
Chapter 3 

Linear Regression  
 

Regression refers to modeling the relationship between one or more independent variables and a 

dependent variable. These variables take continuous (or numerical) values. Linear regression is the 

simplest and most popular among the standard tools for regression. In linear regression, we assume 

that the relationship between the dependent variable and the independent variables is approximately 

linear, i.e., that the dependent variable can be predicted as a linear combination of input variables. 

Thus, in a linear regression model, the prediction is not only a linear function of the parameters, 

but also a linear function of input variables.  

Through regression in this chapter, we introduce the basic concepts of machine learning, such as 

models, datasets, loss function, training, inference, gradient descent algorithm, and so on. 

Furthermore, linear regression can be generalized to many other more powerful machine learning 

paradigms, such as logistic regression, neural networks, and deep neural networks. Thus, this 

chapter provides a foundation for the rest of the book. 

In this chapter you will learn about 

o Linear regression model and its analytic solution. 

o Gradient descent algorithm for linear regression. 

o Linear models using basis functions: polynomial curve fitting. 

o Analysis of bias and variance of a model. 

o Basic Python programming for data-preprocessing and gradient descent algorithm for 

linear regression models. 

 

3.1 Linear Regression with Single Feature 

3.1.1 Linear regression model 

Linear regression is one of the most basic algorithms in machine learning. Many fancy and popular 

machine learning algorithms can be viewed as generalizations or extensions of linear regression. 

Thus, it serves as a good starting point of machine learning. In the setting of a supervised learning 

task, we are given a training dataset that consists of m examples or samples defined as input-output 

pairs (𝐱(1), 𝑦(1)), (𝐱(2), 𝑦(2))… (𝐱(𝑚), 𝑦(𝑚)), where the superscript indicates the index of 

examples. Each input 𝐱(𝑖) is a vector including n features (or attributes, or predictors). The output, 

often referred as the target or label, is assumed to be univariate, i.e., 𝑦(𝑖) ∈ ℝ, in this chapter. The 

later chapters show that 𝑦(𝑖) could be a vector in general. The goal is to learn or train a model that 

describes the relationship between the input and the output, based on the training dataset. After we 

have completed training, given a new input value x, we can use the trained model to predict its 

output, denoted as �̂�(𝑥) . A regression task is also called curve fitting in some texts. If the output y 

can be approximated by a linear combination of features, the supervised learning problem can be 

reduced to a linear regression problem. 



We will begin to address the linear regression with a single feature.  The linear regression on a single 

feature is to predict a target y on a single feature variable x, assuming that there is approximately a 

linear relationship between x and y, as shown in Fig.3.1. Mathematically, the relationship can be 

represented as 

𝑦 = 𝜃0
𝑡 + 𝜃1

𝑡𝑥 + 𝜖                                                             (3.1) 

where  𝜃0
𝑡, 𝜃1

𝑡 are the intercept and the slope for the assumed linear relationship, respectively. 𝜖 is 

the error term for a consideration of the following facts: the true relationship is not exactly linear, 

there are other variables that cause variation in y, and there exist measurement errors. In a linear 

regression task, we are given a set of data examples drawn from (3.1), and learn a linear model (or 

hypothesis) defined by 

�̂� = ℎ𝜃(𝑥) = 𝜃0 + 𝜃1𝑥                                                             (3.2) 

In Fig.3.1, the blue dots represent the data example points, and the red line is the linear regression 

line defined by (3.2). 

 

Fig.3.1 Linear regression 

3.1.2 Cost function 

In general, a linear model (e.g. the red line in Fig.3.1) does not fit the training dataset exactly (e.g. 

the blue dots in Fig.3.1). To find the optimal values for the parameters in (3.2), we need to define 

a cost (or loss) function that quantifies the mismatch between the true values and predicted values 

of the target. There are various loss functions available. However, a common choice of loss function 

in regression problems is the mean squared error, given by 

 𝐽(𝜃0, 𝜃1) =
1

2𝑚
∑ (�̂�(𝑖) − 𝑦(𝑖))2𝑚

𝑖=1 =
1

2𝑚
∑ (𝜃0 + 𝜃1𝑥

(𝑖) − 𝑦(𝑖))2𝑚
𝑖=1                        (3.3) 

 

3.1.3 Analytic solution 

The optimal coefficients  𝜃0, 𝜃1 minimize the cost function. Since the cost function of linear 

regression is a quadratic function of coefficients, there is just one critical point on the cost surface, 

and it corresponds to the minimum of the cost. An analytical solution can be found by solving the 

system of linear equations 

{

𝜕

𝜕𝜃0
𝐽(𝜃0, 𝜃1) = 0

𝜕

𝜕𝜃1
𝐽(𝜃0, 𝜃1) = 0

                                                                        (3.4) 



One can show that the solution is 

{
𝜃1 =

∑ (𝑥(𝑖)𝑦(𝑖)−�̅��̅�)𝑚
𝑖=1

∑ ((𝑥(𝑖))
2
−(�̅�)2)𝑚

𝑖=1

   

𝜃0 = �̅� − 𝜃1�̅�                  

                                                            (3.5a) 

or equivalently,  

 {
𝜃1 =

∑ (𝑥(𝑖)−�̅�)(𝑦(𝑖)−�̅�)𝑚
𝑖=1

∑ (𝑥(𝑖)−�̅�)
2𝑚

𝑖=1

𝜃0 = �̅� − 𝜃1�̅�                  
                                                            (3.5b) 

where �̅� =
1

𝑚
∑ 𝑥(𝑖)𝑚

𝑖=1 , �̅� =
1

𝑚
∑ 𝑦(𝑖)𝑚

𝑖=1  are the sample means. (3.5) is also known as normal 

equation.  

Let’s consider a dataset consisting of 10 examples drawn from the relationship 𝑦 = 4 + 6𝑥 + 𝜖, 

where 𝜖 is a standard Gaussian random variable (mean=0, variance=1). The following Python 

program implements this linear regression on the dataset by the normal equation (3.5). The result 

is plotted in Fig.3.2(a), where the blue dots represent the data examples, the dashed blue line is the 

target linear line 𝑦 = 4 + 6𝑥, and the red line is the linear regression line 𝑦 = 𝜃0 + 𝜃1𝑥 for 

prediction. In Fig.3.2(b), different linear regression lines are plotted, each of which is computed on 

a separate dataset randomly drawn from the same relationship 𝑦 = 4 + 6𝑥 + 𝜖. The average of this 

linear regression lines is quite close to the true linear line. 

 

import numpy as np 

import matplotlib.pyplot as plt 

import statistics 

 

# Fixing random state for reproducibility 

np.random.seed(1968) 

x=np.random.rand(10)  # uniform [0,1) 

y=4+6*x+np.random.randn(10) # randn: Normal with mean=0, var=1 

 

# normal equation 

x_bar=statistics.mean(x) 

y_bar=statistics.mean(y) 

theta1=sum(np.multiply((x-x_bar),(y-y_bar)))/sum(np.multiply((x-x_bar),(x-x_bar

))) 

theta0=y_bar-theta1*x_bar 

 

# visualize results 

x_new=np.array([0,1]) 

y_predict=theta1*x_new+theta0 

y_true=6*x_new+4 

plt.plot(x_new,y_predict,"r-", label='linear regression line') 

plt.plot(x_new,y_true,"b--", label='true linear line') 

plt.plot(x,y,"b.") 

plt.xlabel('x', fontsize=18) 

plt.ylabel('y', fontsize=18) 

plt.grid(color = 'green', linestyle = '--', linewidth = 0.5) 

plt.legend(loc='lower right') 

plt.xlim([0,1]) 

plt.ylim([0,12]) 

plt.show() 

 



                 

          (a) linear regression on one dataset         (b) linear regressions on different sets of observations 

Fig.3.2 Linear regression model for prediction 

Although the analytic solution allows for nice mathematical analysis, it is not available for general 

neural network and deep learning models because the relationship between the output and inputs 

are very complicated (at least not linear). Fortunately, we will see that we can train or learn the 

model in an iterative manner efficiently in practice. 

