
 

 

Chapter 12  

Generative Adversarial Networks 
 

In generative modelling, given a finite set of training samples {𝐱(1), 𝐱(2), … , 𝐱(𝑁)} which are drawn from 

an unknown distribution 𝑝𝑑𝑎𝑡𝑎(𝐱), our goal is to learn a parameterized distribution 𝑝𝑚𝑜𝑑𝑒𝑙(𝐱) that 

approximates 𝑝𝑑𝑎𝑡𝑎(𝐱) as closely as possible. With the learned distribution we can generate samples. For 

example, a variational auto-encoder, presented in the previous chapter, learns the distribution 𝑝𝑚𝑜𝑑𝑒𝑙(𝐱) 

explicitly by a neural network. 

In this chapter, we will introduce generative adversarial networks (GANs), which learn the distribution 

𝑝𝑚𝑜𝑑𝑒𝑙(𝐱) implicitly. An implicit generative model does not directly estimate or fit the distribution. Instead, 

it produces data instances which approximately follow the underlying distribution.  

The GANs are based on a game between two models typically implemented using neural networks. One 

network called the generator defines 𝑝𝑚𝑜𝑑𝑒𝑙(𝐱) implicitly. The generator is defined by a function 

𝐺(𝑧; 𝜃𝑔): 𝑧 → 𝐱, where 𝜃𝑔 is a set of learnable parameters and z is an input noise variable on a prior 

distribution 𝑝𝑧(𝑧) (e.g., uniform or standard normal distribution 𝒩(𝟎, 𝐈)). The main role of the generator 

is to transform such noise z into realistic samples. To learn the generator, another network called the 

discriminator 𝐷(𝐱; 𝜃𝑑) is required to provide feedback about how realistic the samples from the generator 

are. The discriminator itself also needs to learn its parameters 𝜃𝑑 as a traditional classifier so that it can 

distinguish the real data from the generated data if the modeled distribution is apart from the underlying 

distribution. 

This chapter covers: 

o The principle of the original GAN from a mathematical point of view, including algorithm and 

convergence 

o General framework for GAN training 

o Transposed convolutional neural networks, which are important ingredients for image generation. 

o A few variants of GANs: conditional GAN, InfoGAN, Wasserstein GAN, CycleGAN 

o An example of GAN on MNIST dataset in PyTorch 

  

12.1 Mathematical Description of Original GAN 

12.1.1 Principle and Algorithm 

The generative adversarial nets (GANs) were originally proposed in Goodfellow et al. (2014). A GAN 

consists of two basic models: generator 𝐺(𝑧; 𝜃𝑔) and discriminator 𝐷(𝐱; 𝜃𝑑), shown in Fig.12.1. Both 

models can be implemented by neural networks with learnable parameters 𝜃𝑔 and 𝜃𝑑, respectively. The 

discriminator 𝐷(𝐱; 𝜃𝑑) estimates the probability of x coming from the underlying distribution 𝑝𝑑𝑎𝑡𝑎(𝐱) 

rather than the generator-specified distribution 𝑝𝑔(𝐱). It is trained to distinguish the generated samples from 

the real ones. On the other hand, the generator maps an input noise variable z to the data space, and thus 

generates a synthetic (or fake) data sample. It is trained to generate fake samples as real as possible so that 

they can be wrongly recognized by the optimal discriminator as a real sample.  



 

 

Mathematically, the training process can be described by the following two-player minimax game with an 

objective function V(D,G): 

min
𝐺
max
𝐷
{𝑉(𝐷, 𝐺) = Ε𝐱~𝑝𝑑𝑎𝑡𝑎(𝐱)[𝑙𝑜𝑔𝐷(𝐱; 𝜃𝑑)] + Ε𝑧~𝑝𝑍(𝑧) [log (1 − 𝐷(𝐺(𝑧; 𝜃𝑔);  𝜃𝑑))]}      (12.1) 

To avoid clutter in the notations, we may drop parameters in the context, e.g. 𝐷(𝐱) for 𝐷(𝐱; 𝜃𝑑). The inner 

max loop is to optimize the discriminator for a given generator while the outer min loop is to learn the 

parameters 𝜃𝑔 so that the discriminator gives a high output for a fake input. In practice, we usually 

implement the optimization using an iterative and numerical approach. Instead of fully optimizing in both 

inner and outer loops, we alternate between k steps of maximizing D and one step of minimizing G. This 

results in D being maintained near its optimal solution, so long as G changes slowly enough. 

 

Fig.12.1 The basic architecture of GANs 

The algorithm for (12.1) was proposed by Goodfellow et al. (2014) as follows. 

Algorithm 1 GAN: Minibatch stochastic gradient descent training of generative adversarial nets. The 

number of steps to apply to the discriminator, k, is a hyperparameter. k = 1, the least expensive option, 

was used in the experiments in Goodfellow et al. (2014). 

for number of training iterations do  

(# part 1: update the discriminator) 

for k steps do 

• Sample minibatch of m noise samples {𝑧(1), … , 𝑧(𝑚)} from noise prior 𝑝𝑧(𝑧). 

• Sample minibatch of m examples {𝑥(1), … , 𝑥(𝑚)} from data generating distribution 

𝑝𝑑𝑎𝑡𝑎(𝑥). 

• Update the discriminator by ascending its stochastic gradient: 

∇𝜃𝑑
1

𝑚
∑[𝑙𝑜𝑔𝐷(𝑥(𝑖)) + 𝑙𝑜𝑔 (1 − 𝐷 (𝐺(𝑧(𝑖))))]

𝑚

𝑖=1

                         (12.2) 

end for  

(# part 2: update the generator) 

• Sample minibatch of m noise samples{𝑧(1), … , 𝑧(𝑚)} from noise prior 𝑝𝑧(𝑧). 

• Update the generator by descending its stochastic gradient: 

 

∇𝜃𝑔
1

𝑚
∑𝑙𝑜𝑔 (1 − 𝐷 (𝐺(𝑧(𝑖))))

𝑚

𝑖=1

                                                           (12.3) 

end for 

  



 

 

12.1.2 Convergence of GANs 

In this section, we will investigate the theoretical convergence of the original GANs. We first consider the 

optimal discriminator for a given generator. Let 𝑝𝑔(𝐱) be the density function defined by the generator, and 

𝑝𝑑𝑎𝑡𝑎(𝐱) be the density function of the data. We can show that the optimal discriminator on these two 

distributions is given by (see exercises) 

𝐷𝑔
∗(𝐱) =

𝑝𝑑𝑎𝑡𝑎(𝐱)

𝑝𝑑𝑎𝑡𝑎(𝐱) + 𝑝𝑔(𝐱)
                                                                        (12.4) 

Then, with the optimal discriminator, the minimax game in (12.1) can be rewritten as 

 Min
𝐺
max
𝐷
{𝑉(𝐷, 𝐺)} = Min

𝐺
𝑉(𝐷𝑔

∗, 𝐺)                                                         (12.5) 

where  

𝑉(𝐷𝑔
∗, 𝐺) = Ε𝐱~𝑝𝑑𝑎𝑡𝑎(𝐱)[𝑙𝑜𝑔𝐷𝑔

∗(𝐱)] + Ε𝑧~𝑝𝑍(𝑧) [log (1 − 𝐷𝑔
∗(𝐺(𝑧)))]                                          

= ∫[𝑝𝑑𝑎𝑡𝑎(𝐱)𝑙𝑜𝑔𝐷𝑔
∗(𝐱) + 𝑝𝑔(𝐱) log (1 − 𝐷𝑔

∗(𝐱))] 𝑑𝐱                                

= ∫[𝑝𝑑𝑎𝑡𝑎(𝐱)𝑙𝑜𝑔
𝑝𝑑𝑎𝑡𝑎(𝐱)

𝑝𝑑𝑎𝑡𝑎(𝐱) + 𝑝𝑔(𝐱)
+ 𝑝𝑔(𝐱) log

𝑝𝑔(𝐱)

𝑝𝑑𝑎𝑡𝑎(𝐱) + 𝑝𝑔(𝐱)
] 𝑑𝐱 

              = KL(𝑝𝑑𝑎𝑡𝑎(𝐱)||
𝑝𝑑𝑎𝑡𝑎(𝐱) + 𝑝𝑔(𝐱)

2
) + KL(𝑝𝑔(𝐱)||

𝑝𝑑𝑎𝑡𝑎(𝐱) + 𝑝𝑔(𝐱)

2
) − 𝑙𝑜𝑔4 

= 2𝐷𝐽𝑆 (𝑝𝑑𝑎𝑡𝑎(𝐱)||𝑝𝑔(𝐱)) − 𝑙𝑜𝑔4                                                                                        (12.6) 

where KL(p||q) denotes the KL divergence between two density function p and q, defined by 

KL(𝑝||𝑞) = ∫𝑝(𝑥)𝑙𝑜𝑔
𝑝(𝑥)

𝑞(𝑥)
𝑑𝑥                                                                (12.7) 

and 𝐷𝐽𝑆(𝑝||𝑞 ) is the Jensen-Shannon (JS) divergence, defined by 

𝐷𝐽𝑆(𝑝||𝑞 ) =
1

2
KL(𝑝||

𝑝 + 𝑞

2
) +

1

2
KL(𝑞||

𝑝 + 𝑞

2
)                                     (12.8) 

Since the JS divergence (or KL divergence) is always non-negative and equal to zero if and only if two 

distributions are identical, the global minimum of 𝑉(𝐷𝑔
∗, 𝐺) is −𝑙𝑜𝑔4 which is achieved when 𝑝𝑔(𝐱) =

𝑝𝑑𝑎𝑡𝑎(𝐱), i.e., the generator generates samples perfectly matching the underlying distribution. 

𝑉(𝐷∗, 𝐺∗) = Min
𝐺
max
𝐷
{𝑉(𝐷, 𝐺)} = Min

𝐺
𝑉(𝐷𝑔

∗, 𝐺) = −𝑙𝑜𝑔4                                  (12.9) 

This leads to a conclusion regarding the convergence of the GAN algorithm. If G and D have enough 

capacity, and at each step of the algorithm the discriminator is allowed to reach its optimum given G, and 

𝑝𝑔(𝐱) is updated so as to improve the minimization of  

Ε𝐱~𝑝𝑑𝑎𝑡𝑎(𝐱)[𝑙𝑜𝑔𝐷𝑔
∗(𝐱)] + Ε𝐱~𝑝𝑔(𝐱) [log (1 − 𝐷𝑔

∗(𝐱))]                                       (12.10) 



 

 

Then 𝑝𝑔(𝐱) converges to 𝑝𝑑𝑎𝑡𝑎(𝐱). 

A pedagogical explanation is illustrated in Fig. 4.  The GANs are trained by simultaneously updating the 

discriminative distribution (D, blue dashed line) so that it discriminates between samples from the data 

generating distribution (black, dotted line) 𝑝𝑥 from those of the generative distribution 𝑝𝑔(𝐺) (green, solid 

line). The lower horizontal line is the domain from which z is sampled, in this case uniformly. The 

horizontal line above is part of the domain of x. the upward arrows show how the mapping 𝑥 = 𝐺(𝑧) 

imposes the non-uniform distribution 𝑝𝑔 on transformed samples. G contracts in regions of high density 

and expands in regions of low density of 𝑝𝑔. 

 
(a)                                        (b)                                 (c)                                           (d)  

Fig.12.2 An explanation of GANs [printed from Goodfellow et al. (2014)]. (a) consider an adversarial pair 

near convergence: 𝑝𝑔 is similar to 𝑝𝑑𝑎𝑡𝑎 and D is a partially accurate classifier. (b) in the inner loop of the 

algorithm D is trained to discriminate samples from data, converging to  𝐷∗(𝐱) =
𝑝𝑑𝑎𝑡𝑎(𝐱)

𝑝𝑑𝑎𝑡𝑎(𝐱)+𝑝𝑔(𝐱)
. (c) after 

an update to G, gradient of D has guided G(z) to flow to regions that are more likely to be classified as data. 

(d) after several steps of training, if G and D have enough capacity, they will reach a point at which both 

cannot improve because 𝑝𝑔= 𝑝𝑑𝑎𝑡𝑎. The discriminator is unable to differentiate between the two 

distributions, i.e. 𝐷(𝐱) = 0.5. 

 

12.2 Implementation of GANs 

The previous section presents the basic principle of GANs. In this section, we will describe the details of 

GAN training and network structure from a practical perspective. 

12.2.1 Alternating two training processes 

A generative adversarial network (GAN) has two parts: 1) the generator learns to generate fake data samples 

which are negative training examples for the discriminator; and 2) the discriminator learns to distinguish 

the generator's fake data from real data (i.e. positive examples). The discriminator penalizes the generator 

for producing implausible results. 

We usually train the generator and the discriminator separately, as shown in Fig.12.3, in an alternative 

manner: (a) The discriminator trains for one or more batches/epochs. (b) The generator trains for one or 

more batches/epochs. Repeat steps 1) and 2) to continue to train the generator and discriminator networks. 
The generator is fixed during the discriminator training phase. Similarly, we keep the discriminator 

unchanged during the generator training phase. 



 

 

 

 
(a) Discriminator training 

 

 
(b) Generator training 

 

Fig.12.3 Training of GANs (the shadowed boxes are involved in backpropagation) 

 

A) Discriminator training 

The discriminator in a GAN is simply a classifier. It tries to distinguish real data from the data created by 

the generator. It could use any network architecture appropriate to the type of data it's classifying. The 

discriminator's training data comes from two sources: 1) Real data instances as positive examples, such as 

real pictures of people; and 2) Fake data instances created by the generator as negative examples. 

The goal of discriminator training is to maximize the objective function (12.1) for a given generator. In 

practice, we usually update the discriminator parameters using a standard gradient descent optimizer (e.g. 

