by solving the

system of linear equations

{

𝜕

𝜕𝜃0
𝐽(𝜃0, 𝜃1) = 0

𝜕

𝜕𝜃1
𝐽(𝜃0, 𝜃1) = 0

 (3.4)

One can show that the solution is

{
𝜃1 =

∑ (𝑥(𝑖)𝑦(𝑖)−�̅��̅�)𝑚
𝑖=1

∑ ((𝑥(𝑖))
2
−(�̅�)2)𝑚

𝑖=1

𝜃0 = �̅� − 𝜃1�̅�

 (3.5a)

or equivalently,

 {
𝜃1 =

∑ (𝑥(𝑖)−�̅�)(𝑦(𝑖)−�̅�)𝑚
𝑖=1

∑ (𝑥(𝑖)−�̅�)
2𝑚

𝑖=1

𝜃0 = �̅� − 𝜃1�̅�
 (3.5b)

where �̅� =
1

𝑚
∑ 𝑥(𝑖)𝑚

𝑖=1 , �̅� =
1

𝑚
∑ 𝑦(𝑖)𝑚

𝑖=1 are the sample means. (3.5) is also known as normal

equation.

Let’s consider a dataset consisting of 10 examples drawn from the relationship 𝑦 = 4 + 6𝑥 + 𝜖,

where 𝜖 is a standard Gaussian random variable (mean=0, variance=1). The following Python

program implements this linear regression on the dataset by the normal equation (3.5). The result

is plotted in Fig.3.2(a), where the blue dots represent the data examples, the dashed blue line is the

target linear line 𝑦 = 4 + 6𝑥, and the red line is the linear regression line 𝑦 = 𝜃0 + 𝜃1𝑥 for

prediction. In Fig.3.2(b), different linear regression lines are plotted, each of which is computed on

a separate dataset randomly drawn from the same relationship 𝑦 = 4 + 6𝑥 + 𝜖. The average of this

linear regression lines is quite close to the true linear line.

import numpy as np

import matplotlib.pyplot as plt

import statistics

Fixing random state for reproducibility

np.random.seed(1968)

x=np.random.rand(10) # uniform [0,1)

y=4+6*x+np.random.randn(10) # randn: Normal with mean=0, var=1

normal equation

x_bar=statistics.mean(x)

y_bar=statistics.mean(y)

theta1=sum(np.multiply((x-x_bar),(y-y_bar)))/sum(np.multiply((x-x_bar),(x-x_bar

)))

theta0=y_bar-theta1*x_bar

visualize results

x_new=np.array([0,1])

y_predict=theta1*x_new+theta0

y_true=6*x_new+4

plt.plot(x_new,y_predict,"r-", label='linear regression line')

plt.plot(x_new,y_true,"b--", label='true linear line')

plt.plot(x,y,"b.")

plt.xlabel('x', fontsize=18)

plt.ylabel('y', fontsize=18)

plt.grid(color = 'green', linestyle = '--', linewidth = 0.5)

plt.legend(loc='lower right')

plt.xlim([0,1])

plt.ylim([0,12])

plt.show()

 (a) linear regression on one dataset (b) linear regressions on different sets of observations

Fig.3.2 Linear regression model for prediction

Although the analytic solution allows for nice mathematical analysis, it is not available for general

neural network and deep learning models because the relationship between the output and inputs

are very complicated (at least not linear). Fortunately, we will see that we can train or learn the

model in an iterative manner efficiently in practice.

3.1.4 Gradient descent algorithm

In practice, the solution to (3.4) is usually obtained by a gradient descent algorithm in an iterative

manner, instead of the analytic solution (3.5). The analytic solution requires linearity of the model

which does not hold in many applications, and the gradient descent algorithm developed here will

be generalized to non-linear models, as we will see later. Furthermore, computing the analytic

solution for large dataset with multi-dimensional input is prohibitively expensive. The concept of

gradient decent algorithm is illustrated in Fig.3.3. If function 𝐽(𝜃) is convex (note: A convex

function is a continuous function whose value at the midpoint of every interval in its domain does

not exceed the arithmetic mean of its values at the ends of the interval), the value of 𝜃 for the

minimum of 𝐽(𝜃) can be iteratively computed by

𝜃 ≔ 𝜃 − 𝛼
𝑑𝐽(𝜃)

𝑑𝜃
 (3.6)

where 𝛼 is a carefully selected constant, called learning rate, which controls the amount of

updating.

Fig.3.3 Search for a minimum point using gradient descent: the blue circle represents the

minimum point and the red arrow represents the direction of the negative gradient.

Since the cost function 𝐽(𝜃0, 𝜃1), is a two-dimensional convex function, the optimal (𝜃0, 𝜃1) for

the minimum 𝐽(𝜃0, 𝜃1) can be obtained iteratively by

𝜃0 ≔ 𝜃0 − 𝛼
𝜕𝐽(𝜃0,𝜃1)

𝜕𝜃0
 and 𝜃1 ≔ 𝜃1 − 𝛼

𝜕𝐽(𝜃0,𝜃1)

𝜕𝜃1
 (3.7)

Therefore, the gradient descent algorithm for linear regression can be summarized as the follows.

The following python program shows an example of linear regression using gradient descent

algorithm. The results are plotted in Fig.3.3. It is usually helpful to plot the loss versus iteration

step for monitoring the training process, as in Fig.3.3(b).

gradient descent algorithm for a single feature input

Fixing random state for reproducibility

np.random.seed(1968)

x=np.random.rand(10)

y=4+6*x+np.random.randn(10)

gradient descent algorithm

theta0=1

theta1=1

alpha=1

cost=[]

m=x.shape[0]

for iter in range(0, 100):

 error=theta0+theta1*x-y

 temp0=theta0-alpha*statistics.mean(error)

 temp1=theta1-alpha*statistics.mean(error*x)

 theta0=temp0

 theta1=temp1

 J=sum((theta0+theta1*x-y)**2)/(2*m)

 cost.append(J)

plot the linear model and traning examples

x_new=np.array([0,1])

y_predict=theta1*x_new+theta0

plt.plot(x_new,y_predict,"r-")

plt.plot(x,y,"b.")

plt.xlabel('x', fontsize=18)

plt.ylabel('y', fontsize=18)

plt.grid(color = 'green', linestyle = '--', linewidth = 0.5)

plt.xlim([0,1])

plt.ylim([0,12])

plt.show()

plot the loss function vs iteration steps

plt.plot(cost, 'b-')

plt.xlabel('iteration', fontsize="18")

1) Set initial values for 𝜃0, 𝜃1, select a learning rate α (a hyperparameter)

2) Repeat:

(i) Update 𝜃0, 𝜃1: (simultaneously, not sequentially)

 temp0:= 𝜃0 − 𝛼
𝜕

𝜕𝜃0
𝐽(𝜃0, 𝜃1) = 𝜃0 − 𝛼

1

𝑚
∑ (𝜃0 + 𝜃1𝑥

(𝑖) − 𝑦(𝑖))𝑚
𝑖=1

temp1:= 𝜃1 − 𝛼
𝜕

𝜕𝜃1
𝐽(𝜃0, 𝜃1) = 𝜃1 − 𝛼

1

𝑚
∑ (𝜃0 + 𝜃1𝑥

(𝑖) − 𝑦(𝑖))𝑥(𝑖)𝑚
𝑖=1

𝜃0 ≔ 𝑡𝑒𝑚𝑝0

 𝜃1 ≔ 𝑡𝑒𝑚𝑝1

(ii) Update cost function 𝐽(𝜃0, 𝜃1)

(iii) Terminate the iteration: if the predefined maximal iterations have been completed, then

exit to 3), otherwise go back to (i). Or Compare the current cost with the previous cost.