3.1.4 Gradient descent algorithm 

In practice, the solution to (3.4) is usually obtained by a gradient descent algorithm in an iterative 

manner, instead of the analytic solution (3.5). The analytic solution requires linearity of the model 

which does not hold in many applications, and the gradient descent algorithm developed here will 

be generalized to non-linear models, as we will see later. Furthermore, computing the analytic 

solution for large dataset with multi-dimensional input is prohibitively expensive. The concept of 

gradient decent algorithm is illustrated in Fig.3.3. If function 𝐽(𝜃) is convex (note: A convex 

function is a continuous function whose value at the midpoint of every interval in its domain does 

not exceed the arithmetic mean of its values at the ends of the interval), the value of 𝜃 for the 

minimum of 𝐽(𝜃) can be iteratively computed by 

𝜃 ≔ 𝜃 − 𝛼
𝑑𝐽(𝜃)

𝑑𝜃
                                                                  (3.6) 

where 𝛼 is a carefully selected constant, called learning rate, which controls the amount of 

updating. 

 
Fig.3.3 Search for a minimum point using gradient descent: the blue circle represents the 

minimum point and the red arrow represents the direction of the negative gradient. 

Since the cost function 𝐽(𝜃0, 𝜃1), is a two-dimensional convex function, the optimal (𝜃0, 𝜃1) for 

the minimum 𝐽(𝜃0, 𝜃1) can be obtained iteratively by 

𝜃0 ≔ 𝜃0 − 𝛼
𝜕𝐽(𝜃0,𝜃1)

𝜕𝜃0
            and            𝜃1 ≔ 𝜃1 − 𝛼

𝜕𝐽(𝜃0,𝜃1)

𝜕𝜃1
                                   (3.7) 



Therefore, the gradient descent algorithm for linear regression can be summarized as the follows. 

 

The following python program shows an example of linear regression using gradient descent 

algorithm. The results are plotted in Fig.3.3. It is usually helpful to plot the loss versus iteration 

step for monitoring the training process, as in Fig.3.3(b). 

# gradient descent algorithm for a single feature input 

 

# Fixing random state for reproducibility 

np.random.seed(1968) 

x=np.random.rand(10) 

y=4+6*x+np.random.randn(10) 

 

# gradient descent algorithm 

theta0=1 

theta1=1 

alpha=1 

cost=[] 

m=x.shape[0] 

 

for iter in range(0, 100): 

    error=theta0+theta1*x-y 

    temp0=theta0-alpha*statistics.mean(error) 

    temp1=theta1-alpha*statistics.mean(error*x) 

    theta0=temp0 

    theta1=temp1 

    J=sum((theta0+theta1*x-y)**2)/(2*m) 

    cost.append(J) 

 

# plot the linear model and traning examples 

x_new=np.array([0,1]) 

y_predict=theta1*x_new+theta0 

plt.plot(x_new,y_predict,"r-") 

plt.plot(x,y,"b.") 

plt.xlabel('x', fontsize=18) 

plt.ylabel('y', fontsize=18) 

plt.grid(color = 'green', linestyle = '--', linewidth = 0.5) 

plt.xlim([0,1]) 

plt.ylim([0,12]) 

plt.show() 

# plot the loss function vs iteration steps 

plt.plot(cost, 'b-') 

plt.xlabel('iteration', fontsize="18") 

1) Set initial values for 𝜃0, 𝜃1, select a learning rate α (a hyperparameter) 

2) Repeat: 

(i) Update 𝜃0, 𝜃1: (simultaneously, not sequentially) 

 temp0:= 𝜃0 − 𝛼
𝜕

𝜕𝜃0
𝐽(𝜃0, 𝜃1) = 𝜃0 − 𝛼

1

𝑚
∑ (𝜃0 + 𝜃1𝑥

(𝑖) − 𝑦(𝑖))𝑚
𝑖=1                   

temp1:= 𝜃1 − 𝛼
𝜕

𝜕𝜃1
𝐽(𝜃0, 𝜃1) = 𝜃1 − 𝛼

1

𝑚
∑ (𝜃0 + 𝜃1𝑥

(𝑖) − 𝑦(𝑖))𝑥(𝑖)𝑚
𝑖=1             

𝜃0 ≔ 𝑡𝑒𝑚𝑝0 

 𝜃1 ≔ 𝑡𝑒𝑚𝑝1 

(ii) Update cost function 𝐽(𝜃0, 𝜃1) 

(iii) Terminate the iteration: if the predefined maximal iterations have been completed, then 

exit to 3), otherwise go back to (i). Or Compare the current cost with the previous cost. 

If they are close enough, then exit to 3). 

3) Return 𝜃0, 𝜃1 



plt.ylabel('loss', fontsize="18") 

plt.grid(color = 'green', linestyle = '--', linewidth = 0.5) 

plt.show() 

       

                       (a) linear model                                       (b) loss function                                                         

Fig.3.3 Linear regression using gradient descent algorithm 

3.2 Linear Regression with Multiple Features  

In this section, we will address the linear regression models with multiple features. In many 

applications, the target y is a function of multiple features. In other words, input x is a vector. An 

intuitive approach is to generalize the linear regression algorithm from a single feature to multiple 

features by vectorization.  Equation (3.1) can be generalized as 

𝑦 = 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2 + ⋯+ 𝜃𝑛𝑥𝑛 + 𝑒                                                    (3.8) 

 

where 𝑥1, 𝑥2, … , 𝑥𝑛 are n features. This model can be written in a vector format 

𝑦 = 𝛉𝑇𝐱 + 𝑒                                                                              (3.9) 

 

where θ and x are the column vectors, defined as  

𝛉 = [

𝜃0

𝜃1

⋮
𝜃𝑛

] ∈ ℝ(𝑛+1)×1, 𝐱 = [

1
𝑥1

⋮
𝑥𝑛

] ∈ ℝ(𝑛+1)×1 

 

Thus, given x, the corresponding prediction of y is 

 

�̂� = ℎ𝜃(𝐱) = 𝛉𝑇𝐱                                                                  (3.10) 

 

To represent the cost function in a form of vectors and matrices, we arrange the dataset in a matrix: 

each row associated with one example. Specifically, the m examples in the training set are 

represented by a matrix 𝑋 ∈ ℝ𝑚×(𝑛+1)  

 

𝐗 =

[
 
 
 
 − − 𝐱(1)⊺ − −

− − 𝐱(2)⊺ − −
⋮

− − 𝐱(𝑚)⊺ − −]
 
 
 
 

=

[
 
 
 
 1 𝑥1

(1)
… 𝑥𝑛

(1)

1 𝑥1
(2)

… 𝑥𝑛
(2)

⋮
1

⋮
𝑥1

𝑚 …
⋮

𝑥𝑛
(𝑚)

]
 
 
 
 

                                              (3.11) 

 



where 𝐱(𝑖)⊺ is the ith example row vector, and 𝑥𝑗
(𝑖)

 is the value of the jth feature in the ith example. 

The elements of the first column of X are “1” to accommodate  𝜃0 in (3.8). In other words, we can 

have an additional dummy feature 𝑥0
(𝑖)

= 1. 