Adam in PyTorch) by minimizing a loss function. Obviously, the corresponding loss function is the Binary 

Cross Entropy loss (BCELoss) function. For the i-th input of the discriminator, let the label be 𝑦(𝑖) = 1 for 

a real sample and 𝑦(𝑖) = 0 for a fake data sample. The BCELoss function is defined as 

𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟 𝑙𝑜𝑠𝑠 = 𝐵𝐶𝐸𝑙𝑜𝑠𝑠 = −∑[𝑦(𝑖)𝑙𝑜𝑔𝐷(𝑖) + (1 − 𝑦(𝑖))𝑙𝑜𝑔(1 − 𝐷(𝑖))]

𝑁

𝑖=1

                 (12.11) 

where 𝐷(𝑖) denotes the prediction (i.e. output) of the discriminator for the i-th input (real or fake sample), 

and N is the batch size. 

In summary, the discriminator training process can be described as: 

• The discriminator predicts 𝐷(𝑖) for both real data samples and fake data samples. 

• The loss function (12.11) is calculated. 

• The parameters of the discriminator are updated by a gradient descent optimizer based on the 

gradients of the loss function. 



 

 

B) Generator training 

The generator training is shown in Fig.12.3(b). The generator learns to create fake data samples so that the 

discriminator classifies its output as real for the fake samples. The generator loss penalizes the generator 

for producing a sample that the discriminator network classifies correctly as fake. According to (12.1), the 

goal of the generator training is to minimize log (1 − 𝐷(𝐺(𝑧; 𝜃𝑔); 𝜃𝑑)) with 𝜃𝑑 fixed. Since this objective 

function may not provide sufficient gradients, especially in the earlier training stage, we equivalently 

maximize log𝐷 (𝐺(𝑧; 𝜃𝑔)) which is further equivalent to minimizing −log𝐷 (𝐺(𝑧; 𝜃𝑔)). Thus, the 

generator loss function can be specified by 

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 𝑙𝑜𝑠𝑠 = −∑log𝐷 (𝐺(𝑧(𝑖);  𝜃𝑔))

𝑁

𝑖=1

                                                   (12.12) 

Note that the real data samples do not participate in the generator training (12.12). To implement (12.12) 

by BCELoss in PyTorch, we just need to define all the labels for the faked samples as 𝑦(𝑖) = 1.  

During generator training, we keep the discriminator fixed. So we train the generator with the following 

procedure: 

• Sample random noise. 

• Generate the fake samples from sampled random noise. 

• Compute the prediction on the fake samples. 

• Calculate loss (12.12). 

• Update the generator parameters with gradient descent optimizer. 

 

12.2.2 Transposed convolutional neural networks 

It is straightforward to implement both the generator and the discriminator using neural networks. The 

discriminator is simply a binary classifier that can be implemented by a series of standard 2D convolutional 

layers. The generator delivers a fake data sample (e.g., image) for a given input noise vector. Since the size 

of the noise vector is typically much smaller than that of the data sample (e.g., image), up-sampling layers 

are required in the generative neural network. In this section, we will present a type of up-sampling 

convolutional layer, called transposed convolutional layer that generates the output feature map greater 

than the input feature map. For simplicity, in the following presentation we assume single channel in both 

the input and the filter (or kernel). We can generalize to multiple channels in the same way as we do for 

standard convolution. In other words, the output for multi-channel input convolution is the sum of 

convolutions of individual channels. 

A) Standard convolution matrix 

A standard convolution can be expressed as a multiplication between a convolution matrix and an input 

vector. Consider an input map feature 4x4 is convoluted with a filter/kernel 3x3 with stride 1 and no 

zero-padding, shown in Fig.12.4. 

The convolution can be represented by 

𝑌 = 𝑊 ×𝑋                                                                       (12.13) 

where 𝑊 ∈ ℝ4×16 is the convolution matrix obtained by re-arranging the weight matrix 𝑊 ∈ ℝ3×3 

 



 

 

𝑊

= (

𝑤00 𝑤01 𝑤02      0  𝑤10 𝑤11 𝑤12      0 𝑤20 𝑤21 𝑤22      0       0     0      0         0

     0 𝑤00 𝑤01 𝑤02        0 𝑤10 𝑤11 𝑤12     0 𝑤20 𝑤21 𝑤22       0     0      0        0
     0

     0

      0

      0

     0       0 𝑤00 𝑤01 𝑤02       0 𝑤10 𝑤11 𝑤12     0 𝑤20 𝑤21 𝑤22     0

      0       0        0 𝑤00 𝑤01 𝑤02       0 𝑤10 𝑤11 𝑤12     0 𝑤20 𝑤21 𝑤22

)   

 

(12.14)   
 

X and Y are input and output in a vector form 

𝑋 =

(

 
 
 
 
 
 

𝑥00
𝑥01
𝑥02
𝑥03
𝑥10
𝑥11
⋮
𝑥32
𝑥33)

 
 
 
 
 
 

                                     𝑌 = (

𝑦00
𝑦01
𝑦10
𝑦11

) 

 

 
Fig.12.4 A standard convoluion operation (stride 1 and no zero-padding) 

 

B) Transposed convolution 

Now let’s consider an opposite mapping, i.e., mapping from a 4-dimensional space to a 16-dimensional 

space. We can define the transposed convolution matrix (𝑊
𝑇
∈ ℝ16×4 in the above example) by 

transposing the original convolution matrix 𝑊, such that the transposed convolution matrix can map a 

4-dimensional feature to a 16-dimensional feature by a matrix multiplication. 

𝑍 = 𝑊
𝑇
× 𝑌                                                                        (12.15) 

where transposed convolution matrix 𝑊
𝑇
∈ ℝ16×4, 𝑊 is defined by (12.14), input feature map  𝑌 ∈

ℝ4,  output feature map 𝑍 ∈ ℝ16.   The operation in (12.15) is called transposed convolution with a 

filter W, as shown in Fig.12.5, with X and Y reshaped to 2D arrays. 

 

Fig.12.5 A transposed convolution 



 

 

We can implement the transposed convolution in two perspectives: flipping weight and weighting 

weight. In the perspective of flipping weight, as shown in Fig.12.6, we flip the weight matrix W 

verterically and horizontally, and then perform the regular convolution operation between Y (as the 

input) and the flipped weight matrix (as the kernel), with sufficient zero-padding on Y.  

 

 
 

Fig.12.6 Implement a transposed convolution by flipping the filter sheet. 

 

The second perspective for the transposed convolution implementation is shown in Fig.12.7. We 

generate the partial output maps by sliding the weight matrix multiplied by the corresponding input 

element, and then sum up all partial output maps in elementwise.    

 
Fig.12.7 Implement a transposed convolution by summing slided weighted filters 

 

Note that, for a default setting, the output feature map size is given by 

𝑂𝑡𝑟𝑎𝑛𝑠_𝑐𝑜𝑛𝑣 = 𝑛 + 𝑓 − 1                            𝑛𝑜 𝑝𝑎𝑑𝑑𝑖𝑛𝑔, 𝑎𝑛𝑑 𝑠𝑡𝑟𝑖𝑑𝑒 = 1                (12.16) 

where n is the input size (height or width), f is the size of the kernel (height or width). 



 

 

C) Zero-padding and stride in transposed convolution 

The previous description of transposed convolution is based on a default setting, i.e. no zero-padding 

and stride =1. Like standard convolution, to obtain a desired shape size of output, we can define zero-

padding and stride for a transposed convolution.  

In a standard convolution, zero-padding simply refers to adding zero around the input feature map while 

stride means the number of pixels the kernel slide at each step. Zero-padding increases the output size, 

and increasing the stride leads to down-sampling at the output. Suppose both the shapes of the data 

feature map and the kernel are square. We have the output shape size ((8.1) in chapter 8) 

𝑂𝑐𝑜𝑛𝑣 = ⌊
𝑛 + 2𝑝 − 𝑓

𝑠
⌋ + 1                                                               (12.17)  

where n is the input size (height or width), p is the number of zero columns/rows padded on one side 

of the input feature map, f is the size of the kernel, s is the stride. 

However, the meanings of “zero-padding” and “stride” specified in a transposed convolution are 

different. They have the reverse effects on the output size, compared to standard convolution. Similarly, 

let n be the input size, f be the filter size, p be the zero-padding, and s be the stride for a transposed 

convolution. In the transposed convolution, zero-padding will decrease the output size by cutting off 

outer rows and columns of the output. For example, Fig.12.8 shows a transposed convolution with p=1 

that gets an output 2 × 2 by deleting one outer row and column around the default output (non zero-

padding). In general, the output size of transposed convolution for zero-padding p (stride =1 default) is 

given by 

𝑂𝑡𝑟𝑎𝑛𝑠_𝑐𝑜𝑛𝑣 = 𝑛 + 𝑓 − 1 − 2𝑝              𝑠𝑡𝑟𝑖𝑑𝑒 = 1                    (12.18) 

 

 

Fig.12.8 Zero-padding p=1 for transposed convolution 

 

The stride specifies the step size by which the weighted weight matrix moves for each input pixel. For 

example, if stride =2, then the weighted weight matrix moves by two units each step. A stride s (e.g. 

s=2) is equivalent to inserting  𝑠 − 1 zero(s) between every two input pixels, leading to the effective 

input size of 𝑛 + (𝑛 − 1)(𝑠 − 1) = 𝑠(𝑛 − 1) + 1, shown in Fig.12.9 for s=2. 



 

 

 

Fig.12.9 A transposed convolution with stride =2 

In summary, a transposed convolution with padding p and stride s delivers an output feature map with 

size given by 

𝑂𝑡𝑟𝑎𝑛𝑛𝑠_𝑐𝑜𝑛𝑣 = 𝑠(𝑛 − 1) + 𝑓 − 2𝑝                                               (12.19) 

From (12.17) and (12.19), a transposed convolution can reverse the output feature map size of its 

counterpart standard convolution (i.e., with same kernel size f, padding p and stride s) back to the input 

size, if 
𝑛+2𝑝−𝑓

𝑠
 is an integer, as shown in Fig.12.10. 

 

Fig.12.10 Transposed convolution reverses the feature size from standard convolution. 

 

12.2.3 An example of GAN 

As an example, in this section we present the detailed neural network architecture for a particular GAN. 

This GAN is designed to generate 64 × 64 images. The implementation of this example in PyTorch will 

be given in Section 12.4.1.  

The generator, 𝐺(𝑧; 𝜃𝑔), is designed to map the noise vector 𝑧 ∈ ℝ100 to data space 𝐱 ∈ ℝ3×64×64, which 

corresponds to an RGB image. We implement the generator using a series of two-dimensional transposed 

convolution layers, each (except the last layer) followed by a 2D batch normalization layer and a ReLU 

activation. The output of the last transposed convolution layer is passed through a tanh function to return 

the values to the range of [−1,1]. The architecture is shown in Fig.12.11. 

The discriminator, 𝐷(𝐱; 𝜃𝑑), is a binary classification network that takes an image 𝐱 ∈ ℝ3×64×64 as input 

and outputs a scalar value that indicates the probability that the input image is real (as opposed to fake). 

Here, the network 𝐷(𝐱; 𝜃𝑑) processes the image through a series of Conv2d, BatchNorm2d, and 

LeakyReLU layers, and outputs the probability through a Sigmoid activation function. Note that there is no 

BatchNorm2d for the first convolution layer. The architecture is shown in Fig.12.12. 



 

 

 

 

Fig.12.11 Generator implemented by five transposed convolution layers. 

 

 

Fig.12.12 Discriminator implemented by five conv2d layers. 

 

12.3 GAN Variants 

12.3.1 Practical issues with the original GAN 

The probability density learned by the original GAN, 𝑃𝑔(𝐱), is implicitly defined by the neural network 

𝐺(𝑧; 𝜃𝑔) that maps a prior random variable 𝑧~𝑝(𝑧) to a generated sample. In other words, to generate a 

sample, we first sample z from a simple prior 𝑝(𝑧), and then compute 𝐺(𝑧; 𝜃𝑔). During the generation of 

a sample, we don’t have any control over the properties of the sample we want to generate. For instance, 

we can’t ask the original GAN to generate a specific digit (e.g. 7). Conditional GAN and InfoGAN will be 

introduced to deal with this issue. 

In general, GANs suffer the following major problems: 

o Non-convergence. The model parameters never converge during the training process. 



 

 

o Vanishing gradient. When the discriminator is close to its optimum, the generator gradient vanishes 

(i.e., almost 0) and thus the model learns nothing.  

o Model collapse. The trained generator produces limited varieties of samples.  

o Highly sensitive to hyperparameter selection. 

The in-depth analysis of these problems is beyond the scope of the text. We mention them here to motivate 

the variants of GAN. 

 

12.3.2 Conditional GAN 

(A) Principle and loss function 

Generative adversarial nets can be extended to a conditional model if both the generator and discriminator 

are conditioned on some extra information c, which could be any kind of auxiliary information, such as 

class labels or data from other modalities. We can perform the conditioning by feeding c into both the 

discriminator and the generator as additional input information. This results in a GAN variant called 

conditional GAN. For example, a trained conditional GAN on MNIST can generate an image for a given 

digit. 

In the generator the input noise 𝑧, and condition c (e.g., label) are combined. In the discriminator the real 

image x or the fake image G(z|c) and c are presented as the input. Fig.12.13 shows the generic architecture 

of conditional GANs. The objective function of a two-player minimax game would be as 

min
𝐺
max
𝐷
{𝑉(𝐷, 𝐺) = Ε𝐱~𝑝𝑑𝑎𝑡𝑎(𝐱)[𝑙𝑜𝑔𝐷(𝐱|𝑐; 𝜃𝑑)] + Ε𝑧~𝑝𝑍(𝑧) [log (1 − 𝐷(𝐺(𝑧|𝑐;  𝜃𝑔)|𝑐;  𝜃𝑑))]}     (12.20) 

 

Fig.12.13 Conditional GAN architecture 

(B) Implementation 

As an example, Fig.12.14 shows the implementation of a conditional GAN for digit image generation, 

which is conditioned on label 𝑐 ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8,9}. The input of discriminator (D) consists of an 

image (real or fake) and its corresponding label image. In our case the size of image x is 32x32. The label 

image is encoded in one-hot-feature image format 10x32x32. For example, if the label y=3, the third feature 

map [3,:,:] of the label image is all-one while all other feature maps are all-zero. The generator (G) receives 

a noise vector z and one-hot label (c) vector as the input, and delivers a fake image for the class c, G(z|c).  