If they are close enough, then exit to 3).

3) Return 𝜃0, 𝜃1

plt.ylabel('loss', fontsize="18")

plt.grid(color = 'green', linestyle = '--', linewidth = 0.5)

plt.show()

 (a) linear model (b) loss function

Fig.3.3 Linear regression using gradient descent algorithm

3.2 Linear Regression with Multiple Features

In this section, we will address the linear regression models with multiple features. In many

applications, the target y is a function of multiple features. In other words, input x is a vector. An

intuitive approach is to generalize the linear regression algorithm from a single feature to multiple

features by vectorization. Equation (3.1) can be generalized as

𝑦 = 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2 + ⋯+ 𝜃𝑛𝑥𝑛 + 𝑒 (3.8)

where 𝑥1, 𝑥2, … , 𝑥𝑛 are n features. This model can be written in a vector format

𝑦 = 𝛉𝑇𝐱 + 𝑒 (3.9)

where θ and x are the column vectors, defined as

𝛉 = [

𝜃0

𝜃1

⋮
𝜃𝑛

] ∈ ℝ(𝑛+1)×1, 𝐱 = [

1
𝑥1

⋮
𝑥𝑛

] ∈ ℝ(𝑛+1)×1

Thus, given x, the corresponding prediction of y is

�̂� = ℎ𝜃(𝐱) = 𝛉𝑇𝐱 (3.10)

To represent the cost function in a form of vectors and matrices, we arrange the dataset in a matrix:

each row associated with one example. Specifically, the m examples in the training set are

represented by a matrix 𝑋 ∈ ℝ𝑚×(𝑛+1)

𝐗 =

[

 − − 𝐱(1)⊺ − −

− − 𝐱(2)⊺ − −
⋮

− − 𝐱(𝑚)⊺ − −]

=

[

 1 𝑥1

(1)
… 𝑥𝑛

(1)

1 𝑥1
(2)

… 𝑥𝑛
(2)

⋮
1

⋮
𝑥1

𝑚 …
⋮

𝑥𝑛
(𝑚)

]

 (3.11)

where 𝐱(𝑖)⊺ is the ith example row vector, and 𝑥𝑗
(𝑖)

 is the value of the jth feature in the ith example.

The elements of the first column of X are “1” to accommodate 𝜃0 in (3.8). In other words, we can

have an additional dummy feature 𝑥0
(𝑖)

= 1.

The targets or labels of the training set are expressed as a column vector 𝐲 ∈ ℝ𝑚×1

𝐲 =

[

𝑦(1)

𝑦(2)

⋮
𝑦(𝑚)]

where 𝑦(𝑖) is the target (or label) of example 𝐱(𝑖). Thus, the error vector 𝑬 ∈ ℝ𝑚×1 can be defined

as

𝑬 = [

𝑒(1)

𝑒(2)

⋮
𝑒(𝑚)

] = 𝐗 ∙ 𝛉 − 𝐲 (3.12)

The cost function can be represented by

𝐽(𝜃) =
1

2𝑚
∑ (𝑒(𝑖))

2𝑚
𝑖=1 =

1

2𝑚
𝑬⊺𝑬 =

1

2𝑚
(𝐗 ∙ 𝛉 − 𝐲)⊺(𝐗 ∙ 𝛉 − 𝐲) (3.13)

where ()⊺ is the operator of matrix transpose. By searching for the minimal cost over the space θ,

we can find optimal θ for the linear regression model. The derivative of the cost function with

respect to 𝜃𝑗 is

𝜕𝐽(𝛉)

𝜕𝛉𝑗
=

1

𝑚
∑(ℎ𝜃(𝑥(𝑖)) − 𝑦(𝑖))𝑥𝑗

(𝑖)

𝑚

𝑖=1

=
1

𝑚
(𝑋𝑐𝑜𝑙𝑢𝑚𝑛_𝑗)

⊺
(𝐗 ∙ 𝛉 − 𝐲)

 j=0,1,...,n, 𝑥0
(𝑖)

= 1 (3.14)

which can be equivalently written in a compact vectorized format as a gradient vector

𝑔𝑟𝑎𝑑 =

[

𝜕𝐽(𝛉)

𝜕𝜃0

𝜕𝐽(𝛉)

𝜕𝜃1

⋮
𝜕𝐽(𝛉)

𝜕𝜃𝑛]

=
1

𝑚
𝑋⊺ ∙ (𝑋 ∙ 𝛉 − 𝐲) (3.15)

The analytic solution to
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐽(𝛉)

𝛉
 is the solution to 𝑔𝑟𝑎𝑑 =

1

𝑚
𝑋⊺ ∙ (𝑋 ∙ 𝛉 − 𝐲) = 𝟎, which is

called normal equation, given by

𝛉∗ = (𝑋⊺𝑋)−1𝑋⊺𝐲 (3.16)

This normal equation is a theoretical solution to the linear regression problem. However, it can be

computationally costly for large data sets. In practice, it may be convenient to use the gradient

decent algorithm to search for the optimal solution.

The corresponding gradient decent algorithm can be described in a vectorized format as follows.

To make the gradient descent algorithm work efficiently, we may need to pay attention to the

following practical considerations: 1) balancing the scales of all features; 2) selecting an

appropriate learning rate; and 3) dividing the large data set into batches and updating the parameters

based on one batch at a time. We will address these issues in more details later.

The following Python program is to fit a linear regression model on a dataset consisting of 10 data

examples randomly generated from 𝑦 = 4 + 6𝑥1 − 𝑥2 + 𝑒. With the settings in the program, the

parameters of the resulting regression model are [4.42621106 5.57510254 -

0.80772246].