 

The targets or labels of the training set are expressed as a column vector 𝐲 ∈ ℝ𝑚×1 

𝐲 =

[
 
 
 
𝑦(1)

𝑦(2)

⋮
𝑦(𝑚)]

 
 
 

 

 

where 𝑦(𝑖) is the target (or label) of example 𝐱(𝑖). Thus, the error vector 𝑬 ∈ ℝ𝑚×1 can be defined 

as 

 

𝑬 = [

𝑒(1)

𝑒(2)

⋮
𝑒(𝑚)

] = 𝐗 ∙  𝛉 − 𝐲                                                            (3.12) 

 

The cost function can be represented by 

 

𝐽(𝜃) =
1

2𝑚
∑ (𝑒(𝑖))

2𝑚
𝑖=1 =

1

2𝑚
𝑬⊺𝑬 =

1

2𝑚
(𝐗 ∙ 𝛉 − 𝐲)⊺(𝐗 ∙ 𝛉 − 𝐲)                (3.13) 

 

where ( )⊺ is the operator of matrix transpose. By searching for the minimal cost over the space θ, 

we can find optimal θ for the linear regression model. The derivative of the cost function with 

respect to 𝜃𝑗 is 

𝜕𝐽(𝛉)

𝜕𝛉𝑗
=

1

𝑚
∑(ℎ𝜃(𝑥(𝑖)) − 𝑦(𝑖))𝑥𝑗

(𝑖)

𝑚

𝑖=1

=
1

𝑚
(𝑋𝑐𝑜𝑙𝑢𝑚𝑛_𝑗)

⊺
(𝐗 ∙ 𝛉 − 𝐲) 

  j=0,1,...,n,                           𝑥0
(𝑖)

= 1                                        (3.14) 

 

which can be equivalently written in a compact vectorized format as a gradient vector 

 

𝑔𝑟𝑎𝑑 =

[
 
 
 
 
 
𝜕𝐽(𝛉)

𝜕𝜃0

𝜕𝐽(𝛉)

𝜕𝜃1

⋮
𝜕𝐽(𝛉)

𝜕𝜃𝑛 ]
 
 
 
 
 

=
1

𝑚
𝑋⊺ ∙ (𝑋 ∙ 𝛉 − 𝐲)                                                  (3.15) 

 

The analytic solution to 
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐽(𝛉)

𝛉                
 is the solution to 𝑔𝑟𝑎𝑑 =

1

𝑚
𝑋⊺ ∙ (𝑋 ∙ 𝛉 − 𝐲) = 𝟎, which is 

called normal equation, given by 

  

𝛉∗ = (𝑋⊺𝑋)−1𝑋⊺𝐲                                                         (3.16) 

 

This normal equation is a theoretical solution to the linear regression problem. However, it can be 

computationally costly for large data sets. In practice, it may be convenient to use the gradient 

decent algorithm to search for the optimal solution.  



The corresponding gradient decent algorithm can be described in a vectorized format as follows. 

 

 
 

To make the gradient descent algorithm work efficiently, we may need to pay attention to the 

following practical considerations: 1) balancing the scales of all features; 2) selecting an 

appropriate learning rate; and 3) dividing the large data set into batches and updating the parameters 

based on one batch at a time. We will address these issues in more details later. 

 

The following Python program is to fit a linear regression model on a dataset consisting of 10 data 

examples randomly generated from 𝑦 = 4 + 6𝑥1 − 𝑥2 + 𝑒. With the settings in the program, the 

parameters of the resulting regression model are [ 4.42621106  5.57510254 -

0.80772246]. 

 
#linear regression with multiple features using gradient descent   

 

# generate training examples, x(m,3), y(m,1) 

np.random.seed(1969) # for reproducibility 

m=10 

x0=np.ones(m).reshape((m,1)) 

x=np.random.rand(m,2) 

x=np.concatenate((x0,x),axis=1) # add the first column with all 1 

w=np.array([4,6,-1]) # true model 

y=np.dot(x,w)+0.5*np.random.randn(10) 

 

#gradient descent algorithm for multiple features 

cost=[] 

n=x.shape[1] # n=3, the number of features 

 

# initial values for parameters, theta=np.array([1,1,1]) 

theta=np.ones(n)  

 

alpha=0.1 #learning rate 

for iter in range(0, 1000): 

    hypothesis=np.dot(x, theta) 

    loss=hypothesis-y 

    J=np.sum(loss**2)/(2*m) 

    gradient=np.dot(np.transpose(x), loss)/m 

    theta=theta-alpha*gradient     

    cost.append(J) 

 

# plot the loss function vs iteration steps 

1) Set initial values for 𝛉 ∈ ℝ(𝑛+1)×1 , select learning rate α  

2) Repeat: 

(i) Compute gradient vector:  𝑔𝑟𝑎𝑑 ∈ ℝ(𝑛+1)×1 

 𝑔𝑟𝑎𝑑 =
1

𝑚
𝑋𝑇 ∙ (𝑋 ∙ 𝛉 − 𝐲)  

(ii) Update  𝛉 ≔ 𝛉 − 𝛼 ∙ 𝑔𝑟𝑎𝑑 

(iii) Update cost function 𝐽(𝛉) (not required for gradient descent, but for behavior 

monitoring and visualization) 

𝐽(𝜃) =
1

2𝑚
(𝑋 ∙ 𝛉 − 𝐲)⊺(𝑋 ∙ 𝛉 − 𝐲)                                         

(iv) Terminate iteration: If the predefined maximal iterations have been completed, 

then exit to 3), otherwise go back to (i). Or Compare the current cost with the 

previous cost. If they are close enough, then exit to 3). 

3) Return θ 



plt.plot(cost, 'b-') 

plt.xlabel('iteration', fontsize="18") 

plt.ylabel('loss', fontsize="18") 

plt.grid(color = 'green', linestyle = '--', linewidth = 0.5) 

plt.show() 

print('true theta:',w) 

print('predicted theta:',theta) 

 

 
 

true theta: [ 4  6 -1] 

predicted theta: [ 4.42621106  5.57510254 -0.80772246] 

 

 

3.3 Linear Models for Regression 

Since the output of linear regression is a linear function of the input variables, linear regression has 

significant limitations in many applications. In this section, we will extend the linear regression 

model to general linear models by considering the non-linear relationship between the output and 

the input variables.  

3.3.1 Polynomial curve fitting 

Suppose that we are given a training set comprising m observations of x and the corresponding 

values of the target y, denoted as {(𝑥(𝑖), 𝑦(𝑖), 𝑖 = 1,2,… ,𝑚)}. Our goal is to predict the value of y 

for a new value of x. In general, y is not a linear function of x, even approximately. One choice is 

to fit a polynomial function to the dataset. An n-order polynomial function can be written as 

�̂�(𝑥, 𝛉) = 𝜃0 + 𝜃1𝑥 + 𝜃2𝑥
2 + ⋯+ 𝜃𝑛𝑥𝑛                                     (3.17) 

where n is the order of the polynomial function, 𝛉 is the vector comprising the polynomial 

coefficients 𝜃0, 𝜃1 …𝜃𝑛.  

Thus, the task of polynomial curve fitting is equivalent to a linear regression with n input features, 

𝑥, 𝑥2,⋯ , 𝑥𝑛. With a modification of matrix X, all conclusions in Section 3.2 can be applied to 

polynomial curve fitting. For example, the normal equation (3.16) can be used to compute the 

optimal value of 𝛉 in an analytic form 

𝛉∗ = (𝑋⊺𝑋)−1𝑋⊺𝐲                                                          (3.18)    

where                                                      



                       𝐗 =

[
 
 
 
 1 𝑥(1)

(𝑥(1))
2

(𝑥(1))
3
… (𝑥(1))

𝑛

1 𝑥(2) (𝑥(2))
2

 (𝑥(2))
3
… (𝑥(2))

𝑛

⋮
1

  
⋮

𝑥(𝑚) (𝑥(𝑚))
2

(𝑥(𝑚))
3
…

⋮

   (𝑥(𝑚))
𝑛
]
 
 
 
 

                                 (3.18a) 

and 

  𝐲 =

[
 
 
 
𝑦(1)

𝑦(2)

⋮
𝑦(𝑚)]

 
 
 

                                                                                                                (3.18b) 

 

Let us consider an example in which we try to fit polynomial functions (with different orders) to a 

dataset comprised of 10 sample points. The training set was generated by sampling the following 

function uniformly in range [0,1] 

𝑦 = 10(𝑥 − 0.5)2 − 𝑥 + 0.5 × 𝒩(0,1)                                       (3.19) 

where 𝒩(0,1) is a random number drawn from the standard Gaussian distribution. The sample 

points are plotted as blue dots in Fig.3.4, and the underlying true function 10(𝑥 − 0.5)2 − 𝑥 is 

plotted as the dash blue curve. 