It is also necessary to encode the label in the one-hot-feature image format to form a fake training example. 

How the input x or z is combined with the label c is flexible in general. For example, we can choose this 

way: the first hidden layers for z and c label in the generator are separate, and their outputs are concatenated 



 

 

(or merged) as the input of the next layer. A similar way is applied to the discriminator. The detailed 

architecture is given in Table 12.1. 

 

Fig.12.14 Overall architecture of conditional GAN for MNIST 

 

Table 12.1 An example of conditional GAN for MNIST 

Generator Discriminator 

Input z [100,1,1] Input C [10,1,1] Input x [1,32,32] Input C [10,32,32] 

T.conv(c=256,f=4,s=1,p=0) 

BN, ReLU 

T.conv(c=256,f=4,s=1,p=0) 

BN, ReLU 

Conv(c=64,f=4,s=2,p=1) Conv(c=64,f=4,s=2,p=1) 

Concatenate output:  [512,4,4] Concatenate output: [128,16,16] 

T.conv(c=256,f=4,s=2,p=1) 

BN, ReLU 

Output: [256,8,8] 

Conv(c=256,f=4,s=2,p=1) 

BN, LeakyReLU 

Output: [256,8,8] 

T.conv(c=128,f=4,s=2,p=1) 

BN, ReLU 

Output: [128,16,16] 

Conv(c=512,f=4,s=2,p=1) 

BN, LeakyReLU 

Output: [512,4,4] 

T.conv(c=1,f=4,s=2,p=1) 

Tanh() 

Output: [1,32,32] 

Conv(c=1,f=4,s=1,p=0) 

Sigmoid() 

Output: [1,1,1] 

 Loss for discriminator Loss for generator 

    Note:  c: channel, f: filter size, s: stride, p: padding, BN: batch normalization. 

  

12.3.3 InfoGAN 

(A) Principle and loss function 

InfoGAN is similar to conditional GAN except for the fact that it is also able to learn disentangled 

(interpretable) features in a completely unsupervised manner. Recall, in conditional GAN, the generator 

network has a conditional input c, which is assumed to be semantically known, e.g., labels. During training, 

we need to provide c, and G will implicitly learn the conditional distribution of data 𝑝(𝐱|𝑐). In InfoGAN 

we assume c to be unknown, and thus we infer it based on the data, i.e., we want to find posterior 𝑝(𝑐|𝐱). 

Instead of using a single noise vector z as in the basic GAN, InfoGAN decomposes noise vector into the 

following two parts: 1) z, which is treated as incompressible noise as in the basic GAN; 2) c, which is called 



 

 

the latent vector for the salient structured semantic features of the data distribution. For instance, to generate 

images from the MNIST dataset, the latent vector 𝑐 = [𝑐1, 𝑐2, 𝑐3]
𝑇 can be associated with three semantic 

features: categorical variable 𝑐1~𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝐾 = 10, 𝑝 = 0.1) for the identity of the digit (i.e., label), 

continuous variable 𝑐2 for the rotation, and continuous variable 𝑐3 for the thickness of the stroke, 

𝑐2, 𝑐3~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−1,1). In general, the categorical latent variable may be used to control the type or class 

of the generated image, and the continuous latent variables can capture variations that are continuous in 

nature. 

In information theory, the mutual information between X and Y, measuring the amount of information 

learned from knowledge of random variable Y about the other random variable X, is defined by 

𝐼(𝑋; 𝑌) = 𝐻(𝑋) − 𝐻(𝑋|𝑌) = 𝐻(𝑌) − 𝐻(𝑌|𝑋)                                         (12.21) 

In other words,  𝐼(𝑋; 𝑌) is the reduction of uncertainty in X when Y is observed. If X and Y are independent, 

then 𝐼(𝑋; 𝑌) is equal to zero. If X and Y are related by a deterministic invertible function, then maximal 

mutual information is attained. InfoGAN is formulated as an information-regularized minimax game given 

by 

min
𝐺
max
𝐷
{𝑉𝐼(𝐷, 𝐺) = 𝑉(𝐷, 𝐺) − 𝜆𝐼(𝑐; 𝐺(𝑧, 𝑐))}                                          (12.22) 

where 𝐼(𝑐; 𝐺(𝑧, 𝑐)) is the mutual information between c and the generated image, and 𝜆 is a 

hyperparameter. 

The intuition of (12.22) is that there should be high mutual information between latent vector c and 

generator distribution 𝐺(𝑧, 𝑐). In other words, the information in c should not be lost in the generation 

process. It has been proven by (Chen, et al., 2016) that the mutual information 𝐼(𝑐; 𝐺(𝑧, 𝑐)) has a lower 

bound by defining an auxiliary distribution 𝑄(𝑐|𝐱) for an approximation of 𝑝(𝑐|𝐱) 

𝐼(𝑐; 𝐺(𝑧, 𝑐)) ≥ 𝐿𝐼(𝐺, 𝑄)                                                                                (12.23)    

where the lower bound 

𝐿𝐼(𝐺, 𝑄) = 𝔼𝑐~𝑝(𝑐),𝐱~𝐺(𝑧,𝑐)[𝑙𝑜𝑔𝑄(𝑐|𝐱)] + 𝐻(𝑐)                                               (12.24) 

In addition, it has been known (Chen, et al., 2016) that when the lower bound attains its maximum  

𝐿𝐼(𝐺, 𝑄) = 𝐻(𝑐) for discrete latent c, the bound becomes tight and  the maximal mutual information is 

achieved. 

Thus, (12.22) can be rewritten as 

min
𝐺,𝑄

max
𝐷
{𝑉𝐼𝑛𝑓𝑜𝐺𝐴𝑁(𝐷, 𝐺, 𝑄) = 𝑉(𝐷, 𝐺) − 𝜆𝐿𝐼(𝐺, 𝑄)}                                     (12.25) 

In practice, three components G, D, Q can be implemented as neural networks. This results in the 

architecture of InfoGAN shown in Fig.12.15. Typically, D and Q share most of convolutional layers while 

having separate heads to generate corresponding outputs. The D head generates the probability of the input 

being real, and the Q head computes the conditional distribution 𝑄(𝑐|𝐱).  

For a categorical latent component, say 𝑐𝑖, softmax can be used in the output layer for 𝑄(𝑐𝑖|𝐱). For a 

continuous latent component, say 𝑐𝑗, 𝑄(𝑐𝑗|𝐱) can be assumed to be Gaussian in many applications, and thus 



 

 

the neural network only needs to predict the mean and the variance. The hyperparameter λ is typically set 

to 1 for discrete latent components. For continuous latent components, a smaller λ (e.g., 0.1) is usually used 

to ensure 𝜆𝐿𝐼(𝐺, 𝑄) is on the same scale as the GAN objectives. 

Like the training of the basic GAN, there are two separate parameter updating processes within a training 

loop for each batch. One process is to update the parameters of discriminator and D head while another 

process updates the generator and Q head. 

 

Fig.12.15 Architecture of InfoGAN 

(B) Principle and loss function 

An example of InfoGAN, which was given by the original authors in (Chen, et al., 2016), generates digit 

images from the MNIST dataset. The architecture is specified in Table 12.1. The latent variables include 

one categorical variable 𝑐1~𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝐾 = 10, 𝑝 = 0.1) and two continuous variables 

𝑐2, 𝑐3~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−1,1) that can capture rotation of digits and stoke width. The noise z is a 62-element 

random vector. This results in the input size of 74 for the generator. In training, the discriminator and D 

head are updated using BCE loss from the D head. The loss for updating the generator and Q head is the 

sum of all three losses listed in Table 12.2. (details: https://github.com/Natsu6767/InfoGAN-PyTorch) 

Table 12.2 InfoGAN architecture example for MNIST dataset 

Generator: input [74, 1, 1]  Discriminator: input [1, 28, 28] 

Trans. Conv (c=1024,f=1,s=1,p=0) 

BN, ReLU 

Output: [1024, 1, 1] 

 Conv(c=64,f=4,s=2,p=1) 

Leaky ReLU 

Output: [64, 14, 14] 

Trans. Conv (c=128,f=7,s=1,p=0) 

BN, ReLU 

Output: [128, 7, 7] 

 Conv(c=128,f=4,s=2,p=1) 

BN, Leaky ReLU 

Output: [128, 7, 7] 

Trans. Conv (c=64,f=4,s=2,p=1) 

BN, ReLU 

Output: [64, 14, 14] 

 Conv(c=1024,f=7,s=1,p=0) 

BN, Leaky ReLU 

Output: [1024, 1, 1] 

Trans. Conv(c=1,f=4,s=2,p=1) 

Sigmoid 

Output: [1, 28, 28] 

 D head Q head 

Conv(c=1,f=1,s=1,p=0) 

Sigmoid 

Output: [1,1,1] 

Conv(c=128,f=1,s=1,p=0) 

BN, Leaky ReLU 

Output: [128,1,1] 

Conv1 Conv2 Conv3 

exp() 

  Binary cross  

entropy (BCE) loss 

Cross 

entropy 

loss 

Gaussian 

negative log 

likelihood loss 

https://github.com/Natsu6767/InfoGAN-PyTorch


 

 

 

Note:  c: channel, f: filter size, s: stride, p: padding, BN: batch normalization. 

Conv1: c=10, f=1,s=1,p=0, output size: [10] 

Conv2: c=2, f=1,s=1,p=0, output size: [2] for Gaussian means  

Conv3: c=2, f=1,s=1,p=0, output size: [2] for Gaussian variances 

12.3.4 Wasserstein GAN 

Wasserstein GAN (WGAN) (Arjovsky et al., 2017) was proposed to treat the instability of GAN training 

by an objective function based on Wasserstein distance, which has better theoretical properties than the 

original one (12.1).  

(A)  Wasserstein distance and WGAN principle 

To explain the concept of Wasserstein distance, let’s consider a 2-dimensional example of moving all dirt 

in piles (indicated by cuboids) to some pre-defined empty holes (indicated by cylinders), as illustrated in 

Fig.12.16. The amount of dirt across the piles represents the source distribution 𝑝𝑟(𝑥, 𝑦) (the subscript r 

indicates it is associated with real data in GAN) while the resulting dirt distribution across the holes 

represents the target distribution 𝑝𝜃(𝑥, 𝑦).   

 

Fig.12.16 Wasserstein distance illustration by dirt transportation 

 

Suppose both distributions 𝑝𝑟(𝑥, 𝑦) and 𝑝𝜃(𝑥, 𝑦) are given. The goal is to find the most efficient 

transportation plan, i.e., the optimal one, which minimizes the total transportation cost. The cost should be 

proportional to the amount dirt transported and the moving distance. To quantify the cost, we define the 

squared Euclidean distance as the cost of moving one unit of dirt from (𝑥1, 𝑥0) to  (𝑦1, 𝑦0) 

𝐶(𝑥0, 𝑦0; 𝑥1, 𝑦1) = (𝑥1 − 𝑥0)
2 + (𝑦1 − 𝑦0)

2                                           (12.26) 

Then we define a transportation plan 𝑇(𝑥0, 𝑦0; 𝑥1, 𝑦1) for all possible (𝑥0, 𝑦0) and (𝑥1, 𝑦1), which specifies 

how many units of dirt to move from (𝑥0, 𝑦0) to  (𝑥1, 𝑦1). A pile of dirt is allowed to split into multiple 

holes, and the dirt from multiple piles can be moved into the same hole. For T to be a valid plan, it should 

be non-negative, i.e. 𝑇(𝑥0, 𝑦0; 𝑥1, 𝑦1) ≥ 0 and  

∬𝑇(𝑥0, 𝑦0; 𝑥1, 𝑦1)𝑑𝑥1𝑑𝑦1 = 𝑝𝑟(𝑥0, 𝑦0)                      𝑓𝑜𝑟 𝑎𝑙𝑙 (𝑥0, 𝑦0)                     (12.27𝑎) 

∬𝑇(𝑥0, 𝑦0; 𝑥1, 𝑦1)𝑑𝑥0𝑑𝑦0 = 𝑝𝜃(𝑥1, 𝑦1)                      𝑓𝑜𝑟 𝑎𝑙𝑙 (𝑥1, 𝑦1)                    (12.27𝑏) 



 

 

(12.27a) implies that all dirt at (𝑥0, 𝑦0) are transported to some holes while (12.27b) tells that all dirt in a 

hole (𝑥1, 𝑦1) came from piles. Thus, for a given transportation plan 𝑇(𝑥0, 𝑦0; 𝑥1, 𝑦1), the total cost of 

moving dirt from piles 𝑝𝑟(𝑥, 𝑦) to holes 𝑝𝜃(𝑥, 𝑦) is given by 

𝐶𝑜𝑠𝑡 = ∬∬𝐶(𝑥0, 𝑦0; 𝑥1, 𝑦1)𝑇(𝑥0, 𝑦0; 𝑥1, 𝑦1)𝑑𝑥0𝑑𝑦0 𝑑𝑥1𝑑𝑦1                         (12.28) 

The Wasserstein distance is the minimal cost corresponding to the optimal transportation plan.  