#linear regression with multiple features using gradient descent

generate training examples, x(m,3), y(m,1)

np.random.seed(1969) # for reproducibility

m=10

x0=np.ones(m).reshape((m,1))

x=np.random.rand(m,2)

x=np.concatenate((x0,x),axis=1) # add the first column with all 1

w=np.array([4,6,-1]) # true model

y=np.dot(x,w)+0.5*np.random.randn(10)

#gradient descent algorithm for multiple features

cost=[]

n=x.shape[1] # n=3, the number of features

initial values for parameters, theta=np.array([1,1,1])

theta=np.ones(n)

alpha=0.1 #learning rate

for iter in range(0, 1000):

 hypothesis=np.dot(x, theta)

 loss=hypothesis-y

 J=np.sum(loss**2)/(2*m)

 gradient=np.dot(np.transpose(x), loss)/m

 theta=theta-alpha*gradient

 cost.append(J)

plot the loss function vs iteration steps

1) Set initial values for 𝛉 ∈ ℝ(𝑛+1)×1 , select learning rate α

2) Repeat:

(i) Compute gradient vector: 𝑔𝑟𝑎𝑑 ∈ ℝ(𝑛+1)×1

 𝑔𝑟𝑎𝑑 =
1

𝑚
𝑋𝑇 ∙ (𝑋 ∙ 𝛉 − 𝐲)

(ii) Update 𝛉 ≔ 𝛉 − 𝛼 ∙ 𝑔𝑟𝑎𝑑

(iii) Update cost function 𝐽(𝛉) (not required for gradient descent, but for behavior

monitoring and visualization)

𝐽(𝜃) =
1

2𝑚
(𝑋 ∙ 𝛉 − 𝐲)⊺(𝑋 ∙ 𝛉 − 𝐲)

(iv) Terminate iteration: If the predefined maximal iterations have been completed,

then exit to 3), otherwise go back to (i). Or Compare the current cost with the

previous cost. If they are close enough, then exit to 3).

3) Return θ

plt.plot(cost, 'b-')

plt.xlabel('iteration', fontsize="18")

plt.ylabel('loss', fontsize="18")

plt.grid(color = 'green', linestyle = '--', linewidth = 0.5)

plt.show()

print('true theta:',w)

print('predicted theta:',theta)

true theta: [4 6 -1]

predicted theta: [4.42621106 5.57510254 -0.80772246]

3.3 Linear Models for Regression

Since the output of linear regression is a linear function of the input variables, linear regression has

significant limitations in many applications. In this section, we will extend the linear regression

model to general linear models by considering the non-linear relationship between the output and

the input variables.

3.3.1 Polynomial curve fitting

Suppose that we are given a training set comprising m observations of x and the corresponding

values of the target y, denoted as {(𝑥(𝑖), 𝑦(𝑖), 𝑖 = 1,2,… ,𝑚)}. Our goal is to predict the value of y

for a new value of x. In general, y is not a linear function of x, even approximately. One choice is

to fit a polynomial function to the dataset. An n-order polynomial function can be written as

�̂�(𝑥, 𝛉) = 𝜃0 + 𝜃1𝑥 + 𝜃2𝑥
2 + ⋯+ 𝜃𝑛𝑥𝑛 (3.17)

where n is the order of the polynomial function, 𝛉 is the vector comprising the polynomial

coefficients 𝜃0, 𝜃1 …𝜃𝑛.

Thus, the task of polynomial curve fitting is equivalent to a linear regression with n input features,

𝑥, 𝑥2,⋯ , 𝑥𝑛. With a modification of matrix X, all conclusions in Section 3.2 can be applied to

polynomial curve fitting. For example, the normal equation (3.16) can be used to compute the

optimal value of 𝛉 in an analytic form

𝛉∗ = (𝑋⊺𝑋)−1𝑋⊺𝐲 (3.18)

where

 𝐗 =

[

 1 𝑥(1)

(𝑥(1))
2

(𝑥(1))
3
… (𝑥(1))

𝑛

1 𝑥(2) (𝑥(2))
2

 (𝑥(2))
3
… (𝑥(2))

𝑛

⋮
1

⋮

𝑥(𝑚) (𝑥(𝑚))
2

(𝑥(𝑚))
3
…

⋮

 (𝑥(𝑚))
𝑛
]

 (3.18a)

and

 𝐲 =

[

𝑦(1)

𝑦(2)

⋮
𝑦(𝑚)]

 (3.18b)

Let us consider an example in which we try to fit polynomial functions (with different orders) to a

dataset comprised of 10 sample points. The training set was generated by sampling the following

function uniformly in range [0,1]

𝑦 = 10(𝑥 − 0.5)2 − 𝑥 + 0.5 × 𝒩(0,1) (3.19)

where 𝒩(0,1) is a random number drawn from the standard Gaussian distribution. The sample

points are plotted as blue dots in Fig.3.4, and the underlying true function 10(𝑥 − 0.5)2 − 𝑥 is

plotted as the dash blue curve.

By the normal equation (3.18), we obtain the optimal polynomial coefficients 𝛉∗. The resulting

polynomial functions with different orders are plotted as the red solid lines in Fig.3.4.

Fig.3.4 Plots of polynomials with different orders (shown as red curves) fitted to the data set

(shown as blue dots)

The gradient descent algorithm in Section 3.2 can be exactly applied for polynomial curve fitting

with the input data matrix X specified as in (3.18a). However, when the order of polynomial is high

(say n = 9), it may be difficult for the algorithm to converge because the high-order features (say

𝑥9) is much smaller than the low-order feature (e.g. 𝑥) for 0 ≤ 𝑥 ≤ 1, which results in a very slow

convergence in the high-order feature dimensions.

From Fig.3.4, we can see that the polynomial with 1-order (i.e., linear) is not accurate enough to

capture the feature of the data pattern, and the model is said to underfit the data set. We also find

out that, on the other hand, if the order is too high (e.g., 8), the curve is overfitting the data set.

When the overfitting occurs, the model minimizes the loss function just for a particular data set in

order to perfectly fit all samples in this data set, and thus cannot generalize well for other data sets

drawn from the same distribution.

3.3.2 Linear models with basis functions

The polynomial curve fitting, discussed in the previous section, is one of methods to model a

nonlinear relationship. We can generalize the linear model (3.17) to a class of linear models, which

are linear combinations of basis functions {𝜙𝒋(𝐱), 𝑗 = 0, 1, … , 𝑛}

 �̂� = ℎ𝜃(𝐱) = 𝛉𝑇𝛟(𝐱) = ∑ 𝜃𝒋𝜙𝒋
𝒏
𝒋=𝟎 (𝐱) (3.20)

where 𝜙𝒋(𝐱) are known as basis functions.

Thus, polynomial regression is an instance of (3.20) with basis function 𝜙𝑗(𝑥) = 𝑥𝑗, 𝑗 = 0,1… ,𝑚,

where m is the order of polynomial model. A set of quadratic basis functions for two-feature input

can be

 𝛟(𝐱) =

[

1
𝑥1
𝑥2

𝑥1𝑥2

𝑥1
2

𝑥2
2]

 (3.21)

Thus, the linear model (3.20) with the basis functions (3.21) can model quadratic surfaces.

