

Chapter 12

Generative Adversarial Networks

In generative modelling, given a finite set of training samples {𝐱(1), 𝐱(2), … , 𝐱(𝑁)} which are drawn from

an unknown distribution 𝑝𝑑𝑎𝑡𝑎(𝐱), our goal is to learn a parameterized distribution 𝑝𝑚𝑜𝑑𝑒𝑙(𝐱) that

approximates 𝑝𝑑𝑎𝑡𝑎(𝐱) as closely as possible. With the learned distribution we can generate samples. For

example, a variational auto-encoder, presented in the previous chapter, learns the distribution 𝑝𝑚𝑜𝑑𝑒𝑙(𝐱)

explicitly by a neural network.

In this chapter, we will introduce generative adversarial networks (GANs), which learn the distribution

𝑝𝑚𝑜𝑑𝑒𝑙(𝐱) implicitly. An implicit generative model does not directly estimate or fit the distribution. Instead,

it produces data instances which approximately follow the underlying distribution.

The GANs are based on a game between two models typically implemented using neural networks. One

network called the generator defines 𝑝𝑚𝑜𝑑𝑒𝑙(𝐱) implicitly. The generator is defined by a function

𝐺(𝑧; 𝜃𝑔): 𝑧 → 𝐱, where 𝜃𝑔 is a set of learnable parameters and z is an input noise variable on a prior

distribution 𝑝𝑧(𝑧) (e.g., uniform or standard normal distribution 𝒩(𝟎, 𝐈)). The main role of the generator

is to transform such noise z into realistic samples. To learn the generator, another network called the

discriminator 𝐷(𝐱; 𝜃𝑑) is required to provide feedback about how realistic the samples from the generator

are. The discriminator itself also needs to learn its parameters 𝜃𝑑 as a traditional classifier so that it can

distinguish the real data from the generated data if the modeled distribution is apart from the underlying

distribution.

This chapter covers:

o The principle of the original GAN from a mathematical point of view, including algorithm and

convergence

o General framework for GAN training

o Transposed convolutional neural networks, which are important ingredients for image generation.

o A few variants of GANs: conditional GAN, InfoGAN, Wasserstein GAN, CycleGAN

o An example of GAN on MNIST dataset in PyTorch

12.1 Mathematical Description of Original GAN

12.1.1 Principle and Algorithm

The generative adversarial nets (GANs) were originally proposed in Goodfellow et al. (2014). A GAN

consists of two basic models: generator 𝐺(𝑧; 𝜃𝑔) and discriminator 𝐷(𝐱; 𝜃𝑑), shown in Fig.12.1. Both

models can be implemented by neural networks with learnable parameters 𝜃𝑔 and 𝜃𝑑, respectively. The

discriminator 𝐷(𝐱; 𝜃𝑑) estimates the probability of x coming from the underlying distribution 𝑝𝑑𝑎𝑡𝑎(𝐱)

rather than the generator-specified distribution 𝑝𝑔(𝐱). It is trained to distinguish the generated samples from

the real ones. On the other hand, the generator maps an input noise variable z to the data space, and thus

generates a synthetic (or fake) data sample. It is trained to generate fake samples as real as possible so that

they can be wrongly recognized by the optimal discriminator as a real sample.

Mathematically, the training process can be described by the following two-player minimax game with an

objective function V(D,G):

min
𝐺
max
𝐷
{𝑉(𝐷, 𝐺) = Ε𝐱~𝑝𝑑𝑎𝑡𝑎(𝐱)[𝑙𝑜𝑔𝐷(𝐱; 𝜃𝑑)] + Ε𝑧~𝑝𝑍(𝑧) [log (1 − 𝐷(𝐺(𝑧; 𝜃𝑔); 𝜃𝑑))]} (12.1)

To avoid clutter in the notations, we may drop parameters in the context, e.g. 𝐷(𝐱) for 𝐷(𝐱; 𝜃𝑑). The inner

max loop is to optimize the discriminator for a given generator while the outer min loop is to learn the

parameters 𝜃𝑔 so that the discriminator gives a high output for a fake input. In practice, we usually

implement the optimization using an iterative and numerical approach. Instead of fully optimizing in both

inner and outer loops, we alternate between k steps of maximizing D and one step of minimizing G. This

results in D being maintained near its optimal solution, so long as G changes slowly enough.

Fig.12.1 The basic architecture of GANs

The algorithm for (12.1) was proposed by Goodfellow et al. (2014) as follows.

Algorithm 1 GAN: Minibatch stochastic gradient descent training of generative adversarial nets. The

number of steps to apply to the discriminator, k, is a hyperparameter. k = 1, the least expensive option,

was used in the experiments in Goodfellow et al. (2014).

for number of training iterations do

(# part 1: update the discriminator)

for k steps do

• Sample minibatch of m noise samples {𝑧(1), … , 𝑧(𝑚)} from noise prior 𝑝𝑧(𝑧).

• Sample minibatch of m examples {𝑥(1), … , 𝑥(𝑚)} from data generating distribution

𝑝𝑑𝑎𝑡𝑎(𝑥).

• Update the discriminator by ascending its stochastic gradient:

∇𝜃𝑑
1

𝑚
∑[𝑙𝑜𝑔𝐷(𝑥(𝑖)) + 𝑙𝑜𝑔 (1 − 𝐷 (𝐺(𝑧(𝑖))))]

𝑚

𝑖=1

 (12.2)

end for

(# part 2: update the generator)

• Sample minibatch of m noise samples{𝑧(1), … , 𝑧(𝑚)} from noise prior 𝑝𝑧(𝑧).

• Update the generator by descending its stochastic gradient:

∇𝜃𝑔
1

𝑚
∑𝑙𝑜𝑔 (1 − 𝐷 (𝐺(𝑧(𝑖))))

𝑚

𝑖=1

 (12.3)

end for

12.1.2 Convergence of GANs

In this section, we will investigate the theoretical convergence of the original GANs. We first consider the

optimal discriminator for a given generator. Let 𝑝𝑔(𝐱) be the density function defined by the generator, and

𝑝𝑑𝑎𝑡𝑎(𝐱) be the density function of the data. We can show that the optimal discriminator on these two

distributions is given by (see exercises)

𝐷𝑔
∗(𝐱) =

𝑝𝑑𝑎𝑡𝑎(𝐱)

𝑝𝑑𝑎𝑡𝑎(𝐱) + 𝑝𝑔(𝐱)
 (12.4)

Then, with the optimal discriminator, the minimax game in (12.1) can be rewritten as

 Min
𝐺
max
𝐷
{𝑉(𝐷, 𝐺)} = Min

𝐺
𝑉(𝐷𝑔

∗, 𝐺) (12.5)

where

𝑉(𝐷𝑔
∗, 𝐺) = Ε𝐱~𝑝𝑑𝑎𝑡𝑎(𝐱)[𝑙𝑜𝑔𝐷𝑔

∗(𝐱)] + Ε𝑧~𝑝𝑍(𝑧) [log (1 − 𝐷𝑔
∗(𝐺(𝑧)))]

= ∫[𝑝𝑑𝑎𝑡𝑎(𝐱)𝑙𝑜𝑔𝐷𝑔
∗(𝐱) + 𝑝𝑔(𝐱) log (1 − 𝐷𝑔

∗(𝐱))] 𝑑𝐱

= ∫[𝑝𝑑𝑎𝑡𝑎(𝐱)𝑙𝑜𝑔
𝑝𝑑𝑎𝑡𝑎(𝐱)

𝑝𝑑𝑎𝑡𝑎(𝐱) + 𝑝𝑔(𝐱)
+ 𝑝𝑔(𝐱) log

𝑝𝑔(𝐱)

𝑝𝑑𝑎𝑡𝑎(𝐱) + 𝑝𝑔(𝐱)
] 𝑑𝐱

 = KL(𝑝𝑑𝑎𝑡𝑎(𝐱)||
𝑝𝑑𝑎𝑡𝑎(𝐱) + 𝑝𝑔(𝐱)

2
) + KL(𝑝𝑔(𝐱)||

𝑝𝑑𝑎𝑡𝑎(𝐱) + 𝑝𝑔(𝐱)

2
) − 𝑙𝑜𝑔4

= 2𝐷𝐽𝑆 (𝑝𝑑𝑎𝑡𝑎(𝐱)||𝑝𝑔(𝐱)) − 𝑙𝑜𝑔4 (12.6)

where KL(p||q) denotes the KL divergence between two density function p and q, defined by

KL(𝑝||𝑞) = ∫𝑝(𝑥)𝑙𝑜𝑔
𝑝(𝑥)

𝑞(𝑥)
𝑑𝑥 (12.7)

and 𝐷𝐽𝑆(𝑝||𝑞) is the Jensen-Shannon (JS) divergence, defined by

𝐷𝐽𝑆(𝑝||𝑞) =
1

2
KL(𝑝||

𝑝 + 𝑞

2
) +

1

2
KL(𝑞||

𝑝 + 𝑞

2
) (12.8)

Since the JS divergence (or KL divergence) is always non-negative and equal to zero if and only if two

distributions are identical, the global minimum of 𝑉(𝐷𝑔
∗, 𝐺) is −𝑙𝑜𝑔4 which is achieved when 𝑝𝑔(𝐱) =

𝑝𝑑𝑎𝑡𝑎(𝐱), i.e., the generator generates samples perfectly matching the underlying distribution.

𝑉(𝐷∗, 𝐺∗) = Min
𝐺
max
𝐷
{𝑉(𝐷, 𝐺)} = Min

𝐺
𝑉(𝐷𝑔

∗, 𝐺) = −𝑙𝑜𝑔4 (12.9)

This leads to a conclusion regarding the convergence of the GAN algorithm. If G and D have enough

capacity, and at each step of the algorithm the discriminator is allowed to reach its optimum given G, and

𝑝𝑔(𝐱) is updated so as to improve the minimization of

Ε𝐱~𝑝𝑑𝑎𝑡𝑎(𝐱)[𝑙𝑜𝑔𝐷𝑔
∗(𝐱)] + Ε𝐱~𝑝𝑔(𝐱) [log (1 − 𝐷𝑔

∗(𝐱))] (12.10)

Then 𝑝𝑔(𝐱) converges to 𝑝𝑑𝑎𝑡𝑎(𝐱).

A pedagogical explanation is illustrated in Fig. 4. The GANs are trained by simultaneously updating the

discriminative distribution (D, blue dashed line) so that it discriminates between samples from the data

generating distribution (black, dotted line) 𝑝𝑥 from those of the generative distribution 𝑝𝑔(𝐺) (green, solid

line). The lower horizontal line is the domain from which z is sampled, in this case uniformly. The

horizontal line above is part of the domain of x. the upward arrows show how the mapping 𝑥 = 𝐺(𝑧)

imposes the non-uniform distribution 𝑝𝑔 on transformed samples. G contracts in regions of high density

and expands in regions of low density of 𝑝𝑔.

(a) (b) (c) (d)

Fig.12.2 An explanation of GANs [printed from Goodfellow et al. (2014)]. (a) consider an adversarial pair

near convergence: 𝑝𝑔 is similar to 𝑝𝑑𝑎𝑡𝑎 and D is a partially accurate classifier. (b) in the inner loop of the

algorithm D is trained to discriminate samples from data, converging to 𝐷∗(𝐱) =
𝑝𝑑𝑎𝑡𝑎(𝐱)

𝑝𝑑𝑎𝑡𝑎(𝐱)+𝑝𝑔(𝐱)
. (c) after

an update to G, gradient of D has guided G(z) to flow to regions that are more likely to be classified as data.

(d) after several steps of training, if G and D have enough capacity, they will reach a point at which both

cannot improve because 𝑝𝑔= 𝑝𝑑𝑎𝑡𝑎. The discriminator is unable to differentiate between the two

distributions, i.e. 𝐷(𝐱) = 0.5.

12.2 Implementation of GANs

The previous section presents the basic principle of GANs. In this section, we will describe the details of

GAN training and network structure from a practical perspective.

12.2.1 Alternating two training processes

A generative adversarial network (GAN) has two parts: 1) the generator learns to generate fake data samples

which are negative training examples for the discriminator; and 2) the discriminator learns to distinguish

the generator's fake data from real data (i.e. positive examples). The discriminator penalizes the generator

for producing implausible results.

We usually train the generator and the discriminator separately, as shown in Fig.12.3, in an alternative

manner: (a) The discriminator trains for one or more batches/epochs. (b) The generator trains for one or

more batches/epochs. Repeat steps 1) and 2) to continue to train the generator and discriminator networks.
The generator is fixed during the discriminator training phase. Similarly, we keep the discriminator

unchanged during the generator training phase.

(a) Discriminator training

(b) Generator training

Fig.12.3 Training of GANs (the shadowed boxes are involved in backpropagation)

A) Discriminator training

The discriminator in a GAN is simply a classifier. It tries to distinguish real data from the data created by

the generator. It could use any network architecture appropriate to the type of data it's classifying. The

discriminator's training data comes from two sources: 1) Real data instances as positive examples, such as

real pictures of people; and 2) Fake data instances created by the generator as negative examples.

The goal of discriminator training is to maximize the objective function (12.1) for a given generator. In

practice, we usually update the discriminator parameters using a standard gradient descent optimizer (e.g.

Adam in PyTorch) by minimizing a loss function. Obviously, the corresponding loss function is the Binary

Cross Entropy loss (BCELoss) function. For the i-th input of the discriminator, let the label be 𝑦(𝑖) = 1 for

a real sample and 𝑦(𝑖) = 0 for a fake data sample. The BCELoss function is defined as

𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟 𝑙𝑜𝑠𝑠 = 𝐵𝐶𝐸𝑙𝑜𝑠𝑠 = −∑[𝑦(𝑖)𝑙𝑜𝑔𝐷(𝑖) + (1 − 𝑦(𝑖))𝑙𝑜𝑔(1 − 𝐷(𝑖))]

𝑁

𝑖=1

 (12.11)

where 𝐷(𝑖) denotes the prediction (i.e. output) of the discriminator for the i-th input (real or fake sample),

and N is the batch size.