In general, the Wasserstein distance, also called Earth-Mover (EM) distance, between two distributions 

𝑝𝑟(𝐱) and 𝑝𝜃(𝐲), is defined by 

𝑊(𝑝𝑟 , 𝑝𝜃) = inf
𝒯∈∏(𝑝𝑟,𝑝𝜃)

𝔼(𝐱,𝐲)~𝒯[‖𝐱 − 𝐲‖]                                       (12.29) 

where 𝒯 ∈ ∏(𝑝𝑟, 𝑝𝜃) denotes the set of all joint distributions 𝑇(𝐱; 𝐲) whose marginal distributions are 

𝑝𝑟  and 𝑝𝜃 respectively.  inf denotes the infimum operation (i.e., the greatest lower bound). Intuitively 

𝑇(𝐱; 𝐲) indicates how much probability mass needs to be transported from x to y in order to transform the 

distribution 𝑝𝑟 to 𝑝𝜃. Thus, to obtain 𝑝𝜃 from 𝑝𝑟,  the Wasserstein distance is the total mass required to 

move by the optimal transport plan corresponding to the optimal 𝑇(𝐱; 𝐲). 

Wasserstein distance demonstrates a property of continuity, which results in smooth and non-vanishing 

gradients in the learning process. Suppose we model a distribution by parameter 𝜃, denoted as 𝑝𝜃. A 

sequence of distributions 𝑝𝜃𝑡 , 𝑡 = 1,2, …, converges if and only if there is a distribution 𝑝∞ such that 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝𝜃𝑡 , 𝑝∞) tends to zero. Continuity means that when a sequence of parameter 𝜃𝑡 converge to 𝜃, 

the distributions 𝑝𝜃𝑡  also converge to 𝑝𝜃. Note that the continuity depends on the definition of the distance. 

For example, consider two probability mass functions 𝑝0(𝑥) and 𝑝𝜃(𝑥) in Fig.12.17, where the random 

variable X is discrete, and 𝑝𝜃(𝑥) is the shifted version of 𝑝0(𝑥) by 𝜃.   One can verify that the Wasserstein 

distance between them is 𝜃. Thus, the distribution 𝑝𝜃(𝑥) converges to 𝑝0(𝑥) when 𝜃 → 0, in the sense of 

Wasserstein distance, which is expected by our intuition. However, their KL or JS divergence does not have 

this continuity property, because their values are given as 

𝐷𝐽𝑆(𝑝0, 𝑝𝜃) = {
𝑙𝑜𝑔2       𝜃 ≠ 0
0              𝜃 = 0

                                                                                  (12.30) 

𝐷𝐾𝐿(𝑝0, 𝑝𝜃) = 𝐷𝐾𝐿(𝑝𝜃, 𝑝0) = {
+∞       𝜃 ≠ 0
0            𝜃 = 0

                                                        (12.31) 

 

Fig.12.17 two distributions for divergence comparison 

In Wasserstein GAN, the Wasserstein distance is used to form the loss for training. The goal of training is 

to minimize the Wasserstein distance, instead of minimizing the JS divergence like the original GAN (12.6). 



 

 

However, the Wasserstein distance is highly intractable. Using the Kantorovich-Rubinstein duality (Villani 

2009), we can simplify (12.29) to 

𝑊(𝑝𝑟 , 𝑝𝜃) = sup
‖𝑓‖𝐿≤1

𝔼𝑥~𝑝𝑟[𝑓(𝑥)] − 𝔼𝑥~𝑝𝜃[𝑓(𝑥)]                                          (12.32) 

where the supremum, i.e., the least upper bound, denoted by sup
‖𝑓‖𝐿≤1

, is over all the 1-Lipschitz functions 

𝑓: 𝑋 → ℝ. A real function 𝑓: 𝑋 → ℝ is a K-Lipschitz function if 

|𝑓(𝑥1) − 𝑓(𝑥2)| ≤ 𝐾 ∙ |𝑥1 − 𝑥2|, 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑥1, 𝑥2  ∈ 𝑋                                    (12.33)   

Intuitively, the constraint of Lipschitz limits the changing rate (or derivative) of the function. 

Under the constraint of Lipschitz, WGAN can be described by  

min
𝐺
max
𝐷∈𝒟

𝔼𝑥~𝑝𝑟[𝐷(𝑥;𝑤)] − 𝔼�̃�~𝑝𝜃[𝐷(�̃�; 𝑤)]                                                      (12.34) 

where 𝒟 is the set of 1-Lipschitz functions, and 𝑝𝜃 is the model distribution implicitly defined by �̃� =

𝐺(𝑧; 𝜃), 𝑧~𝑝(𝑧). Thus, (12.34) can be rewritten as 

min
𝐺
max
𝐷∈𝒟

𝔼𝑥~𝑝𝑟[𝐷(𝑥;𝑤)] − 𝔼𝑧~𝑝(𝑧)[𝐷(𝐺(𝑧; 𝜃);𝑤)]                                     (12.35) 

 

(B) WGAN with weight clipping 

The discriminator 𝐷(𝑥;𝑤) in WGAN is called a critic since it is not trained to classify. Under an optimal 

discriminator, minimizing (12.35) with respect to G minimizes the Wasserstein distance 𝑊(𝑝𝑟 , 𝑝𝜃). With 

mild assumptions, it has been shown (Arjovsky et al., 2017) that  

∇𝜃𝑊(𝑝𝑟 , 𝑝𝜃) = −𝔼𝑧~𝑝(𝑧)[∇𝜃𝐷(𝐺(𝑧; 𝜃);𝑤)]                                                   (12.36) 

To enforce the Lipschitz constraint on the critic, the original authors (Arjovsky et al., 2017) proposed to 

clip the weights of the critic to lie within a compact space [-c,c], say c=0.01. the set of function satisfying 

this constraint is a subset of the Lipschitz functions which depends on c and the critic architecture. The 

resulting WGAN procedure is described in Algorithm 2. An example of WGAN architecture is specified in 

Table 12.3, for generating [3,64.64] images. 

 

Algorithm 2: WGAN with weight clipping. Suggested hyperparameters: 𝛼 = 0.00005, 𝑐 = 0.01, 𝑚 = 64, 

𝑛𝑐𝑟𝑖𝑡𝑖𝑐 = 5. Suggested optimizer: RMSProp. 

Require: 𝛼, the learning rate. 𝑐, the clipping parameter, 𝑚, the batch size. 𝑛𝑐𝑟𝑖𝑡𝑖𝑐, the number of iterations 

of the critic per generator iteration. 

Require: 𝑤0, initial critic parameters. 𝜃0, initial generator parameters. 

Procedure: 

 while 𝜃 has not converged do 

  for t = 1, …, 𝑛𝑐𝑟𝑖𝑡𝑖𝑐 do 



 

 

   Sample {𝑥(𝑖)}
𝑖=1

𝑚
~𝑝𝑟 a batch from the real data. 

   Sample  {𝑧(𝑖)}
𝑖=1

𝑚
~𝑝(𝑧) a batch of prior samples. 

   𝑔𝑤 ← ∇𝑤 [
1

𝑚
∑ 𝐷(𝑥(𝑖); 𝑤)𝑚
𝑖=1 −

1

𝑚
∑ 𝐷(𝐺(𝑧(𝑖); 𝜃);𝑤)𝑚
𝑖=1 ] 

   𝑤 ← 𝑤 + 𝛼 ∙ 𝑅𝑀𝑆𝑃𝑟𝑜𝑝(𝑤, 𝑔𝑤) 

   𝑤 ← 𝑐𝑙𝑖𝑝(𝑤,−𝑐, 𝑐) 
  end for 

  Sample  {𝑧(𝑖)}
𝑖=1

𝑚
~𝑝(𝑧) a batch of prior samples. 

  𝑔𝜃 ← −∇𝜃
1

𝑚
∑ 𝐷(𝐺(𝑧(𝑖); 𝜃);𝑤)𝑚
𝑖=1  

  𝜃 ← 𝜃 − 𝛼 ∙ 𝑅𝑀𝑆𝑃𝑟𝑜𝑝(𝜃, 𝑔𝜃) 
 end while 

 

Table 12.3 WGAN-weight clipping for generating 3 × 𝑑 × 𝑑 images (d=64 for celebA dataset) 

Generator Critic 

Input z [100,1,1] Input image [3,64,64] 

T.conv2d(cin=100,cout=8×d,f=4,s=2,p=0) 

BN, ReLU 

  

Conv2d(cin=3,cout=d,f=4,s=2,p=1) 

BN, LeakyReLU 

T.conv2d(cin=8×d,cout=4×d,f=4,s=2,p=1) 

BN, ReLU 

 

Conv2d(cin=d,cout=2×d,f=4,s=2,p=1) 

BN, LeakyReLU 

T.conv2d(cin=4×d,cout=2×d,f=4,s=2,p=1) 

BN, ReLU 

 

Conv2d(cin=2×d,cout=4×d,f=4,s=2,p=1) 

BN, LeakyReLU 

T.conv2d(cin=2×d,cout=d,f=4,s=2,p=1) 

BN, ReLU 

 

Conv2d(cin=4×d,cout=8×d,f=4,s=2,p=1) 

BN, LeakyReLU 

T.conv2d(cin=d,cout=3,f=4,s=2,p=1) 

Tanh() 

Conv2d(cin=8×d,cout=1,f=4,s=1,p=0) 

 

 

(C) WGAN with gradient penalty 

Enforcing the Lipschitz constraint via weight clipping biases the critic towards much simpler functions. 

The trained critic ignores higher moments of the data distribution and thus models very simple 

approximation to the optimal functions. The convergence of WGAN with weight clipping is sensitive to 

the value of c.  

Gulrajani et al., 2017 proposed an alternative way to enforce the Lipschitz constraint using gradient penalty. 

Since a differentiable function is 1-Lipschitz if and only if it has gradients with norm at most 1 everywhere, 

we consider constraining the gradient norm of the critic’s output with respect to its input. To avoid 

tractability issues, a soft version of the constraint with a penalty on the gradient norm for random samples 

𝑥~𝑝�̂�. The loss function for the critic in WGAN with gradient penalty is 

𝐿 = 𝔼𝑧~𝑝(𝑧)[𝐷(𝐺(𝑧; 𝜃);𝑤)] − 𝔼𝑥~𝑝𝑟[𝐷(𝑥;𝑤)] + 𝜆𝔼𝑥~𝑝�̂�[(‖∇�̂�𝐷(𝑥)‖2 − 1)
2]                   (12.37) 

The first two terms in (12.37) are the original critic loss, and the third term is the penalty of gradient. 



 

 

Sampling 𝑥~𝑝�̂� is implicitly defined as sampling uniformly along line segments between pairs of points 

sampled from the real data distribution 𝑝𝑟 and the generator distribution 𝑝𝑔. As a result, the WGAN with 

gradient penalty is described in Algorithm 3. 

Since we penalize the norm of the critic’s gradient with respect to each input independently, it is suggested 

that the batch normalization is not applied in the critic model. Instead, an instance normalization can be 

considered. 

Algorithm 3: WGAN with gradient penalty. Suggested hyperparameters: 𝜆 = 10, 𝛼 = 0.0001, 𝛽1 = 0.5, 

𝛽2 = 0.999, 𝑛𝑐𝑟𝑖𝑡𝑖𝑐 = 5. Suggested optimizer: Adam. 

Require: the gradient penalty coefficient 𝜆, the batch size 𝑚, the number of iterations of the critic per 

generator iteration 𝑛𝑐𝑟𝑖𝑡𝑖𝑐, Adam hyperparameters 𝛼, 𝛽1, 𝛽2. 

Require: initial critic parameters 𝑤0, initial generator parameters 𝜃0. 
Procedure: 

while 𝜃 has not converged do 

for t = 1, …, 𝑛𝑐𝑟𝑖𝑡𝑖𝑐 do 

for i =1,…, m do 

Sample real data  𝑥~𝑝𝑟, prior 𝑧~𝑝(𝑧), a random number 𝜖~𝑈[0,1]. 

�̃� ← 𝐺(𝑧; 𝜃) 

𝑥 ← 𝜖𝑥 + (1 − 𝜖)�̃� 

𝐿(𝑖) ←  𝐷(�̃�; 𝑤) − 𝐷(𝑥; 𝑤) + 𝜆(‖∇𝑥𝐷(𝑥;𝑤)‖2 − 1)
2 

end for 

𝑤 ← Adam(∇𝑤
1

𝑚
∑𝐿(𝑖)
𝑚

𝑖=1

, 𝑤, 𝛼, 𝛽1, 𝛽2 ) 

end for 

Sample  {𝑧(𝑖)}
𝑖=1

𝑚
~𝑝(𝑧) a batch of prior samples. 

𝜃 ← Adam(∇𝜃
1

𝑚
∑−𝐷(𝐺(𝑧(𝑖); 𝜃);𝑤)

𝑚

𝑖=1

, 𝜃, 𝛼, 𝛽1, 𝛽2 ) 

end while 

 

 

As an example, to implement the WGAN with gradient penalty, we can still use Table 12.3 and just need 

to delete or replace BN layers in the critic with instance normalization layers (nn.InstanceNorm2d). 

Detailed similar implementations (including Python codes and training) can be found in many githubs (e.g., 

Zeleni9, 2021, and s-chh, 2022).   

 

12.3.5 CycleGAN 

(A) Principle and loss function 

CycleGAN (Zhu et al. 2017) was proposed to perform image-to-image translations. For example, a 

CycleGAN can translate a photo to an image in Monet painting style while maintaining the content. Other 



 

 

image-to-image translation tasks include changing the season from summer to winter, translating horse into 

zebra, changing dark to night, etc. The goal of CycleGAN is to learn the special characteristics of one image 

collection and figure out how these characteristics could be translated into the other image collection. 

Suppose we have two image collections (or domains) X and Y: {𝑥(𝑖)}
𝑖=1

𝑁
, 𝑥(𝑖) ∈ 𝑋 and {𝑦(𝑗)}

𝑗=1

𝑀
, 𝑦(𝑗) ∈ 𝑌. 