Other possible basis functions include Gaussian functions, sinc functions, sigmoid functions, and

sinusoidal functions, defined respectively as

𝜙𝑗(𝑥) = 𝑒
−(𝑥−𝜇𝑗)

2

2𝑠2 (3.22)

𝜙𝑗(𝑥) =
sin(2𝜋𝜔(𝑥−𝜇𝑗))

2𝜋𝜔(𝑥−𝜇𝑗)
 (3.23)

𝜙𝑗(𝑥) = 𝜎 (
𝑥−𝜇𝑗

𝑠
), where 𝜎(𝑧) =

1

1+𝑒−𝑧 (3.24)

𝜙𝑐𝑗(𝑥) = 𝑐𝑜𝑠(2𝜋𝜔𝑗𝑥), 𝜙𝑠𝑗(𝑥) = 𝑠𝑖𝑛(2𝜋𝜔𝑗𝑥) (3.25)

where 𝑠, 𝜔, 𝜔𝑗 control the shape of the functions, and 𝜇𝑗 specifies the location of shapes.

The loss function (3.13) can be generalized as

𝐽(𝜃) =
1

2𝑚
∑ (𝑒(𝑖))

2𝑚
𝑖=1 =

1

2𝑚
𝑬⊺𝑬 =

1

2𝑚
(𝚽 ∙ 𝛉 − 𝐲)⊺(𝚽 ∙ 𝛉 − 𝐲) (3.26)

where

𝚽 =

[

𝜙0(𝑥

(1)) 𝜙1(𝑥
(1)) 𝜙2(𝑥

(1)) 𝜙3(𝑥
(1))… 𝜙𝑛(𝑥(1))

𝜙0(𝑥
(2)) 𝜙1(𝑥

(2)) 𝜙2(𝑥
(2)) 𝜙3(𝑥

(2))… 𝜙𝑛(𝑥(2))

⋮
𝜙0(𝑥

(𝑚))
⋮

𝜙1(𝑥
(𝑚))

⋮
𝜙2(𝑥

(𝑚))
⋮

𝜙3(𝑥
(𝑚))…

⋮
𝜙𝑛(𝑥(𝑚))]

Thus, the gradient of loss function with respect to the parameters is

𝑔𝑟𝑎𝑑 =
𝜕𝐽(𝛉)

𝜕𝛉
=

[

𝜕𝐽(𝛉)

𝜕𝜃0

𝜕𝐽(𝛉)

𝜕𝜃1

⋮
𝜕𝐽(𝛉)

𝜕𝜃𝑛]

=
1

𝑚
𝚽⊺ ∙ (𝚽 ∙ 𝛉 − 𝐲) (3.27)

The normal equation for optimal 𝛉 is the solution to
𝜕𝐽(𝛉)

𝜕𝛉
= 𝟎, given by

𝛉∗ = (𝚽⊺𝚽)−1𝚽⊺𝐲 (3.28)

In the corresponding gradient descent algorithm, the parameters are updated by

𝛉 ≔ 𝛉 − 𝛼 ∙
𝜕𝐽(𝛉)

𝜕𝛉
 (3.29)

3.4 A Probabilistic Interpretation of Linear Regression

3.4.1 Equivalence of least square error and maximum likelihood estimation

We have seen how a problem of linear regression can be solved in terms of error square

minimization through gradient descent. Here we re-visit the linear regression from a probabilistic

perspective, thereby gaining some insights into error functions which are helpful for us to

understand more machine learning algorithms we will develop later.

In linear regression, it is assumed that the relationship between the target (or label) variable y and

feature variable 𝐱 ∈ ℝ𝑛+1 is approximately linear, thus we can estimate the target value for a new

feature value using the linear model. The target and the input can be modeled as

𝑦 = 𝛉𝑇𝐱 + 𝑒 = ℎ𝜃(𝐱) + 𝑒 (3.30)

where e is a random noise taking unmodeled effects into account. In the example of house price,

the mood of buyers, purchase season, or marriage status of sellers may affect the prices, but not be

included in features x. For a particular data example, there exists an error 𝑒(𝑖)

𝑦(𝑖) = 𝛉𝑇𝐱(𝑖) + 𝑒(𝑖) = ℎ𝜃(𝐱(𝑖)) + 𝑒(𝑖) (3.31)

If we know the probability distribution of e, we can express the uncertainty of y using the

probability density function. For this purpose, we assume that the error e has a Gaussian distribution

with zero mean and a variance of 𝜎2, i.e. 𝑒~𝑁(0, 𝜎2).

Thus, the value of y has a Gaussian distribution with a mean ℎ𝜃(𝐱) and a variance of 𝜎2,

𝑝(𝑦|𝐱; 𝛉, 𝜎2) =
1

√2𝜋𝜎
𝑒𝑥𝑝 (−

(𝑦−ℎ𝜃(𝐱))
2

2𝜎2) (3.32)

We now use the training examples {𝐱(𝑖), 𝑦(𝑖), 𝑖 = 1,2, … ,𝑚} to determine the optimal value of the

unknown parameters 𝜃 and 𝜎2 by maximum likelihood estimation. If the date examples are

assumed to be drawn independently from the distribution (3.32), then the likelihood function is

given by

ℒ(𝜃, 𝜎2) = 𝑝(𝐲|𝐱; 𝜃, 𝜎2) = ∏ 𝑝(𝑦(𝑖)|𝐱(𝑖); 𝜃,𝑚
𝑖=1 𝜎2) = ∏

1

√2𝜋𝜎
𝑒𝑥𝑝 (−

(𝑦(𝑖)−ℎ𝜃(𝐱(𝑖)))
2

2𝜎2) 𝑚
𝑖=1 (3.33)

It is convenient to maximize the logarithm of the likelihood function (3.33). By applying the log

operation, we obtain the log likelihood function in the form

ℓ(𝜃, 𝜎2) = ln(ℒ(𝜃, 𝜎2)) = −
𝑚

2
ln(2𝜋𝜎2) −

1

2𝜎2
∑ (𝑦(𝑖) − ℎ𝜃(𝐱(𝑖)))

2
𝑚
𝑖=1 (3.34)

Instead of maximizing the likelihood function with respect to θ in (3.33), we can equivalently

minimize the sum term of the right side of (3.34),
1

2
∑ (𝑦(𝑖) − ℎ𝜃(𝐱(𝑖)))

2
𝑚
𝑖=1 . We therefore see that

maximizing the likelihood function is equivalent to minimizing the sum of the squares error

function defined by (3.13). As a result, the optimal value of θ, 𝜃𝑀𝐿, can be calculated by

𝜃𝑀𝐿 = 𝑎𝑟𝑔𝑚𝑖𝑛
1

2
∑ (𝑦(𝑖) − ℎ𝜃(𝐱(𝑖)))

2
𝑚
𝑖=1 (3.35)

Therefore, mathematically, maximum likelihood estimation (MLE) (3.35) is equivalent to the error

square minimization problem (3.13), under the assumption of Gaussian distribution for the error.