In summary, the discriminator training process can be described as:

• The discriminator predicts 𝐷(𝑖) for both real data samples and fake data samples.

• The loss function (12.11) is calculated.

• The parameters of the discriminator are updated by a gradient descent optimizer based on the

gradients of the loss function.

B) Generator training

The generator training is shown in Fig.12.3(b). The generator learns to create fake data samples so that the

discriminator classifies its output as real for the fake samples. The generator loss penalizes the generator

for producing a sample that the discriminator network classifies correctly as fake. According to (12.1), the

goal of the generator training is to minimize log (1 − 𝐷(𝐺(𝑧; 𝜃𝑔); 𝜃𝑑)) with 𝜃𝑑 fixed. Since this objective

function may not provide sufficient gradients, especially in the earlier training stage, we equivalently

maximize log𝐷 (𝐺(𝑧; 𝜃𝑔)) which is further equivalent to minimizing −log𝐷 (𝐺(𝑧; 𝜃𝑔)). Thus, the

generator loss function can be specified by

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 𝑙𝑜𝑠𝑠 = −∑log𝐷 (𝐺(𝑧(𝑖); 𝜃𝑔))

𝑁

𝑖=1

 (12.12)

Note that the real data samples do not participate in the generator training (12.12). To implement (12.12)

by BCELoss in PyTorch, we just need to define all the labels for the faked samples as 𝑦(𝑖) = 1.

During generator training, we keep the discriminator fixed. So we train the generator with the following

procedure:

• Sample random noise.

• Generate the fake samples from sampled random noise.

• Compute the prediction on the fake samples.

• Calculate loss (12.12).

• Update the generator parameters with gradient descent optimizer.

12.2.2 Transposed convolutional neural networks

It is straightforward to implement both the generator and the discriminator using neural networks. The

discriminator is simply a binary classifier that can be implemented by a series of standard 2D convolutional

layers. The generator delivers a fake data sample (e.g., image) for a given input noise vector. Since the size

of the noise vector is typically much smaller than that of the data sample (e.g., image), up-sampling layers

are required in the generative neural network. In this section, we will present a type of up-sampling

convolutional layer, called transposed convolutional layer that generates the output feature map greater

than the input feature map. For simplicity, in the following presentation we assume single channel in both

the input and the filter (or kernel). We can generalize to multiple channels in the same way as we do for

standard convolution. In other words, the output for multi-channel input convolution is the sum of

convolutions of individual channels.

A) Standard convolution matrix

A standard convolution can be expressed as a multiplication between a convolution matrix and an input

vector. Consider an input map feature 4x4 is convoluted with a filter/kernel 3x3 with stride 1 and no

zero-padding, shown in Fig.12.4.

The convolution can be represented by

𝑌 = 𝑊 ×𝑋 (12.13)

where 𝑊 ∈ ℝ4×16 is the convolution matrix obtained by re-arranging the weight matrix 𝑊 ∈ ℝ3×3

𝑊

= (

𝑤00 𝑤01 𝑤02 0 𝑤10 𝑤11 𝑤12 0 𝑤20 𝑤21 𝑤22 0 0 0 0 0

 0 𝑤00 𝑤01 𝑤02 0 𝑤10 𝑤11 𝑤12 0 𝑤20 𝑤21 𝑤22 0 0 0 0
 0

 0

 0

 0

 0 0 𝑤00 𝑤01 𝑤02 0 𝑤10 𝑤11 𝑤12 0 𝑤20 𝑤21 𝑤22 0

 0 0 0 𝑤00 𝑤01 𝑤02 0 𝑤10 𝑤11 𝑤12 0 𝑤20 𝑤21 𝑤22

)

(12.14)

X and Y are input and output in a vector form

𝑋 =

(

𝑥00
𝑥01
𝑥02
𝑥03
𝑥10
𝑥11
⋮
𝑥32
𝑥33)

 𝑌 = (

𝑦00
𝑦01
𝑦10
𝑦11

)

Fig.12.4 A standard convoluion operation (stride 1 and no zero-padding)

B) Transposed convolution

Now let’s consider an opposite mapping, i.e., mapping from a 4-dimensional space to a 16-dimensional

space. We can define the transposed convolution matrix (𝑊
𝑇
∈ ℝ16×4 in the above example) by

transposing the original convolution matrix 𝑊, such that the transposed convolution matrix can map a

4-dimensional feature to a 16-dimensional feature by a matrix multiplication.

𝑍 = 𝑊
𝑇
× 𝑌 (12.15)

where transposed convolution matrix 𝑊
𝑇
∈ ℝ16×4, 𝑊 is defined by (12.14), input feature map 𝑌 ∈

ℝ4, output feature map 𝑍 ∈ ℝ16. The operation in (12.15) is called transposed convolution with a

filter W, as shown in Fig.12.5, with X and Y reshaped to 2D arrays.

Fig.12.5 A transposed convolution

We can implement the transposed convolution in two perspectives: flipping weight and weighting

weight. In the perspective of flipping weight, as shown in Fig.12.6, we flip the weight matrix W

verterically and horizontally, and then perform the regular convolution operation between Y (as the

input) and the flipped weight matrix (as the kernel), with sufficient zero-padding on Y.

Fig.12.6 Implement a transposed convolution by flipping the filter sheet.

The second perspective for the transposed convolution implementation is shown in Fig.12.7. We

generate the partial output maps by sliding the weight matrix multiplied by the corresponding input

element, and then sum up all partial output maps in elementwise.

Fig.12.7 Implement a transposed convolution by summing slided weighted filters

Note that, for a default setting, the output feature map size is given by

𝑂𝑡𝑟𝑎𝑛𝑠_𝑐𝑜𝑛𝑣 = 𝑛 + 𝑓 − 1 𝑛𝑜 𝑝𝑎𝑑𝑑𝑖𝑛𝑔, 𝑎𝑛𝑑 𝑠𝑡𝑟𝑖𝑑𝑒 = 1 (12.16)

where n is the input size (height or width), f is the size of the kernel (height or width).

C) Zero-padding and stride in transposed convolution

The previous description of transposed convolution is based on a default setting, i.e. no zero-padding

and stride =1. Like standard convolution, to obtain a desired shape size of output, we can define zero-

padding and stride for a transposed convolution.

In a standard convolution, zero-padding simply refers to adding zero around the input feature map while

stride means the number of pixels the kernel slide at each step. Zero-padding increases the output size,

and increasing the stride leads to down-sampling at the output. Suppose both the shapes of the data

feature map and the kernel are square. We have the output shape size ((8.1) in chapter 8)

𝑂𝑐𝑜𝑛𝑣 = ⌊
𝑛 + 2𝑝 − 𝑓

𝑠
⌋ + 1 (12.17)

where n is the input size (height or width), p is the number of zero columns/rows padded on one side

of the input feature map, f is the size of the kernel, s is the stride.

However, the meanings of “zero-padding” and “stride” specified in a transposed convolution are

different. They have the reverse effects on the output size, compared to standard convolution. Similarly,

let n be the input size, f be the filter size, p be the zero-padding, and s be the stride for a transposed

convolution. In the transposed convolution, zero-padding will decrease the output size by cutting off

outer rows and columns of the output. For example, Fig.12.8 shows a transposed convolution with p=1

that gets an output 2 × 2 by deleting one outer row and column around the default output (non zero-

padding). In general, the output size of transposed convolution for zero-padding p (stride =1 default) is

given by

𝑂𝑡𝑟𝑎𝑛𝑠_𝑐𝑜𝑛𝑣 = 𝑛 + 𝑓 − 1 − 2𝑝 𝑠𝑡𝑟𝑖𝑑𝑒 = 1 (12.18)

Fig.12.8 Zero-padding p=1 for transposed convolution

The stride specifies the step size by which the weighted weight matrix moves for each input pixel. For

example, if stride =2, then the weighted weight matrix moves by two units each step. A stride s (e.g.

s=2) is equivalent to inserting 𝑠 − 1 zero(s) between every two input pixels, leading to the effective

input size of 𝑛 + (𝑛 − 1)(𝑠 − 1) = 𝑠(𝑛 − 1) + 1, shown in Fig.12.9 for s=2.

Fig.12.9 A transposed convolution with stride =2

In summary, a transposed convolution with padding p and stride s delivers an output feature map with

size given by

𝑂𝑡𝑟𝑎𝑛𝑛𝑠_𝑐𝑜𝑛𝑣 = 𝑠(𝑛 − 1) + 𝑓 − 2𝑝 (12.19)

From (12.17) and (12.19), a transposed convolution can reverse the output feature map size of its

counterpart standard convolution (i.e., with same kernel size f, padding p and stride s) back to the input

size, if
𝑛+2𝑝−𝑓

𝑠
 is an integer, as shown in Fig.12.10.

Fig.12.10 Transposed convolution reverses the feature size from standard convolution.

12.2.3 An example of GAN

As an example, in this section we present the detailed neural network architecture for a particular GAN.

This GAN is designed to generate 64 × 64 images. The implementation of this example in PyTorch will

be given in Section 12.4.1.

The generator, 𝐺(𝑧; 𝜃𝑔), is designed to map the noise vector 𝑧 ∈ ℝ100 to data space 𝐱 ∈ ℝ3×64×64, which

corresponds to an RGB image. We implement the generator using a series of two-dimensional transposed

convolution layers, each (except the last layer) followed by a 2D batch normalization layer and a ReLU

activation. The output of the last transposed convolution layer is passed through a tanh function to return

the values to the range of [−1,1]. The architecture is shown in Fig.12.11.

The discriminator, 𝐷(𝐱; 𝜃𝑑), is a binary classification network that takes an image 𝐱 ∈ ℝ3×64×64 as input

and outputs a scalar value that indicates the probability that the input image is real (as opposed to fake).

Here, the network 𝐷(𝐱; 𝜃𝑑) processes the image through a series of Conv2d, BatchNorm2d, and

LeakyReLU layers, and outputs the probability through a Sigmoid activation function. Note that there is no

BatchNorm2d for the first convolution layer. The architecture is shown in Fig.12.12.

Fig.12.11 Generator implemented by five transposed convolution layers.

Fig.12.12 Discriminator implemented by five conv2d layers.

12.3 GAN Variants

12.3.1 Practical issues with the original GAN

The probability density learned by the original GAN, 𝑃𝑔(𝐱), is implicitly defined by the neural network

𝐺(𝑧; 𝜃𝑔) that maps a prior random variable 𝑧~𝑝(𝑧) to a generated sample. In other words, to generate a

sample, we first sample z from a simple prior 𝑝(𝑧), and then compute 𝐺(𝑧; 𝜃𝑔). During the generation of

a sample, we don’t have any control over the properties of the sample we want to generate. For instance,

we can’t ask the original GAN to generate a specific digit (e.g. 7). Conditional GAN and InfoGAN will be

introduced to deal with this issue.

In general, GANs suffer the following major problems:

o Non-convergence. The model parameters never converge during the training process.

o Vanishing gradient. When the discriminator is close to its optimum, the generator gradient vanishes

(i.e., almost 0) and thus the model learns nothing.

o Model collapse. The trained generator produces limited varieties of samples.

o Highly sensitive to hyperparameter selection.

The in-depth analysis of these problems is beyond the scope of the text. We mention them here to motivate

the variants of GAN.

12.3.2 Conditional GAN

(A) Principle and loss function

Generative adversarial nets can be extended to a conditional model if both the generator and discriminator

are conditioned on some extra information c, which could be any kind of auxiliary information, such as

class labels or data from other modalities. We can perform the conditioning by feeding c into both the

discriminator and the generator as additional input information. This results in a GAN variant called

conditional GAN. For example, a trained conditional GAN on MNIST can generate an image for a given

digit.

In the generator the input noise 𝑧, and condition c (e.g., label) are combined. In the discriminator the real

image x or the fake image G(z|c) and c are presented as the input. Fig.12.13 shows the generic architecture

of conditional GANs. The objective function of a two-player minimax game would be as

min
𝐺
max
𝐷
{𝑉(𝐷, 𝐺) = Ε𝐱~𝑝𝑑𝑎𝑡𝑎(𝐱)[𝑙𝑜𝑔𝐷(𝐱|𝑐; 𝜃𝑑)] + Ε𝑧~𝑝𝑍(𝑧) [log (1 − 𝐷(𝐺(𝑧|𝑐; 𝜃𝑔)|𝑐; 𝜃𝑑))]} (12.20)

Fig.12.13 Conditional GAN architecture

(B) Implementation

As an example, Fig.12.14 shows the implementation of a conditional GAN for digit image generation,

which is conditioned on label 𝑐 ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8,9}. The input of discriminator (D) consists of an

image (real or fake) and its corresponding label image. In our case the size of image x is 32x32. The label

image is encoded in one-hot-feature image format 10x32x32. For example, if the label y=3, the third feature

map [3,:,:] of the label image is all-one while all other feature maps are all-zero. The generator (G) receives

a noise vector z and one-hot label (c) vector as the input, and delivers a fake image for the class c, G(z|c).

It is also necessary to encode the label in the one-hot-feature image format to form a fake training example.

How the input x or z is combined with the label c is flexible in general. For example, we can choose this

way: the first hidden layers for z and c label in the generator are separate, and their outputs are concatenated

(or merged) as the input of the next layer. A similar way is applied to the discriminator. The detailed

architecture is given in Table 12.1.