We denote the data distributions as 𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) and 𝑦~𝑝𝑑𝑎𝑡𝑎(𝑦). The goal is to learn two mapping 

functions 𝐺:𝑋 → 𝑌, and 𝐹: 𝑌 → 𝑋, such that 𝐺(𝑥)~𝑝𝑑𝑎𝑡𝑎(𝑦) and 𝐹(𝑦)~𝑝𝑑𝑎𝑡𝑎(𝑥) approximately, and 

𝐹(𝐺(𝑥)) ≈ 𝑥 and 𝐺(𝐹(𝑦)) ≈ 𝑦. The mapping F can be interpreted as the inverse mapping of G.  

Thus, the CycleGAN model consists of two generators G and F, and their corresponding discriminators 𝐷𝑌 

and 𝐷𝑋, as shown in Fig.12.18. The discriminator 𝐷𝑌 aims to distinguish between 𝑦(𝑗) as real and 𝐺(𝑥(𝑖)) 

as fake while the discriminator 𝐷𝑋 in the same way aims to predict 𝑥(𝑖) as real and 𝐹(𝑦(𝑗)) as fake. 

 

Fig.12.18 Model diagram of CycleGAN 

The objective function contains two types of losses: adversarial losses and cycle consistency losses. For the 

mapping function G and its discriminator 𝐷𝑌, the objective can be expressed as 

ℒ𝐺𝐴𝑁(𝐺, 𝐷𝑌, 𝑋, 𝑌) = 𝔼𝑦~𝑝𝑑𝑎𝑡𝑎(𝑦)[log𝐷𝑌(𝑦)] + 𝔼𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) [log (1 − 𝐷𝑌(𝐺(𝑥)))]                   (12.38) 

G aims to minimize the objective against the discriminator that tries to maximize it, i.e., 

min
𝐺
max
𝐷𝑌

ℒ𝐺𝐴𝑁(𝐺, 𝐷𝑌, 𝑋, 𝑌)                                                                    (12.39)  

Similarly, for the mapping function F and its discriminator 𝐷𝑋, we have an objective  

ℒ𝐺𝐴𝑁(𝐹, 𝐷𝑋, 𝑌, 𝑋) = 𝔼𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[log𝐷𝑋(𝑥)] + 𝔼𝑦~𝑝𝑑𝑎𝑡𝑎(𝑦) [log (1 − 𝐷𝑋(𝐹(𝑦)))]        (12.40) 

for the minmax optimization, 

min
𝐹
max
𝐷𝑋

ℒ𝐺𝐴𝑁(𝐹, 𝐷𝑋, 𝑌, 𝑋)                                                                     (12.41) 

Theoretically, the adversarial losses alone cannot guarantee that the learned function can map an individual 

input 𝑥(𝑖) to a desired output 𝑦(𝑖). A cycle consistency loss is constructed to enforce the cycle consistency. 

The cycle consistency means that the learned mapping function should be cycle-consistent: for each image 

𝑥 ∈ 𝑋, the image translation cycle should bring x back to the original image, i.e.,  𝑥 → 𝐺(𝑥) → 𝐹(𝐺(𝑥)) ≈

𝑥, and  𝑦 → 𝐹(𝑦) → 𝐺(𝐹(𝑦)) ≈ 𝑦. The consistency loss is defined as 

ℒ𝑐𝑦𝑐(𝐺, 𝐹) = 𝔼𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) [‖𝐹(𝐺(𝑥)) − 𝑥‖1] + 𝔼𝑦~𝑝𝑑𝑎𝑡𝑎(𝑦) [‖𝐺(𝐹
(𝑦)) − 𝑦‖

1
]          (12.42) 



 

 

Optionally, to preserve the color style of the input image, an identity loss is defined as 

ℒ𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦(𝐺, 𝐹) = 𝔼𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[‖𝐹(𝑥) − 𝑥‖1] + 𝔼𝑦~𝑝𝑑𝑎𝑡𝑎(𝑦)[‖𝐺(𝑦) − 𝑦‖1]                    (12.43) 

The identity loss pushes the generator to be near an identity mapping when real samples of the target domain 

are provided as the input to the generator. 

By combining (12.38) (12.40) (12.42) and (12.43), we obtain the full objective for CycleGAN 

ℒ(𝐺, 𝐹, 𝐷𝑋, 𝐷𝑌) = ℒ𝐺𝐴𝑁(𝐺, 𝐷𝑌, 𝑋, 𝑌) + ℒ𝐺𝐴𝑁(𝐹, 𝐷𝑋, 𝑌, 𝑋) + 𝜆1ℒ𝑐𝑦𝑐(𝐺, 𝐹) + 𝜆2ℒ𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦(𝐺, 𝐹)    (12.44) 

where the hyperparameters 𝜆1, 𝜆2 control the relative importance of the two types of losses (e.g., 𝜆1 =

10, 𝜆2 = 5). The training process is to solve the optimization problem, 

min
𝐺,𝐹

max
𝐷𝑋,𝐷𝑌

ℒ(𝐺, 𝐹, 𝐷𝑋, 𝐷𝑌)                                                                                 (12.45) 

To stabilize the training procedure, the original authors suggested that the negative log likelihood objective 

in (12.38) and (12.40) be replaced by a least-squares loss.  

Based on the above discussion, the loss functions for training CycleGAN are described explicitly below: 

1) Discriminator 𝐷𝑌 loss 

 ℒ𝐷𝑌 = 𝔼𝑦~𝑝𝑑𝑎𝑡𝑎(𝑦) [(1 − 𝐷𝑌(𝑦))
2
] + 𝔼𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) [(𝐷𝑌(𝐺(𝑥)))

2
]                     (12.46𝑎)        

2) Discriminator 𝐷𝑋 loss 

ℒ𝐷𝑋 = 𝔼𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) [(1 − 𝐷𝑋(𝑥))
2
] + 𝔼𝑦~𝑝𝑑𝑎𝑡𝑎(𝑦) [(𝐷𝑋(𝐹(𝑦)))

2
]                      (12.46𝑏)   

3) Generator G loss:  

ℒ𝐺 = 𝔼𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) [(1 − 𝐷𝑌(𝐺(𝑥)))
2
] + 𝜆1ℒ𝑐𝑦𝑐(𝐺, 𝐹) + 𝜆2ℒ𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦(𝐺, 𝐹)     (12.46𝑐) 

4) Generator F loss 

 ℒ𝐹 = 𝔼𝑦~𝑝𝑑𝑎𝑡𝑎(𝑦) [(1 − 𝐷𝑋(𝐹(𝑦)))
2
] + 𝜆1ℒ𝑐𝑦𝑐(𝐺, 𝐹) + 𝜆2ℒ𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦(𝐺, 𝐹)      (12.46𝑑) 

(B) Implementation 

The network architectures for the generators and the discriminators, suggested by Zhu et al. 2017, is detailed 

in Table 12.4. The input image size is assumed to be [3, k, k] with k=128 or 256 or higher.  

In the generator, the first three convolutional layers function as an encoder, which learns a representation 

with an increased number of channels. The resulting activation is then passed to a series of 6 or 9 residual 

blocks (6 for k=128, and 9 for k=256 or higher), called transformer. It is then expanded by a decoder, which 

uses two transposed convolutional layers to enlarge the representation size with the reduced number of 

channels, and one convolutional output layer to produce the final image. 



 

 

The discriminator, originally proposed by Isola et al., 2017, delivers an array output, instead of a single 

scalar. Each element in the output array corresponds to a receptive field or a patch with a size N×N in the 

input image. This discriminator tries to classify if each N×N patch in an image is real or fake. The average 

of elements in the output provides the ultimate output of the discriminator, i.e., the image is real or fake. 

For the setting in Table 12.4, the patch size is 70 × 70. Thus, the architecture of the discriminator is called 

70 × 70 PatchGAN. Given an image of size 256x256, the discriminator outputs a tensor of size 30x30. 

Each value of the output tensor holds the classification result (real or fake) for a 70x70 area of the input 

image. Note that these 70x70 areas overlap with each other. This is equivalent to manually selecting each 

of these 70x70 areas and having the discriminator examine them iteratively. The final classification result 

on the whole image is the average of classification results on the 30x30 values. 

Table 12.4 Network architectures for CycleGAN (from Zhu et al. 2017) 

Generator (G and F) Discriminator (𝐷𝑌 𝐚𝐧𝐝 𝐷𝑋) 
Input: [3,k,k] Input image [3,k,k] 

Conv2d(cin=3, cout=64,f=7,s=1,p=3) 

InstanceNorm2d, ReLU 

(output: [64,k,k] 

Conv2d(cin=3,cout=64,f=4,s=2,p=1) 

LeakyReLU 

(output: [64, k/2, k/2]) 

Conv2d(cin=64, cout=128,f=3,s=2,p=1) 

InstanceNorm2d, ReLU 

(output: [128,k/2,k/2])  

Conv2d(cin=64,cout=128,f=4,s=2,p=1) 

InstanceNorm2d, LeakyReLU 

(output: [128,k/4,k/4]) 

Conv2d(cin=128, cout=256,f=3,s=2,p=1) 

InstanceNorm2d, ReLU 

(output: [256,k/4,k/4]) 

Conv2d(cin=128,cout=256,f=4,s=2,p=1) 

InstanceNorm2d, LeakyReLU 

(output:[256,k/8,k/8]) 

6 or 9 

Residual 

blocks* 

Conv2d(cin=256,cout=256,f=3,s=1,p=1) 

InstanceNorm2d, ReLU 

Conv2d(cin=256,cout=256,f=3,s=1,p=1) 

InstanceNorm2d 

Block input + InstanceNorm2d output 

(output: [256,k/4,k/4]) 

Conv2d(cin=256,cout=512,f=4,s=1,p=1) 

InstanceNorm2d, LeakyReLU 

(output:[512,k/8-1, k/8-1]) 

ConvTranspose2d(cin=256, cout=128,f=3,s=2,p=1) 

InstanceNorm2d, ReLU 

(output: [128, k/2,k/2]) 

Conv2d(cin=512,cout=1,f=4,s=1,p=1) 

Sigmoid() 

(output: [1, k/8-2, k/8-2]) 

ConvTranspose2d(cin=128, cout=64,f=3,s=2,p=1) 

InstanceNorm2d, ReLU 

(output: [64,k,k] 

 

Conv2d(cin=64, cout=3,f=7,s=1,p=3) 

Tanh() 

(output:[3,k,k]) 

 

 

*6 residual blocks for 128x128 input images (k=128) while 9 residual blocks for k=256. 

 

12.3.6 f-GANs 

f-GANs are a class of GANs defined by various divergences. In fact, the original GAN is a special case of 

f-GANs. 

(A) f-divergences 

f-divergences (Liese et al. 2006), also known as the Ali-Silvey distances (Ali et al.1966), are a class of 

divergences that measure the difference between two probability distributions. We shall see that KL and 



 

 

Jensen-Shannon divergences are examples of f-divergences. Given two distributions P and Q that possess, 

respectively, an absolutely continuous density function 𝑝(𝑥) and 𝑞(𝑥) on the domain 𝒳, the f-divergence 

is defined as 

𝐷𝑓(𝑝||𝑞) = 𝔼𝑥~𝑞 [𝑓 (
𝑝(𝑥)

𝑞(𝑥)
)]                                                      (12.47) 

where the f-divergence function 𝑓:ℝ+ → ℝ is a convex and lower semi-continuous function satisfying 

𝑓(1) = 0. Different choices result in different divergences. The convex (or called Fenchel) conjugate of f 

is defined as 

𝑓∗(𝑡) = sup
𝑢∈𝑑𝑜𝑚𝑓

{𝑢𝑡 − 𝑓(𝑢)}                                                      (12.48) 

The function 𝑓∗ is also a convex and lower semi-continuous function. The pair (𝑓, 𝑓∗) is dual in sense that 

𝑓∗∗ = 𝑓. 

(B) Variational divergence minimization 

The lower bound on the f-divergence is obtained as below. 

𝐷𝑓(𝑝||𝑞) = ∫ 𝑞(𝑥) sup
𝑡∈𝑑𝑜𝑚𝑓∗

{𝑡
𝑝(𝑥)

𝑞(𝑥)
− 𝑓∗(𝑡)}

𝒳

𝑑𝑥 

≥ sup
𝑇∈𝒯

{∫ 𝑝(𝑥)𝑇(𝑥)𝑑𝑥
𝒳

−∫ 𝑞(𝑥)𝑓∗(𝑇(𝑥))𝑑𝑥
𝒳

} 

= sup
𝑇∈𝒯

{𝔼𝑥~𝑝[𝑇(𝑥)] − 𝔼𝑥~𝑞[𝑓
∗(𝑇(𝑥))]}                                                     (12.49) 

where 𝒯 is an arbitrary class of functions 𝑇:𝒳 → ℝ. The inequality in (12.49) is introduced for two reasons: 

1) Jensen’s inequality when swapping the integration and supremum operations; and 2) 𝒯 may contain only 

a subset of all possible functions. 𝑇 is also called a variational function. 