Then, the optimal value of 𝜎2 can be obtained by maximizing (3.34) with respect to 𝜎2, with 𝜃 =

𝜃𝑀𝐿, as

𝜎2
𝑀𝐿 =

1

𝑚
∑ (𝑦(𝑖) − ℎ𝜃𝑀𝐿

(𝐱(𝑖)))
2

𝑚
𝑖=1 (3.36)

In fact, the resulting 𝜎2
𝑀𝐿 is equal to the average of error squares over all examples, which is

equivalent to the minimized cost function (except a scale of ½ in the cost function (3.13)).

Having determined the parameters θ and σ (3.35) and (3.36), we can make a prediction �̂� for a new

value of x, using the probabilistic model defined by (3.32), which gives the probability distribution

of y rather than simply a point estimate. Of course, the estimation of y,

�̂� = ℎ𝜃𝑀𝐿
(𝐱) (3.37)

has the maximum value of the probability density function, which justifies �̂� as a good prediction

in terms of maximum likelihood. In general, ℎ𝜃(𝐱) does not have to be linear with x.

3.4.2 Bias and Variance

From Fig.3.4, we can see that the model underfits the data set if the model is too simple (e.g. low-

order polynomials). The prediction curve has a large distance from the data examples (or the target

curve). This implies that the model is not able to capture the basic important pattern of the data. On

the other hand, the model overfits the data set if the model is too flexible (e.g., very high-order

polynomials). In the case of overfitting, although the prediction curve fits the data set closely, it is

very sensitive to the selection of data set. In other words, different data sets drawn from the same

underlying distribution may result in very significant prediction curves.

A natural question is: which model is the best? The phenomenon of underfitting or overfitting is

highly related to the bias and variance of the model. The bias of a model measures how far the

model, in average over data sets, is away from the optimal model. The variance of a model indicates

how sensitive the learned parameters of the model are to a particular data set. In this section, we

will calculate the average loss of a model in terms of bias, variance, and intrinsic noise, and then

describe the relationship between underfitting/overfitting and bias/variance. The analysis of bias

and variance will shed lights on the model selection when we deal with complex models such as

neural networks.

Suppose we have a data set whose examples (𝐱, 𝑦) are independently drawn from

𝑦 = ℎ(𝐱) + 𝜖 (3.38)

where ℎ(𝐱) is the underlying target curve, 𝜖 is a Gaussian noise with a mean of zero. In general,

the joint probability density of (𝐱, 𝑦) is denoted as 𝑝(𝐱, 𝑦). Note that the optimal model is the

function 𝔼[𝑦|𝐱] = ℎ(𝐱). However, we don’t know the exact function 𝔼[𝑦|𝐱] unless an unlimited

amount of data examples is available.

We use a regression model, denoted as �̂�(𝐱; 𝛉), to estimate the underlying optimal model ℎ(𝐱),

based on a dataset comprising of limited data examples. A common choice of loss function is the

square loss

𝐿(𝑦, �̂�(𝐱; 𝛉)) = (𝑦 − �̂�(𝐱; 𝛉))
2
 (3.39)

 Thus, the expected loss, with respect to 𝑝(𝐱, 𝑦), is

𝔼[𝐿] = 𝔼 [(𝑦 − �̂�(𝐱; 𝛉))
2
] = 𝔼 [(𝑦 − ℎ(𝐱) + ℎ(𝐱) − �̂�(𝐱; 𝛉))

2
]

= 𝔼 [(𝑦 − ℎ(𝐱))
2
] + 𝔼 [(ℎ(𝐱) − �̂�(𝐱; 𝛉))

2
] + 2𝔼[(𝑦 − ℎ(𝐱))(ℎ(𝐱) − �̂�(𝐱; 𝛉))]

= 𝔼 [(𝑦 − ℎ(𝐱))
2
] + 𝔼 [(ℎ(𝐱) − �̂�(𝐱; 𝛉))

2
]

= ∬(𝑦 − ℎ(𝐱))
2
𝑝(𝐱, 𝑦)𝑑𝑦𝑑𝐱 + ∬(ℎ(𝐱) − �̂�(𝐱; 𝛉))

2
𝑝(𝐱, 𝑦)𝑑𝑦𝑑𝐱

= ∬(𝑦 − ℎ(𝐱))
2
𝑝(𝐲|𝐱)𝑑𝑦 ∙ 𝑝(𝐱)𝑑𝐱 + ∫(ℎ(𝐱) − �̂�(𝐱; 𝛉))

2
𝑝(𝐱)𝑑𝐱

= ∫𝑉𝑎𝑟(𝑦|𝐱) 𝑝(𝐱)𝑑𝐱 + ∫(ℎ(𝐱) − �̂�(𝐱; 𝛉))
2
𝑝(𝐱)𝑑𝐱

= ∫𝑉𝑎𝑟(𝜖|𝐱) 𝑝(𝐱)𝑑𝐱 + ∫(ℎ(𝐱) − �̂�(𝐱; 𝛉))
2
𝑝(𝐱)𝑑𝐱 (3.40)

where 𝑝(𝐱) is the probability density function of x, calculated by

𝑝(𝐱) = ∫𝑝(𝐱, 𝑦)𝑑𝑦 (3.40a)

The first term in (3.40) is the variance of the noise, averaged over x. It is usually reasonable to

assume that x is independent of the noise 𝜖. In this case, the first term is reduced to the variance of

the noise. It represents the minimum loss that is achieved only when the second term in (3.40) is

equal to zero, i.e., the optimal model is found �̂�(𝐱; 𝛉) = ℎ(𝐱). Thus, it is independent of the learned

model, and is irreducible.

The second term in (3.40) is the loss component that corresponds to the misfit between the learned

model �̂�(𝐱; 𝛉)and the optimal model ℎ(𝐱). If we had an unlimited amount of training data examples

(𝐱, 𝑦), we would be able to obtain the optimal model by ℎ(𝐱) = 𝔼[𝑦|𝐱]. In fact, we use a parametric

function �̂�(𝐱; 𝛉) to model ℎ(𝐱) based on a particular data set with a size of m. Different data sets

independently drawn from 𝑝(𝐱, 𝑦) will result in different learned parameters 𝛉 and consequently

different values of the loss. Now we will decompose the second term in (3.40) into two components:

one associated with the bias, and another associated with the variance.