Fig.12.14 Overall architecture of conditional GAN for MNIST

Table 12.1 An example of conditional GAN for MNIST

Generator Discriminator

Input z [100,1,1] Input C [10,1,1] Input x [1,32,32] Input C [10,32,32]

T.conv(c=256,f=4,s=1,p=0)

BN, ReLU

T.conv(c=256,f=4,s=1,p=0)

BN, ReLU

Conv(c=64,f=4,s=2,p=1) Conv(c=64,f=4,s=2,p=1)

Concatenate output: [512,4,4] Concatenate output: [128,16,16]

T.conv(c=256,f=4,s=2,p=1)

BN, ReLU

Output: [256,8,8]

Conv(c=256,f=4,s=2,p=1)

BN, LeakyReLU

Output: [256,8,8]

T.conv(c=128,f=4,s=2,p=1)

BN, ReLU

Output: [128,16,16]

Conv(c=512,f=4,s=2,p=1)

BN, LeakyReLU

Output: [512,4,4]

T.conv(c=1,f=4,s=2,p=1)

Tanh()

Output: [1,32,32]

Conv(c=1,f=4,s=1,p=0)

Sigmoid()

Output: [1,1,1]

 Loss for discriminator Loss for generator

 Note: c: channel, f: filter size, s: stride, p: padding, BN: batch normalization.

12.3.3 InfoGAN

(A) Principle and loss function

InfoGAN is similar to conditional GAN except for the fact that it is also able to learn disentangled

(interpretable) features in a completely unsupervised manner. Recall, in conditional GAN, the generator

network has a conditional input c, which is assumed to be semantically known, e.g., labels. During training,

we need to provide c, and G will implicitly learn the conditional distribution of data 𝑝(𝐱|𝑐). In InfoGAN

we assume c to be unknown, and thus we infer it based on the data, i.e., we want to find posterior 𝑝(𝑐|𝐱).

Instead of using a single noise vector z as in the basic GAN, InfoGAN decomposes noise vector into the

following two parts: 1) z, which is treated as incompressible noise as in the basic GAN; 2) c, which is called

the latent vector for the salient structured semantic features of the data distribution. For instance, to generate

images from the MNIST dataset, the latent vector 𝑐 = [𝑐1, 𝑐2, 𝑐3]
𝑇 can be associated with three semantic

features: categorical variable 𝑐1~𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝐾 = 10, 𝑝 = 0.1) for the identity of the digit (i.e., label),

continuous variable 𝑐2 for the rotation, and continuous variable 𝑐3 for the thickness of the stroke,

𝑐2, 𝑐3~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−1,1). In general, the categorical latent variable may be used to control the type or class

of the generated image, and the continuous latent variables can capture variations that are continuous in

nature.

In information theory, the mutual information between X and Y, measuring the amount of information

learned from knowledge of random variable Y about the other random variable X, is defined by

𝐼(𝑋; 𝑌) = 𝐻(𝑋) − 𝐻(𝑋|𝑌) = 𝐻(𝑌) − 𝐻(𝑌|𝑋) (12.21)

In other words, 𝐼(𝑋; 𝑌) is the reduction of uncertainty in X when Y is observed. If X and Y are independent,

then 𝐼(𝑋; 𝑌) is equal to zero. If X and Y are related by a deterministic invertible function, then maximal

mutual information is attained. InfoGAN is formulated as an information-regularized minimax game given

by

min
𝐺
max
𝐷
{𝑉𝐼(𝐷, 𝐺) = 𝑉(𝐷, 𝐺) − 𝜆𝐼(𝑐; 𝐺(𝑧, 𝑐))} (12.22)

where 𝐼(𝑐; 𝐺(𝑧, 𝑐)) is the mutual information between c and the generated image, and 𝜆 is a

hyperparameter.

The intuition of (12.22) is that there should be high mutual information between latent vector c and

generator distribution 𝐺(𝑧, 𝑐). In other words, the information in c should not be lost in the generation

process. It has been proven by (Chen, et al., 2016) that the mutual information 𝐼(𝑐; 𝐺(𝑧, 𝑐)) has a lower

bound by defining an auxiliary distribution 𝑄(𝑐|𝐱) for an approximation of 𝑝(𝑐|𝐱)

𝐼(𝑐; 𝐺(𝑧, 𝑐)) ≥ 𝐿𝐼(𝐺, 𝑄) (12.23)

where the lower bound

𝐿𝐼(𝐺, 𝑄) = 𝔼𝑐~𝑝(𝑐),𝐱~𝐺(𝑧,𝑐)[𝑙𝑜𝑔𝑄(𝑐|𝐱)] + 𝐻(𝑐) (12.24)

In addition, it has been known (Chen, et al., 2016) that when the lower bound attains its maximum

𝐿𝐼(𝐺, 𝑄) = 𝐻(𝑐) for discrete latent c, the bound becomes tight and the maximal mutual information is

achieved.

Thus, (12.22) can be rewritten as

min
𝐺,𝑄

max
𝐷
{𝑉𝐼𝑛𝑓𝑜𝐺𝐴𝑁(𝐷, 𝐺, 𝑄) = 𝑉(𝐷, 𝐺) − 𝜆𝐿𝐼(𝐺, 𝑄)} (12.25)

In practice, three components G, D, Q can be implemented as neural networks. This results in the

architecture of InfoGAN shown in Fig.12.15. Typically, D and Q share most of convolutional layers while

having separate heads to generate corresponding outputs. The D head generates the probability of the input

being real, and the Q head computes the conditional distribution 𝑄(𝑐|𝐱).

For a categorical latent component, say 𝑐𝑖, softmax can be used in the output layer for 𝑄(𝑐𝑖|𝐱). For a

continuous latent component, say 𝑐𝑗, 𝑄(𝑐𝑗|𝐱) can be assumed to be Gaussian in many applications, and thus

the neural network only needs to predict the mean and the variance. The hyperparameter λ is typically set

to 1 for discrete latent components. For continuous latent components, a smaller λ (e.g., 0.1) is usually used

to ensure 𝜆𝐿𝐼(𝐺, 𝑄) is on the same scale as the GAN objectives.

Like the training of the basic GAN, there are two separate parameter updating processes within a training

loop for each batch. One process is to update the parameters of discriminator and D head while another

process updates the generator and Q head.

Fig.12.15 Architecture of InfoGAN

(B) Principle and loss function

An example of InfoGAN, which was given by the original authors in (Chen, et al., 2016), generates digit

images from the MNIST dataset. The architecture is specified in Table 12.1. The latent variables include

one categorical variable 𝑐1~𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝐾 = 10, 𝑝 = 0.1) and two continuous variables

𝑐2, 𝑐3~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−1,1) that can capture rotation of digits and stoke width. The noise z is a 62-element

random vector. This results in the input size of 74 for the generator. In training, the discriminator and D

head are updated using BCE loss from the D head. The loss for updating the generator and Q head is the

sum of all three losses listed in Table 12.2. (details: https://github.com/Natsu6767/InfoGAN-PyTorch)

Table 12.2 InfoGAN architecture example for MNIST dataset

Generator: input [74, 1, 1] Discriminator: input [1, 28, 28]

Trans. Conv (c=1024,f=1,s=1,p=0)

BN, ReLU

Output: [1024, 1, 1]

 Conv(c=64,f=4,s=2,p=1)

Leaky ReLU

Output: [64, 14, 14]

Trans. Conv (c=128,f=7,s=1,p=0)

BN, ReLU

Output: [128, 7, 7]

 Conv(c=128,f=4,s=2,p=1)

BN, Leaky ReLU

Output: [128, 7, 7]

Trans. Conv (c=64,f=4,s=2,p=1)

BN, ReLU

Output: [64, 14, 14]

 Conv(c=1024,f=7,s=1,p=0)

BN, Leaky ReLU

Output: [1024, 1, 1]

Trans. Conv(c=1,f=4,s=2,p=1)

Sigmoid

Output: [1, 28, 28]

 D head Q head

Conv(c=1,f=1,s=1,p=0)

Sigmoid

Output: [1,1,1]

Conv(c=128,f=1,s=1,p=0)

BN, Leaky ReLU

Output: [128,1,1]

Conv1 Conv2 Conv3

exp()

 Binary cross

entropy (BCE) loss

Cross

entropy

loss

Gaussian

negative log

likelihood loss

https://github.com/Natsu6767/InfoGAN-PyTorch

Note: c: channel, f: filter size, s: stride, p: padding, BN: batch normalization.

Conv1: c=10, f=1,s=1,p=0, output size: [10]

Conv2: c=2, f=1,s=1,p=0, output size: [2] for Gaussian means

Conv3: c=2, f=1,s=1,p=0, output size: [2] for Gaussian variances

12.3.4 Wasserstein GAN

Wasserstein GAN (WGAN) (Arjovsky et al., 2017) was proposed to treat the instability of GAN training

by an objective function based on Wasserstein distance, which has better theoretical properties than the

original one (12.1).

(A) Wasserstein distance and WGAN principle

To explain the concept of Wasserstein distance, let’s consider a 2-dimensional example of moving all dirt

in piles (indicated by cuboids) to some pre-defined empty holes (indicated by cylinders), as illustrated in

Fig.12.16. The amount of dirt across the piles represents the source distribution 𝑝𝑟(𝑥, 𝑦) (the subscript r

indicates it is associated with real data in GAN) while the resulting dirt distribution across the holes

represents the target distribution 𝑝𝜃(𝑥, 𝑦).

Fig.12.16 Wasserstein distance illustration by dirt transportation

Suppose both distributions 𝑝𝑟(𝑥, 𝑦) and 𝑝𝜃(𝑥, 𝑦) are given. The goal is to find the most efficient

transportation plan, i.e., the optimal one, which minimizes the total transportation cost. The cost should be

proportional to the amount dirt transported and the moving distance. To quantify the cost, we define the

squared Euclidean distance as the cost of moving one unit of dirt from (𝑥1, 𝑥0) to (𝑦1, 𝑦0)

𝐶(𝑥0, 𝑦0; 𝑥1, 𝑦1) = (𝑥1 − 𝑥0)
2 + (𝑦1 − 𝑦0)

2 (12.26)

Then we define a transportation plan 𝑇(𝑥0, 𝑦0; 𝑥1, 𝑦1) for all possible (𝑥0, 𝑦0) and (𝑥1, 𝑦1), which specifies

how many units of dirt to move from (𝑥0, 𝑦0) to (𝑥1, 𝑦1). A pile of dirt is allowed to split into multiple

holes, and the dirt from multiple piles can be moved into the same hole. For T to be a valid plan, it should

be non-negative, i.e. 𝑇(𝑥0, 𝑦0; 𝑥1, 𝑦1) ≥ 0 and

∬𝑇(𝑥0, 𝑦0; 𝑥1, 𝑦1)𝑑𝑥1𝑑𝑦1 = 𝑝𝑟(𝑥0, 𝑦0) 𝑓𝑜𝑟 𝑎𝑙𝑙 (𝑥0, 𝑦0) (12.27𝑎)

∬𝑇(𝑥0, 𝑦0; 𝑥1, 𝑦1)𝑑𝑥0𝑑𝑦0 = 𝑝𝜃(𝑥1, 𝑦1) 𝑓𝑜𝑟 𝑎𝑙𝑙 (𝑥1, 𝑦1) (12.27𝑏)

(12.27a) implies that all dirt at (𝑥0, 𝑦0) are transported to some holes while (12.27b) tells that all dirt in a

hole (𝑥1, 𝑦1) came from piles. Thus, for a given transportation plan 𝑇(𝑥0, 𝑦0; 𝑥1, 𝑦1), the total cost of

moving dirt from piles 𝑝𝑟(𝑥, 𝑦) to holes 𝑝𝜃(𝑥, 𝑦) is given by

𝐶𝑜𝑠𝑡 = ∬∬𝐶(𝑥0, 𝑦0; 𝑥1, 𝑦1)𝑇(𝑥0, 𝑦0; 𝑥1, 𝑦1)𝑑𝑥0𝑑𝑦0 𝑑𝑥1𝑑𝑦1 (12.28)

The Wasserstein distance is the minimal cost corresponding to the optimal transportation plan.

In general, the Wasserstein distance, also called Earth-Mover (EM) distance, between two distributions

𝑝𝑟(𝐱) and 𝑝𝜃(𝐲), is defined by

𝑊(𝑝𝑟 , 𝑝𝜃) = inf
𝒯∈∏(𝑝𝑟,𝑝𝜃)

𝔼(𝐱,𝐲)~𝒯[‖𝐱 − 𝐲‖] (12.29)

where 𝒯 ∈ ∏(𝑝𝑟, 𝑝𝜃) denotes the set of all joint distributions 𝑇(𝐱; 𝐲) whose marginal distributions are

𝑝𝑟 and 𝑝𝜃 respectively. inf denotes the infimum operation (i.e., the greatest lower bound). Intuitively

𝑇(𝐱; 𝐲) indicates how much probability mass needs to be transported from x to y in order to transform the

distribution 𝑝𝑟 to 𝑝𝜃. Thus, to obtain 𝑝𝜃 from 𝑝𝑟, the Wasserstein distance is the total mass required to

move by the optimal transport plan corresponding to the optimal 𝑇(𝐱; 𝐲).

Wasserstein distance demonstrates a property of continuity, which results in smooth and non-vanishing

gradients in the learning process. Suppose we model a distribution by parameter 𝜃, denoted as 𝑝𝜃. A

sequence of distributions 𝑝𝜃𝑡 , 𝑡 = 1,2, …, converges if and only if there is a distribution 𝑝∞ such that

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝𝜃𝑡 , 𝑝∞) tends to zero. Continuity means that when a sequence of parameter 𝜃𝑡 converge to 𝜃,

the distributions 𝑝𝜃𝑡 also converge to 𝑝𝜃. Note that the continuity depends on the definition of the distance.