Under mild conditions on f (Nguyen et al, 2010), the bound in (12.49) is tight for  

𝑇(𝑥) =
𝑑𝑓(𝑢)

𝑑𝑢
|
𝑢=
𝑝(𝑥)
𝑞(𝑥)

                                                                              (12.50) 

Now we use two neural networks 𝑇𝜔 and 𝑄𝜃 to model the variational function and distribution Q, 

respectively. According to the lower bound in (12.49), our goal is to learn the generative model 𝑄𝜃 by 

finding a saddle-point of the following f-GAN objective function, which we minimize w.r.t 𝜃 and maximize 

w.r.t 𝜔, 

𝐹(𝜃,𝜔) = 𝔼𝑥~𝑝[𝑇𝜔(𝑥)] − 𝔼𝑥~𝑄𝜃[𝑓
∗(𝑇𝜔(𝑥))]                                           (12.51) 

To match 𝑑𝑜𝑚𝑓∗ , the domain of the conjugate function 𝑓∗, the variational function 𝑇𝜔(𝑥) is further 

represented in the form 𝑇𝜔(𝑥) = 𝑔𝑓(𝑉𝜔(𝑥)), and thus the objective function (12.51) is rewritten as 

𝐹(𝜃, 𝜔) = 𝔼𝑥~𝑝[𝑔𝑓(𝑉𝜔(𝑥))] + 𝔼𝑥~𝑄𝜃 [−𝑓
∗ (𝑔𝑓(𝑉𝜔(𝑥)))]                           (12.52) 



 

 

where 𝑉𝜔(𝑥):𝒳 → ℝ and 𝑔𝑓: ℝ → 𝑑𝑜𝑚𝑓∗  is an output activation function specific to the f-divergence. It is 

suggested that 𝑔𝑓 is chosen to be a monotonically increasing function. We estimate 𝔼𝑥~𝑝[𝑔𝑓(𝑉𝜔(𝑥))] by 

sampling a mini-batch from a training set, and estimate 𝔼𝑥~𝑄𝜃 [−𝑓
∗ (𝑔𝑓(𝑉𝜔(𝑥)))] by sampling from the 

generative model 𝑄𝜃. Table 12.5 lists some f-divergences and the relevant functions. 

Table 12.5 Some f-divergences, and the corresponding functions 𝑓(𝑢) and conjugates 𝑓∗(𝑡), and 

recommended output activation functions 𝑔𝑓(𝑣). (Duplicated from Nowozin et al, 2016) 

Name 𝑫𝒇(𝒑||𝒒) 𝒇(𝒖) 𝒇∗(𝒕) 𝒅𝒐𝒎𝒇∗ 𝒈𝒇(𝒗) 

Total 

variation 

1

2
∫|𝑝(𝑥) − 𝑞(𝑥)| 𝑑𝑥 

1

2
|𝑢 − 1| 

𝑡 
[−
1

2
,
1

2
] 

1

2
tanh (𝑣) 

KL 

𝐷𝐾𝐿(𝑝||𝑞) 
∫𝑝(𝑥) log

𝑝(𝑥)

𝑞(𝑥)
𝑑𝑥 

𝑢 log 𝑢 𝑒𝑡−1 ℝ 𝑣 

Reverse KL 
∫𝑞(𝑥) log

𝑞(𝑥)

𝑝(𝑥)
𝑑𝑥 

− log 𝑢 −1 − log(−𝑡) ℝ− −𝑒−𝑣 

Pearson 𝒳2 
∫
(𝑞(𝑥) − 𝑝(𝑥))

2

𝑝(𝑥)
𝑑𝑥 

(𝑢 − 1)2 1

4
𝑡2 + 𝑡 

ℝ 𝑣 

Neyman 𝒳2 
∫
(𝑝(𝑥) − 𝑞(𝑥))

2

𝑞(𝑥)
𝑑𝑥 

(𝑢 − 1)2

𝑢
 

2 − 2√1 − 𝑡 𝑡 < 1 1 − 𝑒−𝑣  

Hallinger 
∫(√𝑝(𝑥) − √𝑞(𝑥))

2

𝑑𝑥 (√𝑢 − 1)
2
 

𝑡

1 − 𝑡
 

𝑡 < 1 1 − 𝑒−𝑣  

Jensen-

Shannon 

𝐷𝐽𝑆(𝑝||𝑞) 

1

2
(𝐷𝐾𝐿 (𝑝||

𝑝 + 𝑞

2
)

+ 𝐷𝐾𝐿 (𝑞||
𝑝 + 𝑞

2
)) 

−(𝑢 + 1) log
𝑢 + 1

2
+ 𝑢 log 𝑢 

− log(2 − 𝑒𝑡) 𝑡 < log 2 log 2
− log(1 + 𝑒−𝑣) 

Basic GAN 2𝐷𝐽𝑆(𝑝||𝑞) − log 4 𝑢 log 𝑢 − (𝑢
+ 1) log(𝑢 + 1) 

− log(1 − 𝑒𝑡) ℝ− − log(1 + 𝑒−𝑣) 

Note: for basic GAN, 𝑓(1) = − log 4 ≠ 0 

 

(C) Basic GAN: a special case of f-divergence model 

Given the functions 𝑓(𝑢), 𝑓∗(𝑡) and 𝑔𝑓(𝑣) for the basic GAN in the last row at Table 12.5, we can have 

the objective function (12.52) as 

𝐹(𝜃,𝜔) = 𝔼𝑥~𝑝[− log(1 + 𝑒
−𝑉𝜔(𝑥))] + 𝔼𝑥~𝑄𝜃[−𝑓

∗(− log(1 + 𝑒−𝑉𝜔(𝑥)))] 

= 𝔼𝑥~𝑝 [log (
1

1 + 𝑒−𝑉𝜔(𝑥)
)] + 𝔼𝑥~𝑄𝜃 [−𝑓

∗ (log (
1

1 + 𝑒−𝑉𝜔(𝑥)
))] 

= 𝔼𝑥~𝑝 [log (𝜎(𝑉𝜔(𝑥)))] + 𝔼𝑥~𝑄𝜃 [log (1 − 𝜎(𝑉𝜔(𝑥)))]              

= 𝔼𝑥~𝑝[log(𝐷𝜔(𝑥))] +  𝔼𝑥~𝑄𝜃[log(1 − 𝐷𝜔(𝑥))]                                                   (12.53) 

where 𝐷𝜔(𝑥) = 𝜎(𝑉𝜔(𝑥)) is the discriminator in the GAN with a sigmoid activation function. Note that (12.53) is 

the same as (12.1). 

 



 

 

(D) Algorithm of f-GANs 

A gradient method algorithm for f-GANs is suggested by Nowozin et al, 2016, which is described below. 

 

Algorithm: single-step gradient method for f-GANs 

function SingleStepGradientIteration (𝑃, 𝜃𝑡, 𝜔𝑡 , 𝐵, 𝜂),  

                where P is the training set, B is the batch size, 𝜂 is the learning rate. 

 Sample 𝑋𝑃 = {𝑥1, 𝑥2,…,𝑥𝐵} and 𝑋𝑄 = {𝑥′1, 𝑥′2,…,𝑥′𝐵} from P and 𝑄𝜃𝑡, respectively. 

 Update: 𝜔𝑡+1 = 𝜔𝑡 + 𝜂∇𝜔𝐹(𝜃
𝑡, 𝜔𝑡) 

Update: 𝜃𝑡+1 = 𝜃𝑡 − 𝜂∇𝜃𝐹(𝜃
𝑡, 𝜔𝑡) 

end function 

 

To speed up the training process as we do in the basic GAN, instead of minimizing 

𝔼𝑥~𝑄𝜃 [−𝑓
∗ (𝑔𝑓(𝑉𝜔(𝑥)))] w.r.t 𝜃, we maximize 𝔼𝑥~𝑄𝜃[𝑔𝑓(𝑉𝜔(𝑥))]. Thus, the update for 𝜃 can be 

modified as 

𝜃𝑡+1 = 𝜃𝑡 + 𝜂∇𝜃𝔼𝑥~𝑄
𝜃𝑡
[𝑔𝑓 (𝑉𝜔𝑡(𝑥))]                                                   (12.54) 

The analysis of convergence and the detailed neural network implementations can be found in Nowozin et 

al, 2016. 

12.4 Example: Deep Convolutional GAN on MNIST Dataset 

In this section, we will present an example and demonstrate how to construct and train a basic deep 

convolutional GAN (DCGAN). The architecture of DCGAN is based on the work by Radford et. al., 2016. 

The trained GAN can generate images, which resemble the images in the training dataset. The Python 

programs in this section are run on GPU in Google Colab. 

12.4.1 Basic DCGAN 

First, we explore the implementation of the basic DCGAN. Specifically, the architectures of the generator 

and the discriminator are shown in Fig.12.11 and Fig.12.12. 

 

 

Import packages. 

 
from __future__ import print_function 

import os 

import random 

import time 

import torch 

import torch.nn as nn 

import torch.optim as optim 

import torch.utils.data 

import torchvision.datasets as datasets 

import torchvision.transforms as transforms 

import torchvision.utils as vutils 

import numpy as np 

import matplotlib.pyplot as plt 



 

 

import torchvision 

import torchvision.transforms as transforms 

 

# Set random seed for reproducibility 

randomSeed = 10 

random.seed(randomSeed) 

 

Mount Google drive to colab. 

from google.colab import drive 

drive.mount('/content/drive') 

 

Define some hyperparameters. 
dataroot = "./data"   # root directory for dataset 

workers = 2   # number of workers for dataloader 

batch_size = 128  # batch size 

image_size = 64  # image size 

nc = 1     # image channels, 3 for color 

nz = 100   # size of z noise vector 

ngf = 64  # size of feature maps in generator 

ndf = 64  # size of feature maps in discriminator 

lr = 0.0002  # learning rate 

beta1 = 0.5  # beta1 hyperparameter for Adam optimizers 

ngpu = 1  # number of GPUs available. Use 0 for CPU mode. 

 

num_epochs = 10  # number of training epochs 

 

 

 

Prepare training dataloader and device. 

 
# Create the dataset 

transform=transforms.Compose([ 

                               transforms.Resize(image_size), 

                               transforms.ToTensor(), 

                               transforms.Normalize((0.5,), (0.5,))]) 

dataset = torchvision.datasets.MNIST(root=dataroot, train=True, 

                                       download=True, transform=transform) 

 

# Create the dataloader 

dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, 

                                         shuffle=True, num_workers=workers) 

 

# Decide device to run on 

device = torch.device("cuda:0" if (torch.cuda.is_available() and ngpu > 0) el

se "cpu") 

 

 

Define Generator 

 
# Generator 

 

class Generator(nn.Module): 

    def __init__(self, ngpu): 

        super(Generator, self).__init__() 



 

 

        self.ngpu = ngpu 

        self.main = nn.Sequential( 

            # input is Z, going into a convolution 

            nn.ConvTranspose2d( nz, ngf * 16, 4, 1, 0, bias=True), 

            nn.BatchNorm2d(ngf * 16), 

            nn.ReLU(True), 

            # output size. (ngf*16=1024) x 4 x 4 

            nn.ConvTranspose2d(ngf * 16, ngf * 8, 4, 2, 1, bias=True), 

            nn.BatchNorm2d(ngf * 8), 

            nn.ReLU(True), 

            # output size. (ngf*8=512) x 8 x 8 

            nn.ConvTranspose2d( ngf * 8, ngf * 4, 4, 2, 1, bias=True), 

            nn.BatchNorm2d(ngf * 4), 

            nn.ReLU(True), 

            # output size. (ngf*4=256) x 16 x 16 

            nn.ConvTranspose2d( ngf * 4, ngf * 2, 4, 2, 1, bias=True), 

            nn.BatchNorm2d(ngf*2), 

            nn.ReLU(True), 

            # output size. (ngf*2=128) x 32 x 32 

            nn.ConvTranspose2d( ngf * 2, nc, 4, 2, 1, bias=True), 

            nn.Tanh() 

            # output size. (nc) x 64 x 64 

        ) 

 

    def forward(self, input): 

        return self.main(input) 

 

 

Define Discriminator 

 
# Discriminator 

class Discriminator(nn.Module): 

    def __init__(self, ngpu): 

        super(Discriminator, self).__init__() 

        self.ngpu = ngpu 

        self.main = nn.Sequential( 

            # input is (nc) x 64 x 64 

            nn.Conv2d(nc, ndf * 2, 4, 2, 1, bias=True), 

            nn.LeakyReLU(0.2, inplace=True), 

            # output size. (ndf*2=128) x 32 x 32 

            nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=True), 

            nn.BatchNorm2d(ndf * 4), 

            nn.LeakyReLU(0.2, inplace=True), 

            # output size. (ndf*4=256) x 16 x 16 

            nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=True), 

            nn.BatchNorm2d(ndf * 8), 

            nn.LeakyReLU(0.2, inplace=True), 

            # output size. (ndf*8=512) x 8 x 8 

            nn.Conv2d(ndf * 8, ndf * 16, 4, 2, 1, bias=True), 

            nn.BatchNorm2d(ndf * 16), 

            nn.LeakyReLU(0.2, inplace=True), 

            # output size. (ndf*16=1024) x 4 x 4 

            nn.Conv2d(ndf * 16, 1, 4, 1, 0, bias=True), 

            nn.Sigmoid() 

        ) 

 



 

 

    def forward(self, input): 

        return self.main(input) 

 

Weight initialization. 

It is crucial to initialize GAN properly for the convergence. 

 
# weights initialization called by Gnet and Dnet 

def weights_init(m): 

    classname = m.__class__.__name__ 

    if classname.find('Conv') != -1: 

        nn.init.normal_(m.weight.data, 0.0, 0.02) 

    elif classname.find('BatchNorm') != -1: 

        nn.init.normal_(m.weight.data, 1.0, 0.02) # or (…,0.0, 0.02)  

        nn.init.constant_(m.bias.data, 0) 

 

Instantiate generator and discriminator (Gnet and Dnet). 
# Create the generator 

Gnet = Generator(ngpu).to(device) 

Gnet.apply(weights_init) 

 
# Create the Discriminator 

Dnet = Discriminator(ngpu).to(device) 

Dnet.apply(weights_init) 

 

Specify loss function, fixed_noise batch (64 values for z), real label and fake label, optimizers. 
# Initialize BCELoss function 

criterion = nn.BCELoss() 

 

# Establish convention for real and fake labels during training 

real_label = 1. 

fake_label = 0. 

 

# Setup Adam optimizers for both G and D 

optimizerD = optim.Adam(Dnet.parameters(), lr=lr, betas=(beta1, 0.999)) 

optimizerG = optim.Adam(Gnet.parameters(), lr=lr, betas=(beta1, 0.999)) 

 

 

Training process 

Each iteration consists of two steps: updating D network and then updating G network. D network is updated 

based on both real and fake samples while G network is updated through the output of D network based on 

fake samples only. Please note that the convergence of the training process is not guaranteed on each 

program run. 