For a given data set 𝒟, the resulting model is denoted as �̂�(𝐱; 𝛉𝓓). The average of the models over

all possible data sets is denoted as 𝔼𝒟[�̂�(𝐱; 𝛉𝓓)]. For a data set 𝒟, the square term in (3.40),

(ℎ(𝐱) − �̂�(𝐱; 𝛉))
2
, can be represented as

(ℎ(𝐱) − �̂�(𝐱; 𝛉𝓓))
2

= (ℎ(𝐱) − 𝔼𝒟[�̂�(𝐱; 𝛉𝓓)] + 𝔼𝒟[�̂�(𝐱; 𝛉𝓓)] − �̂�(𝐱; 𝛉𝓓))
2

= (ℎ(𝐱) − 𝔼𝒟[�̂�(𝐱; 𝛉𝓓)])2 + (𝔼𝒟[�̂�(𝐱; 𝛉𝓓)] − �̂�(𝐱; 𝛉𝓓))
2

+2(ℎ(𝐱) − 𝔼𝒟[�̂�(𝐱; 𝛉𝓓)])(𝔼𝒟[�̂�(𝐱; 𝛉𝓓)] − �̂�(𝐱; 𝛉𝓓)) (3.41)

Taking the expectation on both sides of (3.41) with respect to data sets, we have

𝔼𝒟 [(ℎ(𝐱) − �̂�(𝐱; 𝛉𝓓))
2
] = 𝔼𝒟[(ℎ(𝐱) − 𝔼𝒟[�̂�(𝐱; 𝛉𝓓)])2] + 𝔼𝒟 [(𝔼𝒟[�̂�(𝐱; 𝛉𝓓)] − �̂�(𝐱; 𝛉𝓓))

2
]

= (ℎ(𝐱) − 𝔼𝒟[�̂�(𝐱; 𝛉𝓓)])2 + 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒[�̂�(𝐱; 𝛉𝓓)]

= (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑏𝑖𝑎𝑠)2 + 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (3.42)

Thus, combining (3.40) and (3.42), we obtain the total expected loss for a single point x, with

respect to data sets,

𝔼𝒟[𝐿(𝐱)] = 𝑛𝑜𝑖𝑠𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 + (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑏𝑖𝑎𝑠)2 + 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (3.43)

where

𝑛𝑜𝑖𝑠𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝜖|𝐱) (3.43a)

(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑏𝑖𝑎𝑠)2 = (ℎ(𝐱) − 𝔼𝒟[�̂�(𝐱; 𝛉𝓓)])2 (3.43b)

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝔼𝒟 [(𝔼𝒟[�̂�(𝐱; 𝛉𝓓)] − �̂�(𝐱; 𝛉𝓓))
2
] (3.43c)

The total expectation of the lose

𝔼[𝐿] = ∫𝔼𝒟[𝐿(𝐱)] 𝑝(𝐱)𝑑𝐱 (3.44)

Equation (3.43) reveals important insights in the performance of a model. On average, the loss of

a model can be decomposed into three parts: 1) intrinsic noise in the data set; 2) the squared bias

from the true underlying function; and 3) the variance of its predictions. The bias and the variance

depend on the selection of a model and the size of training data set.

In general, a simple model is likely to have a large bias but a small variance, and thus has a problem

of underfitting. In contrast, a highly flexible model is sensitive to the selection of training set due

to the limited size of the training set, and thus has a high variance but a low bias, which leads to an

overfitting. This can be demonstrated by the following experiment. First, we independently

generate 10 training sets with 10 sample points per data set, from the same distribution defined by

(3.19), copied here

𝑦 = 10(𝑥 − 0.5)2 − 𝑥 + 0.5 × 𝒩(0,1)

𝑥 is sampled fixedly and uniformly (i.e., equal distance) in the range of [0,1), and 𝑦 is generated

by the above equation. Thus, the underlying true relationship is

ℎ(𝑥) = 10(𝑥 − 0.5)2 − 𝑥 (3.45)

which is a second order polynomial and plotted as the blue dashed lines in Fig.3.5.

Then, we select a certain-order polynomial model, and independently fit the model to each data set.

As a result, we obtain 10 prediction curves corresponding to 10 data sets, shown in the left figures

in Fig.3.5. The difference between the true line and the average of 10 prediction curves indicates

the prediction bias, shown in the right figures in Fig.3.5. The variation of the 10 curves shows the

prediction variance.

Fig.3.5 shows the results of the experiment. In Fig.3.5(a), the linear model is obviously not

sufficient to fit a second order polynomial relationship, thus has a large bias. As we expect, the

second order polynomial model is a good fit for the data sets, shown in Fig.3.5(b). The higher order

polynomials exhibit some degrees of high variance or overfitting, as shown in Fig.3.5 (c) and (d),

but the average over data sets fits the underlying true relationship very well if the number of data

sets is large.

(a) First-order polynomial (linear): high bias, low variance

(b) second-order polynomial: a good fit

(c) fourth-order polynomial: low bias, high variance

(d) eighth-order polynomial: low bias, high variance

Fig.3.5 curve fitting with different order polynomials using different data sets

Thus, to avoid underfitting and overfitting, it is crucial to select a model with an appropriate

complexity. There are two strategies to alleviate overfitting: 1) reducing the complexity of the

model or applying regularization (discussed in chapter 4), and 2) increasing the size of the training

data set. Note that the analysis of the bias and the variance does not require ℎ(𝐱) to be linear. The

concepts and implications in this section can be applied to non-linear models, such as neural

networks.

3.5 An Example: House Price Prediction

In this section we will use an example to demonstrate how we can apply the linear

regression model to solve the real problems. Through this example, we address some

common issues in machine learning: train/test data set partition, feature scaling, learning

rate selection, etc.

3.5.1 Practical issues: feature scaling and learning rate

Before we dive into a particular problem, we discuss two practical issues which usually exist in

machine learning. The first issue is feature scaling. Before we apply data to a machine learning

algorithm, we should scale the data (if necessary) so that all features have comparable numerical

values. The second issue is learning rate selection. It is essential to select an appropriate value of

learning rate α for a successful convergence.

Feature scaling

Before using the dataset, we need to make sure that all features are on a similar quantitative scale.

In the housing dataset, the house size and number of bedrooms are apparently not on a similar scale.

This will result in inefficient computation in gradient decent with a slow converge path, as shown

in Fig.3.6(a). A balanced scale across features will likely have a relatively straight converge path

for search the optimal parameters, as shown in Fig.3.6(b).

Fig.3.6 Contour plots and converge path (red arrowed lines):

(a) unbalanced feature scale, (b) balanced feature scale.

There are two basic scaling methods:

a) Min-max scaler transforms features by scaling each feature individually to a given range, e.g.

between zero and one. For instance, the values of feature xi can be scaled to range between 0

and 1 by

𝑧𝑖 =
𝑥𝑖−min

𝑗
{𝑥𝑖

(𝑗)
}

max
𝑗

{𝑥𝑖
(𝑗)

}−min
𝑗

{𝑥𝑖
(𝑗)

}
 (3.46)

b) Standard scaler standardizes features by removing the mean and scaling to unit variance.