For example, consider two probability mass functions 𝑝0(𝑥) and 𝑝𝜃(𝑥) in Fig.12.17, where the random

variable X is discrete, and 𝑝𝜃(𝑥) is the shifted version of 𝑝0(𝑥) by 𝜃. One can verify that the Wasserstein

distance between them is 𝜃. Thus, the distribution 𝑝𝜃(𝑥) converges to 𝑝0(𝑥) when 𝜃 → 0, in the sense of

Wasserstein distance, which is expected by our intuition. However, their KL or JS divergence does not have

this continuity property, because their values are given as

𝐷𝐽𝑆(𝑝0, 𝑝𝜃) = {
𝑙𝑜𝑔2 𝜃 ≠ 0
0 𝜃 = 0

 (12.30)

𝐷𝐾𝐿(𝑝0, 𝑝𝜃) = 𝐷𝐾𝐿(𝑝𝜃, 𝑝0) = {
+∞ 𝜃 ≠ 0
0 𝜃 = 0

 (12.31)

Fig.12.17 two distributions for divergence comparison

In Wasserstein GAN, the Wasserstein distance is used to form the loss for training. The goal of training is

to minimize the Wasserstein distance, instead of minimizing the JS divergence like the original GAN (12.6).

However, the Wasserstein distance is highly intractable. Using the Kantorovich-Rubinstein duality (Villani

2009), we can simplify (12.29) to

𝑊(𝑝𝑟 , 𝑝𝜃) = sup
‖𝑓‖𝐿≤1

𝔼𝑥~𝑝𝑟[𝑓(𝑥)] − 𝔼𝑥~𝑝𝜃[𝑓(𝑥)] (12.32)

where the supremum, i.e., the least upper bound, denoted by sup
‖𝑓‖𝐿≤1

, is over all the 1-Lipschitz functions

𝑓: 𝑋 → ℝ. A real function 𝑓: 𝑋 → ℝ is a K-Lipschitz function if

|𝑓(𝑥1) − 𝑓(𝑥2)| ≤ 𝐾 ∙ |𝑥1 − 𝑥2|, 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑥1, 𝑥2 ∈ 𝑋 (12.33)

Intuitively, the constraint of Lipschitz limits the changing rate (or derivative) of the function.

Under the constraint of Lipschitz, WGAN can be described by

min
𝐺
max
𝐷∈𝒟

𝔼𝑥~𝑝𝑟[𝐷(𝑥;𝑤)] − 𝔼�̃�~𝑝𝜃[𝐷(�̃�; 𝑤)] (12.34)

where 𝒟 is the set of 1-Lipschitz functions, and 𝑝𝜃 is the model distribution implicitly defined by �̃� =

𝐺(𝑧; 𝜃), 𝑧~𝑝(𝑧). Thus, (12.34) can be rewritten as

min
𝐺
max
𝐷∈𝒟

𝔼𝑥~𝑝𝑟[𝐷(𝑥;𝑤)] − 𝔼𝑧~𝑝(𝑧)[𝐷(𝐺(𝑧; 𝜃);𝑤)] (12.35)

(B) WGAN with weight clipping

The discriminator 𝐷(𝑥;𝑤) in WGAN is called a critic since it is not trained to classify. Under an optimal

discriminator, minimizing (12.35) with respect to G minimizes the Wasserstein distance 𝑊(𝑝𝑟 , 𝑝𝜃). With

mild assumptions, it has been shown (Arjovsky et al., 2017) that

∇𝜃𝑊(𝑝𝑟 , 𝑝𝜃) = −𝔼𝑧~𝑝(𝑧)[∇𝜃𝐷(𝐺(𝑧; 𝜃);𝑤)] (12.36)

To enforce the Lipschitz constraint on the critic, the original authors (Arjovsky et al., 2017) proposed to

clip the weights of the critic to lie within a compact space [-c,c], say c=0.01. the set of function satisfying

this constraint is a subset of the Lipschitz functions which depends on c and the critic architecture. The

resulting WGAN procedure is described in Algorithm 2. An example of WGAN architecture is specified in

Table 12.3, for generating [3,64.64] images.

Algorithm 2: WGAN with weight clipping. Suggested hyperparameters: 𝛼 = 0.00005, 𝑐 = 0.01, 𝑚 = 64,

𝑛𝑐𝑟𝑖𝑡𝑖𝑐 = 5. Suggested optimizer: RMSProp.

Require: 𝛼, the learning rate. 𝑐, the clipping parameter, 𝑚, the batch size. 𝑛𝑐𝑟𝑖𝑡𝑖𝑐, the number of iterations

of the critic per generator iteration.

Require: 𝑤0, initial critic parameters. 𝜃0, initial generator parameters.

Procedure:

 while 𝜃 has not converged do

 for t = 1, …, 𝑛𝑐𝑟𝑖𝑡𝑖𝑐 do

 Sample {𝑥(𝑖)}
𝑖=1

𝑚
~𝑝𝑟 a batch from the real data.

 Sample {𝑧(𝑖)}
𝑖=1

𝑚
~𝑝(𝑧) a batch of prior samples.

 𝑔𝑤 ← ∇𝑤 [
1

𝑚
∑ 𝐷(𝑥(𝑖); 𝑤)𝑚
𝑖=1 −

1

𝑚
∑ 𝐷(𝐺(𝑧(𝑖); 𝜃);𝑤)𝑚
𝑖=1]

 𝑤 ← 𝑤 + 𝛼 ∙ 𝑅𝑀𝑆𝑃𝑟𝑜𝑝(𝑤, 𝑔𝑤)

 𝑤 ← 𝑐𝑙𝑖𝑝(𝑤,−𝑐, 𝑐)
 end for

 Sample {𝑧(𝑖)}
𝑖=1

𝑚
~𝑝(𝑧) a batch of prior samples.

 𝑔𝜃 ← −∇𝜃
1

𝑚
∑ 𝐷(𝐺(𝑧(𝑖); 𝜃);𝑤)𝑚
𝑖=1

 𝜃 ← 𝜃 − 𝛼 ∙ 𝑅𝑀𝑆𝑃𝑟𝑜𝑝(𝜃, 𝑔𝜃)
 end while

Table 12.3 WGAN-weight clipping for generating 3 × 𝑑 × 𝑑 images (d=64 for celebA dataset)

Generator Critic

Input z [100,1,1] Input image [3,64,64]

T.conv2d(cin=100,cout=8×d,f=4,s=2,p=0)

BN, ReLU

Conv2d(cin=3,cout=d,f=4,s=2,p=1)

BN, LeakyReLU

T.conv2d(cin=8×d,cout=4×d,f=4,s=2,p=1)

BN, ReLU

Conv2d(cin=d,cout=2×d,f=4,s=2,p=1)

BN, LeakyReLU

T.conv2d(cin=4×d,cout=2×d,f=4,s=2,p=1)

BN, ReLU

Conv2d(cin=2×d,cout=4×d,f=4,s=2,p=1)

BN, LeakyReLU

T.conv2d(cin=2×d,cout=d,f=4,s=2,p=1)

BN, ReLU

Conv2d(cin=4×d,cout=8×d,f=4,s=2,p=1)

BN, LeakyReLU

T.conv2d(cin=d,cout=3,f=4,s=2,p=1)

Tanh()

Conv2d(cin=8×d,cout=1,f=4,s=1,p=0)

(C) WGAN with gradient penalty

Enforcing the Lipschitz constraint via weight clipping biases the critic towards much simpler functions.

The trained critic ignores higher moments of the data distribution and thus models very simple

approximation to the optimal functions. The convergence of WGAN with weight clipping is sensitive to

the value of c.

Gulrajani et al., 2017 proposed an alternative way to enforce the Lipschitz constraint using gradient penalty.

Since a differentiable function is 1-Lipschitz if and only if it has gradients with norm at most 1 everywhere,

we consider constraining the gradient norm of the critic’s output with respect to its input. To avoid

tractability issues, a soft version of the constraint with a penalty on the gradient norm for random samples

𝑥~𝑝�̂�. The loss function for the critic in WGAN with gradient penalty is

𝐿 = 𝔼𝑧~𝑝(𝑧)[𝐷(𝐺(𝑧; 𝜃);𝑤)] − 𝔼𝑥~𝑝𝑟[𝐷(𝑥;𝑤)] + 𝜆𝔼𝑥~𝑝�̂�[(‖∇�̂�𝐷(𝑥)‖2 − 1)
2] (12.37)

The first two terms in (12.37) are the original critic loss, and the third term is the penalty of gradient.

Sampling 𝑥~𝑝�̂� is implicitly defined as sampling uniformly along line segments between pairs of points

sampled from the real data distribution 𝑝𝑟 and the generator distribution 𝑝𝑔. As a result, the WGAN with

gradient penalty is described in Algorithm 3.

Since we penalize the norm of the critic’s gradient with respect to each input independently, it is suggested

that the batch normalization is not applied in the critic model. Instead, an instance normalization can be

considered.

Algorithm 3: WGAN with gradient penalty. Suggested hyperparameters: 𝜆 = 10, 𝛼 = 0.0001, 𝛽1 = 0.5,

𝛽2 = 0.999, 𝑛𝑐𝑟𝑖𝑡𝑖𝑐 = 5. Suggested optimizer: Adam.

Require: the gradient penalty coefficient 𝜆, the batch size 𝑚, the number of iterations of the critic per

generator iteration 𝑛𝑐𝑟𝑖𝑡𝑖𝑐, Adam hyperparameters 𝛼, 𝛽1, 𝛽2.

Require: initial critic parameters 𝑤0, initial generator parameters 𝜃0.
Procedure:

while 𝜃 has not converged do

for t = 1, …, 𝑛𝑐𝑟𝑖𝑡𝑖𝑐 do

for i =1,…, m do

Sample real data 𝑥~𝑝𝑟, prior 𝑧~𝑝(𝑧), a random number 𝜖~𝑈[0,1].

�̃� ← 𝐺(𝑧; 𝜃)

𝑥 ← 𝜖𝑥 + (1 − 𝜖)�̃�

𝐿(𝑖) ← 𝐷(�̃�; 𝑤) − 𝐷(𝑥; 𝑤) + 𝜆(‖∇𝑥𝐷(𝑥;𝑤)‖2 − 1)
2

end for

𝑤 ← Adam(∇𝑤
1

𝑚
∑𝐿(𝑖)
𝑚

𝑖=1

, 𝑤, 𝛼, 𝛽1, 𝛽2)

end for

Sample {𝑧(𝑖)}
𝑖=1

𝑚
~𝑝(𝑧) a batch of prior samples.

𝜃 ← Adam(∇𝜃
1

𝑚
∑−𝐷(𝐺(𝑧(𝑖); 𝜃);𝑤)

𝑚

𝑖=1

, 𝜃, 𝛼, 𝛽1, 𝛽2)

end while

As an example, to implement the WGAN with gradient penalty, we can still use Table 12.3 and just need

to delete or replace BN layers in the critic with instance normalization layers (nn.InstanceNorm2d).

Detailed similar implementations (including Python codes and training) can be found in many githubs (e.g.,

Zeleni9, 2021, and s-chh, 2022).

12.3.5 CycleGAN

(A) Principle and loss function

CycleGAN (Zhu et al. 2017) was proposed to perform image-to-image translations. For example, a

CycleGAN can translate a photo to an image in Monet painting style while maintaining the content. Other

image-to-image translation tasks include changing the season from summer to winter, translating horse into

zebra, changing dark to night, etc. The goal of CycleGAN is to learn the special characteristics of one image

collection and figure out how these characteristics could be translated into the other image collection.

Suppose we have two image collections (or domains) X and Y: {𝑥(𝑖)}
𝑖=1

𝑁
, 𝑥(𝑖) ∈ 𝑋 and {𝑦(𝑗)}

𝑗=1

𝑀
, 𝑦(𝑗) ∈ 𝑌.

We denote the data distributions as 𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) and 𝑦~𝑝𝑑𝑎𝑡𝑎(𝑦). The goal is to learn two mapping

functions 𝐺:𝑋 → 𝑌, and 𝐹: 𝑌 → 𝑋, such that 𝐺(𝑥)~𝑝𝑑𝑎𝑡𝑎(𝑦) and 𝐹(𝑦)~𝑝𝑑𝑎𝑡𝑎(𝑥) approximately, and

𝐹(𝐺(𝑥)) ≈ 𝑥 and 𝐺(𝐹(𝑦)) ≈ 𝑦. The mapping F can be interpreted as the inverse mapping of G.

Thus, the CycleGAN model consists of two generators G and F, and their corresponding discriminators 𝐷𝑌

and 𝐷𝑋, as shown in Fig.12.18. The discriminator 𝐷𝑌 aims to distinguish between 𝑦(𝑗) as real and 𝐺(𝑥(𝑖))

as fake while the discriminator 𝐷𝑋 in the same way aims to predict 𝑥(𝑖) as real and 𝐹(𝑦(𝑗)) as fake.

Fig.12.18 Model diagram of CycleGAN

The objective function contains two types of losses: adversarial losses and cycle consistency losses. For the

mapping function G and its discriminator 𝐷𝑌, the objective can be expressed as

ℒ𝐺𝐴𝑁(𝐺, 𝐷𝑌, 𝑋, 𝑌) = 𝔼𝑦~𝑝𝑑𝑎𝑡𝑎(𝑦)[log𝐷𝑌(𝑦)] + 𝔼𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) [log (1 − 𝐷𝑌(𝐺(𝑥)))] (12.38)

G aims to minimize the objective against the discriminator that tries to maximize it, i.e.,

min
𝐺
max
𝐷𝑌

ℒ𝐺𝐴𝑁(𝐺, 𝐷𝑌, 𝑋, 𝑌) (12.39)

Similarly, for the mapping function F and its discriminator 𝐷𝑋, we have an objective

ℒ𝐺𝐴𝑁(𝐹, 𝐷𝑋, 𝑌, 𝑋) = 𝔼𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[log𝐷𝑋(𝑥)] + 𝔼𝑦~𝑝𝑑𝑎𝑡𝑎(𝑦) [log (1 − 𝐷𝑋(𝐹(𝑦)))] (12.40)

for the minmax optimization,

min
𝐹
max
𝐷𝑋

ℒ𝐺𝐴𝑁(𝐹, 𝐷𝑋, 𝑌, 𝑋) (12.41)

Theoretically, the adversarial losses alone cannot guarantee that the learned function can map an individual

input 𝑥(𝑖) to a desired output 𝑦(𝑖). A cycle consistency loss is constructed to enforce the cycle consistency.