By the normal equation (3.18), we obtain the optimal polynomial coefficients 𝛉∗. The resulting 

polynomial functions with different orders are plotted as the red solid lines in Fig.3.4. 

 

Fig.3.4 Plots of polynomials with different orders (shown as red curves) fitted to the data set 

(shown as blue dots) 

 



The gradient descent algorithm in Section 3.2 can be exactly applied for polynomial curve fitting 

with the input data matrix X specified as in (3.18a). However, when the order of polynomial is high 

(say n = 9), it may be difficult for the algorithm to converge because the high-order features (say 

𝑥9) is much smaller than the low-order feature (e.g. 𝑥) for 0 ≤ 𝑥 ≤ 1, which results in a very slow 

convergence in the high-order feature dimensions. 

From Fig.3.4, we can see that the polynomial with 1-order (i.e., linear) is not accurate enough to 

capture the feature of the data pattern, and the model is said to underfit the data set. We also find 

out that, on the other hand, if the order is too high (e.g., 8), the curve is overfitting the data set. 

When the overfitting occurs, the model minimizes the loss function just for a particular data set in 

order to perfectly fit all samples in this data set, and thus cannot generalize well for other data sets 

drawn from the same distribution.  

3.3.2 Linear models with basis functions 

The polynomial curve fitting, discussed in the previous section, is one of methods to model a 

nonlinear relationship. We can generalize the linear model (3.17) to a class of linear models, which 

are linear combinations of basis functions {𝜙𝒋(𝐱), 𝑗 = 0, 1, … , 𝑛} 

                     �̂� = ℎ𝜃(𝐱) = 𝛉𝑇𝛟(𝐱) = ∑ 𝜃𝒋𝜙𝒋
𝒏
𝒋=𝟎 (𝐱)                                  (3.20)  

where  𝜙𝒋(𝐱) are known as basis functions.  

Thus, polynomial regression is an instance of (3.20) with basis function 𝜙𝑗(𝑥) = 𝑥𝑗, 𝑗 = 0,1… ,𝑚, 

where m is the order of polynomial model.  A set of quadratic basis functions for two-feature input 

can be 

                                        𝛟(𝐱) =

[
 
 
 
 
 

1
𝑥1
𝑥2

𝑥1𝑥2

𝑥1
2

𝑥2
2 ]

 
 
 
 
 

                                                          (3.21) 

Thus, the linear model (3.20) with the basis functions (3.21) can model quadratic surfaces.  

Other possible basis functions include Gaussian functions, sinc functions, sigmoid functions, and 

sinusoidal functions, defined respectively as 

𝜙𝑗(𝑥) = 𝑒
−(𝑥−𝜇𝑗)

2

2𝑠2                                                                                  (3.22) 

𝜙𝑗(𝑥) =
sin(2𝜋𝜔(𝑥−𝜇𝑗))

2𝜋𝜔(𝑥−𝜇𝑗)
                                                                         (3.23) 

𝜙𝑗(𝑥) = 𝜎 (
𝑥−𝜇𝑗

𝑠
), where 𝜎(𝑧) =

1

1+𝑒−𝑧                                               (3.24) 

𝜙𝑐𝑗(𝑥) = 𝑐𝑜𝑠(2𝜋𝜔𝑗𝑥), 𝜙𝑠𝑗(𝑥) = 𝑠𝑖𝑛(2𝜋𝜔𝑗𝑥)                                   (3.25) 

where 𝑠, 𝜔, 𝜔𝑗 control the shape of the functions, and 𝜇𝑗 specifies the location of shapes. 

The loss function (3.13) can be generalized as 



𝐽(𝜃) =
1

2𝑚
∑ (𝑒(𝑖))

2𝑚
𝑖=1 =

1

2𝑚
𝑬⊺𝑬 =

1

2𝑚
(𝚽 ∙ 𝛉 − 𝐲)⊺(𝚽 ∙ 𝛉 − 𝐲)                    (3.26) 

where            

𝚽 =

[
 
 
 
 
𝜙0(𝑥

(1)) 𝜙1(𝑥
(1)) 𝜙2(𝑥

(1)) 𝜙3(𝑥
(1))… 𝜙𝑛(𝑥(1))

𝜙0(𝑥
(2)) 𝜙1(𝑥

(2)) 𝜙2(𝑥
(2)) 𝜙3(𝑥

(2))… 𝜙𝑛(𝑥(2))

⋮
𝜙0(𝑥

(𝑚))   
⋮

𝜙1(𝑥
(𝑚))

⋮
𝜙2(𝑥

(𝑚))
⋮

𝜙3(𝑥
(𝑚))…

⋮
𝜙𝑛(𝑥(𝑚))]

 
 
 
 

 

Thus, the gradient of loss function with respect to the parameters is  

𝑔𝑟𝑎𝑑 =
𝜕𝐽(𝛉)

𝜕𝛉
=

[
 
 
 
 
 
𝜕𝐽(𝛉)

𝜕𝜃0

𝜕𝐽(𝛉)

𝜕𝜃1

⋮
𝜕𝐽(𝛉)

𝜕𝜃𝑛 ]
 
 
 
 
 

=
1

𝑚
𝚽⊺ ∙ (𝚽 ∙ 𝛉 − 𝐲)                                         (3.27)        

The normal equation for optimal 𝛉 is the solution to 
𝜕𝐽(𝛉)

𝜕𝛉
= 𝟎, given by 

𝛉∗ = (𝚽⊺𝚽)−1𝚽⊺𝐲                                                              (3.28)         

In the corresponding gradient descent algorithm, the parameters are updated by 

𝛉 ≔ 𝛉 − 𝛼 ∙
𝜕𝐽(𝛉)

𝜕𝛉
                                                                (3.29) 

 

3.4 A Probabilistic Interpretation of Linear Regression 
 

3.4.1 Equivalence of least square error and maximum likelihood estimation 

We have seen how a problem of linear regression can be solved in terms of error square 

minimization through gradient descent. Here we re-visit the linear regression from a probabilistic 

perspective, thereby gaining some insights into error functions which are helpful for us to 

understand more machine learning algorithms we will develop later. 

In linear regression, it is assumed that the relationship between the target (or label) variable y and 

feature variable 𝐱 ∈ ℝ𝑛+1 is approximately linear, thus we can estimate the target value for a new 

feature value using the linear model. The target and the input can be modeled as  

𝑦 = 𝛉𝑇𝐱 + 𝑒 = ℎ𝜃(𝐱) + 𝑒                                                            (3.30) 

where e is a random noise taking unmodeled effects into account. In the example of house price, 

the mood of buyers, purchase season, or marriage status of sellers may affect the prices, but not be 

included in features x. For a particular data example, there exists an error 𝑒(𝑖)           

𝑦(𝑖) = 𝛉𝑇𝐱(𝑖) + 𝑒(𝑖) = ℎ𝜃(𝐱(𝑖)) + 𝑒(𝑖)                                          (3.31) 



If we know the probability distribution of e, we can express the uncertainty of y using the 

probability density function. For this purpose, we assume that the error e has a Gaussian distribution 

with zero mean and a variance of 𝜎2, i.e.  𝑒~𝑁(0, 𝜎2).  