Centering and scaling happen independently on each feature by computing the relevant

statistics on the samples in the training set. The standardized feature of a feature xi is calculated

as:

𝑧𝑖 =
𝑥𝑖−𝑢𝑖

𝑠𝑖
 (3.47)

where ui is the mean of the feature xi, and si is the standard deviation of the feature xi.

Choice of learning rate

In the gradient descent, the parameters are updated as

𝜃𝑗 ≔ 𝜃𝑗 − 𝛼
𝜕

𝜕𝜃𝑗
𝐽(𝜃) (3.48)

where α is learning rate, which is a hyperparameter. We should choose a value for α so that the

cost function 𝐽(𝜃) decreases after every iteration, as shown in Fig.3.7. Thus, we can use a plot of

cost function versus number of iterations to monitor whether the gradient descent is working

correctly or not. The plots in Fig.3.8(b) and (c) indicate that the value of α is too large and

consequently results in overshooting during the update of θ. The cost will oscillate or even increase

during the training process.

In general, if α is too small, convergence is slow. If α is too large, J(θ) may not decrease on every

iteration or may not converge. In practice, to choose a good α value, we can try different values,

such as …, 0.001, 0.01, 0.1, 1, …, and plot the cost function vs. # of iterations for each value, and

then identify a good value for α based on the shape of the plots.

Fig.3.7 an appropriate value for α, (a) converge path, (b) cost function vs # of iterations

Fig.3.8 value of α is too large, (a) the path does not converge, (b) and (c) possible plots of cost

function.

3.5.2 Linear regression for house price prediction in Python

Problem and dataset

Suppose that the price of a house (in a particular region) depends on some features, such as square

footage, the number of bedrooms, the number of bathrooms, the number of stories, parking space,

whether on a main road, whether furnished, etc., and that we have a dataset comprised of samples

on the prices of such houses. We will build a linear regression model to predict the price of a house

given its features.

The dataset can be downloaded at kaggle.com, as Housing.csv. This dataset includes 545 house

price samples, with 12 features per sample. The details of the dataset will be described when we

proceed with the steps of the project in the following text.

Steps of the project

1) Understanding the dataset

First, import the required packages and read the dataset file using pandas DataFrame.

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

read the data file

housing = pd.DataFrame(pd.read_csv("Housing.csv"))

print('housing shape:', housing.shape)

housing.head()

housing shape: (545, 13)

The dataset is loaded to a DataFrame, named housing, which has 545 rows and 13 columns. Each

row represents one sample. The first column lists the prices, and other columns specify the relevant

12 features. Some features are specified by numerical numbers while others by words (e.g., yes,

no, furnished, semi-furnished, unfurnished).

2) Data pre-processing
Convert descriptive features to numerical features

We substitute the descriptive feature values to numerical values according to the mapping: “no”→0,

“yes”→1, “unfurnished”→0, “semi-furnished”→1, “furnished”→2.

List of variables to map

varlist = ['mainroad', 'guestroom', 'basement', 'hotwaterheating', 'airconditi

oning', 'prefarea']

Defining the map function

def binary_map(x):

 return x.map({'yes': 1, "no": 0})

Applying the function to the housing list

housing[varlist] = housing[varlist].apply(binary_map)

housing['furnishingstatus'] = housing['furnishingstatus'].replace(['unfurnished

'], 0)

housing['furnishingstatus'] = housing['furnishingstatus'].replace(['semi-furnis

hed'], 1)

housing['furnishingstatus'] = housing['furnishingstatus'].replace(['furnished']

, 2)

housing.head()

Split dataset into a training set and a test set

from sklearn.model_selection import train_test_split

np.random.seed(0) # to repeat to generate the same result.

df_train, df_test = train_test_split(housing, train_size = 0.7, test_size = 0.3

, random_state = 100)

Load the data to numpy arrays separately in terms of train, test, features, and labels, and scale the

price down by 1000 for a numerical convenience.

train=df_train.to_numpy()

test=df_test.to_numpy()

X_train=train[:,1:]

y_train=train[:,0]/1000. # scaled down by 1000

X_test=test[:,1:]

y_test=test[:,0]/1000. # scaled down by 1000

Scale features

On the training data, we normalize each feature into the range [0,1] by a function MinMaxScaler().

After normalizing the features, it is important to store the parameters used for normalization, such

as minimum, maximum, and range. The variables, feature_min, feature_max, feature_range, keep

a record of the normalization parameters. To predict the price of the house with a feature vector x,

we must first normalize x using the same value of parameters (such as feature_min, feature_max,

feature) that we had previously used for the training set normalization.

from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()

X_train_scaled = scaler.fit_transform(X_train) #train is numpy array (381,12)

feature_min=scaler.data_min_ # shape (12.)

feature_max=scaler.data_max_ # shape (12,)

feature_range=scaler.data_range_ # shape (12,)

X_test_scaled=(X_test-feature_min)/feature_range # scale test features

3) Define and run gradient_descent function for linear regression.

x(m,n): m is the number of samples, n is the number of features

def gradient_descent(alpha, x, y, numIterations):

 cost=[]

 m = x.shape[0] # number of samples

 x0=np.ones(m).reshape((m,1))

 x=np.concatenate((x0,x), axis=1) # now, x(m, n+1)

 theta = np.ones(x.shape[1])

 x_transpose = x.transpose()

 for iter in range(0, numIterations):

 hypothesis = np.dot(x, theta)

 loss = hypothesis - y

 J = np.sum(loss ** 2) / (2 * m) # cost

 #print ("iter %s | J: %.3f" % (iter, J))

 gradient = np.dot(x_transpose, loss) / m

 theta = theta - alpha * gradient # update

 cost.append(J)

 #theta_list.append(theta)

 return theta,cost

theta ,cost= gradient_descent(alpha=0.01, x=X_train_scaled, y=y_train, numItera

tions=10000)

theta

array([1662.57265997, 2466.86385012, 693.75803667, 2208.83766241,

 1212.95881281, 614.7736432 , 362.00404946, 247.70616561,

 1002.98979197, 775.37672733, 759.95528449, 705.08284328,

 381.26621482])

plt.plot(np.log10(cost), color='red')

plt.title('cost vs iterations')

plt.xlabel('# of iteration')

plt.ylabel('cost J (theta)')

plt.show()

4) Validate by test dataset.