The cycle consistency means that the learned mapping function should be cycle-consistent: for each image

𝑥 ∈ 𝑋, the image translation cycle should bring x back to the original image, i.e., 𝑥 → 𝐺(𝑥) → 𝐹(𝐺(𝑥)) ≈

𝑥, and 𝑦 → 𝐹(𝑦) → 𝐺(𝐹(𝑦)) ≈ 𝑦. The consistency loss is defined as

ℒ𝑐𝑦𝑐(𝐺, 𝐹) = 𝔼𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) [‖𝐹(𝐺(𝑥)) − 𝑥‖1] + 𝔼𝑦~𝑝𝑑𝑎𝑡𝑎(𝑦) [‖𝐺(𝐹
(𝑦)) − 𝑦‖

1
] (12.42)

Optionally, to preserve the color style of the input image, an identity loss is defined as

ℒ𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦(𝐺, 𝐹) = 𝔼𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[‖𝐹(𝑥) − 𝑥‖1] + 𝔼𝑦~𝑝𝑑𝑎𝑡𝑎(𝑦)[‖𝐺(𝑦) − 𝑦‖1] (12.43)

The identity loss pushes the generator to be near an identity mapping when real samples of the target domain

are provided as the input to the generator.

By combining (12.38) (12.40) (12.42) and (12.43), we obtain the full objective for CycleGAN

ℒ(𝐺, 𝐹, 𝐷𝑋, 𝐷𝑌) = ℒ𝐺𝐴𝑁(𝐺, 𝐷𝑌, 𝑋, 𝑌) + ℒ𝐺𝐴𝑁(𝐹, 𝐷𝑋, 𝑌, 𝑋) + 𝜆1ℒ𝑐𝑦𝑐(𝐺, 𝐹) + 𝜆2ℒ𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦(𝐺, 𝐹) (12.44)

where the hyperparameters 𝜆1, 𝜆2 control the relative importance of the two types of losses (e.g., 𝜆1 =

10, 𝜆2 = 5). The training process is to solve the optimization problem,

min
𝐺,𝐹

max
𝐷𝑋,𝐷𝑌

ℒ(𝐺, 𝐹, 𝐷𝑋, 𝐷𝑌) (12.45)

To stabilize the training procedure, the original authors suggested that the negative log likelihood objective

in (12.38) and (12.40) be replaced by a least-squares loss.

Based on the above discussion, the loss functions for training CycleGAN are described explicitly below:

1) Discriminator 𝐷𝑌 loss

 ℒ𝐷𝑌 = 𝔼𝑦~𝑝𝑑𝑎𝑡𝑎(𝑦) [(1 − 𝐷𝑌(𝑦))
2
] + 𝔼𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) [(𝐷𝑌(𝐺(𝑥)))

2
] (12.46𝑎)

2) Discriminator 𝐷𝑋 loss

ℒ𝐷𝑋 = 𝔼𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) [(1 − 𝐷𝑋(𝑥))
2
] + 𝔼𝑦~𝑝𝑑𝑎𝑡𝑎(𝑦) [(𝐷𝑋(𝐹(𝑦)))

2
] (12.46𝑏)

3) Generator G loss:

ℒ𝐺 = 𝔼𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) [(1 − 𝐷𝑌(𝐺(𝑥)))
2
] + 𝜆1ℒ𝑐𝑦𝑐(𝐺, 𝐹) + 𝜆2ℒ𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦(𝐺, 𝐹) (12.46𝑐)

4) Generator F loss

 ℒ𝐹 = 𝔼𝑦~𝑝𝑑𝑎𝑡𝑎(𝑦) [(1 − 𝐷𝑋(𝐹(𝑦)))
2
] + 𝜆1ℒ𝑐𝑦𝑐(𝐺, 𝐹) + 𝜆2ℒ𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦(𝐺, 𝐹) (12.46𝑑)

(B) Implementation

The network architectures for the generators and the discriminators, suggested by Zhu et al. 2017, is detailed

in Table 12.4. The input image size is assumed to be [3, k, k] with k=128 or 256 or higher.

In the generator, the first three convolutional layers function as an encoder, which learns a representation

with an increased number of channels. The resulting activation is then passed to a series of 6 or 9 residual

blocks (6 for k=128, and 9 for k=256 or higher), called transformer. It is then expanded by a decoder, which

uses two transposed convolutional layers to enlarge the representation size with the reduced number of

channels, and one convolutional output layer to produce the final image.

The discriminator, originally proposed by Isola et al., 2017, delivers an array output, instead of a single

scalar. Each element in the output array corresponds to a receptive field or a patch with a size N×N in the

input image. This discriminator tries to classify if each N×N patch in an image is real or fake. The average

of elements in the output provides the ultimate output of the discriminator, i.e., the image is real or fake.

For the setting in Table 12.4, the patch size is 70 × 70. Thus, the architecture of the discriminator is called

70 × 70 PatchGAN. Given an image of size 256x256, the discriminator outputs a tensor of size 30x30.

Each value of the output tensor holds the classification result (real or fake) for a 70x70 area of the input

image. Note that these 70x70 areas overlap with each other. This is equivalent to manually selecting each

of these 70x70 areas and having the discriminator examine them iteratively. The final classification result

on the whole image is the average of classification results on the 30x30 values.

Table 12.4 Network architectures for CycleGAN (from Zhu et al. 2017)

Generator (G and F) Discriminator (𝐷𝑌 𝐚𝐧𝐝 𝐷𝑋)
Input: [3,k,k] Input image [3,k,k]

Conv2d(cin=3, cout=64,f=7,s=1,p=3)

InstanceNorm2d, ReLU

(output: [64,k,k]

Conv2d(cin=3,cout=64,f=4,s=2,p=1)

LeakyReLU

(output: [64, k/2, k/2])

Conv2d(cin=64, cout=128,f=3,s=2,p=1)

InstanceNorm2d, ReLU

(output: [128,k/2,k/2])

Conv2d(cin=64,cout=128,f=4,s=2,p=1)

InstanceNorm2d, LeakyReLU

(output: [128,k/4,k/4])

Conv2d(cin=128, cout=256,f=3,s=2,p=1)

InstanceNorm2d, ReLU

(output: [256,k/4,k/4])

Conv2d(cin=128,cout=256,f=4,s=2,p=1)

InstanceNorm2d, LeakyReLU

(output:[256,k/8,k/8])

6 or 9

Residual

blocks*

Conv2d(cin=256,cout=256,f=3,s=1,p=1)

InstanceNorm2d, ReLU

Conv2d(cin=256,cout=256,f=3,s=1,p=1)

InstanceNorm2d

Block input + InstanceNorm2d output

(output: [256,k/4,k/4])

Conv2d(cin=256,cout=512,f=4,s=1,p=1)

InstanceNorm2d, LeakyReLU

(output:[512,k/8-1, k/8-1])

ConvTranspose2d(cin=256, cout=128,f=3,s=2,p=1)

InstanceNorm2d, ReLU

(output: [128, k/2,k/2])

Conv2d(cin=512,cout=1,f=4,s=1,p=1)

Sigmoid()

(output: [1, k/8-2, k/8-2])

ConvTranspose2d(cin=128, cout=64,f=3,s=2,p=1)

InstanceNorm2d, ReLU

(output: [64,k,k]

Conv2d(cin=64, cout=3,f=7,s=1,p=3)

Tanh()

(output:[3,k,k])

*6 residual blocks for 128x128 input images (k=128) while 9 residual blocks for k=256.

12.3.6 f-GANs

f-GANs are a class of GANs defined by various divergences. In fact, the original GAN is a special case of

f-GANs.

(A) f-divergences

f-divergences (Liese et al. 2006), also known as the Ali-Silvey distances (Ali et al.1966), are a class of

divergences that measure the difference between two probability distributions. We shall see that KL and

Jensen-Shannon divergences are examples of f-divergences. Given two distributions P and Q that possess,

respectively, an absolutely continuous density function 𝑝(𝑥) and 𝑞(𝑥) on the domain 𝒳, the f-divergence

is defined as

𝐷𝑓(𝑝||𝑞) = 𝔼𝑥~𝑞 [𝑓 (
𝑝(𝑥)

𝑞(𝑥)
)] (12.47)

where the f-divergence function 𝑓:ℝ+ → ℝ is a convex and lower semi-continuous function satisfying

𝑓(1) = 0. Different choices result in different divergences. The convex (or called Fenchel) conjugate of f

is defined as

𝑓∗(𝑡) = sup
𝑢∈𝑑𝑜𝑚𝑓

{𝑢𝑡 − 𝑓(𝑢)} (12.48)

The function 𝑓∗ is also a convex and lower semi-continuous function. The pair (𝑓, 𝑓∗) is dual in sense that

𝑓∗∗ = 𝑓.

(B) Variational divergence minimization

The lower bound on the f-divergence is obtained as below.

𝐷𝑓(𝑝||𝑞) = ∫ 𝑞(𝑥) sup
𝑡∈𝑑𝑜𝑚𝑓∗

{𝑡
𝑝(𝑥)

𝑞(𝑥)
− 𝑓∗(𝑡)}

𝒳

𝑑𝑥

≥ sup
𝑇∈𝒯

{∫ 𝑝(𝑥)𝑇(𝑥)𝑑𝑥
𝒳

−∫ 𝑞(𝑥)𝑓∗(𝑇(𝑥))𝑑𝑥
𝒳

}

= sup
𝑇∈𝒯

{𝔼𝑥~𝑝[𝑇(𝑥)] − 𝔼𝑥~𝑞[𝑓
∗(𝑇(𝑥))]} (12.49)

where 𝒯 is an arbitrary class of functions 𝑇:𝒳 → ℝ. The inequality in (12.49) is introduced for two reasons:

1) Jensen’s inequality when swapping the integration and supremum operations; and 2) 𝒯 may contain only

a subset of all possible functions. 𝑇 is also called a variational function.

Under mild conditions on f (Nguyen et al, 2010), the bound in (12.49) is tight for

𝑇(𝑥) =
𝑑𝑓(𝑢)

𝑑𝑢
|
𝑢=
𝑝(𝑥)
𝑞(𝑥)

 (12.50)

Now we use two neural networks 𝑇𝜔 and 𝑄𝜃 to model the variational function and distribution Q,

respectively. According to the lower bound in (12.49), our goal is to learn the generative model 𝑄𝜃 by

finding a saddle-point of the following f-GAN objective function, which we minimize w.r.t 𝜃 and maximize

w.r.t 𝜔,

𝐹(𝜃,𝜔) = 𝔼𝑥~𝑝[𝑇𝜔(𝑥)] − 𝔼𝑥~𝑄𝜃[𝑓
∗(𝑇𝜔(𝑥))] (12.51)

To match 𝑑𝑜𝑚𝑓∗ , the domain of the conjugate function 𝑓∗, the variational function 𝑇𝜔(𝑥) is further

represented in the form 𝑇𝜔(𝑥) = 𝑔𝑓(𝑉𝜔(𝑥)), and thus the objective function (12.51) is rewritten as

𝐹(𝜃, 𝜔) = 𝔼𝑥~𝑝[𝑔𝑓(𝑉𝜔(𝑥))] + 𝔼𝑥~𝑄𝜃 [−𝑓
∗ (𝑔𝑓(𝑉𝜔(𝑥)))] (12.52)

where 𝑉𝜔(𝑥):𝒳 → ℝ and 𝑔𝑓: ℝ → 𝑑𝑜𝑚𝑓∗ is an output activation function specific to the f-divergence. It is

suggested that 𝑔𝑓 is chosen to be a monotonically increasing function. We estimate 𝔼𝑥~𝑝[𝑔𝑓(𝑉𝜔(𝑥))] by

sampling a mini-batch from a training set, and estimate 𝔼𝑥~𝑄𝜃 [−𝑓
∗ (𝑔𝑓(𝑉𝜔(𝑥)))] by sampling from the

generative model 𝑄𝜃. Table 12.5 lists some f-divergences and the relevant functions.