 
# Training Loop 

 

# Lists to monitor training progress 

# 

G_losses = [] 

D_losses = [] 

num_epochs=10 

print("Starting Training Loop...") 

 

for epoch in range(num_epochs): 



 

 

    # For each epoch 

    for i, data in enumerate(dataloader, 0): 

        # for each batch 

        #-------------------------- 

        # (1) Update D network: maximize log(D(x))+log(1-D(G(z))) 

        #------------------------------ 

        ## (A) Train with all-real batch 

        Dnet.zero_grad() 

        # Format batch 

        real_imgs = data[0].to(device) 

        # data[0]: images, data[1]: labels 

        # real_imgs: [b_s, 1, image_size, image_size] 

        b_s = real_imgs.size(0) 

        label = torch.full((b_s,),real_label,dtype=torch.float,device=device) 

        # Calculate output of D 

        output = Dnet(real_imgs).view(-1) 

        # Calculate loss on the real batch 

        errD_real = criterion(output, label) 

        # Calculate gradients for D 

        errD_real.backward() 

        D_x = output.mean().item() 

 

        ## (B)Train with all-fake batch 

        # Generate batch of latent vectors 

        noise = torch.randn(b_s, nz, 1, 1, device=device) 

        # Generate fake image batch by G 

        fake = Gnet(noise) 

        label.fill_(fake_label) 

        # Calculate output of D 

        output = Dnet(fake.detach()).view(-1) 

        # Calculate D's loss on the all-fake batch 

        errD_fake = criterion(output, label) 

        # Calculate the gradients on this batch 

        errD_fake.backward() 

        D_G_z1 = output.mean().item() 

        # Add the gradients from the all-real and all-fake batches 

        errD = errD_real + errD_fake 

        # Update D 

        optimizerD.step() 

 

        # ----------------------------------------- 

        # (2) Update G network: maximize log(D(G(z))) 

        # ------------------------------------------- 

        Gnet.zero_grad() 

        label.fill_(real_label)  # fake labels are real for generator cost 

        # because G wants to fool D, so we treat the fake as real. 

        output = Dnet(fake).view(-1) 

        # Calculate G's loss 

        errG = criterion(output, label) 

        # Calculate gradients for G 

        errG.backward() 

        D_G_z2 = output.mean().item() 

        # Update G 

        optimizerG.step() 

 

        # Output training stats 

        if i % 50 == 0: 



 

 

            print('[%d/%d][%d/%d]\tLoss_D: %.4f\tLoss_G: %.4f\tD(x): %.4f\tD(  

                   G(z)): %.4f / %.4f' 

                  % (epoch, num_epochs, i, len(dataloader), 

                     errD.item(), errG.item(), D_x, D_G_z1, D_G_z2)) 

 

 

        # Save Losses for plotting later 

        G_losses.append(errG.item()) 

        D_losses.append(errD.item()) 

 

Starting Training Loop... 

[0/10][0/469]   Loss_D: 1.8566  Loss_G: 8.1812  D(x): 0.3774  D(G(z)): 0.3721 / 0.0005 

[0/10][50/469]  Loss_D: 3.6225  Loss_G: 44.1498 D(x): 0.4508  D(G(z)): 0.0000 / 0.0000 

[0/10][100/469] Loss_D: 0.7124  Loss_G: 2.9447  D(x): 0.6583  D(G(z)): 0.0011 / 0.1247 

[0/10][150/469] Loss_D: 0.8989  Loss_G: 0.9111  D(x): 0.5747  D(G(z)): 0.0461 / 0.5524 

[0/10][200/469] Loss_D: 1.4422  Loss_G: 0.8815  D(x): 0.3802  D(G(z)): 0.0102 / 0.5227 

[0/10][250/469] Loss_D: 0.8741  Loss_G: 1.0921  D(x): 0.5318  D(G(z)): 0.0283 / 0.4374 

… 

 

Plot the losses for Gnet and Dnet after training (10 epochs). 

 
plt.figure(figsize=(10,5)) 

plt.title("Generator and Discriminator Loss During Training", fontsize=20) 

plt.plot(G_losses,label="G") 

plt.plot(D_losses,label="D") 

plt.xlabel("iterations", fontsize=20) 

plt.ylabel("Loss", fontsize=20) 

plt.legend() 

plt.show() 

 

 
Fig.12.19 Loss plots for D and G for 10 epochs (469 batches per epoch) 

 

 

Plot real samples and fake samples. 
 

fixed_noise = torch.randn(64, nz, 1, 1, device=device) 

 

with torch.no_grad(): 

  fake = Gnet(fixed_noise).detach().cpu() 

img = vutils.make_grid(1-fake, padding=5, normalize=True) 

 

real_batch = next(iter(dataloader)) 

 



 

 

# Plot the real images 

plt.figure(figsize=(15,15)) 

plt.subplot(1,2,1) 

plt.axis("off") 

plt.title("Real Images") 

plt.imshow(np.transpose(vutils.make_grid(1-real_batch[0].to(device)[:64], pad

ding=5, normalize=True).cpu(),(1,2,0))) 

 

# Plot the fake images from the last epoch 

plt.subplot(1,2,2) 

plt.axis("off") 

plt.title("Fake Images") 

plt.imshow(np.transpose(img,(1,2,0))) 

plt.show() 

 

 
Fig.12.20 Real images versus generated fake images after 10-epoch training 

 

12.4.2  Conditional DCGAN for MNIST dataset 

 

The architecture of the conditional DCGAN implemented in this section is specified in Table 12.1. The 

development framework is similar to the one for the basic DCGAN in Section 12.4.1. One should pay 

attention to the differences between them. The major differences lie in: 1) image size, 2) neural network 

architecture, and 3) an additional input (i.e., condition input) for the generator and the discriminator. 

 

Import packages. 
from __future__ import print_function 

import os 

import random 

import time 

import torch 

import torch.nn as nn 

import torch.optim as optim 

import torch.utils.data 

import torchvision.datasets as datasets 

import torchvision.transforms as transforms 

import torchvision.utils as vutils 

import numpy as np 

import matplotlib.pyplot as plt 

import torchvision 

import torchvision.transforms as transforms 



 

 

import torch.nn.functional as F 

 

# Set random seed for reproducibility 

randomSeed = 10 

random.seed(randomSeed) 

 

Mount google drive. 
from google.colab import drive 

drive.mount('/content/drive') 

 

Specify some hyperparameters. 
dataroot = "./data"   # directory for dataset 

workers = 2   # number of workers for dataloader 

batch_size = 128  # batch size 

image_size = 32 # image size 

nc = 1     # image channels, 3 for color 

nz = 100   # size of z noise vector 

ngf = 128  # number of feature maps in generator 

ndf = 128  # number of feature maps in discriminator 

lr = 0.0002  # learning rate 

beta1 = 0.5  # beta1 hyperparameter for Adam optimizers 

ngpu = 1  # number of GPUs available. Use 0 for CPU mode. 

 

num_epochs = 20 # number of training epochs 

 

Prepare dataloader for training process and specify device as GPU or CPU. 
# Create the dataset 

transform=transforms.Compose([ 

                               transforms.Resize(image_size), 

                               transforms.ToTensor(), 

                               transforms.Normalize((0.5,), (0.5,))]) 

dataset = torchvision.datasets.MNIST(root=dataroot, train=True, 

                                       download=True, transform=transform) 

 

# Create the dataloader 

dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, 

                                         shuffle=True, num_workers=workers) 

 

# Decide device to run on 

device = torch.device("cuda:0" if (torch.cuda.is_available() and ngpu > 0) el

se "cpu") 

 

Define the architecture of Generator and Discriminator. 
# Generator Code 

 

class Generator(nn.Module): 

    def __init__(self, ngpu): 

        super(Generator, self).__init__() 

        self.ngpu = ngpu 

        self.deconv1_1 = nn.ConvTranspose2d(100,ngf*2, 4, 1, 0) 

        self.deconv1_1_bn = nn.BatchNorm2d(ngf*2) 

        self.deconv1_2 = nn.ConvTranspose2d(10, ngf*2, 4, 1, 0) 

        self.deconv1_2_bn = nn.BatchNorm2d(ngf*2) 

        self.deconv2 = nn.ConvTranspose2d(ngf*4, ngf*2, 4, 2, 1) 



 

 

        self.deconv2_bn = nn.BatchNorm2d(ngf*2) 

        self.deconv3 = nn.ConvTranspose2d(ngf*2, ngf, 4, 2, 1) 

        self.deconv3_bn = nn.BatchNorm2d(ngf) 

        self.deconv4 = nn.ConvTranspose2d(ngf, 1, 4, 2, 1) 

 

    def forward(self, input, label): 

        x = F.relu(self.deconv1_1_bn(self.deconv1_1(input))) 

        y = F.relu(self.deconv1_2_bn(self.deconv1_2(label))) 

        x = torch.cat([x,y],1) 

        x = F.relu(self.deconv2_bn(self.deconv2(x))) 

        x = F.relu(self.deconv3_bn(self.deconv3(x))) 

        x = torch.tanh(self.deconv4(x)) 

 

        return x 

 
class Discriminator(nn.Module): 

    def __init__(self, ngpu): 

        super(Discriminator, self).__init__() 

        self.ngpu = ngpu 

        self.conv1_1 = nn.Conv2d(1,int(ndf/2), 4, 2, 1) 

        self.conv1_2 = nn.Conv2d(10, int(ndf/2), 4, 2, 1) 

        self.conv2 = nn.Conv2d(ndf, ndf*2, 4, 2, 1) 

        self.conv2_bn = nn.BatchNorm2d(ndf*2) 

        self.conv3 = nn.Conv2d(ndf*2, ndf*4, 4, 2, 1) 

        self.conv3_bn = nn.BatchNorm2d(ndf*4) 

        self.conv4 = nn.Conv2d(ndf*4, 1, 4, 1, 0) 

 

 

    def forward(self, input, label): 

        x = F.leaky_relu(self.conv1_1(input), 0.2) 

        y = F.leaky_relu(self.conv1_2(label), 0.2) 

        x = torch.cat([x,y], 1) 

        x = F.leaky_relu(self.conv2_bn(self.conv2(x)), 0.2) 

        x = F.leaky_relu(self.conv3_bn(self.conv3(x)), 0.2) 

        x = torch.sigmoid(self.conv4(x)) 

        return x 

 

Initialize the weights. 
# weights initialization called by Gnet and Dnet 

def weights_init(m): 

    classname = m.__class__.__name__ 

    if classname.find('Conv') != -1: 

        nn.init.normal_(m.weight.data, 0.0, 0.02) 

    elif classname.find('BatchNorm') != -1: 

        nn.init.normal_(m.weight.data, 1.0, 0.02) # or(..., 0.0,0.02) 

        nn.init.constant_(m.bias.data, 0) 

 

Instantiate generator as Gnet and discriminator as Dnet, with weight initialization. 
# Create the generator 

Gnet = Generator(ngpu).to(device) 

Gnet.apply(weights_init) 

 

# Create the Discriminator 

Dnet = Discriminator(ngpu).to(device) 

Dnet.apply(weights_init) 

 



 

 

Specify the loss function and optimizers. 
# Instantiate BCELoss function 

criterion = nn.BCELoss() 

 

# Establish convention for real and fake labels during training 

real_label = 1. 

fake_label = 0. 

 

# Setup Adam optimizers for both G and D 

optimizerD = optim.Adam(Dnet.parameters(), lr=lr, betas=(beta1, 0.999)) 

optimizerG = optim.Adam(Gnet.parameters(), lr=lr, betas=(beta1, 0.999)) 

 

Prepare all possible labels in one-hot vector format and in 32x32 one-hot feature map format. The 

tensor onehot will be used to create a one-hot vector for Gnet to generate a conditional image. The tensor 

fill is used to create a condition image as a part of the input of Dnet. 
# label preprocess 

onehot = torch.zeros(10, 10) 

onehot = onehot.scatter_(1, torch.LongTensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]).

view(10,1), 1).view(10, 10, 1, 1) 

fill = torch.zeros([10, 10, image_size, image_size]) 

for i in range(10): 

    fill[i, i, :, :] = 1 

#onehot [10,10,1,1]:  10 one-hot vectors, each for one digit 

# fill [10,10,32,32]: 10 condition images, 

#                    each image has 10 feature maps with one-hot feature map. 

 

Training loop. The diagram in Fig.12.21 illustrates the tensors used in the training loop and how they are 

related to the neural networks Gnet and Dnet. It can help a reader understand the training loop code. 

 

 
Fig.12.21 The major tensor variables in the training loop 

 
# Training Loop 

 

# Lists to monitor the training progress 

G_losses = [] 

D_losses = [] 

num_epochs = 10 

print("Starting Training Loop...") 