Now, we use the trained model to predict the prices of the houses in the test dataset and show both

the true prices and predicted prices.

def predict(x, theta):

 m = x.shape[0] # number of samples

 x0=np.ones(m).reshape((m,1))

 x=np.concatenate((x0,x), axis=1) # add the first column with "1"

 return np.dot(x,theta)

Y_test_pred=predict(X_test_scaled,theta)

print("Area #of bds real_price predict from Linear reg ")

for i in range (0,len(X_test_scaled)):

 T=X_test[i]

 print("{0:8.2f},{1:8.2f},{2:12.2f},{3:20.2f}".format(T[0],T[1],y_test[i],Y_

test_pred[i]))

Area #of bds real_price predict from Linear reg

 2880.00, 3.00, 4403.00, 4081.51

 6000.00, 3.00, 7350.00, 6548.83

10269.00, 3.00, 5250.00, 5534.49

 5320.00, 3.00, 4550.00, 5220.89

 4950.00, 4.00, 4382.00, 4739.91

 4320.00, 3.00, 4690.00, 3989.78

 …

Summary and Further Reading

In this chapter, we introduced a type of models, called linear regressions. We described two ways

to learn or fit the models: the normal equation (analytic solution) and the gradient descent

algorithm. Both ways are based on minimizing a cost function that specifies the error between the

predictions and the true values.

The normal equation provides theoretical optimal solutions to the parameters of a model by solving

a system of linear equations. However, its implementation is not computationally efficient in

practice. The gradient descent algorithm iteratively searches for the optimal solutions along the

negative direction of the gradient of the cost function with respect to parameters. The gradient

descent algorithm and its variants are widely applied in training complex models (e.g., deep neural

networks). There are some practical issues relevant to convergence, such as the choice of learning

rate and feature scaling.

The concept of simple linear regression can be extended to a linear model with multiple features

corresponding to a set of basis functions. One such example is a polynomial curve fitting, which

has been treated in detail.

It is very helpful to view the linear regression model from a probabilistic perspective. The linear

regression with least square errors is equivalent to maximum likelihood estimation. We analyze the

expectation of loss in terms of bias and variance of a model, given the size of the training dataset.

Overfitting or underfitting can be diagnosed based on the measurement of bias and variance. From

the insightful analysis, one can see how the training dataset size and the complexity of the model

affect the bias and variance. As we will see in later chapters, the conclusions on the trade-off

between bias and variance can be applied to general machine learning models.

After finishing the chapter, one should understand the theoretical aspects of linear regression and

be able to implement a linear regression in Python from scratch.

Files: C:\Users\weido\ch1_linear_reg\ch3_linear_reg.ipynb, Housing.csv.

Further reading

[1] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani, Chapter 3, Linear Regression, in

An introduction to Statistical Learning with Applications in R. Springer.

[2] Bishop, C. M. Bishop, Chapter 3 Linear models for regression, in Pattern recognition and machine

learning. Springer, 2006.

Exercises

1. Derive the normal equation (3.5a) and (3.5b) for linear regression with one feature.

2. Derive the normal equation (3.16) for linear regression with multiple features.

3. You run gradient descent for 30 iterations with α=0.1 and compute 𝐽(𝜃) for each iteration. You

find that the value of 𝐽(𝜃) decreases slowly and is still decreasing after 15 iterations. Based on

this, which of the following conclusions seems most plausible?
a) α=0.1 is an effective choice of learning rate.
b) It would be more promising to try a larger value of α (say α=0.5)
c) Rather than use the current value of α, it would be more promising to try a smaller

value of α (say α=0.05)

4. Suppose you have m=100 training examples with n=5 features and would learn a linear

regression model to directly fit the dataset. According to the notations in this chapter, what are

the dimensions of θ, X, and Y?

5. Suppose you train a linear regression to fit the dataset (x,y) in Fig.3.3(a). The dataset can be

generated by the following statements:
Fixing random state for reproducibility

np.random.seed(1968)

x=np.random.rand(10)

y=4+6*x+np.random.randn(10)

In this exercise, you are asked to plot the first five learned lines during the first five

iterations, along with the data samples. Since different initial values of θ lead to different

results, you are asked to repeat the exercise using two different initial values of θ.

1) Use 𝜃 = [
1
1
] as the initial value for the iteration in gradient descent.

2) Use 𝜃 = [
0
0
] as the initial value for the iteration in gradient descent.

6. In this exercise, you are asked to generate an artificial dataset based on a linear model, and then

learn the model using gradient descent. Specifically,

1) Generate 100 data examples (𝑥(𝑖), 𝑦(𝑖)), 𝑖 = 1,2,… ,100, which are randomly drawn from

the model
𝑦 = 𝑎 + 𝑏𝑥 + 𝑁(0,1)

where a and b are constants (say a=1, b=2), 0 ≤ 𝑥 ≤ 2, N(0,1) is a random number of

Gaussian distribution with mean=0 and variance=1. Plot a 2D scatterplot for your

generated data examples. Please note that sampling on x should be random rather than

uniform.

2) Learn a linear regression model 𝑦 = 𝜃0 + 𝜃1𝑥 to fit the generated examples. Compare the

results (𝜃0, 𝜃1) with the pre-defined model parameters (a, b). Plot the fitted line along with

the data examples, and the cost function versus iteration index.

7. In this exercise, you are asked to generate an artificial dataset based on a nonlinear model, and

then fit it to a polynomial model. Specifically,

1) Generate 20 data examples (𝑥(𝑖), 𝑦(𝑖)), 𝑖 = 0,1,2,… ,19, which are drawn from the model

𝑦 =
sin(2𝜋 × 5 × (𝑥 − 0.234))

2𝜋 × 5 × (𝑥 − 0.234)
+ 0.1 × 𝒩(0,1)

where 𝒩(0,1) is a random number that follows Gaussian distributions with mean=0 and

variance=1. 𝑥(𝑖) are sampled uniformly (i.e., with equal distance) from 0 and 1. Plot your

generated data examples and the underlying sinc function curve in one figure, something

like the figure below.

2) Using the normal equation (3.16), learn a polynomial model 𝑦 = 𝜃0 + 𝜃1𝑥 + 𝜃2𝑥
2 +

⋯+ 𝜃𝑛𝑥𝑛 to fit the generated examples, for 𝑛 = 8. Plot the examples, underlying sinc

function and the learned polynomial function. The plots should be something like below.

3) Repeat 2) for 𝑛 = 1, 2, 3, 10, 20.

4) Using the gradient descent algorithm (instead of the normal equation), learn a polynomial

model 𝑦 = 𝜃0 + 𝜃1𝑥 + 𝜃2𝑥
2 + ⋯+ 𝜃𝑛𝑥𝑛 to fit the generated examples for 𝑛 = 10.

Compare the result with the result obtained in 3) by the normal equation. Is there any

problem with this result? Why? If there is a problem, discuss the ways to fix it.

8. In your own words, describe the bias and variance of a model. What is the trade-off between

bias and variance? In general, how do the bias and variance change when the complexity of a

model increases? How do the bias and variance change when the size of training dataset

increases?