Thus, the value of y has a Gaussian distribution with a mean ℎ𝜃(𝐱) and a variance of 𝜎2, 

𝑝(𝑦|𝐱; 𝛉, 𝜎2) =
1

√2𝜋𝜎
𝑒𝑥𝑝 (−

(𝑦−ℎ𝜃(𝐱))
2

2𝜎2 )                                     (3.32) 

We now use the training examples {𝐱(𝑖), 𝑦(𝑖), 𝑖 = 1,2, … ,𝑚} to determine the optimal value of the 

unknown parameters 𝜃 and 𝜎2 by maximum likelihood estimation. If the date examples are 

assumed to be drawn independently from the distribution (3.32), then the likelihood function is 

given by 

ℒ(𝜃, 𝜎2) = 𝑝(𝐲|𝐱; 𝜃, 𝜎2) = ∏ 𝑝(𝑦(𝑖)|𝐱(𝑖); 𝜃,𝑚
𝑖=1 𝜎2) = ∏

1

√2𝜋𝜎
𝑒𝑥𝑝 (−

(𝑦(𝑖)−ℎ𝜃(𝐱(𝑖)))
2

2𝜎2 ) 𝑚
𝑖=1   (3.33) 

It is convenient to maximize the logarithm of the likelihood function (3.33). By applying the log 

operation, we obtain the log likelihood function in the form 

ℓ(𝜃, 𝜎2) = ln(ℒ(𝜃, 𝜎2)) = −
𝑚

2
ln(2𝜋𝜎2) −

1

2𝜎2
∑ (𝑦(𝑖) − ℎ𝜃(𝐱(𝑖)))

2
𝑚
𝑖=1         (3.34) 

Instead of maximizing the likelihood function with respect to θ in (3.33), we can equivalently 

minimize the sum term of the right side of (3.34), 
1

2
∑ (𝑦(𝑖) − ℎ𝜃(𝐱(𝑖)))

2
𝑚
𝑖=1 . We therefore see that 

maximizing the likelihood function is equivalent to minimizing the sum of the squares error 

function defined by (3.13). As a result, the optimal value of θ, 𝜃𝑀𝐿, can be calculated by 

𝜃𝑀𝐿 = 𝑎𝑟𝑔𝑚𝑖𝑛
1

2
∑ (𝑦(𝑖) − ℎ𝜃(𝐱(𝑖)))

2
𝑚
𝑖=1                                           (3.35) 

Therefore, mathematically, maximum likelihood estimation (MLE) (3.35) is equivalent to the error 

square minimization problem (3.13), under the assumption of Gaussian distribution for the error. 

Then, the optimal value of 𝜎2 can be obtained by maximizing (3.34) with respect to 𝜎2, with 𝜃 =

𝜃𝑀𝐿, as 

𝜎2
𝑀𝐿 =

1

𝑚
∑ (𝑦(𝑖) − ℎ𝜃𝑀𝐿

(𝐱(𝑖)))
2

𝑚
𝑖=1                                                    (3.36) 

In fact, the resulting 𝜎2
𝑀𝐿 is equal to the average of error squares over all examples, which is 

equivalent to the minimized cost function (except a scale of ½ in the cost function (3.13)). 

Having determined the parameters θ and σ (3.35) and (3.36), we can make a prediction �̂� for a new 

value of x, using the probabilistic model defined by (3.32), which gives the probability distribution 

of y rather than simply a point estimate. Of course, the estimation of y,  

�̂� = ℎ𝜃𝑀𝐿
(𝐱)                                                          (3.37) 

has the maximum value of the probability density function, which justifies �̂� as a good prediction 

in terms of maximum likelihood. In general, ℎ𝜃(𝐱) does not have to be linear with x. 

 



3.4.2 Bias and Variance 

From Fig.3.4, we can see that the model underfits the data set if the model is too simple (e.g. low-

order polynomials). The prediction curve has a large distance from the data examples (or the target 

curve). This implies that the model is not able to capture the basic important pattern of the data. On 

the other hand, the model overfits the data set if the model is too flexible (e.g., very high-order 

polynomials). In the case of overfitting, although the prediction curve fits the data set closely, it is 

very sensitive to the selection of data set. In other words, different data sets drawn from the same 

underlying distribution may result in very significant prediction curves. 

A natural question is: which model is the best? The phenomenon of underfitting or overfitting is 

highly related to the bias and variance of the model. The bias of a model measures how far the 

model, in average over data sets, is away from the optimal model. The variance of a model indicates 

how sensitive the learned parameters of the model are to a particular data set. In this section, we 

will calculate the average loss of a model in terms of bias, variance, and intrinsic noise, and then 

describe the relationship between underfitting/overfitting and bias/variance. The analysis of bias 

and variance will shed lights on the model selection when we deal with complex models such as 

neural networks. 

Suppose we have a data set whose examples (𝐱, 𝑦) are independently drawn from  

𝑦 = ℎ(𝐱) + 𝜖                                                                  (3.38) 

where ℎ(𝐱) is the underlying target curve, 𝜖 is a Gaussian noise with a mean of zero. In general, 

the joint probability density of (𝐱, 𝑦) is denoted as 𝑝(𝐱, 𝑦). Note that the optimal model is the 

function 𝔼[𝑦|𝐱] = ℎ(𝐱). However, we don’t know the exact function 𝔼[𝑦|𝐱] unless an unlimited 

amount of data examples is available. 

We use a regression model, denoted as �̂�(𝐱; 𝛉), to estimate the underlying optimal model ℎ(𝐱), 

based on a dataset comprising of limited data examples. A common choice of loss function is the 

square loss 

𝐿(𝑦, �̂�(𝐱; 𝛉) ) = (𝑦 − �̂�(𝐱; 𝛉))
2
                                            (3.39) 

 Thus, the expected loss, with respect to 𝑝(𝐱, 𝑦), is 

𝔼[𝐿] = 𝔼 [(𝑦 − �̂�(𝐱; 𝛉))
2
] = 𝔼 [(𝑦 − ℎ(𝐱) + ℎ(𝐱) − �̂�(𝐱; 𝛉))

2
]  

= 𝔼 [(𝑦 − ℎ(𝐱))
2
] + 𝔼 [(ℎ(𝐱) − �̂�(𝐱; 𝛉))

2
] + 2𝔼[(𝑦 − ℎ(𝐱))(ℎ(𝐱) − �̂�(𝐱; 𝛉))] 

= 𝔼 [(𝑦 − ℎ(𝐱))
2
] + 𝔼 [(ℎ(𝐱) − �̂�(𝐱; 𝛉))

2
]  

= ∬(𝑦 − ℎ(𝐱))
2
𝑝(𝐱, 𝑦)𝑑𝑦𝑑𝐱 + ∬(ℎ(𝐱) − �̂�(𝐱; 𝛉))

2
𝑝(𝐱, 𝑦)𝑑𝑦𝑑𝐱 

= ∬(𝑦 − ℎ(𝐱))
2
𝑝(𝐲|𝐱)𝑑𝑦 ∙ 𝑝(𝐱)𝑑𝐱 + ∫(ℎ(𝐱) − �̂�(𝐱; 𝛉))

2
𝑝(𝐱)𝑑𝐱 

= ∫𝑉𝑎𝑟(𝑦|𝐱) 𝑝(𝐱)𝑑𝐱 + ∫(ℎ(𝐱) − �̂�(𝐱; 𝛉))
2
𝑝(𝐱)𝑑𝐱 



                                  

= ∫𝑉𝑎𝑟(𝜖|𝐱) 𝑝(𝐱)𝑑𝐱 + ∫(ℎ(𝐱) − �̂�(𝐱; 𝛉))
2
𝑝(𝐱)𝑑𝐱                                                               (3.40) 

where 𝑝(𝐱) is the probability density function of x, calculated by 

𝑝(𝐱) = ∫𝑝(𝐱, 𝑦)𝑑𝑦                                                                      (3.40a) 

The first term in (3.40) is the variance of the noise, averaged over x. It is usually reasonable to 

assume that x is independent of the noise 𝜖. In this case, the first term is reduced to the variance of 

the noise. It represents the minimum loss that is achieved only when the second term in (3.40) is 

equal to zero, i.e., the optimal model is found  �̂�(𝐱; 𝛉) = ℎ(𝐱). Thus, it is independent of the learned 

model, and is irreducible.  