 

 

for epoch in range(num_epochs): 



 

 

    # For each epoch 

    y_real_ = torch.ones(batch_size) 

    y_fake_ = torch.zeros(batch_size) 

    y_real_ = y_real_.to(device) 

    y_fake_ = y_fake_.to(device) 

 

    # y_real_= [1,1,1,1,...,1] 

    # y_fake_= [0,0,0,0,...,0] 

 

    for i, data in enumerate(dataloader, 0): 

 

        # For each batch 

        # ------------------------------------------------------ 

        # (1) Update D network: maximize log(D(x))+log(1-D(G(z))) 

        # ------------------------------------------------------- 

 

        # (1) (A)Train with all-real image batch 

        Dnet.zero_grad() 

        real_imgs= data[0].to(device) #data[0] are images for the batch 

        b_s = real_imgs.size(0)        #b_s is batch size 

        label=torch.full((b_s,),real_label,dtype=torch.float,device=device) 

        if b_s != batch_size: 

            y_real_ = torch.ones(b_s) 

            y_fake_ = torch.zeros(b_s) 

            y_real_ = y_real_.to(device) 

            y_fake_ = y_fake_.to(device) 

 

        y_fill_ = fill[data[1]]  # y_fill_ : [b_s, 10, 32, 32] 

                                 # data[1]: labels 

        y_fill_ = y_fill_.to(device) 

 

        # Calculate the output of D 

        output = Dnet(real_imgs, y_fill_).view(-1) 

        # Calculate loss on the real batch 

        errD_real = criterion(output, y_real_) 

        # Calculate gradients for D 

        errD_real.backward() 

        D_x = output.mean().item() 

 

        # (1) (B) Train with all-fake image batch 

 

        # Generate batch of latent vectors 

        # Gnet inputs: z_ is random noise, 

        #              y_label_ is random label in one-hot vector 

        # Dnet inputs: fake from Gnet, and y_fill_ 

        z_ = torch.randn((b_s, 100)).view(-1, 100, 1, 1) 

        # z_ is [b_size, 100, 1, 1] 

        y_ = (torch.rand(b_s, 1) * 10).type(torch.LongTensor).squeeze() 

        # y_ is [b_size] and is random labels 

        y_label_ = onehot[y_]    #: [b_s, 10, 1, 1] 

        y_fill_ = fill[y_].to(device)  #: [b_s, 10, 32, 32] 

 

        z_ = z_.to(device) 

        y_label_ = y_label_.to(device) 

        y_fill_ = y_fill_.to(device) 

 

        # Generate fake image batch with G 



 

 

        fake = Gnet(z_, y_label_) 

 

        # Calculate the output of D for the fake batch 

        output = Dnet(fake.detach(), y_fill_).view(-1) 

        # .detach() because Gnet is not updated this time, 

        # no gradients for Gnet 

        # Calculate D loss on the fake batch 

        errD_fake = criterion(output, y_fake_) 

        # Calculate the gradients on fake batch 

        errD_fake.backward() 

        D_G_z1 = output.mean().item() 

        # Add the gradients from the real and fake batches 

        errD = errD_real + errD_fake 

        # Update D 

        optimizerD.step() 

 

        #------------------------------------------- 

        # (2) Update G network: maximize log(D(G(z))) 

        #------------------------------------------- 

        Gnet.zero_grad() 

        # fake labels are real (1.0) for generator cost, because G wants to 

        # fool D. So we treat the fake image as real for D. 

        z_ = torch.randn((b_s, 100)).view(-1, 100, 1, 1) 

        y_ = (torch.rand(b_s, 1) * 10).type(torch.LongTensor).squeeze() 

        y_label_ = onehot[y_] 

        y_fill_ = fill[y_] 

 

        z_ = z_.to(device) 

        y_label_ = y_label_.to(device) 

        y_fill_ = y_fill_.to(device) 

 

        fake=Gnet(z_, y_label_) 

 # Calculate the output of D 

        output = Dnet(fake,y_fill_).view(-1) 

        # Calculate G loss 

        errG = criterion(output, y_real_) 

        # Calculate gradients for G 

        errG.backward() 

        D_G_z2 = output.mean().item() 

        # Update G 

        optimizerG.step() 

 

        # Output training stats 

 

        if i % 50 == 0: 

            print('[%d/%d][%d/%d]\tLoss_D: %.4f\tLoss_G: %.4f\tD(x): %.4f\tD( 

                    G(z)): %.4f / %.4f' 

                  % (epoch, num_epochs, i, len(dataloader), 

                     errD.item(), errG.item(), D_x, D_G_z1, D_G_z2)) 

 

        # Save Losses for plotting later 

        G_losses.append(errG.item()) 

        D_losses.append(errD.item()) 

Starting Training Loop... 

[0/10][0/469]   Loss_D: 1.8410   Loss_G: 5.6549   D(x): 0.6279   D(G(z)): 0.6793 / 0.0439 

[0/10][50/469]  Loss_D: 0.5870  Loss_G: 2.4888   D(x): 0.8298   D(G(z)): 0.3138 / 0.0910 

[0/10][100/469] Loss_D: 0.7250  Loss_G: 2.2712   D(x): 0.5948   D(G(z)): 0.0342 / 0.1242 



 

 

[0/10][150/469] Loss_D: 1.5258  Loss_G: 3.4039   D(x): 0.3733   D(G(z)): 0.0149 / 0.0576 

[0/10][200/469] Loss_D: 1.6579  Loss_G: 3.7255   D(x): 0.7195   D(G(z)): 0.6895 / 0.0308 

… 

 

Plot losses 
plt.figure(figsize=(10,5)) 

plt.title("Generator and Discriminator Loss During Training", fontsize=20) 

plt.plot(G_losses,label="G") 

plt.plot(D_losses,label="D") 

plt.xlabel("iterations", fontsize=20) 

plt.ylabel("Loss", fontsize=20) 

plt.legend() 

plt.show() 

 

 
Fig.12.22 Losses of conditional GAN on MNIST for 10 training epochs 

 

Generate fake samples. The result is plotted in Fig.12.23. 

 
# this is not for training, but for generating images after training. 

# generate fixed noise (fixed_z_) and fixed labels (fixed_y_label_) 

# fixed_z_: 100 random vectors (z), each to generate one image 

#           shape [100,100,1,1], 

#           batch size =100, channel =100 (vector z), feature map:1x1 

# 

# fixed_y_label_: 100 one-hot vectors, each vector has 10 elements 

#                 the one-hot vector for each digit repeats 10 times 

#                 shape [100,10,1,1], 

#                 batch size=100, channel=10 (one-hot vector) 

#                 feature map: 1x1 

 

temp_z_ = torch.randn(10, 100) 

fixed_z_ = temp_z_ 

fixed_y_ = torch.zeros(10,1) 

 

for i in range(9): 

    fixed_z_ = torch.cat([fixed_z_, temp_z_], 0) 

    temp = torch.ones(10, 1) + i 

    fixed_y_ = torch.cat([fixed_y_, temp], 0) 

 

fixed_z_=fixed_z_.view(-1,100,1,1) 

 

fixed_y_label_ = torch.zeros(100,10) 

fixed_y_label_.scatter_(1, fixed_y_.type(torch.LongTensor), 1) 



 

 

fixed_y_label_ = fixed_y_label_.view(-1, 10, 1, 1) 

 

fixed_z_ = fixed_z_.to(device) 

fixed_y_label_ = fixed_y_label_.to(device) 

#print(fixed_z_.shape, fixed_y_label_.shape) 

 
with torch.no_grad(): 

  fake = Gnet(fixed_z_, fixed_y_label_).detach().cpu() 

img = vutils.make_grid(1-fake, padding=2, nrow=10, normalize=True) 

 

real_batch = next(iter(dataloader)) 

 

# Plot the real images 

plt.figure(figsize=(15,15)) 

plt.subplot(1,2,1) 

plt.axis("off") 

plt.title("Real Images") 

plt.imshow(np.transpose(vutils.make_grid(1-real_batch[0].to(device)[:100], 

padding=2, nrow=10,normalize=True).cpu(),(1,2,0))) 

 

# Plot the fake images from the last epoch 

plt.subplot(1,2,2) 

plt.axis("off") 

plt.title("Fake Images") 

plt.imshow(np.transpose(img,(1,2,0))) 

plt.show() 

 

 
Fig.12.23 Real images vs. fake images from conditional GAN after 10 epochs training 

 

 

Summary and Further Reading 

Summary 

Generative adversarial networks (GANs) are a kind of generative model, which are able to generate realistic 

high-resolution images. This chapter presents the principle of basic generative adversarial nets from the 

perspective of a minmax two-player game. The generator tries to generate a fake example to fool the 

discriminator while the discriminator tries to distinguish the fake example from the real examples. At the 

end of the training process, the generator and the discriminator ideally reach an equilibrium: the discriminator 

can hardly distinguish the fake examples from the real examples because the generator does a great job. 



 

 

However, it is challenging to train a particular GAN in practice, due to the gradient vanishing and model 

collapse, and the sensitivity to hyperparameter selection. Various improved versions have been proposed to 

enhance the performance of GANs and/or the training stability. In this chapter, we present a few: conditional 

GAN, InfoGAN, Wasserstein GAN, CycleGAN, and f-GANs.  

At the end of the chapter, a comprehensive tutorial in PyTorch is presented to implement a basic deep 

convolutional GAN and a conditional GAN, both on dataset MNIST.  

Further Reading 

The original concept of GANs was proposed by Goodfellow et al. 2014. A recent paper by Goodfellow et 

al. 2020 gives a brief review on the applications of GANs and identifies core research problems related to 

convergence necessary to make GANs a reliable technology. Deep convolutional GANs were proposed by 

Radford et al., 2016. 

To obtain more insights and details on the GAN variants in our text, one is encouraged to read the 

corresponding original papers. These papers include Mirza et al. 2014 for conditional GAN, Chen et al. 

2016 for InfoGAN, Arjovsky et al. 2017 and Gulrajani et al. 2017 for Wasserstein GAN, Zhu et al., 2017 

and Isola et al. 2017 for CycleGAN, Nowozin et al. 2016 for f-GANs. Some Githubs and tutorials on the 

Internet provide useful resources for implementations, e.g., Zeleni9, 2021 Github, S-chh 2022 Github and 

DCGAN PyTorch Tutorial.  

There are many other GAN variants which have not been covered in our text. An interested reader may 

explore the following GAN variants: Laplacian GAN (Denton et al. 2015), Progressive GAN (Karras et al. 

2018), Self-attention GAN (Zhang et al. 2019), Energy-based GAN (Zhao et al. 2017), Boundary 

equilibrium GAN (Berthelot et al. 2017).   

GANs have been widely applied to image processing and computer vision. Some examples are given below. 

The super-resolution GAN by Ledig et al. (2017) can infer photo-realistic natural images for 4× upscaling 

factors. APDrawingGAN (Yi et al. 2019) was proposed to generate artistic portrait drawings from face 

photos with hierarchical GANs. There were many research efforts for face generation, such as attribute-

guided face generation (Lu et al. 2018), GAN with decomposed latent spaces (Donahue et al. 2018), 3D 

Face Reconstruction (Gecer et al. 2019). The first effort to use GAN for video generation was the work by 

Vondrick et al. 2016.  

 

File: mnist_dcgan_kuang.ipynb in Google colab. (copied to \Users\weido\ch12_gan\) 

        mnist_cdcgan_kuang.ipynb in Google colab. (copied to \Users\weido\ch12_gan\) 
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Exercises 

12.1 Show that the optimal discriminator in the original GAN by Goodfellow is given by   

𝐷𝑔
∗(𝐱) =

𝑝𝑑𝑎𝑡𝑎(𝐱)

𝑝𝑑𝑎𝑡𝑎(𝐱) + 𝑝𝑔(𝐱)
 

(Hint: see the original paper Goodfellow et al. 2014) 

12.2 To compute the transposed convolution in Fig.12.5, we can use three different ways: 

1) Equation (12.15): 𝑍 = 𝑊
𝑇
× 𝑌. 

2) Flipping the filter sheet twice in Fig.12.6. 

3) Summing the shifted and weighted filters in Fig.12.7. 

Please compute the transposed convolution in Fig.12.5 using the above different ways, and verify 

that they lead to the same result. 

12.3 Consider a transposed convolution for the two-channel input. The input and the kernel are given 

below.  

 

Compute the transposed convolutions for the following settings (p for zero-padding, s for stride) 

https://cedricvillani.org/sites/dev/files/old_images/2012/08/preprint-1.pdf
https://arxiv.org/abs/1609.02612
https://github.com/Zeleni9/pytorch-wgan
https://arxiv.org/abs/1805.08318
https://arxiv.org/abs/1609.03126
https://arxiv.org/abs/1609.03126
https://arxiv.org/abs/1703.10593


 

 

1) Default setting, i.e., p=0, s=1. 

2) p=1, s=1. 

3) p=0, s=2. 

4) p=1, s=2. 

Use torch.nn.ConvTranspose2d () to verify your results. 

12.4 In CycleGAN (Section 12.3.5), the original authors suggested a 70 × 70 PatchGAN as the 

architecture of the discriminator. Please explain the meaning of 70. 

 

12.5 Given a valid f-divergence function 𝑓(𝑢): ℝ+ → ℝ, find another function 𝑓(𝑢) such that  

𝐷𝑓(𝑝||𝑞) = 𝐷�̃�(𝑞||𝑝) 

 

12.6 Find the additional constraint on a valid f-divergence function 𝑓(𝑢), such that the f-divergence is 

symmetric, i.e.,  
𝐷𝑓(𝑝||𝑞) = 𝐷𝑓(𝑞||𝑝) 

12.7 Derive the min-max objective functions for the f-GANs based on the following f-divergences. 

1) KL divergence. 

2) Jessen-Shannon divergence. 

12.8 Run the programs in Section 12.4 a few times independently. You may find out that the 

training process does not learn at all for some runs. What are the possible reasons? 

12.9 Implement and train the following GANs: 

1) InfoGAN (Table 12.2) on MNIST dataset. 

2) Wasserstein GAN weight clipping (Table 12.3) on CelebA dataset. 

3) Wasserstein GAN gradient penalty (Table 12.3) on CelebA dataset. 

4) f-GAN using KL divergence on MNIST dataset. (Refer to Nowozin et al. 2016 or other 

resources). 

 

Keys to Exercises: 

  

12.3 

1) [[0,0,0,0], [1,6,3,2], [0,0,3,0], [0,0,0,3]]  

1) [[6,3], [0,3]] 

2) [[0., 0., 0., 0., 0.],[1., 1., 3., 2., 2.],[0., 0., 3., 0., 0.], [0., 0., 0., 3., 0.], [0., 0., 0., 0., 3.]] 

3) [[1., 3., 2.], [0., 3., 0.], [0., 0., 3.]] 