Table 12.5 Some f-divergences, and the corresponding functions 𝑓(𝑢) and conjugates 𝑓∗(𝑡), and

recommended output activation functions 𝑔𝑓(𝑣). (Duplicated from Nowozin et al, 2016)

Name 𝑫𝒇(𝒑||𝒒) 𝒇(𝒖) 𝒇∗(𝒕) 𝒅𝒐𝒎𝒇∗ 𝒈𝒇(𝒗)

Total

variation

1

2
∫|𝑝(𝑥) − 𝑞(𝑥)| 𝑑𝑥

1

2
|𝑢 − 1|

𝑡
[−
1

2
,
1

2
]

1

2
tanh (𝑣)

KL

𝐷𝐾𝐿(𝑝||𝑞)
∫𝑝(𝑥) log

𝑝(𝑥)

𝑞(𝑥)
𝑑𝑥

𝑢 log 𝑢 𝑒𝑡−1 ℝ 𝑣

Reverse KL
∫𝑞(𝑥) log

𝑞(𝑥)

𝑝(𝑥)
𝑑𝑥

− log 𝑢 −1 − log(−𝑡) ℝ− −𝑒−𝑣

Pearson 𝒳2
∫
(𝑞(𝑥) − 𝑝(𝑥))

2

𝑝(𝑥)
𝑑𝑥

(𝑢 − 1)2 1

4
𝑡2 + 𝑡

ℝ 𝑣

Neyman 𝒳2
∫
(𝑝(𝑥) − 𝑞(𝑥))

2

𝑞(𝑥)
𝑑𝑥

(𝑢 − 1)2

𝑢

2 − 2√1 − 𝑡 𝑡 < 1 1 − 𝑒−𝑣

Hallinger
∫(√𝑝(𝑥) − √𝑞(𝑥))

2

𝑑𝑥 (√𝑢 − 1)
2

𝑡

1 − 𝑡

𝑡 < 1 1 − 𝑒−𝑣

Jensen-

Shannon

𝐷𝐽𝑆(𝑝||𝑞)

1

2
(𝐷𝐾𝐿 (𝑝||

𝑝 + 𝑞

2
)

+ 𝐷𝐾𝐿 (𝑞||
𝑝 + 𝑞

2
))

−(𝑢 + 1) log
𝑢 + 1

2
+ 𝑢 log 𝑢

− log(2 − 𝑒𝑡) 𝑡 < log 2 log 2
− log(1 + 𝑒−𝑣)

Basic GAN 2𝐷𝐽𝑆(𝑝||𝑞) − log 4 𝑢 log 𝑢 − (𝑢
+ 1) log(𝑢 + 1)

− log(1 − 𝑒𝑡) ℝ− − log(1 + 𝑒−𝑣)

Note: for basic GAN, 𝑓(1) = − log 4 ≠ 0

(C) Basic GAN: a special case of f-divergence model

Given the functions 𝑓(𝑢), 𝑓∗(𝑡) and 𝑔𝑓(𝑣) for the basic GAN in the last row at Table 12.5, we can have

the objective function (12.52) as

𝐹(𝜃,𝜔) = 𝔼𝑥~𝑝[− log(1 + 𝑒
−𝑉𝜔(𝑥))] + 𝔼𝑥~𝑄𝜃[−𝑓

∗(− log(1 + 𝑒−𝑉𝜔(𝑥)))]

= 𝔼𝑥~𝑝 [log (
1

1 + 𝑒−𝑉𝜔(𝑥)
)] + 𝔼𝑥~𝑄𝜃 [−𝑓

∗ (log (
1

1 + 𝑒−𝑉𝜔(𝑥)
))]

= 𝔼𝑥~𝑝 [log (𝜎(𝑉𝜔(𝑥)))] + 𝔼𝑥~𝑄𝜃 [log (1 − 𝜎(𝑉𝜔(𝑥)))]

= 𝔼𝑥~𝑝[log(𝐷𝜔(𝑥))] + 𝔼𝑥~𝑄𝜃[log(1 − 𝐷𝜔(𝑥))] (12.53)

where 𝐷𝜔(𝑥) = 𝜎(𝑉𝜔(𝑥)) is the discriminator in the GAN with a sigmoid activation function. Note that (12.53) is

the same as (12.1).

(D) Algorithm of f-GANs

A gradient method algorithm for f-GANs is suggested by Nowozin et al, 2016, which is described below.

Algorithm: single-step gradient method for f-GANs

function SingleStepGradientIteration (𝑃, 𝜃𝑡, 𝜔𝑡 , 𝐵, 𝜂),

 where P is the training set, B is the batch size, 𝜂 is the learning rate.

 Sample 𝑋𝑃 = {𝑥1, 𝑥2,…,𝑥𝐵} and 𝑋𝑄 = {𝑥′1, 𝑥′2,…,𝑥′𝐵} from P and 𝑄𝜃𝑡, respectively.

 Update: 𝜔𝑡+1 = 𝜔𝑡 + 𝜂∇𝜔𝐹(𝜃
𝑡, 𝜔𝑡)

Update: 𝜃𝑡+1 = 𝜃𝑡 − 𝜂∇𝜃𝐹(𝜃
𝑡, 𝜔𝑡)

end function

To speed up the training process as we do in the basic GAN, instead of minimizing

𝔼𝑥~𝑄𝜃 [−𝑓
∗ (𝑔𝑓(𝑉𝜔(𝑥)))] w.r.t 𝜃, we maximize 𝔼𝑥~𝑄𝜃[𝑔𝑓(𝑉𝜔(𝑥))]. Thus, the update for 𝜃 can be

modified as

𝜃𝑡+1 = 𝜃𝑡 + 𝜂∇𝜃𝔼𝑥~𝑄
𝜃𝑡
[𝑔𝑓 (𝑉𝜔𝑡(𝑥))] (12.54)

The analysis of convergence and the detailed neural network implementations can be found in Nowozin et

al, 2016.

12.4 Example: Deep Convolutional GAN on MNIST Dataset

In this section, we will present an example and demonstrate how to construct and train a basic deep

convolutional GAN (DCGAN). The architecture of DCGAN is based on the work by Radford et. al., 2016.

The trained GAN can generate images, which resemble the images in the training dataset. The Python

programs in this section are run on GPU in Google Colab.

12.4.1 Basic DCGAN

First, we explore the implementation of the basic DCGAN. Specifically, the architectures of the generator

and the discriminator are shown in Fig.12.11 and Fig.12.12.

Import packages.

from __future__ import print_function

import os

import random

import time

import torch

import torch.nn as nn

import torch.optim as optim

import torch.utils.data

import torchvision.datasets as datasets

import torchvision.transforms as transforms

import torchvision.utils as vutils

import numpy as np

import matplotlib.pyplot as plt

import torchvision

import torchvision.transforms as transforms

Set random seed for reproducibility

randomSeed = 10

random.seed(randomSeed)

Mount Google drive to colab.

from google.colab import drive

drive.mount('/content/drive')

Define some hyperparameters.
dataroot = "./data" # root directory for dataset

workers = 2 # number of workers for dataloader

batch_size = 128 # batch size

image_size = 64 # image size

nc = 1 # image channels, 3 for color

nz = 100 # size of z noise vector

ngf = 64 # size of feature maps in generator

ndf = 64 # size of feature maps in discriminator

lr = 0.0002 # learning rate

beta1 = 0.5 # beta1 hyperparameter for Adam optimizers

ngpu = 1 # number of GPUs available. Use 0 for CPU mode.

num_epochs = 10 # number of training epochs

Prepare training dataloader and device.

Create the dataset

transform=transforms.Compose([

 transforms.Resize(image_size),

 transforms.ToTensor(),

 transforms.Normalize((0.5,), (0.5,))])

dataset = torchvision.datasets.MNIST(root=dataroot, train=True,

 download=True, transform=transform)

Create the dataloader

dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size,

 shuffle=True, num_workers=workers)

Decide device to run on

device = torch.device("cuda:0" if (torch.cuda.is_available() and ngpu > 0) el

se "cpu")

Define Generator

Generator

class Generator(nn.Module):

 def __init__(self, ngpu):

 super(Generator, self).__init__()

 self.ngpu = ngpu

 self.main = nn.Sequential(

 # input is Z, going into a convolution

 nn.ConvTranspose2d(nz, ngf * 16, 4, 1, 0, bias=True),

 nn.BatchNorm2d(ngf * 16),

 nn.ReLU(True),

 # output size. (ngf*16=1024) x 4 x 4

 nn.ConvTranspose2d(ngf * 16, ngf * 8, 4, 2, 1, bias=True),

 nn.BatchNorm2d(ngf * 8),

 nn.ReLU(True),

 # output size. (ngf*8=512) x 8 x 8

 nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=True),

 nn.BatchNorm2d(ngf * 4),

 nn.ReLU(True),

 # output size. (ngf*4=256) x 16 x 16

 nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=True),

 nn.BatchNorm2d(ngf*2),

 nn.ReLU(True),

 # output size. (ngf*2=128) x 32 x 32

 nn.ConvTranspose2d(ngf * 2, nc, 4, 2, 1, bias=True),

 nn.Tanh()

 # output size. (nc) x 64 x 64

)

 def forward(self, input):

 return self.main(input)

Define Discriminator

Discriminator

class Discriminator(nn.Module):

 def __init__(self, ngpu):

 super(Discriminator, self).__init__()

 self.ngpu = ngpu

 self.main = nn.Sequential(

 # input is (nc) x 64 x 64

 nn.Conv2d(nc, ndf * 2, 4, 2, 1, bias=True),

 nn.LeakyReLU(0.2, inplace=True),

 # output size. (ndf*2=128) x 32 x 32

 nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=True),

 nn.BatchNorm2d(ndf * 4),

 nn.LeakyReLU(0.2, inplace=True),

 # output size. (ndf*4=256) x 16 x 16

 nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=True),

 nn.BatchNorm2d(ndf * 8),

 nn.LeakyReLU(0.2, inplace=True),

 # output size. (ndf*8=512) x 8 x 8

 nn.Conv2d(ndf * 8, ndf * 16, 4, 2, 1, bias=True),

 nn.BatchNorm2d(ndf * 16),

 nn.LeakyReLU(0.2, inplace=True),

 # output size. (ndf*16=1024) x 4 x 4

 nn.Conv2d(ndf * 16, 1, 4, 1, 0, bias=True),

 nn.Sigmoid()

)

 def forward(self, input):

 return self.main(input)

Weight initialization.

It is crucial to initialize GAN properly for the convergence.

weights initialization called by Gnet and Dnet

def weights_init(m):

 classname = m.__class__.__name__

 if classname.find('Conv') != -1:

 nn.init.normal_(m.weight.data, 0.0, 0.02)

 elif classname.find('BatchNorm') != -1:

 nn.init.normal_(m.weight.data, 1.0, 0.02) # or (…,0.0, 0.02)

 nn.init.constant_(m.bias.data, 0)

Instantiate generator and discriminator (Gnet and Dnet).
Create the generator

Gnet = Generator(ngpu).to(device)

Gnet.apply(weights_init)

Create the Discriminator

Dnet = Discriminator(ngpu).to(device)

Dnet.apply(weights_init)

Specify loss function, fixed_noise batch (64 values for z), real label and fake label, optimizers.
Initialize BCELoss function

criterion = nn.BCELoss()

Establish convention for real and fake labels during training

real_label = 1.

fake_label = 0.

Setup Adam optimizers for both G and D

optimizerD = optim.Adam(Dnet.parameters(), lr=lr, betas=(beta1, 0.999))

optimizerG = optim.Adam(Gnet.parameters(), lr=lr, betas=(beta1, 0.999))

Training process

Each iteration consists of two steps: updating D network and then updating G network. D network is updated

based on both real and fake samples while G network is updated through the output of D network based on

fake samples only. Please note that the convergence of the training process is not guaranteed on each

program run.

Training Loop

Lists to monitor training progress

G_losses = []

D_losses = []

num_epochs=10

print("Starting Training Loop...")

for epoch in range(num_epochs):

 # For each epoch

 for i, data in enumerate(dataloader, 0):

 # for each batch

 #--------------------------

 # (1) Update D network: maximize log(D(x))+log(1-D(G(z)))

 #------------------------------

 ## (A) Train with all-real batch

 Dnet.zero_grad()

 # Format batch

 real_imgs = data[0].to(device)

 # data[0]: images, data[1]: labels

 # real_imgs: [b_s, 1, image_size, image_size]

 b_s = real_imgs.size(0)

 label = torch.full((b_s,),real_label,dtype=torch.float,device=device)

 # Calculate output of D

 output = Dnet(real_imgs).view(-1)

 # Calculate loss on the real batch

 errD_real = criterion(output, label)

 # Calculate gradients for D

 errD_real.backward()

 D_x = output.mean().item()

 ## (B)Train with all-fake batch

 # Generate batch of latent vectors

 noise = torch.randn(b_s, nz, 1, 1, device=device)

 # Generate fake image batch by G

 fake = Gnet(noise)

 label.fill_(fake_label)

 # Calculate output of D

 output = Dnet(fake.detach()).view(-1)

 # Calculate D's loss on the all-fake batch

 errD_fake = criterion(output, label)

 # Calculate the gradients on this batch

 errD_fake.backward()

 D_G_z1 = output.mean().item()

 # Add the gradients from the all-real and all-fake batches

 errD = errD_real + errD_fake

 # Update D

 optimizerD.step()

 # ---

 # (2) Update G network: maximize log(D(G(z)))

 # ---

 Gnet.zero_grad()

 label.fill_(real_label) # fake labels are real for generator cost

 # because G wants to fool D, so we treat the fake as real.

 output = Dnet(fake).view(-1)

 # Calculate G's loss

 errG = criterion(output, label)

 # Calculate gradients for G

 errG.backward()

 D_G_z2 = output.mean().item()

 # Update G

 optimizerG.step()

 # Output training stats

 if i % 50 == 0:

 print('[%d/%d][%d/%d]\tLoss_D: %.4f\tLoss_G: %.4f\tD(x): %.4f\tD(

 G(z)): %.4f / %.4f'

 % (epoch, num_epochs, i, len(dataloader),

 errD.item(), errG.item(), D_x, D_G_z1, D_G_z2))

 # Save Losses for plotting later

 G_losses.append(errG.item())

 D_losses.append(errD.item())

Starting Training Loop...