The second term in (3.40) is the loss component that corresponds to the misfit between the learned 

model �̂�(𝐱; 𝛉)and the optimal model ℎ(𝐱). If we had an unlimited amount of training data examples 

(𝐱, 𝑦), we would be able to obtain the optimal model by ℎ(𝐱) = 𝔼[𝑦|𝐱]. In fact, we use a parametric 

function �̂�(𝐱; 𝛉) to model ℎ(𝐱) based on a particular data set with a size of m. Different data sets 

independently drawn from 𝑝(𝐱, 𝑦) will result in different learned parameters 𝛉 and consequently 

different values of the loss. Now we will decompose the second term in (3.40) into two components: 

one associated with the bias, and another associated with the variance. 

For a given data set 𝒟, the resulting model is denoted as �̂�(𝐱; 𝛉𝓓). The average of the models over 

all possible data sets is denoted as 𝔼𝒟[�̂�(𝐱; 𝛉𝓓)]. For a data set 𝒟, the square term in (3.40), 

(ℎ(𝐱) − �̂�(𝐱; 𝛉))
2
, can be represented as 

(ℎ(𝐱) − �̂�(𝐱; 𝛉𝓓))
2

= (ℎ(𝐱) − 𝔼𝒟[�̂�(𝐱; 𝛉𝓓)] + 𝔼𝒟[�̂�(𝐱; 𝛉𝓓)] − �̂�(𝐱; 𝛉𝓓))
2
 

= (ℎ(𝐱) − 𝔼𝒟[�̂�(𝐱; 𝛉𝓓)])2 + (𝔼𝒟[�̂�(𝐱; 𝛉𝓓)] − �̂�(𝐱; 𝛉𝓓))
2
 

+2(ℎ(𝐱) − 𝔼𝒟[�̂�(𝐱; 𝛉𝓓)])(𝔼𝒟[�̂�(𝐱; 𝛉𝓓)] − �̂�(𝐱; 𝛉𝓓))                                                           (3.41) 

Taking the expectation on both sides of (3.41) with respect to data sets, we have  

𝔼𝒟 [(ℎ(𝐱) − �̂�(𝐱; 𝛉𝓓))
2
] = 𝔼𝒟[(ℎ(𝐱) − 𝔼𝒟[�̂�(𝐱; 𝛉𝓓)])2] + 𝔼𝒟 [(𝔼𝒟[�̂�(𝐱; 𝛉𝓓)] − �̂�(𝐱; 𝛉𝓓))

2
] 

= (ℎ(𝐱) − 𝔼𝒟[�̂�(𝐱; 𝛉𝓓)])2 + 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒[�̂�(𝐱; 𝛉𝓓)] 

= (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑏𝑖𝑎𝑠)2 + 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒                                                                      (3.42) 

Thus, combining (3.40) and (3.42), we obtain the total expected loss for a single point x, with 

respect to data sets,  

𝔼𝒟[𝐿(𝐱)] = 𝑛𝑜𝑖𝑠𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 + (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑏𝑖𝑎𝑠)2 + 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒            (3.43) 

where  

𝑛𝑜𝑖𝑠𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝜖|𝐱)                                                                     (3.43a) 

(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑏𝑖𝑎𝑠)2 = (ℎ(𝐱) − 𝔼𝒟[�̂�(𝐱; 𝛉𝓓)])2                                                   (3.43b) 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝔼𝒟 [(𝔼𝒟[�̂�(𝐱; 𝛉𝓓)] − �̂�(𝐱; 𝛉𝓓))
2
]                              (3.43c) 



The total expectation of the lose 

𝔼[𝐿] = ∫𝔼𝒟[𝐿(𝐱)] 𝑝(𝐱)𝑑𝐱                                                                    (3.44) 

Equation (3.43) reveals important insights in the performance of a model. On average, the loss of 

a model can be decomposed into three parts: 1) intrinsic noise in the data set; 2) the squared bias 

from the true underlying function; and 3) the variance of its predictions. The bias and the variance 

depend on the selection of a model and the size of training data set. 

In general, a simple model is likely to have a large bias but a small variance, and thus has a problem 

of underfitting. In contrast, a highly flexible model is sensitive to the selection of training set due 

to the limited size of the training set, and thus has a high variance but a low bias, which leads to an 

overfitting. This can be demonstrated by the following experiment. First, we independently 

generate 10 training sets with 10 sample points per data set, from the same distribution defined by 

(3.19), copied here 

𝑦 = 10(𝑥 − 0.5)2 − 𝑥 + 0.5 × 𝒩(0,1) 

𝑥 is sampled fixedly and uniformly (i.e., equal distance) in the range of [0,1), and 𝑦 is generated 

by the above equation. Thus, the underlying true relationship is  

ℎ(𝑥) = 10(𝑥 − 0.5)2 − 𝑥                                                          (3.45) 

which is a second order polynomial and plotted as the blue dashed lines in Fig.3.5. 

Then, we select a certain-order polynomial model, and independently fit the model to each data set. 

As a result, we obtain 10 prediction curves corresponding to 10 data sets, shown in the left figures 

in Fig.3.5. The difference between the true line and the average of 10 prediction curves indicates 

the prediction bias, shown in the right figures in Fig.3.5. The variation of the 10 curves shows the 

prediction variance.  

Fig.3.5 shows the results of the experiment. In Fig.3.5(a), the linear model is obviously not 

sufficient to fit a second order polynomial relationship, thus has a large bias. As we expect, the 

second order polynomial model is a good fit for the data sets, shown in Fig.3.5(b). The higher order 

polynomials exhibit some degrees of high variance or overfitting, as shown in Fig.3.5 (c) and (d), 

but the average over data sets fits the underlying true relationship very well if the number of data 

sets is large. 

 

(a) First-order polynomial (linear): high bias, low variance 



 

 

(b) second-order polynomial: a good fit 

 

(c) fourth-order polynomial: low bias, high variance 

   

(d) eighth-order polynomial: low bias, high variance 

Fig.3.5 curve fitting with different order polynomials using different data sets 

Thus, to avoid underfitting and overfitting, it is crucial to select a model with an appropriate 

complexity. There are two strategies to alleviate overfitting: 1) reducing the complexity of the 

model or applying regularization (discussed in chapter 4), and 2) increasing the size of the training 

data set. Note that the analysis of the bias and the variance does not require ℎ(𝐱) to be linear. The 

concepts and implications in this section can be applied to non-linear models, such as neural 

networks.  



 

3.5 An Example: House Price Prediction  

In this section we will use an example to demonstrate how we can apply the linear 

regression model to solve the real problems. Through this example, we address some 

common issues in machine learning: train/test data set partition, feature scaling, learning 

rate selection, etc.     

3.5.1 Practical issues: feature scaling and learning rate 

Before we dive into a particular problem, we discuss two practical issues which usually exist in 

machine learning. The first issue is feature scaling.  Before we apply data to a machine learning 

algorithm, we should scale the data (if necessary) so that all features have comparable numerical 

values. The second issue is learning rate selection. It is essential to select an appropriate value of 

learning rate α for a successful convergence.  