[0/10][0/469] Loss_D: 1.8566 Loss_G: 8.1812 D(x): 0.3774 D(G(z)): 0.3721 / 0.0005

[0/10][50/469] Loss_D: 3.6225 Loss_G: 44.1498 D(x): 0.4508 D(G(z)): 0.0000 / 0.0000

[0/10][100/469] Loss_D: 0.7124 Loss_G: 2.9447 D(x): 0.6583 D(G(z)): 0.0011 / 0.1247

[0/10][150/469] Loss_D: 0.8989 Loss_G: 0.9111 D(x): 0.5747 D(G(z)): 0.0461 / 0.5524

[0/10][200/469] Loss_D: 1.4422 Loss_G: 0.8815 D(x): 0.3802 D(G(z)): 0.0102 / 0.5227

[0/10][250/469] Loss_D: 0.8741 Loss_G: 1.0921 D(x): 0.5318 D(G(z)): 0.0283 / 0.4374

…

Plot the losses for Gnet and Dnet after training (10 epochs).

plt.figure(figsize=(10,5))

plt.title("Generator and Discriminator Loss During Training", fontsize=20)

plt.plot(G_losses,label="G")

plt.plot(D_losses,label="D")

plt.xlabel("iterations", fontsize=20)

plt.ylabel("Loss", fontsize=20)

plt.legend()

plt.show()

Fig.12.19 Loss plots for D and G for 10 epochs (469 batches per epoch)

Plot real samples and fake samples.

fixed_noise = torch.randn(64, nz, 1, 1, device=device)

with torch.no_grad():

 fake = Gnet(fixed_noise).detach().cpu()

img = vutils.make_grid(1-fake, padding=5, normalize=True)

real_batch = next(iter(dataloader))

Plot the real images

plt.figure(figsize=(15,15))

plt.subplot(1,2,1)

plt.axis("off")

plt.title("Real Images")

plt.imshow(np.transpose(vutils.make_grid(1-real_batch[0].to(device)[:64], pad

ding=5, normalize=True).cpu(),(1,2,0)))

Plot the fake images from the last epoch

plt.subplot(1,2,2)

plt.axis("off")

plt.title("Fake Images")

plt.imshow(np.transpose(img,(1,2,0)))

plt.show()

Fig.12.20 Real images versus generated fake images after 10-epoch training

12.4.2 Conditional DCGAN for MNIST dataset

The architecture of the conditional DCGAN implemented in this section is specified in Table 12.1. The

development framework is similar to the one for the basic DCGAN in Section 12.4.1. One should pay

attention to the differences between them. The major differences lie in: 1) image size, 2) neural network

architecture, and 3) an additional input (i.e., condition input) for the generator and the discriminator.

Import packages.
from __future__ import print_function

import os

import random

import time

import torch

import torch.nn as nn

import torch.optim as optim

import torch.utils.data

import torchvision.datasets as datasets

import torchvision.transforms as transforms

import torchvision.utils as vutils

import numpy as np

import matplotlib.pyplot as plt

import torchvision

import torchvision.transforms as transforms

import torch.nn.functional as F

Set random seed for reproducibility

randomSeed = 10

random.seed(randomSeed)

Mount google drive.
from google.colab import drive

drive.mount('/content/drive')

Specify some hyperparameters.
dataroot = "./data" # directory for dataset

workers = 2 # number of workers for dataloader

batch_size = 128 # batch size

image_size = 32 # image size

nc = 1 # image channels, 3 for color

nz = 100 # size of z noise vector

ngf = 128 # number of feature maps in generator

ndf = 128 # number of feature maps in discriminator

lr = 0.0002 # learning rate

beta1 = 0.5 # beta1 hyperparameter for Adam optimizers

ngpu = 1 # number of GPUs available. Use 0 for CPU mode.

num_epochs = 20 # number of training epochs

Prepare dataloader for training process and specify device as GPU or CPU.
Create the dataset

transform=transforms.Compose([

 transforms.Resize(image_size),

 transforms.ToTensor(),

 transforms.Normalize((0.5,), (0.5,))])

dataset = torchvision.datasets.MNIST(root=dataroot, train=True,

 download=True, transform=transform)

Create the dataloader

dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size,

 shuffle=True, num_workers=workers)

Decide device to run on

device = torch.device("cuda:0" if (torch.cuda.is_available() and ngpu > 0) el

se "cpu")

Define the architecture of Generator and Discriminator.
Generator Code

class Generator(nn.Module):

 def __init__(self, ngpu):

 super(Generator, self).__init__()

 self.ngpu = ngpu

 self.deconv1_1 = nn.ConvTranspose2d(100,ngf*2, 4, 1, 0)

 self.deconv1_1_bn = nn.BatchNorm2d(ngf*2)

 self.deconv1_2 = nn.ConvTranspose2d(10, ngf*2, 4, 1, 0)

 self.deconv1_2_bn = nn.BatchNorm2d(ngf*2)

 self.deconv2 = nn.ConvTranspose2d(ngf*4, ngf*2, 4, 2, 1)

 self.deconv2_bn = nn.BatchNorm2d(ngf*2)

 self.deconv3 = nn.ConvTranspose2d(ngf*2, ngf, 4, 2, 1)

 self.deconv3_bn = nn.BatchNorm2d(ngf)

 self.deconv4 = nn.ConvTranspose2d(ngf, 1, 4, 2, 1)

 def forward(self, input, label):

 x = F.relu(self.deconv1_1_bn(self.deconv1_1(input)))

 y = F.relu(self.deconv1_2_bn(self.deconv1_2(label)))

 x = torch.cat([x,y],1)

 x = F.relu(self.deconv2_bn(self.deconv2(x)))

 x = F.relu(self.deconv3_bn(self.deconv3(x)))

 x = torch.tanh(self.deconv4(x))

 return x

class Discriminator(nn.Module):

 def __init__(self, ngpu):

 super(Discriminator, self).__init__()

 self.ngpu = ngpu

 self.conv1_1 = nn.Conv2d(1,int(ndf/2), 4, 2, 1)

 self.conv1_2 = nn.Conv2d(10, int(ndf/2), 4, 2, 1)

 self.conv2 = nn.Conv2d(ndf, ndf*2, 4, 2, 1)

 self.conv2_bn = nn.BatchNorm2d(ndf*2)

 self.conv3 = nn.Conv2d(ndf*2, ndf*4, 4, 2, 1)

 self.conv3_bn = nn.BatchNorm2d(ndf*4)

 self.conv4 = nn.Conv2d(ndf*4, 1, 4, 1, 0)

 def forward(self, input, label):

 x = F.leaky_relu(self.conv1_1(input), 0.2)

 y = F.leaky_relu(self.conv1_2(label), 0.2)

 x = torch.cat([x,y], 1)

 x = F.leaky_relu(self.conv2_bn(self.conv2(x)), 0.2)

 x = F.leaky_relu(self.conv3_bn(self.conv3(x)), 0.2)

 x = torch.sigmoid(self.conv4(x))

 return x

Initialize the weights.
weights initialization called by Gnet and Dnet

def weights_init(m):

 classname = m.__class__.__name__

 if classname.find('Conv') != -1:

 nn.init.normal_(m.weight.data, 0.0, 0.02)

 elif classname.find('BatchNorm') != -1:

 nn.init.normal_(m.weight.data, 1.0, 0.02) # or(..., 0.0,0.02)

 nn.init.constant_(m.bias.data, 0)

Instantiate generator as Gnet and discriminator as Dnet, with weight initialization.
Create the generator

Gnet = Generator(ngpu).to(device)

Gnet.apply(weights_init)

Create the Discriminator

Dnet = Discriminator(ngpu).to(device)

Dnet.apply(weights_init)

Specify the loss function and optimizers.
Instantiate BCELoss function

criterion = nn.BCELoss()

Establish convention for real and fake labels during training

real_label = 1.

fake_label = 0.

Setup Adam optimizers for both G and D

optimizerD = optim.Adam(Dnet.parameters(), lr=lr, betas=(beta1, 0.999))

optimizerG = optim.Adam(Gnet.parameters(), lr=lr, betas=(beta1, 0.999))

Prepare all possible labels in one-hot vector format and in 32x32 one-hot feature map format. The

tensor onehot will be used to create a one-hot vector for Gnet to generate a conditional image. The tensor

fill is used to create a condition image as a part of the input of Dnet.
label preprocess

onehot = torch.zeros(10, 10)

onehot = onehot.scatter_(1, torch.LongTensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]).

view(10,1), 1).view(10, 10, 1, 1)

fill = torch.zeros([10, 10, image_size, image_size])

for i in range(10):

 fill[i, i, :, :] = 1

#onehot [10,10,1,1]: 10 one-hot vectors, each for one digit

fill [10,10,32,32]: 10 condition images,

each image has 10 feature maps with one-hot feature map.

Training loop. The diagram in Fig.12.21 illustrates the tensors used in the training loop and how they are

related to the neural networks Gnet and Dnet. It can help a reader understand the training loop code.

Fig.12.21 The major tensor variables in the training loop

Training Loop

Lists to monitor the training progress

G_losses = []

D_losses = []

num_epochs = 10

print("Starting Training Loop...")

for epoch in range(num_epochs):

 # For each epoch

 y_real_ = torch.ones(batch_size)

 y_fake_ = torch.zeros(batch_size)

 y_real_ = y_real_.to(device)

 y_fake_ = y_fake_.to(device)

 # y_real_= [1,1,1,1,...,1]

 # y_fake_= [0,0,0,0,...,0]

 for i, data in enumerate(dataloader, 0):

 # For each batch

 # --

 # (1) Update D network: maximize log(D(x))+log(1-D(G(z)))

 # ---

 # (1) (A)Train with all-real image batch

 Dnet.zero_grad()

 real_imgs= data[0].to(device) #data[0] are images for the batch

 b_s = real_imgs.size(0) #b_s is batch size

 label=torch.full((b_s,),real_label,dtype=torch.float,device=device)

 if b_s != batch_size:

 y_real_ = torch.ones(b_s)

 y_fake_ = torch.zeros(b_s)

 y_real_ = y_real_.to(device)

 y_fake_ = y_fake_.to(device)

 y_fill_ = fill[data[1]] # y_fill_ : [b_s, 10, 32, 32]

 # data[1]: labels

 y_fill_ = y_fill_.to(device)

 # Calculate the output of D

 output = Dnet(real_imgs, y_fill_).view(-1)

 # Calculate loss on the real batch

 errD_real = criterion(output, y_real_)

 # Calculate gradients for D

 errD_real.backward()

 D_x = output.mean().item()

 # (1) (B) Train with all-fake image batch

 # Generate batch of latent vectors

 # Gnet inputs: z_ is random noise,

 # y_label_ is random label in one-hot vector

 # Dnet inputs: fake from Gnet, and y_fill_

 z_ = torch.randn((b_s, 100)).view(-1, 100, 1, 1)

 # z_ is [b_size, 100, 1, 1]

 y_ = (torch.rand(b_s, 1) * 10).type(torch.LongTensor).squeeze()

 # y_ is [b_size] and is random labels

 y_label_ = onehot[y_] #: [b_s, 10, 1, 1]

 y_fill_ = fill[y_].to(device) #: [b_s, 10, 32, 32]

 z_ = z_.to(device)

 y_label_ = y_label_.to(device)

 y_fill_ = y_fill_.to(device)

 # Generate fake image batch with G

 fake = Gnet(z_, y_label_)

 # Calculate the output of D for the fake batch

 output = Dnet(fake.detach(), y_fill_).view(-1)

 # .detach() because Gnet is not updated this time,

 # no gradients for Gnet

 # Calculate D loss on the fake batch

 errD_fake = criterion(output, y_fake_)

 # Calculate the gradients on fake batch

 errD_fake.backward()

 D_G_z1 = output.mean().item()

 # Add the gradients from the real and fake batches

 errD = errD_real + errD_fake

 # Update D

 optimizerD.step()

 #---

 # (2) Update G network: maximize log(D(G(z)))

 #---

 Gnet.zero_grad()

 # fake labels are real (1.0) for generator cost, because G wants to

 # fool D. So we treat the fake image as real for D.

 z_ = torch.randn((b_s, 100)).view(-1, 100, 1, 1)

 y_ = (torch.rand(b_s, 1) * 10).type(torch.LongTensor).squeeze()

 y_label_ = onehot[y_]

 y_fill_ = fill[y_]

 z_ = z_.to(device)

 y_label_ = y_label_.to(device)

 y_fill_ = y_fill_.to(device)

 fake=Gnet(z_, y_label_)

 # Calculate the output of D

 output = Dnet(fake,y_fill_).view(-1)

 # Calculate G loss

 errG = criterion(output, y_real_)

 # Calculate gradients for G

 errG.backward()

 D_G_z2 = output.mean().item()

 # Update G

 optimizerG.step()

 # Output training stats

 if i % 50 == 0:

 print('[%d/%d][%d/%d]\tLoss_D: %.4f\tLoss_G: %.4f\tD(x): %.4f\tD(

 G(z)): %.4f / %.4f'

 % (epoch, num_epochs, i, len(dataloader),

 errD.item(), errG.item(), D_x, D_G_z1, D_G_z2))

 # Save Losses for plotting later

 G_losses.append(errG.item())

 D_losses.append(errD.item())

Starting Training Loop...

[0/10][0/469] Loss_D: 1.8410 Loss_G: 5.6549 D(x): 0.6279 D(G(z)): 0.6793 / 0.0439

[0/10][50/469] Loss_D: 0.5870 Loss_G: 2.4888 D(x): 0.8298 D(G(z)): 0.3138 / 0.0910

[0/10][100/469] Loss_D: 0.7250 Loss_G: 2.2712 D(x): 0.5948 D(G(z)): 0.0342 / 0.1242

[0/10][150/469] Loss_D: 1.5258 Loss_G: 3.4039 D(x): 0.3733 D(G(z)): 0.0149 / 0.0576

[0/10][200/469] Loss_D: 1.6579 Loss_G: 3.7255 D(x): 0.7195 D(G(z)): 0.6895 / 0.0308

…

Plot losses
plt.figure(figsize=(10,5))

plt.title("Generator and Discriminator Loss During Training", fontsize=20)

plt.plot(G_losses,label="G")

plt.plot(D_losses,label="D")

plt.xlabel("iterations", fontsize=20)

plt.ylabel("Loss", fontsize=20)

plt.legend()

plt.show()

Fig.12.22 Losses of conditional GAN on MNIST for 10 training epochs

Generate fake samples. The result is plotted in Fig.12.23.

this is not for training, but for generating images after training.

generate fixed noise (fixed_z_) and fixed labels (fixed_y_label_)

fixed_z_: 100 random vectors (z), each to generate one image

shape [100,100,1,1],

batch size =100, channel =100 (vector z), feature map:1x1

fixed_y_label_: 100 one-hot vectors, each vector has 10 elements

the one-hot vector for each digit repeats 10 times

shape [100,10,1,1],

batch size=100, channel=10 (one-hot vector)

feature map: 1x1

temp_z_ = torch.randn(10, 100)

fixed_z_ = temp_z_

fixed_y_ = torch.zeros(10,1)

for i in range(9):

 fixed_z_ = torch.cat([fixed_z_, temp_z_], 0)

 temp = torch.ones(10, 1) + i

 fixed_y_ = torch.cat([fixed_y_, temp], 0)

fixed_z_=fixed_z_.view(-1,100,1,1)

fixed_y_label_ = torch.zeros(100,10)

fixed_y_label_.scatter_(1, fixed_y_.type(torch.LongTensor), 1)

fixed_y_label_ = fixed_y_label_.view(-1, 10, 1, 1)

fixed_z_ = fixed_z_.to(device)

fixed_y_label_ = fixed_y_label_.to(device)

#print(fixed_z_.shape, fixed_y_label_.shape)

with torch.no_grad():

 fake = Gnet(fixed_z_, fixed_y_label_).detach().cpu()

img = vutils.make_grid(1-fake, padding=2, nrow=10, normalize=True)

real_batch = next(iter(dataloader))

Plot the real images

plt.figure(figsize=(15,15))

plt.subplot(1,2,1)

plt.axis("off")

plt.title("Real Images")

plt.imshow(np.transpose(vutils.make_grid(1-real_batch[0].to(device)[:100],

padding=2, nrow=10,normalize=True).cpu(),(1,2,0)))

Plot the fake images from the last epoch

plt.subplot(1,2,2)

plt.axis("off")

plt.title("Fake Images")

plt.imshow(np.transpose(img,(1,2,0)))

plt.show()

Fig.12.23 Real images vs. fake images from conditional GAN after 10 epochs training

Summary and Further Reading

Summary

Generative adversarial networks (GANs) are a kind of generative model, which are able to generate realistic

high-resolution images. This chapter presents the principle of basic generative adversarial nets from the

perspective of a minmax two-player game. The generator tries to generate a fake example to fool the

discriminator while the discriminator tries to distinguish the fake example from the real examples. At the

end of the training process, the generator and the discriminator ideally reach an equilibrium: the discriminator

can hardly distinguish the fake examples from the real examples because the generator does a great job.

However, it is challenging to train a particular GAN in practice, due to the gradient vanishing and model

collapse, and the sensitivity to hyperparameter selection. Various improved versions have been proposed to

enhance the performance of GANs and/or the training stability. In this chapter, we present a few: conditional

GAN, InfoGAN, Wasserstein GAN, CycleGAN, and f-GANs.

At the end of the chapter, a comprehensive tutorial in PyTorch is presented to implement a basic deep

convolutional GAN and a conditional GAN, both on dataset MNIST.

Further Reading

The original concept of GANs was proposed by Goodfellow et al. 2014. A recent paper by Goodfellow et

al. 2020 gives a brief review on the applications of GANs and identifies core research problems related to

convergence necessary to make GANs a reliable technology. Deep convolutional GANs were proposed by

Radford et al., 2016.

To obtain more insights and details on the GAN variants in our text, one is encouraged to read the

corresponding original papers. These papers include Mirza et al. 2014 for conditional GAN, Chen et al.

2016 for InfoGAN, Arjovsky et al. 2017 and Gulrajani et al. 2017 for Wasserstein GAN, Zhu et al., 2017

and Isola et al. 2017 for CycleGAN, Nowozin et al. 2016 for f-GANs. Some Githubs and tutorials on the

Internet provide useful resources for implementations, e.g., Zeleni9, 2021 Github, S-chh 2022 Github and

DCGAN PyTorch Tutorial.

There are many other GAN variants which have not been covered in our text. An interested reader may

explore the following GAN variants: Laplacian GAN (Denton et al. 2015), Progressive GAN (Karras et al.

2018), Self-attention GAN (Zhang et al. 2019), Energy-based GAN (Zhao et al. 2017), Boundary

equilibrium GAN (Berthelot et al. 2017).

GANs have been widely applied to image processing and computer vision. Some examples are given below.

The super-resolution GAN by Ledig et al. (2017) can infer photo-realistic natural images for 4× upscaling

factors. APDrawingGAN (Yi et al. 2019) was proposed to generate artistic portrait drawings from face

photos with hierarchical GANs. There were many research efforts for face generation, such as attribute-

guided face generation (Lu et al. 2018), GAN with decomposed latent spaces (Donahue et al. 2018), 3D

Face Reconstruction (Gecer et al. 2019). The first effort to use GAN for video generation was the work by

Vondrick et al. 2016.

File: mnist_dcgan_kuang.ipynb in Google colab. (copied to \Users\weido\ch12_gan\)

 mnist_cdcgan_kuang.ipynb in Google colab. (copied to \Users\weido\ch12_gan\)

References

Ali, S.M., and Silvey, S.D. (1966), A general class of coefficients of divergence of one distribution from

another. JRSS (B), pages 131–142, 1966.

Berthelot, D., Schumm, T., and Metz, L. (2017), BeGAN: Boundary equilibrium generative adversarial

networks, 2017, arXiv:1703.10717 [cs.LG]

https://arxiv.org/abs/1703.10717

Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P. (2016), InfoGAN: Interpretable

Representation Learning by Information Maximizing Generative Adversarial Nets, NIPS 2016.
arXiv:1606.03657 [cs.LG].

DCGAN PyTorch Tutorial, https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html

Denton, E. L., Chintala, S., Szlam, A.D., and Fergus, R. (2015), Deep generative image models using a

Laplacian pyramid of adversarial networks, NIPS., 2015, arXiv:1506.05751 [cs.CV]

Donahue, C., Lipton, Z. C., Balsubramani, A., and McAuley, J. (2018), Semantically decomposing the

latent spaces of generative adversarial networks, ICLR, 2018, arXiv:1705.07904 [cs.LG]

Gecer, B., Ploumpis, S., Kotsia, I., and Zafeiriou, S. (2019), GANFIT: Generative adversarial network

fitting for high fidelity 3D face reconstruction, CVPR, 2019, arXiv:1902.05978 [cs.CV]

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio,

Y. (2014), Generative adversarial nets. In NIPS, 2014

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio,

Y. (2020), Generative adversarial nets. pp.139-144, November 2020, Vol. 63, No. 11, Communications of

the ACM.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville, A. (2017), Improved Training of

Wasserstein GANs, NIPS 2017. arXiv:1704.00028 [cs.LG]

Isola, P., Zhu, J.Y., Zhou, T., and Efros, A.A. 2017, Image-to-image translation with conditional adversarial

networks. In CVPR, 2017. https://arxiv.org/pdf/1611.07004.pdf

Karras, T., Aila, T., Laine, S., and Lehtinen, J. (2018), Progressive growing of GANs for improved quality,

stability, and variation, ICLR, 2018, arXiv:1710.10196 [cs.NE]

Ledig C. et al. (2017), Photo-realistic single image super-resolution using a generative adversarial network,

CVPR, 2017. arXiv:1609.04802 [cs.CV]

Liese, F. and Vajda, I. (2006) On Divergences and Informations in Statistics and Information Theory.

IEEE Transactions on Information Theory, 52, 4394-4412.

Lu, Y., Tai, Y.W., and Tang C.K. (2018), Attribute-guided face generation using conditional cycleGAN, in

Proc. Eur. Conf. Comput. Vis., 2018, pp. 282–297. arXiv:1705.09966 [cs.CV]

Mirza, M., and Osindero, S. (2014), Conditional Generative Adversarial Nets, 2014.
arXiv:1411.1784 [cs.LG].

Nguyen, X., Wainwright, M. J., and Jordan, M.I. (2010), Estimating divergence functionals and the

likelihood ratio by convex risk minimization. Information Theory, IEEE, 56(11):5847–5861, 2010.

Nowozin, S., Cseke, B., and Tomioka, R. (2016), f-GAN: Training generative neural samplers using

variational divergence minimization, NIPS, 2016, arXiv:1606.00709 [stat.ML]

Radford A., Metz, L., and Chintala, S. 2016, Unsupervised Representation Learning with Deep

Convolutional Generative Adversarial Networks, ICLR, arXiv:1511.06434 [cs.LG].

S-chh, 2022, Github: https://github.com/s-chh/PyTorch-GAN-Variants

https://arxiv.org/abs/1606.03657
https://arxiv.org/abs/1606.03657
https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html
https://arxiv.org/abs/1506.05751
https://arxiv.org/abs/1705.07904
https://arxiv.org/abs/1902.05978
https://arxiv.org/abs/1704.00028
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/abs/1710.10196
https://arxiv.org/abs/1609.04802
https://arxiv.org/abs/1705.09966
https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1606.00709
https://arxiv.org/abs/1511.06434
https://github.com/s-chh/PyTorch-GAN-Variants

Villani, C. (2009) Optimal Transport: Old and New. Grundlehren der mathematischen Wissenschaften.

Springer, Berlin, 2009. https://cedricvillani.org/sites/dev/files/old_images/2012/08/preprint-1.pdf

Vondrick, C., Pirsiavash, H., and Torralba, A. (2016), Generating videos with scene dynamics, in NIPS,

2016, arXiv:1609.02612 [cs.CV]

Yi, R., Liu, Y. J., Lai, Y. K., and Rosin, P. L. (2019), APDrawingGAN: Generating artistic portrait drawings

from face photos with hierarchical GANs, CVPR, 2019.

Zeleni9, 2021, Github: https://github.com/Zeleni9/pytorch-wgan

Zhang, H., Goodfellow, I., Metaxas, D., and Odena, A. (2019), Self-attention generative adversarial

networks, ICML, 2019, arXiv:1805.08318 [stat.ML]

Zhao, J., Mathieu, M., and LeCun, Y. (2017), Energy-based generative adversarial network, ICLR, 2017.
arXiv:1609.03126 [cs.LG]

Zhu, J.Y., Park, T., Isola, P., and Efros, A.A., 2017, Unpaired Image-to-Image Translation using Cycle-

consistent Adversarial Networks, ICCV, 2017. arXiv:1703.10593 [cs.CV]

Exercises

12.1 Show that the optimal discriminator in the original GAN by Goodfellow is given by

𝐷𝑔
∗(𝐱) =

𝑝𝑑𝑎𝑡𝑎(𝐱)

𝑝𝑑𝑎𝑡𝑎(𝐱) + 𝑝𝑔(𝐱)

(Hint: see the original paper Goodfellow et al. 2014)

12.2 To compute the transposed convolution in Fig.12.5, we can use three different ways:

1) Equation (12.15): 𝑍 = 𝑊
𝑇
× 𝑌.

2) Flipping the filter sheet twice in Fig.12.6.

3) Summing the shifted and weighted filters in Fig.12.7.

Please compute the transposed convolution in Fig.12.5 using the above different ways, and verify

that they lead to the same result.

12.3 Consider a transposed convolution for the two-channel input. The input and the kernel are given

below.

Compute the transposed convolutions for the following settings (p for zero-padding, s for stride)

https://cedricvillani.org/sites/dev/files/old_images/2012/08/preprint-1.pdf
https://arxiv.org/abs/1609.02612
https://github.com/Zeleni9/pytorch-wgan
https://arxiv.org/abs/1805.08318
https://arxiv.org/abs/1609.03126
https://arxiv.org/abs/1609.03126
https://arxiv.org/abs/1703.10593

1) Default setting, i.e., p=0, s=1.

2) p=1, s=1.

3) p=0, s=2.

4) p=1, s=2.

Use torch.nn.ConvTranspose2d () to verify your results.

12.4 In CycleGAN (Section 12.3.5), the original authors suggested a 70 × 70 PatchGAN as the

architecture of the discriminator. Please explain the meaning of 70.

12.5 Given a valid f-divergence function 𝑓(𝑢): ℝ+ → ℝ, find another function 𝑓(𝑢) such that

𝐷𝑓(𝑝||𝑞) = 𝐷�̃�(𝑞||𝑝)

12.6 Find the additional constraint on a valid f-divergence function 𝑓(𝑢), such that the f-divergence is

symmetric, i.e.,
𝐷𝑓(𝑝||𝑞) = 𝐷𝑓(𝑞||𝑝)

12.7 Derive the min-max objective functions for the f-GANs based on the following f-divergences.

1) KL divergence.

2) Jessen-Shannon divergence.

12.8 Run the programs in Section 12.4 a few times independently. You may find out that the

training process does not learn at all for some runs. What are the possible reasons?

12.9 Implement and train the following GANs:

1) InfoGAN (Table 12.2) on MNIST dataset.

2) Wasserstein GAN weight clipping (Table 12.3) on CelebA dataset.

3) Wasserstein GAN gradient penalty (Table 12.3) on CelebA dataset.

4) f-GAN using KL divergence on MNIST dataset. (Refer to Nowozin et al. 2016 or other

resources).

Keys to Exercises:

12.3

1) [[0,0,0,0], [1,6,3,2], [0,0,3,0], [0,0,0,3]]

1) [[6,3], [0,3]]

2) [[0., 0., 0., 0., 0.],[1., 1., 3., 2., 2.],[0., 0., 3., 0., 0.], [0., 0., 0., 3., 0.], [0., 0., 0., 0., 3.]]

3) [[1., 3., 2.], [0., 3., 0.], [0., 0., 3.]]