Feature scaling 

Before using the dataset, we need to make sure that all features are on a similar quantitative scale. 

In the housing dataset, the house size and number of bedrooms are apparently not on a similar scale. 

This will result in inefficient computation in gradient decent with a slow converge path, as shown 

in Fig.3.6(a). A balanced scale across features will likely have a relatively straight converge path 

for search the optimal parameters, as shown in Fig.3.6(b).  

 

                       
 

Fig.3.6 Contour plots and converge path (red arrowed lines):  

(a) unbalanced feature scale, (b) balanced feature scale. 

 

There are two basic scaling methods:  

a) Min-max scaler transforms features by scaling each feature individually to a given range, e.g. 

between zero and one. For instance, the values of feature xi can be scaled to range between 0 

and 1 by 

𝑧𝑖 =
𝑥𝑖−min

𝑗
{𝑥𝑖

(𝑗)
}

max
𝑗

{𝑥𝑖
(𝑗)

}−min
𝑗

{𝑥𝑖
(𝑗)

}
                                                     (3.46) 

b) Standard scaler standardizes features by removing the mean and scaling to unit variance. 

Centering and scaling happen independently on each feature by computing the relevant 

statistics on the samples in the training set. The standardized feature of a feature xi is calculated 

as: 

𝑧𝑖 =
𝑥𝑖−𝑢𝑖

𝑠𝑖
                                                                 (3.47) 

where ui is the mean of the feature xi, and si is the standard deviation of the feature xi. 

 



 

Choice of learning rate 

In the gradient descent, the parameters are updated as 

𝜃𝑗 ≔ 𝜃𝑗 − 𝛼
𝜕

𝜕𝜃𝑗
𝐽(𝜃)                                                         (3.48) 

where α is learning rate, which is a hyperparameter. We should choose a value for α so that the 

cost function  𝐽(𝜃) decreases after every iteration, as shown in Fig.3.7. Thus, we can use a plot of 

cost function versus number of iterations to monitor whether the gradient descent is working 

correctly or not. The plots in Fig.3.8(b) and (c) indicate that the value of α is too large and 

consequently results in overshooting during the update of θ. The cost will oscillate or even increase 

during the training process.  

In general, if α is too small, convergence is slow. If α is too large, J(θ) may not decrease on every 

iteration or may not converge. In practice, to choose a good α value, we can try different values, 

such as …, 0.001, 0.01, 0.1, 1, …, and plot the cost function vs. # of iterations for each value, and 

then identify a good value for α based on the shape of the plots. 

                     

Fig.3.7 an appropriate value for α, (a) converge path,     (b) cost function vs # of iterations 

        

Fig.3.8 value of α is too large, (a) the path does not converge, (b) and (c) possible plots of cost 

function. 

3.5.2 Linear regression for house price prediction in Python 

 

Problem and dataset 

Suppose that the price of a house (in a particular region) depends on some features, such as square 

footage, the number of bedrooms, the number of bathrooms, the number of stories, parking space, 

whether on a main road, whether furnished, etc., and that we have a dataset comprised of samples 

on the prices of such houses. We will build a linear regression model to predict the price of a house 

given its features. 



The dataset can be downloaded at kaggle.com, as Housing.csv. This dataset includes 545 house 

price samples, with 12 features per sample. The details of the dataset will be described when we 

proceed with the steps of the project in the following text. 

 

Steps of the project 

 

1) Understanding the dataset 

First, import the required packages and read the dataset file using pandas DataFrame. 

import numpy as np 

import matplotlib.pyplot as plt 

import pandas as pd 

 

# read the data file 

housing = pd.DataFrame(pd.read_csv("Housing.csv")) 

print('housing shape:', housing.shape) 

housing.head() 

 

housing shape: (545, 13) 

 

The dataset is loaded to a DataFrame, named housing, which has 545 rows and 13 columns. Each 

row represents one sample. The first column lists the prices, and other columns specify the relevant 

12 features. Some features are specified by numerical numbers while others by words (e.g., yes, 

no, furnished, semi-furnished, unfurnished). 

2) Data pre-processing   
Convert descriptive features to numerical features 

We substitute the descriptive feature values to numerical values according to the mapping: “no”→0, 

“yes”→1, “unfurnished”→0, “semi-furnished”→1, “furnished”→2. 

# List of variables to map 

 

varlist =  ['mainroad', 'guestroom', 'basement', 'hotwaterheating', 'airconditi

oning', 'prefarea'] 

 

# Defining the map function 

def binary_map(x): 

    return x.map({'yes': 1, "no": 0}) 

 

# Applying the function to the housing list 

housing[varlist] = housing[varlist].apply(binary_map) 

 

housing['furnishingstatus'] = housing['furnishingstatus'].replace(['unfurnished

'], 0) 

housing['furnishingstatus'] = housing['furnishingstatus'].replace(['semi-furnis

hed'], 1) 

housing['furnishingstatus'] = housing['furnishingstatus'].replace(['furnished']

, 2) 

 



housing.head() 

 

Split dataset into a training set and a test set 

from sklearn.model_selection import train_test_split 

 

np.random.seed(0) # to repeat to generate the same result. 

df_train, df_test = train_test_split(housing, train_size = 0.7, test_size = 0.3

, random_state = 100) 

Load the data to numpy arrays separately in terms of train, test, features, and labels, and scale the 

price down by 1000 for a numerical convenience.  

train=df_train.to_numpy() 

test=df_test.to_numpy() 

X_train=train[:,1:] 

y_train=train[:,0]/1000. # scaled down by 1000 

X_test=test[:,1:] 

y_test=test[:,0]/1000.   # scaled down by 1000 

Scale features 

On the training data, we normalize each feature into the range [0,1] by a function MinMaxScaler(). 

After normalizing the features, it is important to store the parameters used for normalization, such 

as minimum, maximum, and range. The variables, feature_min, feature_max, feature_range, keep 

a record of the normalization parameters. To predict the price of the house with a feature vector x, 

we must first normalize x using the same value of parameters (such as feature_min, feature_max, 

feature) that we had previously used for the training set normalization.  

from sklearn.preprocessing import MinMaxScaler 

 

scaler = MinMaxScaler() 

 

X_train_scaled = scaler.fit_transform(X_train) #train is numpy array (381,12) 

feature_min=scaler.data_min_   # shape (12.) 

feature_max=scaler.data_max_   # shape (12,) 

feature_range=scaler.data_range_  # shape (12,) 

 

X_test_scaled=(X_test-feature_min)/feature_range # scale test features 

 

3) Define and run gradient_descent function for linear regression. 
  

# x(m,n): m is the number of samples, n is the number of features   

 

def gradient_descent(alpha, x, y, numIterations):   

    cost=[]  

    m = x.shape[0] # number of samples   

    x0=np.ones(m).reshape((m,1))   

    x=np.concatenate((x0,x), axis=1) # now, x(m, n+1)  

    theta = np.ones(x.shape[1])  

    x_transpose = x.transpose()   



    for iter in range(0, numIterations):   

        hypothesis = np.dot(x, theta)   

        loss = hypothesis - y   

        J = np.sum(loss ** 2) / (2 * m)  # cost   

        #print ("iter %s | J: %.3f" % (iter, J))         

        gradient = np.dot(x_transpose, loss) / m            

        theta = theta - alpha * gradient  # update   

        cost.append(J) 

        #theta_list.append(theta) 

    return theta,cost 

 
theta ,cost= gradient_descent(alpha=0.01, x=X_train_scaled, y=y_train, numItera

tions=10000) 

 
theta 

 

array([1662.57265997, 2466.86385012,  693.75803667, 2208.83766241, 

       1212.95881281,  614.7736432 ,  362.00404946,  247.70616561, 

       1002.98979197,  775.37672733,  759.95528449,  705.08284328, 

        381.26621482]) 

 

 

plt.plot(np.log10(cost), color='red')   

plt.title('cost vs iterations')   

plt.xlabel('# of iteration')   

plt.ylabel('cost J (theta)')   

plt.show()   

 

 

4) Validate by test dataset. 

 

Now, we use the trained model to predict the prices of the houses in the test dataset and show both 

the true prices and predicted prices. 

 

 
def predict(x, theta):   

    m = x.shape[0] # number of samples   

    x0=np.ones(m).reshape((m,1))   

    x=np.concatenate((x0,x), axis=1) # add the first column with "1"   

    return np.dot(x,theta)   

 
Y_test_pred=predict(X_test_scaled,theta)   

 
print("Area        #of bds    real_price    predict from Linear reg ")      

for i in range (0,len(X_test_scaled)):   

    T=X_test[i]   

    print("{0:8.2f},{1:8.2f},{2:12.2f},{3:20.2f}".format(T[0],T[1],y_test[i],Y_

test_pred[i]))    



 
Area        #of bds    real_price    predict from Linear reg  

 2880.00,     3.00,      4403.00,              4081.51 

 6000.00,     3.00,      7350.00,              6548.83 

10269.00,     3.00,      5250.00,              5534.49 

 5320.00,     3.00,      4550.00,              5220.89 

 4950.00,     4.00,      4382.00,              4739.91 

 4320.00,     3.00,      4690.00,              3989.78 

   … 

 

  

 

Summary and Further Reading 
 

In this chapter, we introduced a type of models, called linear regressions. We described two ways 

to learn or fit the models: the normal equation (analytic solution) and the gradient descent 

algorithm. Both ways are based on minimizing a cost function that specifies the error between the 

predictions and the true values.  

The normal equation provides theoretical optimal solutions to the parameters of a model by solving 

a system of linear equations. However, its implementation is not computationally efficient in 

practice. The gradient descent algorithm iteratively searches for the optimal solutions along the 

negative direction of the gradient of the cost function with respect to parameters. The gradient 

descent algorithm and its variants are widely applied in training complex models (e.g., deep neural 

networks). There are some practical issues relevant to convergence, such as the choice of learning 

rate and feature scaling.  

The concept of simple linear regression can be extended to a linear model with multiple features 

corresponding to a set of basis functions. One such example is a polynomial curve fitting, which 

has been treated in detail. 

It is very helpful to view the linear regression model from a probabilistic perspective. The linear 

regression with least square errors is equivalent to maximum likelihood estimation. We analyze the 

expectation of loss in terms of bias and variance of a model, given the size of the training dataset. 

Overfitting or underfitting can be diagnosed based on the measurement of bias and variance. From 

the insightful analysis, one can see how the training dataset size and the complexity of the model 

affect the bias and variance. As we will see in later chapters, the conclusions on the trade-off 

between bias and variance can be applied to general machine learning models. 
 

After finishing the chapter, one should understand the theoretical aspects of linear regression and 

be able to implement a linear regression in Python from scratch. 

 

Files: C:\Users\weido\ch1_linear_reg\ch3_linear_reg.ipynb, Housing.csv. 

 

Further reading 

[1] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani, Chapter 3, Linear Regression, in 

An introduction to Statistical Learning with Applications in R. Springer. 

[2] Bishop, C. M. Bishop, Chapter 3 Linear models for regression, in Pattern recognition and machine 

learning. Springer, 2006.  

 

 



 

Exercises 

1. Derive the normal equation (3.5a) and (3.5b) for linear regression with one feature. 

2. Derive the normal equation (3.16) for linear regression with multiple features. 

3. You run gradient descent for 30 iterations with α=0.1 and compute 𝐽(𝜃) for each iteration. You 

find that the value of 𝐽(𝜃) decreases slowly and is still decreasing after 15 iterations. Based on 

this, which of the following conclusions seems most plausible? 
a) α=0.1 is an effective choice of learning rate. 
b) It would be more promising to try a larger value of α (say α=0.5) 
c) Rather than use the current value of α, it would be more promising to try a smaller 

value of α (say α=0.05) 

4. Suppose you have m=100 training examples with n=5 features and would learn a linear 

regression model to directly fit the dataset. According to the notations in this chapter, what are 

the dimensions of θ, X, and Y? 

5. Suppose you train a linear regression to fit the dataset (x,y) in Fig.3.3(a). The dataset can be 

generated by the following statements: 
# Fixing random state for reproducibility 

np.random.seed(1968) 

x=np.random.rand(10) 

y=4+6*x+np.random.randn(10) 

 
In this exercise, you are asked to plot the first five learned lines during the first five 

iterations, along with the data samples. Since different initial values of θ lead to different 

results, you are asked to repeat the exercise using two different initial values of θ. 
 

1) Use 𝜃 = [
1
1
] as the initial value for the iteration in gradient descent. 

2) Use 𝜃 = [
0
0
] as the initial value for the iteration in gradient descent. 

 
6. In this exercise, you are asked to generate an artificial dataset based on a linear model, and then 

learn the model using gradient descent. Specifically,  

1) Generate 100 data examples (𝑥(𝑖), 𝑦(𝑖)), 𝑖 = 1,2,… ,100, which are randomly drawn from 

the model 
𝑦 = 𝑎 + 𝑏𝑥 + 𝑁(0,1) 

where a and b are constants (say a=1, b=2), 0 ≤ 𝑥 ≤ 2, N(0,1) is a random number of 

Gaussian distribution with mean=0 and variance=1. Plot a 2D scatterplot for your 

generated data examples. Please note that sampling on x should be random rather than 

uniform.  

2) Learn a linear regression model 𝑦 = 𝜃0 + 𝜃1𝑥 to fit the generated examples. Compare the 

results (𝜃0, 𝜃1) with the pre-defined model parameters (a, b). Plot the fitted line along with 

the data examples, and the cost function versus iteration index. 
 

7. In this exercise, you are asked to generate an artificial dataset based on a nonlinear model, and 

then fit it to a polynomial model. Specifically,  

1) Generate 20 data examples (𝑥(𝑖), 𝑦(𝑖)), 𝑖 = 0,1,2,… ,19, which are drawn from the model 



𝑦 =
sin(2𝜋 × 5 × (𝑥 − 0.234))

2𝜋 × 5 × (𝑥 − 0.234)
+ 0.1 × 𝒩(0,1) 

 
where 𝒩(0,1) is a random number that follows Gaussian distributions with mean=0 and 

variance=1. 𝑥(𝑖) are sampled uniformly (i.e., with equal distance) from 0 and 1. Plot your 

generated data examples and the underlying sinc function curve in one figure, something 

like the figure below. 

 
 

2) Using the normal equation (3.16), learn a polynomial model 𝑦 = 𝜃0 + 𝜃1𝑥 + 𝜃2𝑥
2 +

⋯+ 𝜃𝑛𝑥𝑛 to fit the generated examples, for 𝑛 = 8. Plot the examples, underlying sinc 

function and the learned polynomial function. The plots should be something like below. 

 
3) Repeat 2) for 𝑛 = 1, 2, 3, 10, 20. 

4) Using the gradient descent algorithm (instead of the normal equation), learn a polynomial 

model 𝑦 = 𝜃0 + 𝜃1𝑥 + 𝜃2𝑥
2 + ⋯+ 𝜃𝑛𝑥𝑛 to fit the generated examples for 𝑛 = 10. 

Compare the result with the result obtained in 3) by the normal equation. Is there any 

problem with this result? Why? If there is a problem, discuss the ways to fix it. 

8. In your own words, describe the bias and variance of a model. What is the trade-off between 

bias and variance? In general, how do the bias and variance change when the complexity of a 

model increases? How do the bias and variance change when the size of training dataset 

increases? 


